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Underwater object classification by unmanned underwater vehicles (UUVs) is a

critical task that is made difficult in shallow waters with concentrated particulate matter.

Bistatic laser imaging is a current area of research that is more effective than traditional

optical methods, but it requires separation of the laser receiver from the UUV-mounted

laser emitter. This work explores the prospect of performing bistatic laser imaging with

the receiver mounted to a quadrotor unmanned aerial vehicle (UAV). To facilitate the

imaging application, estimation and guidance algorithms are developed to autonomously

locate and track a UUV-mounted laser with an amphibious UAV. The UAV is equipped to

carry a receiver payload in safe above-water flight and water landings. To represent the

received laser measurements, laser intensity models are developed based on the distributions

of the decollimated lasers used in the imaging application. The UAV autonomy is validated

both in a reduced-order simulation environment and with the hardware testbed.
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Chapter 1: Introduction

1.1 Motivation

The motivation for this thesis stems from the need for high-resolution imaging in

shallow, degraded visual environments (DVEs). In marine environments, various imaging

techniques are used to visualize and understand unknown objects. Currently, sound

navigation and ranging (SONAR) devices are commonly used in maritime applications.

The technology is mature, having been developed in a wide breadth of applications for

decades, and it operates over long distances in water because of the speed and range

of sound propagation. However, SONAR imaging systems do not provide the kind of

resolution that optical devices (e.g. cameras) operate with. SONAR also suffers from

multi-path signals in shallow water, and the more robust systems that can provide a better

resolution are too large for small, remotely operated underwater vehicles (ROVs) that

would be used in these scenarios [1]. More robust SONAR systems can provider higher

resolution, but size constraints make them unattractive for small ROVs.

For these reasons, small ROVs typically operate with visible camera-based sensors.

While they can produce high-resolution imagery in nominal conditions, cameras perform

poorly in DVEs, such as turbid coastal waters and harbors [2]. The performance degradation

in these environments is due to light-scattering particulates in the water. To find a solution
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to this issue, laser imaging systems are actively being developed [1, 3–5]. For example,

there are defense-related systems that operate either below water or through the air-water

interface that take advantage of lasers for enhanced resolution to detect and classify

underwater mines [6], [7]. However, these systems are large, bulky, and expensive.

Further development has been directed toward creating systems of a lower size, weight,

and power (SWaP) to be used on small ROV platforms by allocating some of the required

equipment to a separate platform.

One of the key factors in the large SWaP of these laser imaging systems is their

pseudo-monostatic nature. A monostatic device acts both as the transmitter and receiver,

often used to describe traditional radar or sonar systems. However, it is often the case

that different devices are required for the transmitter and receiver. A pseudo-monostatic

device is one in which the distance between the transmitter and receiver is much smaller

than the range to the target, such as with laser imaging systems where the emitter and

receiver are both located on the same ROV [8]. Pseudo-monostatic laser imaging systems

tend to be large, both because there are two devices mounted to the same vehicle (each

with their own weight and power requirements) and because the devices are mounted as

far from each other as possible.

Multistatic sensing involves using multiple transmitters or receivers. For example,

bistatic systems have a single transmitter and receiver, but the distance between them is

comparable to the distance to the target. Adjusting the geometry between the transmitter,

receiver, and target can increase performance, especially if the transmitter and receiver

are on moving platforms [2]. A bistatic laser imaging system would have the advantage

of reducing SWaP of the ROV by moving the receiver to another platform. It was also
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found that the separate emitter and receiver can be positioned to provide a higher-quality

image than with using a pseudo-monostatic system [2]. Additionally, it was shown that

the laser receiver can be located above water, without suffering issues with the laser signal

travelling across the air-water interface [2], such that the vehicle carrying the receiver does

not need to be confined to the water domain.

In initial testing, the laser receiver was mounted above a test facility water tank.

For outdoor testing, the receiver was mounted on an unmanned surface vessel (USV) [9];

however, the instability of the water’s surface can cause the receiver to lose sight of the

laser. This work explores the possibility of mounting the laser receiver on a multirotor

UAV. Multicopters or multirotor drones are simple aerial vehicles that are able to hover

in place and vertically take-off and land. While their endurance is less than similarly

sized fixed-wing aerial vehicles, their ability to hover makes them advantageous for this

application. A hovering multirotor UAV would be able to maintain level, stable flight for

the laser receiver to increase the likelihood of laser detection.

A challenge that arises with using a UAV-mounted receiver is the localization of

the ROV in order to acquire the laser signal. Knowledge of the ROV position relative

to the UAV is needed in order to place the receiver within the range and line-of-sight of

the emitter. With a USV, an acoustic underwater localization device can be used to get

range and heading from the USV to the ROV. However, the air-water interface between

the ROV and UAV rules out this approach. Also, while estimating the relative position of

the ROV can be helpful, the objective is to position the receiver such that it detects the

laser signal, so the ideal position of the receiver may not be directly above the ROV. The

objective is more directly met by localizing the receiver within the spatial gradient of the
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laser to position it in an ideal location.

1.2 Relation to Previous Ongoing Work

Multistatic sensing with robot agents has long been a topic of interest. Multistatic

radar has been used to locate and track small UAVs [10]. Robot networks have been

used to distribute multistatic emitters and receivers, both with UAVs [11, 12] and with

UUVs [13, 14]. However, little research has been conducted in multistatic laser imaging

beyond the motivating application.

Also related to this topic is spatial gradient estimation and source localization.

More typical examples of spatial gradients are phenomena like environmental pressure

gradients, temperature gradients, chemical spills or gas leaks, and more. Mobile robots

have been used to estimate gradients and identify sources in these applications, from

individual agents [15], to unmanned ground vehicle (UGV) swarms [16], to UAV swarms

[17], and even cross-domain applications [18]. While lasers are not typically considered

as being represented by a spatial gradient, estimating gradients from other electromagnetic

fields has been researched [15, 19].

Localization with respect to lasers and other optical devices is important because of

their increased usage for communication, such as in the bistatic laser imaging application.

LEDs have been used for combined communication and localization [20], even using

independent robots for the emitter and receiver [21]. Research has also been conducted

on using lasers to communicate across an air-water interface, with the intended use case

being for communication between UAVs and UUVs [22]. This work’s efforts toward
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improving the localization of the receiver within the laser field can benefit research in

these areas.

1.3 Technical Approach

To test UAV-aided bistatic laser imaging, a quadrotor UAV is designed taking into

account the unique requirements of the application. The UAV needs to carry a laser

receiver payload weighing about 1.5 kg long enough for calibration and testing of the

imaging system. The UAV design also considers the operational environment, i.e. the

need to fly safely above water, by implementing an amphibious design. Also to be

designed are a communication network between the UAV, the ROV, and a user interface

to allow for autonomous coordination.

Autonomous flight capabilities, including a means to estimate the UAV’s position,

are formulated to determine the relative position between the laser emitter and receiver.

The UAV autonomy is designed using estimation and control theory, using the laser as a

means to localize the emitter and ROV. In order to estimate the position of the receiver

within the laser field, laser intensity models are developed to represent the laser types

used in hardware testing. An existing Gaussian beam intensity model is analyzed for far

field use with lasers decollimated by a diverging lens. For lasers diffused into a flat-top

distribution, a super-Gaussian distribution is examined. Although the laser passes through

an air-water interface before reaching the receiver, it is assumed that the refraction at

the surface is negligible, as well as the attenuation through water. Another simplifying

assumption is that the ROV and UAV remain level, such that the emitter and receiver are
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both aligned with the vertical axis. The estimation and guidance algorithms are designed

for use with these laser models.

Before implementing any autonomous behaviors in hardware, they are tested in a

reduced-order simulation. Vehicle dynamics are simplified to the plane defined by the

forward and vertical axes. Additionally, laser models are imported to produce simulated

results.

1.4 Contributions

The contributions of this thesis are:

1. A testbed to experimentally replicate cross-domain coordination for bistatic

laser imaging, including a custom amphibious quadrotor UAV. The UAV carries

a laser receiver payload for an adequate flight time for testing the application. The

UAV is equipped with sensors and computing ability to perform on-board position

estimation and autonomous flight in indoor and outdoor situations, as well as novel

buoyant landing gear to allow for safe water landing and skimming maneuvers.

2. A super-Gaussian laser intensity model that captures both the divergence and

distribution of Gaussian and flat-top lasers. The model describes the intensity

measurement as a function of the axial and radial distances from the laser emitter

to the receiver. It is appropriate for the far field intensity of lasers that have been

decollimated with either a diverging lens or an engineered diffuser.

3. Estimation and guidance algorithms to autonomously locate and track the

upwelling laser with the UAV. An optimization-inspired gradient ascent algorithm
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commands the UAV to climb the estimated spatial laser gradient. An extended

Kalman filter (EKF) uses available sensor measurements to estimate the relative

position of the laser axis in the plane of the receiver. Guidance algorithms were

developed to perform a constant-velocity search and to use state estimates to position

the UAV and receiver in the detectable region of the laser. An autonomy framework

was suggested to use available estimates and measurements to switch between

guidance behaviors.

4. Simulation and hardware results. 2D dynamic models for a quadcopter UAV and

a fully-actuated ROV were developed. 2D control algorithms were implemented for

both the UAV and ROV models. Results for the performance of the estimation and

guidance algorithms were produced in the simulation environment, and additionally

with the hardware testbed.

1.5 Outline of Thesis

Chapter 2 describes the hardware testbed developed for this work. The quadrotor

UAV design is shown, as well as the communication and coordination framework between

the UAV, ROV, and groundstation. Chapter 3 presents the 2D dynamics and controls for

the simulated UAV and ROV. Chapter 4 presents the development of the laser intensity

models used in simulation and in algorithm development. Chapter 5 describes the estimation

and guidance algorithms developed for the UAV autonomy. Chapter 6 presents the simulation

and hardware results from the aforementioned algorithms, and Chapter 7 summarizes and

concludes the thesis.

7



Chapter 2: Experimental Testbed

This application of bistatic laser imaging requires a unique and complex system of

hardware and software components and interfaces. While the end-goal of the application

is to conduct imaging of unclassified objects in open-water, this testbed was designed for

performing initial testing indoors.

2.1 Unmanned Aerial Vehicle

2.1.1 Hardware Design

Before a design was made, commercial UAVs were considered, but none were

found to adequately meet the constraints of the application. Instead, the UAV hardware

was custom-designed with the unique aspects of the application and testing in mind.

The minimum components for a quadrotor UAV are the frame, drive (motors, propellers,

electronic speed controllers, and batteries), a flight controller with an inertial measurement

unit (IMU) for state estimation, and an RC receiver. To implement autonomous behaviors

and to facilitate data transmission from the receiver to the ground station, the UAV also

requires a computing device with wireless connectivity, as well as a means of localizing

the UAV indoors. The primary goal of the UAV is to carry the laser receiver payload,
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which is expected to have a mass of about 1.5 kg. Because the testing of the bistatic

laser system requires time for adjusting and calibration before the images are produced,

flight longevity was an important aspect to consider. Most indoor research drones are

designed to fly for just a few minutes, which would be insufficient for this project. In

order to increase flight time, additional battery capacity can be added, but this comes with

the problem that increasing total mass requires stronger rotors (motors and propellers).

Generally, rotor efficiency is best when the propeller diameter is maximized, but larger

propellers require a larger airframe. Not only does this increase mass, but a larger frame

and propellers pose more of a safety risk when flying in a confined, indoor environment.

To keep the safety risk at a manageable level, the maximum length from propeller

to propeller across the diagonal was chosen at 1 m. Using an optimization algorithm1

previously developed by the author, the motors, propellers, and batteries were chosen

to keep with this constraint while also performing adequately for the application. With

a payload, the UAV is designed to fly for about 15-25 min, depending on the flight

conditions.

Another unique aspect of the project is that the UAV would be flying almost exclusively

above water. If there were to be a malfunction or any other situation where the UAV

would be required to land immediately, the drone would almost certainly be submerged.

Waterproofing the entire UAV would be unreasonable at this stage of research, especially

as the interfaces between the drone and payload are being developed; also, waterproofing

would likely mean designing and manufacturing a sealed enclosure, which would be

an immense sink of resources and time. Instead, landing gear floats were designed to

1https://github.com/natetoombs/Multirotor-Sizing-Methodology
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Figure 2.1: Image of the amphibious quadrotor UAV

support the weight of the UAV on the surface of the water (see Figure 2.1). The floats,

made of closed-cell foam that does not absorb water, are placed at the ends of each of

the four arms of the UAV to maximize stability during landing and in the presence of

disturbances. Additionally, the rigid foam floats can be used as landing gear for landing

on the ground/on solid surfaces.

2.1.2 Software Design

The computing components on the UAV are the flight controller and the companion

computer. The flight controller is a CC3D REVO F4 board running the ROSflight firmware,

which is an open-source autopilot developed by a team of university researchers [23].

The flight controller has a built-in IMU, which provides a state estimate for the on-board

PID angular rate controller. The flight controller is connected to the RC receiver; these

components, connected to the quadrotor drive parts, are enough for manual flight of the

vehicle.
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The autonomous functions are implemented in the companion computer. The single-

board computer selected is an NVIDIA Jetson TX2, which is connected to the flight

controller via a USB connection. ROS (Robot Operating System) is used as the framework

to connect the various software and hardware components. ROSflight has a node that

runs on the computer to receive sensor data and send commands from and to the flight

controller. The IMU data is used in an error-state EKF estimator, which produces a state

estimate. This state estimate is used by the cascaded PID controller. The estimator and

controller come from an open-source software package named ROScopter2, developed by

the same university lab that developed ROSflight.

An Intel Realsense T265 tracking camera was chosen to provide visual-inertial

odometry (VIO) for the position estimate. The T265 camera connects with the computer

via USB, and connects to ROS with a driver developed by the team at Intel RealSense. The

measurements are also sent to the estimator. The command messages sent to the controller

come either from a Wi-Fi connection to the groundstation computer, or from the onboard

autonomy node that implements the methods described in Chapter 5. The autonomy uses

measurements from the laser receiver, which is connected to the companion computer

via USB and has a driver that converts the receiver serial output to ROS messages. The

controller takes high-level commands (position or velocity), and it outputs throttle and

angular rate commands to the flight controller.

2https://github.com/byu-magicc/roscopter
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Figure 2.2: UAV software and interfaces diagram

2.2 Remotely Operated Vehicle

The ROV used in this testbed is the BlueRobotics BlueROV2 Heavy. Much like a

UAV, the ROV principally consists of a frame, drive (motors, propellers, electronic speed

controllers (ESCs), and a battery), a flight controller, a companion computer, and a means

to communicate remotely. Some additional components that are important for the ROV

are a camera, lights, buoyancy foam, and ballast weights. The electronic components

are contained in two sealed compartments that are rated to a depth of 100 meters. There

are a total of 8 thrusters (motors and propellers), which are used to provide full six-

degree-of-freedom control. There is a heavy-duty tether that connects the ROV to the

Fathom-X Tether Interface (FXTI), which connects the tether to an ethernet connection

to the groundstation computer.

The flight controller on the ROV is a Pixhawk 1. While this is typically used

for a UAV, it works well for an ROV because it controls the motors, reads sensors,

and communicates to a groundstation, in a very similar way to how a UAV does. The

12



Figure 2.3: Image of the BlueROV2 Heavy

Pixhawk runs the Ardusub3 firmware, an open-source project for controlling ROVs. The

flight controller also connects to a Raspberry Pi 3 companion computer, which runs

the Ardusub-Raspbian operating system specifically built for communicating with an

ROV. This companion computer relays information, commands, and the video stream

through the tether to the groundstation computer. Onboard sensors include an IMU, a

magnetometer, and a barometer, which can be used by the Pixhawk controller in a variety

of control modes.

The ROV is also equipped to be used with an underwater acoustic positioning

system. The Waterlinked GPS is a short baseline (SBL) system that uses four acoustic

receivers to calculate the 3D position of a transmitter mounted to the ROV. The position

estimate is then sent to the groundstation computer. While the system works well in open

3https://www.ardusub.com/
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water, it proved inaccurate when used at the indoor test facility, likely due to multipath

reflections from the metal struts in the tank walls.

2.3 Laser and Receiver

The testbed uses a mock laser system to represent the relevant aspects of the bistatic

laser imaging application. Instead of a laser encoded with data from the imager [2], a

green, low-power (0.045 W) laser is used. The laser in enclosed in a water-tight tube,

along with either a lens or a diffuser, and a mirror to direct the laser upwards. The tube

is attached to the top of the ROV (see Figure 2.4(a)). The laser is connected to a top-side

power source through the tether that goes to the ROV.

The receiver consists of a photodiode, a light filter, a source transformation circuit,

an Arduino Mini Pro, a USB connection, and a 9-volt battery for a power source. Light

reaches the photodiode through a 532 nm filter, which matches the color of the laser as

to reduce the ambient light noise. In another effort to reduce ambient light noise, the

photodiode field-of-view (FOV) is restricted to 10 degrees. As the photodiode receives

light, it acts as a current source, increasing the output current based on the amount of green

light received. The source transformation circuit converts the current source to a voltage

source, which can be read by the analog-to-digital converter (ADC) on the Arduino. The

Arduino reads the voltage signal and sends it as a serial signal over the USB output. The

receiver components are housed in a water-tight enclosure, which is mounted to the UAV

(see Figure 2.4(b)).
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(a) (b)

Figure 2.4: Images of the ROV-mounted laser (a) and the UAV-mounted receiver (b)

2.4 System Interface

A complete system diagram is shown in Figure 2.5. The groundstation computer

serves as the central hub for UAV/ROV communication. Via ethernet, it connects to the

FXTI to receive data and video from the ROV, and also to the Waterlinked GPS system.

The data from the ROV autopilot, which uses the MAVLink protocol, are converted to

ROS messages with a ROS software node. This data is then read by the ground control

program QGroundControl (QGC), which displays important information about the ROV,

shows the video feed, and allows for autonomous mission planning if there is a position

measurement. A USB joystick connected to the computer also interfaces with the ROV

through QGC to give manual control of the ROV.

Because the MAVlink data have been converted to ROS messages, depth data from

the ROV can be used to calculate the distance between the laser emitter and receiver

for use in the EKF. The messages are sent through the ROS framework over the Wi-fi

connection to the UAV. If the ROV position is estimated and is accurate, then its position
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Figure 2.5: System interface diagram

can be used as a command directly to the UAV controller.

16



Chapter 3: Unmanned Vehicle Planar Dynamics and Controls

The following models were developed for 2D simulation of the vehicles involved

in the bistatic laser imaging application.

3.1 Unmanned Aerial Vehicle Model

3.1.1 Quadrotor UAV Kinematics and Dynamics

Figure 3.1 shows the reference frames used for the UAV and ROV. Both frames

are represented in the north-east-down (NED) coordinate system. The inertial frame is

defined as (I = (I, e1, e2, e3)). The drone frame (D = (D,d1,d2,d3)) is represented by

a rotation (θD) about the inertial frame e2 axis (see Figure 3.1; e2 is orthogonal to e1 and

e3, and would be coming out of the page). The rotation from the north (lateral) and down

(vertical) coordinates of the drone frame to the inertial frame is given by the following

rotation matrix:
IRD =

[
cos(θD) sin(θD)
− sin(θD) cos(θD)

]
(3.1)

The states of the drone are its position, orientation, velocity, and angular velocity.

The position vector (rD/I) is represented in the inertial frame with the coordinates xD and

zD being the horizontal and vertical positions, respectively. The attitude is described by

the rotation from the inertial frame, given by the pitch angle θD. As is standard in many
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Figure 3.1: Reference frames for the planar UAV and ROV models

aerodynamic applications, the inertial velocity vector (IvD/I) is represented in the drone

body frame, where uD is the velocity in the drone frame north direction d1 and wD is the

velocity in the drone frame down direction d3. The angular velocity (IωD) is represented

by the derivative of the orientation angle (θ̇D).

The forces and moments induced by the drone are dependent on the rotor thrusts

(T1 and T2; see Figure 3.2). Only two rotors are used because they are sufficient to show

the quadrotor dynamics in two dimensions. The effects of these thrusts can be expressed

as a total thrust T and a moment M . Their relationship to the drone thrusts is[
T
M

]
=

[
1 1
−d d

] [
T1

T2

]
(3.2)

with d being the symmetrical distance from each motor to the center of the drone. Inverting

this equation yields the mixing equation used to convert from a desired thrust and moment

to the desired motor thrusts.

The other forces experienced by the drone are due to gravity and aerodynamic drag
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Figure 3.2: Free-body diagram showing the forces and moments experienced by the UAV

(see Figure 3.2). Because the induced drag (Fdrag,induced) has a significantly greater effect

than the parasitic drag (Fdrag,parasitic) at the low speeds of this project, and because the

parasitic drag acts in the same direction as the induced drag while the drone is at hover,

the parasitic drag is neglected. The induced drag is proportional to the speed of the rotors,

but because the rotor speed is not modeled here, the drag can instead be represented as

proportional to the motor thrust [24]. The drag is modeled as

Fdrag,induced ≈ −TCduD, (3.3)

where Cd is a non-dimensional drag constant. The equations of motion are as follows:

Id

dt

[
rD/I

]
I =

[IvD/I

]
I = IRD [IvD/I

]
D = IRD

[
uD

wD

]
D
, (3.4)

IωD = θ̇D, (3.5)
Id

dt

[IvD/I

]
D =

1

m

(
DRI

[
0
mg

]
+

[
0
−T

]
+

[
−TCduD

0

])
−
[
θ̇DwD

−θ̇DuD

]
, (3.6)

Id

dt
IωD = θ̈D =

1

J
M, (3.7)
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Figure 3.3: 2D cascaded PID controller that provides UAV motor thrust outputs from
commanded position or velocity

where J is the moment of inertia of the UAV.

3.1.2 Quadrotor UAV Control

To have flexibility in the control input, the drone uses a cascaded PID controller

(see Figure 3.3). This allows the controller input to be a position command or a velocity

command, both of which are useful to this research. If a position command is specified,

the error between the command and the state is the input for the position controller, which

calculates a PID output for each of the position states (xD and zD). The output is a velocity

command for each translational state in the inertial frame.

If a position command is instead specified from the UAV guidance, then the position

controller can be omitted by giving the velocity command directly to the velocity controller.

The velocity controller operates similar to the position controller, regardless of whether
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the command comes from the UAV guidance or from the position controller. The output

is an acceleration command for each translational state in the inertial frame.

Because the 2D quadrotor UAV can only directly apply a force in the body frame

down axis (d3) and a moment about the east axis (d2), it is underactuated; in other words,

the UAV can only indirectly control its motion in the body frame north direction (d1).

For example, a hovering UAV can move up and down by changing the net thrust, and it

can rotate by creating a differential between the front and rear thrusts, but it can’t directly

control its movement forward and back.

In order to achieve lateral movement, the quadrotor takes advantage of its dynamics

to pitch in the desired direction. With an increase in thrust, the UAV can maintain altitude

while the thrust vector accelerates it laterally. The desired angle and thrust for this motion

are calculated in the acceleration controller, which uses model inversion to get these

controls from the acceleration command.

To calculate the thrust and angle commands, a simplified dynamic model that neglects

air drag is used. This model is used to calculate the thrust and pitch angle that must be

computed to reach the commanded accelerations ẍD,c and z̈D,c:

Id

dt

[IvD/I

]
I,desired =

[
ẍD,c

z̈D,c

]
=

1

m

([
0
mg

]
+ IRC

[
0
−Tc

])
. (3.8)

Tc and IRC are the thrust and rotation that must be computed to satisfy the dynamics. The

computed pitch angle θD,c defines the rotation from the computed frame C:

IRC =

[
cos(θD,c) sin(θD,c)
− sin(θD,c) cos(θD,c)

]
. (3.9)

Because the UAV current orientation can be different from the computed orientation, the

thrust command will be modified until the current and computed orientations align.
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Next, Tc and θD,c are computed. Let Tc = mac, where ac is the magnitude of

the acceleration from the computed rotor thrust. From manipulating Equation 3.8, the

acceleration is found as:
ac =

√
(g − z̈D,c)2 + (ẍD,c)2. (3.10)

By plugging Equation 3.10 into Equation 3.8 , the computed pitch angle is found to be

θD,c = arcsin

(
ẍD,c

ac

)
. (3.11)

From the computed inputs Tc and θD,c, the input commands must be calculated. The

computed pitch θD,c will be used as the command for the attitude controller, but the

difference between the computed orientation and the current orientation of the UAV must

be considered in the thrust command T . To ensure that the thrust doesn’t drive the UAV

away from its desired acceleration, the computed thrust is projected onto the current body

frame thrust axis:
T =

Tc

cos (θD)
(3.12)

As the UAV orientation approaches the computed orientation, then the thrust command

approaches the computed thrust.

The last remaining controller is the attitude controller, which takes as an input the

error in the desired pitch angle and the actual angle. It uses PID control to output a

moment command (M ). The moment command and the thrust command are run through

the mixer to determine the motor outputs:T1
T2

 =


1

2
− 1

2d
1

2
− 1

2d


T

M

 . (3.13)

Figure 3.4 shows simulated results of the UAV being commanded to follow some

position commands. Note that the lateral position response has an initial delay before

22



Figure 3.4: Simulation results of the UAV dynamics and controls

reducing error; this is because the UAV must first change its attitude before it can track

laterally. This delay is not a factor in the altitude dynamics.

3.2 Remotely Operated Vehicle Model

3.2.1 ROV Kinematics and Dynamics

Like the UAV frame, the ROV frame (R = (R, r1, r2, r3)) is represented by a

rotation (θR) about the inertial frame e2 axis (see Figure 3.1). The rotation from the north

(lateral) and down (vertical) coordinates of the drone frame to the inertial frame is given
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by the following rotation matrix:

IRR =

[
cos(θR) sin(θR)
− sin(θR) cos(θR)

]
(3.14)

The states of the ROV are its position, orientation, velocity, and angular velocity.

The position vector (rR/I) is represented in the inertial frame with the coordinates xR and

zR being the horizontal and vertical positions, respectively. The orientation is the rotation

from the inertial frame, given by θR. As with the UAV, the velocity vector (IvR/I) is

represented in the ROV body frame, where uR is the velocity in the ROV frame north

direction and wR is the velocity in the ROV frame down direction. The angular velocity

(IωR) is represented by the derivative of the orientation (θ̇R).

The forces and moments induced by the ROV are dependent on the motor thrusts

(T1, T2, T3, and T4; see Figure 3.5). The effects of these thrusts can be expressed as a total

thrust T and a moment M . The total thrust T is then broken into the ROV frame north

and down directions, i.e. Tnorth and Tdown. Their relationship to the ROV thrusts is

Tdown

M
Tnorth

 =

−1 −1 0 0
−d d 0 0
0 0 1 −1



T1

T2

T3

T4

 (3.15)

with d being the symmetrical distance between the upward-facing motors and the center

of the ROV. Assuming that T3 and T4 are equal and opposite, the above equation can be

manipulated to convert from desired thrusts and moment to the desired motor thrusts.

The other forces experienced by the ROV are due to gravity, drag, and buoyancy.

Due to the higher density of water, the ROV experiences not just a drag force along its

direction of motion (Fdrag), but also a considerable drag moment resisting its angular

velocity (Mdrag). The buoyant force (Fbuoy) acts in the opposite direction of gravity, and
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Figure 3.5: Free-body diagram showing the forces and moments experienced by the ROV

it also adds a self-righting moment to the ROV because the center of buoyancy (CB) is

above the center of mass of the ROV. The equations of motion are as follows:

Id

dt

[
rR/I

]
I =

[IvR/I

]
I = IRR [IvR/I

]
R = IRR

[
uR

wR

]
R
, (3.16)

IωR = θ̇R, (3.17)
Id

dt

[IvR/I

]
R =

1

m

(
RRI

[
0

mg − Fbuoy

]
+

[
0
−T

]
+ [Fdrag]R

)
−
[
θ̇RwR

−θ̇RuR

]
, (3.18)

Id

dt
IωR = θ̈R =

1

J
(M −Mdrag) , (3.19)

3.2.2 ROV Control

Similar to the drone controller, the ROV controller uses cascaded control to allow

for either position or velocity inputs (see Figure 3.6). However, because the ROV is fully

actuated, the attitude control is decoupled from the position control. This allows the ROV

to hold any orientation while still moving to a desired position (or velocity).
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Figure 3.6: Cascaded PID controller that provides ROV motor thrust outputs from
commanded position or velocity and attitude

As before, a given position command is compared to the actual position to determine

the error, which error passes through the PID position controller to produce a velocity

command. Either this velocity command or a direct velocity command can be used

to calculate the velocity error for the PID velocity controller. Instead of outputting an

acceleration command, the velocity controller directly produces the thrust command in

each the north and down directions.

The decoupled attitude control allows any desired angle to be commanded. The

error between the commanded and actual angles is the input to the PID attitude controller,

which produces a moment command. The thrust commands and moment command are
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through the mixer to determine the motor outputs:

T1

T2

T3

T4


=



−1

2
− 1

2d
0

−1

2

1

2d
0

0 0
1

2

0 0 −1

2




Tdown

M

Tnorth

 (3.20)

An issue with using a PID controller on an attitude is that because the attitude

coordinate is between -π and π, the controller may attempt to reduce error by rotating

more than 180 degrees. For example, if the current orientation is at−3π/4 and the desired

is at 3π/4, the error is 3π/2, and the controller will output a moment that will rotate

counter-clockwise over the entire error instead of rotating clockwise by π/2. To ensure

that the ROV always rotates in the correct direction, Algorithm 1 is implemented.

Algorithm 1 Smallest Turn Logic
Input: Commanded angle θc, current angle θ

while θc − θ > π do
θc ← θc − 2π

end while
while θc − θ < −π do

θc ← θc + 2π
end while

Figure 3.7 shows simulated results of the ROV being commanded to follow some

position and angle commands. Note that while the lateral and vertical positions are

tracked, the angle is able to change arbitrarily.
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Figure 3.7: Simulation results of the ROV dynamics and controls
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Chapter 4: Laser Measurement Modeling

Lasers typically have a very small divergence, such that they can travel long distances

compared to typical lights (flashlights, headlights, etc.). This is because lasers are highly

collimated, where all of the light rays exiting the laser device travel nearly parallelly to

each other. However, in the application of bistatic laser imaging, a collimated laser beam

would be nearly impossible to locate with a UAV flying above because of the small area

that the laser illuminates in the horizontal plane of the laser receiver. This region of

the horizontal receiver plane where the laser light is seen is heretofore called the laser-

illuminated area (LIA; see Figure 4.1). To increase the ease of positioning the receiver

within the LIA, the upwelling laser is decollimated using a lens or diffuser. By passing

through the decollimating object, the laser divergence increases from nearly zero to an

angle specified by the object’s engineering.

The laser models examined here are designed to describe the spread of a laser after

passing through a diverging apparatus. The distrubution of a laser that passes through a

decollimating lens can be approximated with a Gaussian beam model, while that of a laser

passing through a diffuser can be approximated with a flat-top beam model. These models

are developed because understanding them can offer information on how to track the ROV,

and they provide a framework for simulating the system as well. For the development of
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Figure 4.1: A laser profile from the side (left), and a cross-section of the profile showing
the laser-illuminated area at z = 2 meters (circled, right); the divergence angle Θ and
radial distance r are depicted

the laser intensity models, it is assumed that the UAV-mounted receiver is always level and

pointing straight down, and that the ROV-mounted emitter is level and pointing straight

up. Additionally, laser attenuation in the water and refraction at the air-water interface are

neglected.

As with many physical phenomena, lasers follow the inverse-square law; that is,

intensity ∝ 1

distance2
. (4.1)

This law can be explained by observing that as light travels, it spreads such that its area

increases according to the divergence angle. Assuming that the laser power is the same at

all distances, the intensity is equal to the power divided by the area, which area increases

proportional to the square of the distance.
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4.1 Laser Intensity Models

4.1.1 Gaussian Intensity Model

The Gaussian intensity model represents a laser beam whose intensity in the transverse

plane is given by a Gaussian function [25]. While the model is more typically applied to

lasers of small divergences, it is shown to apply as well to a beam with a wide divergence,

such as one intentionally spread with a diverging lens.

The model is derived starting with a two-dimensional Gaussian function

f(x, y) = A exp

(
−
(
(x− x0)

2

2σ2
X

+
(y − y0)

2

2σ2
Y

))
(4.2)

Assuming that (i) the mean is at zero (x0 = y0 = 0) and (ii) the variance is the same

in each direction (σX = σY = σ) , and changing the coordinate to a radius (r2 = x2+y2),

the equation simplifies to

f(r) = A exp

(
− r2

2σ2

)
. (4.3)

The volume under the distribution is 2πAσ2, which is set equal to the power P of the

laser, so A is solved for as

A =
P

2πσ2
. (4.4)

The intensity model can then be written as

I(r) =
P

2πσ2
exp

(
− r2

2σ2

)
, (4.5)

where I is the laser intensity and r is the radial distance from the laser receiver to the laser

axis. However, σ varies with the axial distance from the emitter to the receiver (z). Instead

of using σ, the 1/e2 width of the laser is generally used [26]. This width w, also called

the beam waist, is the width where the laser intensity is 0.135 times the peak intensity, or
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Figure 4.2: The Gaussian beam waist (w(z)) shown as related to the laser divergence (Θ)4

at two standard deviations from the mean (i.e. w = 2σ). Substituting in w(z) for σ, the

intensity can be written as

I(r, z) =
2P

πw(z)2
exp

(
− 2r2

w(z)2

)
, (4.6)

which is equivalent to the Gaussian beam intensity model found in literature [25]. While

the width w(z) has some complications in the near-field (close to the emitter), in the

far-field, it can be expressed as

w(z) = z sin

(
Θ

2

)
, (4.7)

where Θ is the laser beam full angle divergence to the 1/e2 value of the distribution [25].

The terms preceeding the exponential term of Equation 4.6 compose the on-axis

intensity I0. In other words, when the receiver is on the center axis of the laser distribution

(i.e. r = 0), then the intensity is equal to I0. Note that the on-axis intensity follows the

inverse-square law, because as the distance between the emitter and receiver (z) increases,

the intensity decreases proportionate to the inverse square.

While the standard Gaussian intensity model doesn’t hold for a flat-top laser distribution,

a super-Gaussian (or higher-order Gaussian) function can be used to approximate the

4https://en.wikipedia.org/wiki/Gaussian beam#/media/File:GaussianBeamWaist.svg
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(a) (b)

Figure 4.3: Comparison between super-Gaussian intensity model (a) and diffused laser
intensity from ThorLabs Engineered Diffuser 5 (b)

distribution [27] (see Figure 4.3). A super-Gaussian function takes the following form:

f(r) = A exp

(
−1

2

( r

σ

)n
)
, (4.8)

where n is a positive, even integer indicating the order of the super-Gaussian. For example,

a super-Gaussian with order n = 2 is equivalent to the standard Gaussian function. As

the order of the super-Gaussian increases, the distribution grows closer to approximating

a rectangular shape (see Figure 4.4).

4.1.2 Flat-top Intensity Model

The equation for intensity is then

I(r, z) = I0(z) exp

(
−1

2

( r

σ

)n
)
. (4.9)

The on-axis intensity I0 is different from before, but can be solved for in a similar manner.

The volume under the distribution is

V =

∫ 2π

0

∫ ∞

0

I(r, z)r dr dθ = 2πI0(z)
1

n

(
4

1
n

)
σ2Γ

(
2

n

)
, (4.10)

5https://www.thorlabs.com/newgrouppage9.cfm?objectgroup id=1660
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Figure 4.4: Gaussian laser model with increasing order (n); as the order increases, the
transient region between minimum and maximum intensity shortens

where Γ(·) is the gamma function. Because n is positive and real, the following definition

of the gamma function can be used:

Γ(z) =

∫ ∞

0

xz−1e−x dx. (4.11)

Equation 4.10 calculates the volume under the two-dimensional symmetrical Gaussian,

generalizing to any order n where n is a positive, even integer. Plugging in n = 2, the

equation is equivalent to the previously stated volume under the standard two-dimensional

Gaussian (V = 2πAσ2). Then, the more general equation for the on-axis peak intensity

(I0) is found by setting the total volume to be the power P of the laser and solving for A:

I0(z) =
nP

2π
(
4

1
n

)
σ2Γ

(
2
n

) . (4.12)

There is another key difference between the Gaussian and flat-top laser models that must

be accounted for here. As previously mentioned, the divergence of a Gaussian laser is the

angle made between the waist lengths of the laser (see Figure 4.2). This waist is made

to the 1/e2 width, where the intensity is at 0.135 times the peak value. However, the
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divergence of flat-top lasers is the angle over which the intensity is approximately equal

to the peak intensity (see Figure 4.3). As such, there must also be a modification made

to the choice of standard deviation, which is a function of the width of the flat top of the

laser.

Let the standard deviation σ be where the super-Gaussian laser intensity drops to

0.95 times the peak intensity:

0.95 = exp

(
−1

2

( r

σ

)n
)
. (4.13)

Choosing r as the radius to the edge of the divergence of the flat-top laser (r = z sin
(
Θ
2

)
)

and solving for σ yields

σ = 0.1−
1
n z sin

(
Θ

2

)
. (4.14)

r is the radius to the edge of the divergence of the flat-top laser (r = z sin
(
Θ
2

)
).

Plugging Equation 4.12 and Equation 4.14 into Equation 4.9 yields the complete

flat-top intensity model.

4.1.3 Determining Radial Distance and Axial Distance from Laser Source

The radial displacement from the laser mean r and the axial distance from the

emitter to the receiver z must be determined to calculate the received laser intensity at

any given location. Let a generic laser reference frame be defined as L = (L, l1, l2, l3),

and the laser receiver frame be defined as S = (S, s1, s2, s3) (see Figure 4.5). Let rS/L be

the vector to the UAV-mounted receiver from the origin of the laser. The axial distance z

is then equivalent to the scalar projection of rS/L on the laser unit vector l1:

z =
∥∥rS/L∥∥ cos θ = rS/L · l1, (4.15)
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Figure 4.5: The receiver frame (S = (S, s1, s2, s3)) and the laser frame (L = (L, l1, l2, l3))
with respective unit vectors; note that the laser and receiver point along their third axis
(l3, s3)

where θ is the angle between the vectors. Similarly, the radial displacement r is equal to

the scalar rejection of rS/L on l1:

r =
∥∥rS/L∥∥ sin θ = rS/L · (l1)⊥ = rS/L · −l3. (4.16)

In the case of the upwelling laser, if it is assumed that the UAV and ROV are both

level, the calculations for z and r are simplified, where z is the laser depth added to the

receiver altitude, and r is the radial distance from the laser to the receiver in the horizontal

plane:
z = rS/L · e3 = zL − zS (4.17)

r =

√(
rS/L · e1

)2
+
(
rS/L · e2

)2
=

√
(xL − xS)2 + (yL − yS)2. (4.18)
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4.2 Laser Detectability and Effective Divergence

The intensity model mentioned before is only applicable if the laser is detectable

by the receiver. Detectability depends not only on the positions of the drone and ROV,

but on their orientations relative to the laser divergence, the receiver FOV, and each other.

For example, it is possible that the receiver is within the laser-illuminated area, without

detecting any laser intensity, if it is not oriented toward the laser emitter (see Figure 4.6).

First, it is assumed that the receiver is level and facing down, with the laser level

and facing up. Also, for the purposes of this project, it can be assumed that the laser

divergence is greater than the receiver FOV, making the receiver FOV the limiting factor

in laser detectability. If the receiver moves laterally such that the laser is no longer in the

FOV, then the signal will not be detected, even if the receiver is in the laser-illuminated

area. Within the laser-illuminated area, there is a restricted laser-detectable area (LDA),

defined by the receiver FOV.

This limited detectability also affects the fidelity of the Gaussian and flat-top laser

models, and must be taken into account. In theory, the effect of a limited receiver FOV

would result in immediate loss of signal when the laser is no longer detectable. Instead

of a Gaussian or super-Gaussian distribution, the model would have piecewise properties,

cutting off the model at the receiver FOV (see Figure 4.7).

There are several disadvantages that arise from treating the measurement model

this way. First, the discontinuity of the piecewise function prevents us from using tools

that use a derivative of the model. Second, in the case of the flat-top laser, the model is

degraded into merely a digital signal — the laser is either detected, or it is not, with no
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(a) (b)

Figure 4.6: It is shown that the receiver can be in the LIA without detecting the laser (a);
the relative size of the LDA (dotted) compared to the LIA (solid) (b)

Figure 4.7: The unaltered laser models compared to the expected detectable models.
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Figure 4.8: A comparison between the super-Gaussian models with experimental data of
varying receiver FOV

more information being given. However, the following results demonstrate that there is

more nuance to the effect that the limited FOV has on the laser intensity distribution.

Figure 4.8 shows the comparison between two plots of experimental data with two

corresponding super-Gaussian model plots. Both sets of experimental data are gathered

by passing the receiver across the LIA at constant altitude. The data labeled “FOV = 180

deg” are gathered by pointing the receiver at the laser emitter while the receiver moves

laterally, simulating a full (180 deg) FOV. It is compared to the super-Gaussian model

with a divergence of 20 deg, which matches the divergence of the flat-top laser used in the

test. The data labeled “FOV = 10 deg” are gathered by maintaining level the receiver. It is

compared to the super-Gaussian model with a divergence of 10 deg, which is equivalent

to the FOV of the receiver.

It is apparent that at the edges of the receiver FOV, the measured intensity does not

immediately drop to zero as the model would expect (see Figure 4.7). Instead, it has a
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more gradual gradient on either side. Instead of using the piecewise model previously

shown, this intensity distribution is better approximated by a super-Gaussian, but using

the receiver FOV as the divergence Θ. This choice of divergence in the model is referred

to as the system’s effective divergence in this project, and is used instead of the piecewise

model.
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Chapter 5: Estimation and Guidance Algorithms

The objective of the UAV autonomy is to maximize the percent of time that the

laser receiver maintains reception of the laser signal. When they are thus connected, the

laser imaging data can be taken and worked into 3D images. The following guidance

and estimation methods were developed to meet that objective. The measurements and

estimation techniques for the vehicles are specified, then laser estimation methods are

introduced. Guidance algorithms are developed with these estimation methods in mind.

5.1 Vehicle State Estimation

5.1.1 Unmanned Aerial Vehicle

The UAV uses various sensors to determine its position and orientation. The IMU

provides linear acceleration and angular rate measurements. When flying outdoors, a GPS

module provides position and velocity measurements. When flying indoors, the tracking

camera uses stereo cameras and visual-inertial odometry (VIO) to produce position and

velocity measurements. The UAV combines either the GPS measurements or the VIO

estimate with the on-board IMU data in an error-state EKF estimator. This estimator

compares measurements with the dynamic model of the UAV to provide an improved
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state estimate. Having a position and velocity estimate is important not just for the UAV to

fly autonomously, but also to provide measurements to the later estimation and guidance

algorithms.

5.1.2 Remotely Operated Vehicle

Onboard the ROV is an IMU that is used to measure the ROV orientation. It also has

a built-in barometer that gives a depth measurement. These measurements are sufficient

to remotely operate the ROV in assisted control modes, such as a stabilized depth-hold

mode that frees the operator from having to manually maintain the orientation and depth

of the ROV.

To provide a position estimate, ROVs in general often utilize acoustic based measurement

systems, such as the short baseline (SBL) system with which this project’s ROV is equipped.

The systems rely on acoustic communications between a beacon on the ROV and multiple

transponders at known locations. The distance between the sensors is calculated, allowing

the ROV position to be triangulated with one of various filtering methods. Unfortunately,

acoustic positioning systems can struggle in pools and watertanks due to multipath reflections

[28], as with the test tank for this project.

If a position estimate is unavailable, other techniques can be used to estimate the

vehicle velocity. A doppler velocity log (DVL) also uses acoustics, but with a single unit

attached to the ROV. It faces toward the sea/pool floor, using doppler shift to estimate

the velocity of the ROV. Another velocity estimation technique that may be available to

some ROVs is optical flow. If the lighting and clarity conditions are sufficient, a computer
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vision program can track the movement or ”flow” of features from a camera, estimating

the velocity of the ROV [29]. While this project’s ROV is not equipped with a velocity

estimator, some of the upcoming algorithms assume that the ROV velocity is known.

5.2 Laser Intensity Estimation

The laser intensity at any point in the LIA is measured by the laser receiver, consisting

of a photodiode and source transformation circuit. From the laser intensity measurements,

the objective is to estimate the position of the centerpoint of the LIA and LDA. The

centerpoint is the ideal location for data collection because (i) the intensity is at a peak,

giving the maximum distinction between signal and noise, and (ii) there is an equal buffer

in all directions around the point to prevent small disturbances from causing signal loss.

Two approaches are described to estimate the position of the peak signal intensity.

5.2.1 Gradient Ascent

Gradient ascent is an optimization algorithm that seeks to find the maximum of

a function in a design space. In this case, the function to be maximized is the laser

intensity. The spread of the laser intensity over the LIA creates a spatial gradient, in

which each position of the receiver corresponds to a gradient in a physical quantity. The

spatial gradient of this work’s laser intensity models is seen in the sloped areas of the

models (see Figure 4.4). The Gaussian beam model has a non-zero gradient anywhere in

the LIA except at the peak, while the flat-top intensity model only has a non-zero gradient

in the sloped edges of the distribution. Even without having a complete understanding of
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the laser model, following the gradient upward would drive the UAV toward the position

of peak laser intensity, whether that be at the center of the LIA for the Gaussian beam, or

to the edge of the peak region for the flat-top model.

This application of gradient ascent involves two steps: estimation of the local

gradient and commanding the UAV to follow the gradient. The gradient at the location of

the receiver is calculated by numerically calculating the derivative of the laser intensity I

in the x and y directions, i.e.

∇I =


∂I

∂x
∂I

∂y

 , (5.1)

where the partial derivatives are found numerically as:

∂I

∂z
=

Ik − Ik−1

zk − zk−1

(5.2)

at the kth timestep for a given coordinate z.

There are two challenges this approach has in practice. First, if the change in

the position coordinate is extremely small between timesteps, the derivative may be too

large or undefined. Second, noise in the intensity signal can cause inconsistency in

the derivative value, making the gradient estimate jumpy and inaccurate. To combat

these problems, the following measures were implemented. First, the timestep between

derivative evaluations is chosen such that the current coordinates differ from the previous

by a minimum quantity. Second, the calculated derivatives are smoothed by a low-pass

filter. Finally, if the first condition is not met, the estimated gradient slowly decays to 0.

This allows the zero-gradient at the Gaussian intensity peak to be estimated, even when

the UAV is no longer moving. The complete algorithm is found in Algorithm 2.

This first step estimates the local gradient of the laser. The second step, commanding
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Algorithm 2 Gradient Estimation Algorithm
1: Inputs:

Intensity Measurement Ik, current position xk =
[
xk yk

]⊤
2: Initialize:

xk−1 ← xk

Ik−1 ← Ik
∇Ik−1 ← ∇Ik

3: if ||xk − xk−1|| ≥ dmin then ▷ Only calculates after minimum movement
4: ∇Ik ← (Ik − Ik−1) / (xk − xk−1)
5: ∇Ik ← β∇Ik + (1− β)∇Ik−1 ▷ Low-pass filter to smooth gradient
6: else
7: ∇Ik ← (1− γ)∇Ik−1 ▷ Decays ∇Ik to 0
8: end if
9: return ∇Ik

the UAV to follow the gradient, provides a means to estimate the location of the laser axis

through guiding the UAV. It is discussed in the Guidance section.

5.2.2 Extended Kalman Filter

An extended Kalman filter (EKF) is a tool in estimation that uses measurements

and a dynamic model to provide estimates of unknown states. Unlike the Kalman filter,

the EKF can use nonlinear measurement and state transition models, linearizing them

at the estimated state. In this case, an EKF is designed to estimate the position of the

intersection of the laser axis with the UAV horizontal plane, i.e., the centerpoint of the

LIA.

The EKF algorithm has two main steps: state propagation and measurement update.

The former uses the given dynamic model to estimate how the states will evolve based

on previous states and model inputs, while the latter uses measurements to improve the

estimate. While the states are propagated and updated, the covariance for the states is also

propagated and updated, and plays an essential part in the update step.
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The EKF designed for this application only considers movement in the horizontal

plane of the UAV, as it deals with estimating the centerpoint of the LIA at a given altitude.

It is assumed that the altitude is fixed, such that the laser measurements vary only with a

change in position in the horizontal plane, i.e. the axial distance coordinate z is constant.

As such, the radial distance r is the coordinate used by the EKF to perform laser intensity

measurement updates.

The relative position of the LIA centerpoint (denoted P ) to the receiver (rP/S) is

represented with polar coordinates r and θ (see Figure 5.1). Additionally, the relative

velocity is considered here, calculated as

IvP/S =I vP/I −I vS/I . (5.3)

With the assumptions that both the ROV and UAV are operating at level conditions, the

velocities of the laser emitter and receiver will be equal to the ROV and UAV velocities,

respectively. The velocity of the UAV is known from available sensor measurements. For

this approach, the velocity of the ROV must either be estimated, or approximately equal

to zero.

The state vector used in the EKF is x =
[
r θ ṙ θ̇

]⊤
, where x and y are the

relative position coordinates established previously, and ṙ and θ̇ are the polar velocity

coordinates. The dynamic models used are linear, kinematic equations, assuming no

change in the velocity coordinates. As such, the dynamic models are expressed as

ẋ =


ṙ

θ̇
r̈

θ̈

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x = Ax, (5.4)

where A is the state dynamics matrix.
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Figure 5.1: Position coordinates r and θ of the LIA centerpoint P relative to the UAV-
mounted receiver S

The discrete-time state vector is x̂k =
[
rk θk ṙk θ̇k

]⊤
at the kth timestep. The

discrete-time state dynamics matrix is then:

x̂k =


1 0 ∆tk 0
0 1 0 ∆tk
0 0 1 0
0 0 0 1

 x̂k−1 = Akx̂k−1, (5.5)

where ∆tk is the time interval between the k − 1th and kth timesteps.

The discrete-time measurement vector is zk =
[
Ik vx,k vy,k

]⊤ at the kth timestep,

where Ik is the laser intensity measurement and vx,k and vy,k are the relative velocity

measurements in the intertial frame e1 and e2 directions, respectively. The measurement

model for laser intensity is from Equation 4.9:

hI,k(x) = I0 exp

(
−1

2

(rk
σ

)n
)
. (5.6)

The models for the velocity measurements are calculated by taking the inertial derivatives

of the polar position:
hvx,k(x) = ṙ cos(θ)− rθ̇ sin(θ) (5.7)
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hvy,k(x) = ṙ sin(θ) + rθ̇ cos(θ). (5.8)

Then the complete measurement equation is

hk(x) =

 hI,k(x)
hvx,k(x)
hvy,k(x)

 . (5.9)

The Jacobian of the measurement equation is taken to produce a linearized output

matrix Ck:

Ck =

c exp
(
−1

2

(
r

σ(z)

)n)
0 0 0

−θ̇ sin(θ) −ṙ sin(θ)− rθ̇ cos(θ) cos(θ) −r sin(θ)
θ̇ cos(θ) ṙ cos(θ)− rθ̇ sin(θ) sin(θ) r cos(θ)


xk|k−1

(5.10)

with

c =
−n2rn−1P

41/n+1πσ(z)n+2Γ(2/n)
(5.11)

Note that the notation x̂n|m represents the estimate of x at the timestep n given observations

up to and including the timestep m. The steps of the EKF are then as follows:

1. Prediction Phase: The predicted state estimate x̂k|k−1 is calculated with the discrete

state dynamics matrix Ak:

x̂k|k−1 = Akx̂k−1|k−1. (5.12)

The predicted estimate covariance Pk|k−1 is also calculated with Ak, increased by

the process covariance matrix Qk:

Pk|k−1 = AkPk−1|k−1A
⊤
k +Qk. (5.13)

2. Residual Calculations: The pre-fit residual ỹk is calculated with the measurement

model h(x), evalulated at the predicted state x̂k|k−1:

ỹk = zk − h(x̂k|k−1). (5.14)
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The the pre-fit residual covariance Sk is calculated with the Jacobian of the measurement

model, Ck, increased by the measurement covariance matrix Rk:

Sk = CkPk|k−1C
⊤
k +Rk. (5.15)

3. Update Phase: The Kalman gain Kk is calculated, then used to compute the updated

state estimate and covariance:

Kk = Pk|k−1C
⊤
k S

−1
k . (5.16)

x̂k|k = x̂k|k−1 +Kkỹk. (5.17)

Pk|k = (I−KkCk)Pk|k−1. (5.18)

This EKF implementation combines the use of a linear dynamical model with a nonlinear

measurement model; other than that, it follows Related to the previous mentions of laser

detectability is the observability of the system. Although the laser measurement model

is non-linear, the linearized output matrix Ck is used in the discrete observability matrix

[30], which is as follows:

Ok =


Ck

CkAk

CkA
2
k

CkA
3
k

 . (5.19)

If the observability matrixOk has a full rank of 4, then the system is observable, such that

the state estimation error will be exponentially bounded under proper conditions [30].

It is found that for the system to be observable, then both (i) the partial derivative of

either velocity measurement with respect to the relative angle θ (i.e. ∂vx/y,k/∂θ) and

(ii) the partial derivative of the laser intensity with respect to the relative radial position r

(∂I/∂r) must be non-zero. The first condition is met anytime that the LIA centerpoint P

is in horizontal motion with respect to the laser receiver, a behavior known as persistent

excitation. For the Gaussian beam, the second condition is satisfied whenever the laser
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is detected, except at the single point where the receiver is directly on the laser axis.

However, the flat-top laser model has zero-slope across the width of the laser divergence.

This implies that the system can only be observable when the receiver is in the sloped

edges of the laser distribution, an interesting aspect given that the objective of the system

is to stay in the flat-top region.

In Section 4.2, detectability and effective divergence are mentioned. It is noteworthy

that according to the theoretical piecewise laser model with a receiver with limited FOV

(see Figure 4.7), then there would be no detectable region of a flat-top laser. This is

because at any given point of the piecewise model, the partial derivative of the laser

intensity with respect to the relative radial position (∂I/∂r) would be equal to zero, and

thus the observability condition would not be met. However, because of the experimentally-

demonstrated concept of effective divergence, the laser intensity model has regions of

observability at the gradients on the perimeter of the flat-top area.

5.3 Autonomous Quadrotor Guidance

The UAV guidance algorithms are divided into two phases: the Search Phase and

the Data Collection Phase. The former discusses algorithms to guide the UAV to acquire

the laser signal. The latter proposes approaches to remain maintain within the LDA.
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5.3.1 Search Phase

5.3.1.1 Concentric Search Pattern

A search algorithm was developed to find a point on the laser-illuminated area

(Algorithm 3). The algorithm starts the search at a given position, i.e. the expected

location of the laser-illuminated area, then begins searching by flying in a succession of

expanding concentric circles. To maintain the flight stability of the UAV, the velocity of

the trajectory along the circle is maintained constant by reducing the angular velocity as

the radius increases. Unfortunately, the search will tend to stop the UAV on the edge

of the laser-illuminated area, meaning that a small movement of the ROV can cause the

signal to be lost.

Algorithm 3 Concentric Search Algorithm
1: Inputs:

Search area centerpoint xcenter =
[
xcenter ycenter

]⊤
Spacing between circles s
Current time tk

2: Initialize:
r ← s
tstart ← tk

3: if Ik < Imin then
4: ω ← vmax/r
5: t = tk − tstart
6: if ωt < 2π then
7: xc ← r sin (ωt) + xcenter

8: yc ← r cos (ωt) + ycenter
9: xc =

[
xc yc

]⊤
10: else
11: tstart = tk
12: r ← r + s
13: end if
14: end if
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5.3.1.2 ROV Position Estimate

Because the ROV is assumed to remain level and the laser is assumed to point

directly upward from the ROV, then if the position of the ROV relative to the UAV is

known, then the UAV should be able to find the LDA by simply positioning itself directly

above the ROV. Even if there is some error in the ROV position estimate, as long as it

is less than the radius of the LDA, then this search method will be effective. If the ROV

position estimate error is greater than the radius of the LDA, the estimate would still be

a good, informed location to begin a concentric circle search pattern. This analysis also

holds if the assumption that the laser is pointing directly upward is inaccurate; at least the

best guess for a starting search location would be provided.

5.3.2 Tracking Phase

5.3.2.1 Hold Position

The simplest behavior to use once the LDA has been found is to hold the UAVs

position. Theoretically, if the UAV and the ROV both stay still, then the receiver will

remain in a position to perform data collection. However, if the UAV or ROV drift, then

the search pattern would need to be executed again. For example, if the ROV is in constant

motion, then the UAV will only be able to hold position for a brief time before having to

perform another search.
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5.3.2.2 ROV Tracking

As previously mentioned, if the ROV position estimate error is small, then the UAV

should be able to track the ROV’s position in the horizontal plane and thus remain in the

LDA. As the ROV moves, its position can be sent directly to the UAV as a command,

and the UAV controller places it in the desired location. This method would maximize

exploitation of the laser signal, allowing the bistatic laser imaging procedure to achieve

maximum effectiveness. However, if the model assumptions fail or if there is significant

error in the ROV position estimate, then this method cannot guarantee any convergence

to the LDA.

5.3.2.3 Tracking Laser Axis

The principal issue with the ROV tracking approach is that the UAV guidance

ignores the laser intensity measurements. The following guidance methods use the estimates

of the centerpoint of the LDA to control the UAV. These approaches are advantageous

because they directly guide the UAV to the ideal position for data collection, instead of

just following the ROV.

The gradient ascent method works by estimating the centerpoint as the UAV climbs

the estimated gradient. The guidance algorithm (Algorithm 4) calculates a velocity command

that is proportional to the gradient:

ẋc,k = α∇Ik, (5.20)

where α is a constant. The velocity command is clipped at a maximum speed, then sent

to the UAV controller.
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Algorithm 4 Gradient Ascent Guidance Algorithm
1: Inputs:

∇Ik
2: ẋc,k ← α∇Ik
3: if ||ẋc,k|| ≥ vmax then ▷ Clip the command if the magnitude exceeds vmax

4: ẋc,k ← vmaxẋc,k/||ẋc,k||
5: end if

If the gradient is estimated well, then the UAV is always driven toward the peak of

the laser intensity. For a Gaussian-distributed laser, this peak is found at the centerpoint.

However, for a flat-top distributed laser, the peak intensity covers the entire divergence of

the laser. The only gradient to climb is in the steep edge of the intensity model, so the

gradient ascent guidance algorithm’s effectiveness is limited in this case.

Tracking the relative centerpoint estimate provided by the EKF overcomes this

issue by allowing the UAV to enter the zero-gradient area of the flat-top distribution.

If the estimate is accurate, then the receiver will be placed in an ideal position to maintain

maximum signal strength and buffer from disturbances. With the ROV’s velocity estimate,

the UAV is able to track the centerpoint without losing signal quality. Although the

estimate covariance increases when the receiver is in the flat-top region of a laser, if

the estimate error increases enough, then the measurements from the edge of the laser

distribution will correct the estimate again.
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Chapter 6: Simulation and Experimental Results

6.1 Simulation Environment

As previously mentioned, the reduced-order simulation only represents the system

in two dimensions. The 2D dynamic models and controllers developed in Chapter 3

represent the hardware quadrotor UAV and ROV. Both the simulated UAV and ROV are

assumed to have access to their full states. The UAV model control inputs are either

position or velocity commands, similar to the hardware control inputs. The simulated

ROV is also able to be commanded with a reference position or velocity and orientation;

this varies from the hardware, where the ROV is manually piloted because there is not an

accurate position estimate.

The upwelling laser is attached to the top of the simulated ROV. The laser can either

be represented with the Gaussian intensity model, or the flat-top intensity model. In both

cases, the divergence angle would be chosen to be 20 degrees, but because the receiver

FOV is limited to 10 degrees, both laser models instead use an effective divergence of 10

degrees. The flat-top intensity model uses an order of n = 10.

Zero-mean Gaussian noise is added to the intensity measurements, as well as to

the relative position and velocity measurements, in order to better approximate actual

measurement data.
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Figure 6.1: Animated UAV, ROV, laser, and receiver FOV from the simulation

6.2 Simulation Results

The simulation results are divided into two categories: the results from individual

guidance and estimation algorithms highlighting their important aspects, and the combined

results showcasing more realistic situations where the UAV autonomy must explore both

the search phase and the tracking phase.

6.2.1 Individual Algorithm Results

6.2.1.1 Concentric Search

Figure 6.2 demonstrates the concentric search algorithm. The UAV initially flies to

an estimated position of the LIA. When the laser intensity measurement is insignificant,

the search begins. Because horizontal motion of the simulation is restricted to the x axis,

the circling behavior appears like an oscillation of increasing amplitude. Also, as the

angular velocity of the UAV decreases to keep the lateral velocity constant, the frequency
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Figure 6.2: Simulation results of the concentric search algorithm

of the oscillation decreases as the amplitude increases.

6.2.1.2 Gradient Ascent

Figure 6.3 shows results of the gradient ascent algorithm for both a Gaussian intensity

model and a flat-top intensity model. In both cases, the UAV begins near the edge of the

LDA where the laser intensity is relatively low. As the gradient is estimated, the UAV is

given a velocity command to climb the gradient, driving it toward the laser axis. Note that

the results for the Gaussian intensity model show the UAV getting closer to the laser axis

(directly above the ROV) than the results for the flat-top intensity model. This is because

in the latter situation, the UAV is commanded to stop at the edge of the laser distribution’s

flat top, instead of being guided to the centerpoint.
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(a) (b)

Figure 6.3: Simulation results using the gradient ascent algorithms for (a) a Gaussian
laser model and (b) a super-Gaussian laser model

6.2.1.3 Extended Kalman Filter

The following results demonstrate some of the behaviors of the extended kalman

filter due to the regions of unobservability in the flat-top intensity model. Figure 6.4

shows how the EKF reacts to the UAV repeatedly passing over the flat-top region. When

the laser intensity is at a peak, the UAV is in that unobservable region, so the position

covariance increases. However, when the receiver is positioned in the gradient areas of

the laser intensity (where the intensity is changing), the covariance is reduced because

the system is again observable. The objectives of maintaining peak laser intensity and

minimizing error in the estimation end up competing with each other; to minimize the

estimation covariance, the EKF seems to need measurements outside the flat-top peak

region. However, the following results show that this may not be a consequential issue.
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Figure 6.4: Simulation results of the EKF on a flat-top laser

Figure 6.5 shows the situation where the UAV is commanded to track the estimated

position of the laser axis. In this case, the receiver remains in the flat-top area of the

laser model, so the system remains unobservable. The covariance increases, although it

appears to reach a maximum because the position estimate occasionally deviates into the

gradient area. The measurement update then corrects the estimated position to return to

the flat region, decreasing the covariance as well.

6.2.2 Combined Autonomy Results

In the following results, the simulations include an algorithm from both the search

phase and the tracking phase. To draw closer to the experimental setup, the UAV initial

position is at ground level several meters away from the location of the ROV. Some results
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Figure 6.5: Simulated results of the EKF when the receiver remains in the flat-top area

show the influence of a moving ROV on the autonomy’s effectiveness. In all cases, the

UAV first flies to an initial guess of the location of the LDA centerpoint, which guess is

given an error. The UAV then enters the search phase or the tracking phase, depending on

if it receives a significant laser intensity measurement.

6.2.2.1 Search Pattern with Hold Position and Moving ROV

Figure 6.6 shows the results of using the concentric search pattern to find the LDA,

then just holding position, similar to Figure 6.2. However, in this case, the ROV has

a constant non-zero velocity. When the receiver no longer measures a significant laser

intensity, the search phase begins again. The direction of motion of the ROV was chosen

to be opposite the initial motion of the search pattern to show a worst-case scenario, and
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Figure 6.6: Simulated results of the search algorithm with position hold guidance and a
moving ROV

as can be seen, the receiver spends very little time in the LDA.

6.2.2.2 Search Pattern with Gradient Ascent

Figure 6.7 shows the results of using the gradient ascent algorithm to track the UAV

to the laser axis of a flat-top laser. The results with a Gaussian intensity model are omitted

because of their similarity to the shown results. Once the laser is detected, it follows the

gradient to be directed toward the LDA centerpoint. Interestingly, the residual motion of

the UAV carries it deeper into the flat-top region than the gradient ascent algorithm alone

would direct, showing only a small error in the estimate of the laser axis position.

Because the gradient ascent algorithm requires estimation of the spatial gradient,

the ROV must either be stationary or have a position estimate in order for the algorithm to

work (in the latter case, the relative position can be used to evaluate the spatial gradient).
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Figure 6.7: Simulated results of the search pattern with gradient ascent on a flat-top laser

For this reason, simulated results with a moving ROV are omitted.

6.2.2.3 Search Pattern with EKF Tracking

For evaluation of tracking the EKF estimate of the LDA centerpoint, only the results

from the flat-top laser intensity model are shown, as it is assumed that the estimating the

position along the Gaussian intensity model would be easier than with the flat-top model.

Figure 6.8 shows the results with a stationary ROV, and Figure 6.9 shows results

with a moving ROV. Note that in both cases, the initial estimate has an offset from

the actual LDA centerpoint position, but as it receives laser measurements, that offset

is reduced. The performance is shown to be better when the ROV is stationary, but not by

much, because the EKF uses the relative velocity measurements to keep track of the LDA

movement.
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Figure 6.8: Simulated results of the EKF estimation and guidance over a stationary flat-
top distributed laser

Figure 6.9: Simulated results of the EKF estimation and guidance over a moving flat-top
distributed laser
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Figure 6.10: Simulated results of using ROV tracking to guide the UAV

6.2.2.4 ROV Position Tracking

Figure 6.10 shows the results from commanding the UAV to track the position of

the ROV. Since it is assumed that the laser axis is always directly above the ROV, the only

limiting factors for this method are the UAV controller’s convergence rate and tracking

performance. While the simulated UAV is tuned to move relatively slowly, changes in

tuning could allow for quicker and more accurate tracking.

6.3 Experimental Setup

6.3.1 Hardware Laser Models

For the EKF estimation to be effective, the parameters of the laser system must be

used in the EKF model. For each decollimating medium (the lens and the diffuser), the

effective divergence was verified and the on-axis intensity was found experimentally.
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Figure 6.11: Image of the Neutral Buoyancy Research Facility water tank

6.3.2 Test Methods

Testing took place at the Neutral Buoyancy Research Facility (NBRF) at the University

of Maryland (see Figure 6.11). The NBRF is one of two currently operating neutral

buoyancy tanks in the US, and the tank is 50 feet across, 25 feet deep, and holds 367,000

gallons of water. The ROV with the laser emitter is submerged in the tank, and there

is adequate overhead space for the UAV to operate safely. As described in Chapter 2,

the ROV has a tether connecting it to the groundstation, while the UAV uses a Wi-Fi

connection to communicate with the rest of the system.

As mentioned in Chapter 2, the laser receiver is limited to a FOV of 10 degrees to
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limit the noise from the ambient light. Sunlight is a particularly intense ambient light,

and was shown to have an immense effect of the noise in the receiver measurement.

Although the testing is conducted indoors, the NBRF has some skylights that let in filtered

sunlight, which is more than enough to impact the receiver measurements. Unfortunately,

the current laser models do not take into account this kind of background noise, so testing

was conducted at night as to prevent sunlight from affecting the measurements.

6.4 Experimental Results

6.4.1 Concentric Search

The concentric search algorithm is tested by setting the initial position of the UAV

at an offset from the ROV position. The ROV position is fixed by anchoring it to a weight.

Results are seen in Figure 6.12. The UAV begins with a position of about (0, 0) in

the x-y plane. Because there is no laser measurement there, it begins the search pattern.

Both the commanded position and estimated position are shown. Once it arrives near the

x-y coordinate (0,−3), the receiver begins to detect the laser, and the UAV holds position

in that area. The laser measurements from the test are shown in Figure 6.13. The z-axis

shows the laser intensity. Because the test was conducted at night, there is little ambient

noise, up until the receiver enters the LDA of the laser.

While simple, the concentric circle search pattern is shown to be an effective approach

to locating the LDA from an initial estimate. It takes into account the UAV’s limitations,

ensuring that the translational speed is constant even as the radius of the circles increases.

This allows the UAV to successfully track the commanded position. As long as the

66



Figure 6.12: Hardware implementation of the concentric search algorithm, starting near
the position coordinate (0, 0)
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Figure 6.13: Laser intensity measurements made in the LDA in hardware testing

distance between circles is smaller than the diameter of the LDA, then the UAV is able to

find the LDA and hold position there.

6.4.2 Gradient Ascent Estimation

Figure 6.14 shows the results from the gradient ascent algorithm in a handheld test,

i.e. with the laser emitter above-ground and the UAV being held instead of flown. For

the test, the UAV with the mounted receiver is moved through the LDA with nearly-

continuous laser measurements. The lens is used as the decollimating apparatus, and thus

the laser intensity distribution resembles the Gaussian beam laser model. The receiver

is maneuvered on an arbitrary path in the LDA instead of being guided by velocity

commands from the algorithm. However, the figure shows the commands that would

be relayed to the UAV controller in order to climb the gradient.

It is noted that the majority of the commands, shown by the orange arrows, point
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Figure 6.14: Results from the gradient ascent estimation algorithm in handheld testing

toward the laser axis, i.e. the centerpoint of the LDA. If the UAV is able to fly and receive

continuous measurements as seen in these results, then it is expected that the velocity

commands would guide the UAV to the LDA center.

6.4.3 Extended Kalman Filter

Results from testing the extended Kalman filter in a handheld hardware test are

shown in Figure 6.15. Similar to the gradient ascent handheld test, the EKF test involves
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passing the UAV repeatedly over the LDA. In this case, the x coordinate varies as the

receiver moves completely through the LDA, while the y coordinate was maintained

nearly constant. Also, this test uses a diffuser as the decollimating apparatus, giving

the intensity distribution a flat-top shape.

The EKF estimates the relative distance (r) and angle (θ) from the receiver to the

LDA center (see Figure 5.1). The estimate is compared to the actual distance and angle

to the LDA center, calculated with the inertial-frame positions of the laser axis and the

laser receiver, in Figure 6.15. While the initial estimate has some amount of error in

the position estimate, that error is shown to close as laser intensity measurements are

made (compare the laser measurements in the second plot to the corrections made to the

estimate). Also, note that the errors in the angle θ are relatively insignificant when the

distance r is close to zero. Unlike the gradient ascent estimation method, the EKF is able

to continue estimating the position of the laser axis when the receiver leaves the LDA.
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Figure 6.15: Results from the extended Kalman filter estimation algorithm in handheld
testing
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Chapter 7: Conclusion

7.1 Summary of Contributions

This thesis investigates the use of a quadrotor UAV in novel approach to bistatic

underwater laser imaging. This exploration includes considerations in hardware components,

system interfaces, modeling and simulation, estimation, and guidance to produce a thorough

initial framework for experimentation. An amphibious UAV is developed with unique

water-landing capabilities, compatible with a communication framework that allows it

to coordinate with the ROV. A super-Gaussian laser intensity model is presented that is

useful for both Gaussian and flat-top distributed lasers. This model captures the salient

aspects of each laser type, both allowing the lasers to be simulated and providing information

for developing laser-based estimation algorithms. An autonomy framework is presented,

dividing the UAVs tasks into phases with guidance and estimation algorithms to be used

based on measurement availability. Among the developed algorithms are a gradient

ascent estimation and guidance method, and an extended Kalman filter based on the

laser intensity model. The guidance and estimation algorithms are tested through both

simulation and hardware experiments.
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7.2 Suggestions for Ongoing and Future Work

Extensions to this work could include development of higher-fidelity laser models.

Effects such as refraction and attenuation can be examined. Ambient noise from sunlight

or other environmental factors can be included as well, which could remove this work’s

restriction of testing only at night. Additionally, the relative orientation between the laser

emitter and receiver can be included. Because this work’s assumption of a level ROV

may not represent all test cases, and because the FOV of the receiver is tightly limited,

gimballing the receiver to point at the laser emitter may also be a worthwhile approach.

Further estimation techniques and improvements can be investigated. States such

as the relative orientation and ambient noise could be added to this work’s EKF. Also,

other algorithms can be used for estimation. For example, another bayesian estimator,

like a particle filter, may yield favorable results, especially when the measurements don’t

exactly match the laser model. Other spatial gradient estimation methods can be used,

such as using multiple agents to more easily locate the LDA and estimate the spatial laser

gradient [31].

Autonomy for the ROV and active coordination between the two agents can also be

visited. Aunomomous maneuvering for underwater imaging and collision avoidance is

an active topic of research [32]. This maneuvering can be made to take into account the

sensing limitations of the UAV-mounted receiver, so the UUV can plan its maneuvers and

share with the UAV to maximize laser signal strength and connection.
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[28] Jacek Misiurewicz, Konrad Bruliński, Wiesław Klembowski, Krzysztof Stefan
Kulpa, and Jan Pietrusiewicz. Multipath propagation of acoustic signal in a
swimming pool—source localization problem. Sensors, 22:1162, 2 2022.

[29] Ming Fang, Hidenori Takauji, Shun’ichi Kaneko, and Hidemi Watanabe. Robust
optical flow estimation for underwater image. pages 185–190. IEEE, 9 2009.

[30] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen. Stochastic stability of the discrete-
time extended kalman filter. IEEE Transactions on Automatic Control, 44:714–728,
4 1999.

[31] Mochammad Sahal. Comparison of gradient estimation in cooperative multi-agent
source seeking. JAREE (Journal on Advanced Research in Electrical Engineering),
1, 10 2017.

[32] Leonardo Zacchini, Matteo Franchi, and Alessandro Ridolfi. Sensor-driven
autonomous underwater inspections: A receding-horizon rrt-based view planning
solution for auvs. Journal of Field Robotics, 1 2022.

76


	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Relation to Previous Ongoing Work
	Technical Approach
	Contributions
	Outline of Thesis

	Experimental Testbed
	Unmanned Aerial Vehicle
	Remotely Operated Vehicle
	Laser and Receiver
	System Interface

	Unmanned Vehicle Planar Dynamics and Controls
	Unmanned Aerial Vehicle Model
	Remotely Operated Vehicle Model

	Laser Measurement Modeling
	Laser Intensity Models
	Laser Detectability and Effective Divergence

	Estimation and Guidance Algorithms
	Vehicle State Estimation
	Laser Intensity Estimation
	Autonomous Quadrotor Guidance

	Simulation and Experimental Results
	Simulation Environment
	Simulation Results
	Experimental Setup
	Experimental Results

	Conclusion
	Summary of Contributions
	Suggestions for Ongoing and Future Work

	Bibliography

