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The attitude and shape control of a large flexible spacecraft modeled as the hinged con-
nection of multiple rigid bodies is considered. The spacecraft consists of a hub actuated by
a reaction wheel and several appendages actuated by torque rods. The hinges rotate only
in one direction, so a planar model is used. The appendages are connected by stiff springs
and a dynamic model of the internal forces and moments of the system utilizes coordinates
in the reference frame of the hub. Lyapunov analysis is performed to generate a distributed
feedback control law for the reaction wheel and torque rods. Numerical simulations illustrate
the performance of the proposed controller for orbital motion.

Nomenclature

mi = mass of ith appendage
mC = mass of hub
Ii = moment of inertia of ith appendage
IC = moment of inertia of hub
Li = length of ith appendage
s = length of hub
ks = translational spring coefficient
cs = translational damping coefficient
ks = torsional spring coefficient
cs = torsional damping coefficient
I = Earth-centered inertial reference frame
P = rotating reference frame centered on Earth
A = body frame of spacecraft hub
B(i) = body frame of ith appendage
θ = colatitude of spacecraft
γ = hub attitude angle relative to inertial frame
αi = appendage i attitude angle relative to hub

I. Introduction
Advances in technology have increased the feasibility and number of applications of large spacecraft. For instance,

spacecraft with solar sails, large antennas, large solar arrays to meet high energy needs, extended truss structures, and
manipulator arms have been proposed. One of the challenges of having large spacecraft is that the appendages to the
spacecraft, due to weight constraints, may be flexible. Introducing flexibility creates a number of challenges to modeling
and controlling the spacecraft.

One of the primary challenges in controlling a large, flexible spacecraft is dealing with the vibrations in the flexible
appendages that are excited by attitude maneuvers performed by the hub. These oscillations can significantly affect the
attitude control of a spacecraft by reducing stability and increasing the settling time. Additionally, structural vibrations
can pose problems if maintaining flatness of the appendage is important for performance, or if they reduce the lifespan
of the structure. Without aerodynamic drag, there is little to no environmental damping and, with mass being a primary
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concern of spacecraft structures, it becomes difficult to solve this problem by stiffening the appendages or connections.
One way of addressing this problem has been through investigating spatially distributed actuation and control to regulate
the attitude and shape of the entire structure.

One method that has been investigated for mitigating structural oscillation is by developing attitude control laws
that minimize excitation. A super-twisting sliding mode control is developed in [1] to simultaneously perform attitude
tracking and vibration suppression. An extended disturbance observer and backstepping controller is proposed in [2] for
attitude stabilization by rejecting disturbances resulting from the flexible spacecraft. In [3], the flexible appendages are
modeled using partial differential equations and distributed and boundary controllers are implemented to compensate for
and suppress the disturbances and vibrations of the structure. [4] treats the oscillations as a disturbance, and derives a
compensator and controller to guarantee robust attitude control. A controller that plans constrained low-jerk maneuvers
is provided in [5].

Another research area involves active vibration suppression using additional actuators. The use of piezoelectric
actuators on flexible structures to perform active vibration suppression has been studied. In [6], a constrained torque
distribution algorithm along with a shape input controller for piezoelectric actuators are used for attitude and shape
control. A robust control scheme based on a distributed observer and controller framework is developed in [7], which
also uses piezoelectric actuation for flatness control of flexible appendages. However, due to size-at-launch constraints,
spacecraft with a large area-to-bus size ratio must be folded and then deployed after launch. Research in deployable
space structures, such as [8], studies the deployment dynamics of folded spacecraft structures. Whereas the flexing in
large lightweight spacecraft structures occurs in the structure itself, the flexing in a multibody deployable space structure
may be more significant at the hinges. Consequently, while piezoelectric actuators may suppress vibrations in a flexible
appendage, their utility is limited if the main source of flexibility of a spacecraft is in the interface between bodies,
which might occur in a deployable space structure. To better address shape control of a multibody flexible spacecraft,
instead of actuating the shape of an appendage, [9] assumes that actuators are mounted on the interface between an
appendage and the hub, and a control law is proposed to provide attitude and shape control. In [10] a model is formed
and a control law proposed where control moment gyros are distributed across the flexible structure to provide vibration
suppression. This work is extended in [11], where a global matrix formulation of the dynamics is proposed for a flexible
multibodied spacecraft.

In the case where the number of appendages is large or where the area-to-bus size ratio is large, the added mass for
each additional actuator could prohibit implementation. With piezoelectric actuators being ineffective at controlling
appendage interface flexibility and with reaction wheels and hinges being potentially too massive, there is a need to
control large flexible multibody spacecraft using actuation that is better suited for the requirements of the spacecraft
mission. In this paper, a multibody spacecraft consisting of a hub and an arbitrary number of appendages with flexible
connections between each of the bodies is considered. The proposed actuation consists of a reaction wheel in the
spacecraft hub and a magnetic torque rod in each of the appendages. A dynamic model for the hub and appendages is
developed using coordinates relative to a body-frame attached to the hub. Lyapunov-based control design generates a
stable feedback control law for the torque rods and reaction wheels.

The contributions of this paper are as follows: (1) a dynamic model of a spacecraft that is flexible in one direction
expressed in the reference frame of the spacecraft hub; (2) a controller based on a Lyapunov design that tracks a desired
attitude and suppresses oscillations in the appendages. Numerical simulations are performed to validate the efficacy of
the proposed control law under idealized conditions and under more realistic conditions. Effective shape control would
enable successful deployment of larger and lighter structures on spacecraft by mitigating the risk of structural oscillation.

The paper is organized as follows. The problem statement and the spacecraft concept are given in Section II. The
dynamic model of the spacecraft is developed in Section III and the proposed controller is presented in Section IV.
Simulation results are shown in Section V, and a conclusion is given in Section VI

II. Preliminaries
Consider a spacecraft that consists of a central hub with a set of appendages connected flexibly via damped spring

hinges. The damped hinges could be thought to model a highly flexible structure or a large spacecraft that must be
folded for launch and deployed in orbit, leading to a necessary lack of rigidity. Assume that the hinges have only one
degree of freedom, thus the motion considered is restricted to the orbital plane. As a result, it is only necessary to
consider two-dimensional dynamics.
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Fig. 1 Hub and appendage spacecraft structure concept art, depicting the hub and a series of appendages

For a spacecraft with a structure shown in Fig. 1, the indexing scheme shown in Fig. 2 is used to refer to each of the
components of the spacecraft.

Fig. 2 Indexing of appendages for proposed spacecraft structure

Consider an Earth-centered inertial frame, I = (O, êx, êy, ê3), an Earth-centered rotating frame that rotates at
the orbital rate of the spacecraft P = (O, êr , êθ, ê3), a body-fixed frame affixed to the central hub of the spacecraft
A = (C, â1, â2, â3), and body-fixed frames affixed to each of the component appendages to the spacecraft B(i) =
(B(i), b̂(i)1 , b̂

(i)
2 , b̂

(i)
3 ), i = 1, ...,2N . Angle θ defines the relative orientation of P with respect to I, γ is the orientation of

A with respect to I, and αi is the orientation of B(i) with respect to A.

Fig. 3 Reference frames used for the flexible spacecraft model. Frame C is fixed to the hub; frames B(i), i =
1, ...,2N , are fixed to each appendage

III. Spacecraft Dynamics
This section derives the dynamics of the spacecraft in the reference frame of the hub, and models its internal forces,

control inputs, and disturbances to yield the equations of motion for the system.
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A. Multi-body Dynamics
First, the dynamics of the hub C and each of the appendages are derived. For the hub,

rC/O = xC êx + yC êy (1)
IvC/O = ÛxC êx + ÛyC êy (2)
IaC/O = ÜxC êx + ÜyC êy . (3)

Consider reference frame A. The inertial derivative of unit vector â1 is I d
dt âi =

IωA × âi , where IωA = Ûγâ3 is the
angular velocity of frame A in the inertial reference frame. Using the two-dimensional orbital plane reference frame, the
angular velocity of the hub is restricted to the â3 = ê3 direction, with magnitude Ûγ. For the appendages,

ri/O = rC/O + ri/C = xC êx + yC êy + xi/C â1 + yi/C â2 (4)

Differentiating with respect to time yields

Ivi/O = I
d
dt

ri/O = ÛxC êx + ÛyC êy + Ûxi/C â1 + Ûyi/C â2 + xi/C( Ûγê3 × â1) + yi/C( Ûγê3 × â2)

= ÛxC êx + ÛyC êy + Ûxi/C â1 + Ûyi/C â2 + Ûγxi/C â2 − Ûγyi/C â1

Differentiating again yields the inertial acceleration, i.e.,

Iai/O = ÜxC êx + ÜyC êy + Üxi/C â1 + Üyi/C â2 + Üγxi/C â2 − Üγyi â1 + 2 Ûγ Ûxi/C â2 − 2 Ûγ Ûyi/C â1 − Ûγ
2xi/C â1 − Ûγ

2yi/C â2 (5)

Euler’s first law is applied to the hub and to each appendage. It is convenient to express the forces on the hub in
reference frame A. The total force on the hub is defined as FC = XC â1 + YC â2.

ÜxC â1 + ÜyC â2 =
XC

mC
â1 +

YC
mC

â2 (6)

The sum of the forces on each appendage is Fi = Xi â1 + Yi â2. Applying Euler’s first law to the ith appendage yields

Iai/O =
Xi

mi
â1 +

Yi
mi

â2 (7)

One of the primary goals is to control the shape of the entire spacecraft in order to keep it flat and aligned with the
hub. Analyzing the dynamics of each appendage relative to the hub is convenient, because the resulting control problem
is to drive the relative angle and relative translational and angular velocities to zero. To express the equations of motion
in the hub’s reference frame, the kinematics for the appendage and hub are substituted into 5 and the expression is
rearranged to solve for the acceleration of the appendages relative to the hub, i.e.,

Üxi/C â1+ Üyi/C â2 =
Xi

mi
â1+

Yi
mi

â2−
XC

mC
â1−

YC
mC

â2− Üγxi/C â2+ Üγyi â1−2 Ûγ Ûxi/C â2+2 Ûγ Ûyi/C â1+ Ûγ
2xi/C â1+ Ûγ

2yi/C â2. (8)

The terms are collected to arrive at the following scalar differential equations.

Üxi/C =
Xi

mi
−

XC

mC
+ Üγyi/C + 2 Ûγ Ûyi/C + Ûγ2xi/C (9)

Üyi/C =
Yi
mi
−

YC
mC
− Üγxi/C − 2 Ûγ Ûxi/C + Ûγ2yi/C (10)

Next Euler’s second law is applied to the hub and appendages, with the total internal moments on each defined as MC

and Mi respectively.
d
dt
IhC =

d
dt

IC Ûγâ3 = IC Üγâ3 = MC â3 (11)

d
dt
Ihi =

d
dt

Ip( Ûγ + Ûαi)â3 = Ip( Üγ + Üαi)â3 = Mi â3 (12)

The state for each appendage described in two dimensions is

ξi =
[
xi/C yi/C αi/C Ûxi/C Ûyi/C Ûαi/C

]T
(13)

The modeling of the forces and moments acting on each component, i.e., XC,YC,MC,Xi,Yi, and Mi , are defined next.
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B. Force Model
Assume that the appendages are connected to each other and two appendages are connected to the hub with damped

hinges. The attachment force of each hinge is modeled as a spring with spring coefficient ks and damping coefficient
cs. The attachment moment is modeled as a torsion spring that is linearly proportional to the relative angle between
the components that it connects, with spring coefficient kt and damping coefficient ct . With the torsion spring model,
the relative force between two components can be computed by determining the relative position and velocity of
adjoining edges. The relative position and velocity of adjoining edges of the ith appendage to its adjacent appendages
for i = (1, ...,N) is expressed as

ri,i+1 = ri/C +
Li

2
b̂(i)1 − ri+1/C +

Li+1
2

b̂(i+1)
1 (14)

Avi,i+1 =
A vi/C +

Li

2

Ad
dt

b̂(i)1 −
A vi+1/C +

Li+1
2

Ad
dt

b̂(i+1)
1 (15)

ri,i−1 = ri/C −
Li

2
b̂(i)1 − ri−1/C −

Li−1
2

b̂(i−1)
1 (16)

Avi,i−1 =
A vi/C −

Li

2

Ad
dt

b̂(i)1 −
A vi−1/C −

Li−1
2

Ad
dt

b̂(i−1)
1 . (17)

For i = (N + 1, ...,2N) the negation of the shown position and velocity is used due to the indexing scheme increasing in
the opposite direction on the other side of the spacecraft. The resulting internal force on an appendage from an adjacent
appendage can then be expressed as

Fi, j = −ksri, j − cAs vi, j (18)

The torque resulting from the internal forces is

Ti,i+1 =
Li

2
b̂(i)1 × Fi,i+1, Ti,i−1 = −

Li

2
b̂(i)1 × Fi,i−1 (19)

The internal moment resulting from the spring hinge is modeled as

Mi,i+1 = −kt (αi − αi+1) − ct ( Ûαi − Ûαi−1), Mi,i−1 = kt (αi − αi−1) − ct ( Ûαi − Ûαi−1) (20)

The forces and moments for the end appendages and for the hub are shown in the appendix in Section VII.A. These
equations provide a complete description of the internal forces and moments acting on the proposed spacecraft. The
unforced dynamics of the spacecraft can then be completely described as a state-space system. Due to the primary
investigation being attitude and shape control, the translational dynamics of the central hub can be excluded from the
system model, because the translational dynamics of the appendages are expressed in the reference frame of the hub.
Therefore, the total state of the system η can be defined as

η =
[
γ Ûγ ξT1 ξT2 . . . ξTN ξT

N+1 . . . ξT2N

]T
, (21)

and the unforced dynamics can be written as
Ûη = f (η) (22)

For convenience, the portion of the state for the hub orientation, γ and Ûγ will be denoted ηC and the rest of the state
vector describing all appendages will be denoted ηp .

C. Control Inputs
Assume that there is a reaction wheel in the hub and that each of the appendages are equipped with a torque rod.

The reaction wheel has some saturation limit Krw and that the control input is simply the reaction wheel torque, so that
the torque generated by the reaction wheel in response to control input urw is

τrw = sat(urw) =


−Krw urw ≤ −Krw

urw −Krw < urw < Krw

Krw urw ≥ Krw

.
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Assume each torque rod is aligned with the b(i)1 axis of the body frame assigned to the respective spacecraft segment.
Torque rods typically operate by turning on and off electrical current through a coil, resulting in a discrete set of control
inputs. Assume that the control input is modeled as the desired dipole generated by the torque rod, and the maximum
magnitude of the dipole is denoted Ktr. To implement the discrete control input set, the sign function may be used.
However, to avoid chatter that can occur around utr = 0, the deadband function is used instead. Then the possible inputs
for each torque rod are as follows:

mi = Ktrdbd(utr, λ) =


−Ktr utr < −λ

0 −λ < utr < λ

Ktr utr > λ

The magnetic dipole resulting from the torque rod expressed in the Earth-centered polar frame is

mi =


mi cosψi
mi sinψi

0

 , (23)

where ψ is defined as the angle between the spacecraft’s colatitude θ and the body frame axis b̂(i)2 , i.e., ψi = θ − γ − αi ,
for the appendages. The Earth’s magnetic field is modeled as a dipole and in the fixed reference frame of the orbital
plane can be expressed as

B =


2He

(
R
ρ

)3
cos θ

He

(
R
ρ

)3
sin θ

0


. (24)

The torque developed by this control input can then be computed by taking the cross-product of the resulting torque rod
dipole 23 and the Earth’s magnetic field 24, i.e.,

τtr = 2He

(
R
ρ

)3
mi(sinψi sin θ − 2 cosψicosθ)ê3 (25)

D. Gravity Gradient Effects
When considering large spacecraft, one of the largest disturbance moments comes from the gravity gradient effect,

which results from each part of the spacecraft experiencing slightly different magnitudes of gravitational force from
Earth. The generalized first-order approximation of gravity gradient torque is [12]

τGG =
3µ
ρ5 ρ × [I]ρ, (26)

where ρ = ρêr is the vector from the center of the Earth to the center of mass of the body and [I] is its moment of
inertia. In the body frames of the hub and appendages, respectively,

ρC = ρC cos (θ − γ)â1 − ρC sin (θ − γ)â2, ρi = ρi cos(ψi)b̂(i)1 − ρi sin(ψi)b̂(i)2 (27)

We approximate the moment of inertia tensor of the hub as a cube of side-length s and the appendages as thin rods
of length L. The moment of inertia tensors are then as follows

IC =


1
6 s2 0 0
0 1

6 s2 0
0 0 1

6 s2

 (28)

Ii =


1
12 L2

i 0 0
0 0 0
0 0 1

12 L2
i

 (29)
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The first-order approximation for gravity gradient torque for the hub is therefore zero and, for the appendages

τGG = −
µmiL2

i

8ρ3 sin(2ψ)â3 (30)

The gravity gradient effect is applied as a disturbance in numerical simulations to evaluate control robustness.

IV. Spacecraft Control
This section considers reference tracking of an attitude trajectory at a constant angular rate that represents orbital

motion. In order to track the desired trajectory while maintaining spacecraft flatness, a suitable controller is designed.

A. State Feedback Control
The equilibrium of the system is when each appendage is flat and unmoving relative to the hub reference frame and

in its desired position. The dynamics of the undisturbed system are linearized by taking the Jacobian of the dynamics
at the equilibrium condition. By using the reference frame of the hub to express the dynamics, the orientation of the
reference frame γ does not appear in the Jacobian of the unforced state dynamics. Specifically, the equilibrium for
xi/C is x(i)eq = ±(

s
2 +

2i−1
2 L); it is positive for i = 1, ...,N and negative for i = N + 1, ...,2N . The equilibrium state of

each appendage is ξ(i)eq = ±
[
x(i)eq 0 0 0 0 0

]T
. Because the dynamics of each component of the satellite are

explicitly dependent on only the states of the adjacent components and the reference frame of the hub, the linearized
state dynamics can be written in block matrix form, where the blocks are defined as

AC =
∂ ÛηC
∂η

, A(i)
C
=

∂ Ûξi
∂ηC

, Ai =
∂ Ûξi
∂ηp

. (31)

The total system Jacobian is

A =
∂f
∂η
=



AC 0 . . . . . . 0
A(1)
C

A1 0 . . . 0
A(2)
C

0 A2 . . . 0
...

...
...

. . .
...

A(2N )
C

0 0 . . . A2N


. (32)

To evaluate the stability of the unforced spacecraft structure, the eigenvalues of A are computed. For any number of
appendages, A has two eigenvalues of 0 and the rest have a negative real part. The two imaginary axis eigenvalues
correspond to the orientation and angular velocity of the hub, because in the unforced case there is no external damping
of the hub’s angular motion. Thus, the dynamics of the appendages are exponentially stable, but the dynamics of the
hub are not.

The input vector is defined as

u =
[
u1 u2 . . . u2N urw

]T
. (33)

The input-to-state linearization of the dynamics can similarly be described in block matrix form by taking

BC =
∂ ÛηC
∂u
=

[
0 . . . 0
0 . . . 1

IC

]
(34)

Bi =
∂ Ûξi
∂u
=


04×1 . . . . . . . . . . . . . . . . . . 04×1

0 . . . . . . . . . . . . . . . 0 −
x
(i)
eq
IC

0 . . . 0 E
Ip

0 . . . 0 − 1
IC

 , (35)

where E = 2He(
R
ρ )

3 and E
Ip

appears in the ith column of Bi . The total matrix can then be expressed as

B =
∂η

∂u
=

[
BT
C BT

1 BT
2 . . . BT

2N

]T
(36)
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and the portion of the matrix dealing with the torque rods can be expressed as

Bp =
[
BT

1 BT
2 . . . BT

2N

]T
(37)

From the linearized equations Ûη = Aη + Bu, a linear-quadratic regulator (LQR) can be applied to generate a gain
matrix such that the state feedback control law u = −Kη is an optimal controller that drives the linearized set of
differential equations to their equilibrium. LQR serves as a good baseline controller, because it is optimal, can be tuned
to exhibit desired performance characteristics, and is computationally inexpensive. However, because the actuators
are modeled with physical operation characteristics in mind, additional nonlinearities are introduced into the system.
Specifically, the saturation nonlinearities and discrete control inputs from Section III.C must be applied to the output of
the LQR controller before it is applied to the system. The addition of these nonlinearities undermines the optimality and
performance of the LQR and motivates the Lyapunov-based based control design described next.

B. Lyapunov-based Control
Consider the following assumptions: each appendage is the same size, the hub is significantly larger and more

massive than each individual appendage, the appendages do not reach very high angular rates relative to the hub, the
relative translational velocities of the appendages remain small, and the reaction wheels produce torque on the order of
milli-Newton meters, i.e.,

Li = Lj ∀i, j ∈ {1, ...,2N} (38)

Ip � IC (39)

Ûαi � 1 (40)

Ûxi/C = Ûyi/C ≈ 0 (41)

urw � 1 (42)

An energy-like function that describes the kinetic and potential energy of the spacecraft appendages in the reference
frame of the hub is

T(ηp) =
1
2

2N∑
i=1

mi( Ûx2
i/C + Ûy

2
i/C) + Ii Ûα2

i +
∑
j∈Ni

(ks(x2
i/j + y2

i/j) + ktα2
i/j)

 , (43)

where the subscript i/ j denotes the position or angle of appendage i relative to appendage j. The neighbor for the ith
appendageNi is the adjacent appendage that is closer to the hub, or the hub if the appendage attaches directly to the hub.
Specifically Ni = i − 1 for i = (2, ...,N,N + 2, ...,2N) and Ni = C for i = 1,N + 1.

Assume the spacecraft is intended to be nadir-pointing. Then the desired attitude for the spacecraft hub is such
that frame A aligns with frame P and the desired angular velocity of the hub is the angular rate ωO of the orbit. An
artificial potential energy minimized by the hub’s desired attitude and angular velocity is

U(ηC) =
1
2

kp(γ − θ)2 +
1
2

Ip( Ûγ − ωO)
2 (44)

The candidate Lyapunov function is the summation of Eqs. (43) and (44), i.e.,

V(η) = T(ηp) +U(ηC) (45)

Consider a diagonal matrix describing the spring, mass, and inertia properties of the system, i.e.,

M = diag[kp, Ics, ks,1, ks,1, kt ,1,m1,m1, I1, ..., ks,2N , ks,2N , kt ,2N ,m2N ,m2N , I2N ] (46)

Consider also a graph Laplacian matrix that expresses the relative position and angle of adjacent appendages, i.e.,

L = diag(Lc,L1,L2, ...,LN+1,LN+2, ...,L2N ) (47)

where
Lc = I2 L1,N+1 = I6 Li =

[
diag(−1,−1,−1,0,0,0), I6

]
(48)
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Lp = diag(L1,L2, ...,LN+1,LN+2, ...,L2N ) (49)

Let ηc,d =
[
γ − γd ω − ωd

]T
denote the orientation and angular velocity of the hub relative to the desired values.

The state vector including these desired values is defined as ηd =
[
ηc,d ηp

]T
The vector of relative states can then be

taken using the graph Laplacian, i.e.,
ηrel = Lηd (50)

The Lyapunov function can then be written in matrix form

V(ηrel) =
1
2
ηTrelMηrel (51)

Differentiating with respect to time to yields

ÛV(ηrel, Ûηrel) = ηTrelM Ûηrel (52)

Because the linearized dynamics are exponentially stable, the stability characteristics of the nonlinear system in a
neighborhood close to the origin can be approximated by the linearized dynamics [13]. Ûηrel = Aηrel is then substituted
into ÛV to yield

ÛV(ηrel, Ûηrel) = ηTrel AM Ûηrel (53)

For convenience of analyzing the Lyapunov function derivative, the output is collected into two terms relating to the
energy of the hub, denoted ÛVC , and the appendages, denoted ÛVp , such that ÛV = ÛVC + ÛVp . The splitting is carried out as
follows

ÛV =

[
(Lcηc,d)

T

(Lpηp)
T

] [
M AC

M Ai

] [
ηrel

ηrel

]
+

[
(Lcηc,d)

T

(Lpηp)
T

] [
BC

Bi

] 
urw
u1
...

u2N


=

[
ÛVC
ÛVp

]
, (54)

where AC and BC are the first two rows of the the Jacobian matrix A, and Ai and Bi consist of the remaining rows of
matrices A and B.

The expression for Vp can be expanded to

ÛVp = η
T
p M Aiη + η

T
p MBiui . (55)

The first term in the expression may be expressed as ηTp M Aiηp where Ai excludes the first two columns of Ai,c to
make it a square matrix. This truncation does not change the value of ÛVp because the state variables of the appendages
are expressed in the hub’s reference frame and thus do not depend on the state of the hub. With the exclusion of the
dynamics of the hub, the two zero eigenvalues are also excluded, thus Ai is Hurwitz. Because M is positive definite, the
product M Ai is also Hurwitz. Consequently,

ηTp M Aiη < 0. (56)

Assuming that the spacecraft is near the equilibrium, then the translational velocities of each appendage relative to the
hub are small. Under this assumption, expressed in Eq. (41), the expansion of the second term is

ηTp Biui = E
2N∑
i=1
Ûαiui + H.O.T (57)

This expression suggests that a control law for each torque rod of

mi = −dbd( Ûαi)Ktr (58)

will both guarantee that ηTp MBiui ≤ 0 and will minimize ÛVp subject to the the control constraints of the torque rods.
Because each term is negative definite, ÛVp < 0.

VC is now considered. Expanding the expression

ÛVC = ηTCM ACη + η
T
CMBCurw, (59)
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yields

ÛVC = ( Ûγ − ωO)(kp(γ − θ) + βC( Ûα1 + ÛαN+1) + βk(α1 + αN+1) + urw) − urw
Ip
IC

2N∑
i=1
Ûαi, (60)

where constants βC and βk are defined as
βk = kt −

Lkss
4

(61)

βC = ct −
Lcss

4
(62)

The following control law is proposed:

urw = −βC( Ûα1 + ÛαN+1) − βk(α1 + αN+1) − kp(γ − θ) − kL( Ûγ − ωO) (63)

Under the assumptions made in Equations (39) to (42),

urw
Ip
IC

2N∑
i=1
Ûαi ≈ 0. (64)

Substituting the proposed control law into ÛVC then yields
ÛVC = −kL( Ûγ − ωO)

2, (65)

which means that ÛVC ≤ 0 under the proposed control law. Consider the set S = {ηd | ÛVC = 0} = {ηd | Ûγ = ωO}. The
proposed controller is such that actuation will be applied when the state is not in the equilibrium state, therefore any
trajectory where Ûγ = ωO except the equilibrium state is not contained in S. Establihsing convergence via the invariance
principle [13] is the subject of ongoing work.

From a practical standpoint, the control law resulting from Lyapunov analysis is favorable for implementation. The
torque rod control law acts in the opposite direction of the angular velocity of the appendage relative to the hub. It is
also computationally simple and easily implementable using angular velocity measured with gyros. The control law for
the reaction wheel contains proportional and derivative control terms with tuneable gains, and also terms that become
relevant if the appendages directly affixed to the hub are not flat.

V. Simulation Results
Numerical simulations illustrate the performance of the closed-loop system. To better understand controller behavior

and performance, several controllers were simulated and compared. In addition to the proposed Lyapunov-based
controller, an LQR with the saturation and deadband functions shown in Section III.C applied to the control signal was
also simulated. To better understand the effect of the torque rods on system performance the Lyapunov-based controller
without βk , βc , and the torque rod inputs was also tested leaving a proportional-derivative controller for the reaction
wheel was also performed.

A. Idealized Model
The first simulation assumes an idealized scenario where there are no disturbance forces or moments. Assume that

the torque generated by the torque rods is not subject to varying magnitudes due to the different angles of incidence with
the magnetic field lines of the Earth, and instead that the maximum control authority is available to the torque rods at all
times, i.e., τtr = 2He(

R
ρ )

3ui . The goal of the controllers is to track a reference pointing angle θ(t) = w0t, which is the
angular position of a 400km altitude circular orbit. The initial state of the spacecraft is at equilibrium with γ = 15◦,
and the initial angular velocity is ωO. The parameters for the simulation are shown in Table 1. The dbd function from
Eq. (25) is used instead of the sgn function, because as λ→ 0 the dbd function becomes the sgn function, and the dbd
function is preferable for implementation as it reduces chatter.

parameter N mC mi IC Ii Li LC ks cs kt ct w0 Krw Ktr

value 12 100 1 50 0.1 1 2 100 0.1 10 0.1 1.2 × 10−3 0.01 1 × 10−4

unit kg kg kgm2 kgm2 m m N
m

Ns
m

Nm
rad

Nms
rad

rad
s Nm Nm

Table 1 Simulation Parameters
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The two primary performance metrics used to measure the overall flatness of the system are the mean squared
angular error and the distance between the two end appendages (N and 2N) in the â2 direction, i.e., |yN/c − y2N/c |.
These metrics are shown in Fig. 4.The actuation effort for the reaction wheel and the torque rod on the appendage i = 1
are shown in Fig. 5. Finally, the error in attitude pointing angle is also displayed in Fig. 6.

angle error.png

(a) Mean squared angle error
e2e flatness.png

(b) End-to-end separation

Fig. 4 Comparison of the control performance of PD, LQR, andLyapunov-based controllers over a 1400 second
simulation. The mean squared angle error is shown in (a) and the difference in vertical displacement between
the two end appendages is shown in (b). The Lyapunov-based controller damps oscillations from the system
more quickly than the other two controllers.
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rw input.png

(a) Reaction Wheel Input

tr input.png

(b) Torque Rod Input

Fig. 5 Comparison of the control performance of PD, LQR, and Lyapunov-based controllers over a 1400
second simulation. The reaction wheel control histories is shown in (a) and the torque rod control history for
appendage i = 1 is shown in (b). The LQR controller attempts to use the torque rods to assist in the attitude
control, as the control inputs mirror each other, whereas the Lypaunov controller mirrors the oscillations shown
in the performance metrics because it is used to damp out the oscillations in the appendages.

gamma.png

Fig. 6 Comparison of the control performance of PD, LQR, andLyapunov-based controllers over a 1400 second
simulation.

Simulations show that the Lyapunov-based controller performs better than either of the other two controllers.
Compared with the PD reaction wheel and no torque rods, the high frequency oscillations induced by the control
input damps out much more quickly. After about 400 seconds, the oscillations are mostly suppressed, and the angular
error that remained is constant as a result of the constant torque induced by the reaction wheel. Slight oscillations are
introduced again when the reaction wheel changed the direction of applied torque, but those are again quickly damped

12



out. The LQR controller performs slightly better than the controller absent torque rods with respect to flatness, but the
attitude pointing performance was much worse, likely a result of the enforced controller saturation.

B. Orbital Model
A second simulation was performed where the following orbital effects were included: orbital dynamics of the

spacecraft, the disturbance resulting from gravity gradient torque modeled in Eq. (26), and the time-varying effects of
the orientation of the torque rods relative to Earth’s magnetic field in Eq. (25). The same initial conditions are used as in
the first simulation; assume that the spacecraft is in a 400km altitude polar orbit, where, at t = 0, the spacecraft is at a
colatitude of 0. The same plots are shown as before, but with the inclusion of the maximum torque available to the i = 1
torque rod for the duration of the simulation.

angle error.png
(a) Mean squared angle error

e2e flatness.png
(b) End-to-end separation

Fig. 7 Comparison of the control performance of PD, LQR, andLyapunov-based controllers over a 1400 second
on-orbit simulation. The mean squared angle error is shown in (a) and the difference in vertical displacement
between the two end appendages is shown in (b). The Lyapunov-based controller damps oscillations from the
system more quickly than the other two controllers.

13
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(a) Reaction Wheel Input

tr input.png

(b) Torque Rod Input

Fig. 8 Comparison of the control performance of PD, LQR, and Lyapunov-based controllers over a 1400
second on-orbit simulation. The mean squared angle error is shown in (a) and the difference in â2 displacement
between the two end appendages is shown in (b). The Lyapunov-based controller damps oscillations from the
system more quickly than the other two controllers.

gamma.png

Fig. 9 Comparison of the control performance of PD, LQR, andLyapunov-based controllers over a 1400 second
on-orbit simulation.

The simulation with disturbances and on-orbit effects shows that the performance improvement of the proposed
controller is even larger than in the idealized case. The addition of the disturbances causes the unforced torque rod
case to perform much worse, increasing the magnitude and time to decay of the induced oscillations. The simulation
also demonstrates that the proposed controller performs as expected with unknown disturbances and with the control
saturation varying over time.
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VI. Conclusion
This paper derives a feedback control law for a spacecraft model consisting of a central hub and multiple flexibly

connected appendages on either side of this hub. This model could represent either the flexibility of a large single
appendage or the behavior of a deployable space structure after it had been deployed. To control the shape and attitude
of this model, actuation consisting of a reaction wheel on the hub and magnetic torque rods on each of the appendages is
proposed. Springs to model internal forces and moments, external disturbances, and actuator constraints are considered
in modeling the dynamics of the system. The nonlinearities in the model suggest a Lyapunov-based approach to the
control design. By performing Lyapunov analysis on the system dynamics, feedback control laws for the reaction wheel
and each torque rod are obtained. Numerical simulations show that the proposed controller removes vibrations from the
system more quickly than both a system without torque rods, and a system with torque rods but with a different control
law.

Future work includes the extension of this model to a full three-dimensional model where the hinges are able to
bend in two directions instead of one and where there are out of plane appendages are considered as well. With a higher
dimensional model, similar analyses will be performed to investigate possible controllers for the higher dimensional
system.
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VII. Appendix

A. Internal Forces and Moments
The force terms for each spacecraft component are shown. For an appendage that has two appendages on either side

of it and is on the right side of the hub, i ∈ [2,N − 1], the forces and moments are as follows:

Xi,i+1 = ks

(
xi+1/C − xi/C −

Li+1
2

cosαi+1 −
Li

2
cosαi

)
+ cs

(
Ûxi+1/C − Ûxi/C +

Li+1
2
Ûαi+1 sinαi+1 +

Li

2
Ûαi sinαi

)

Xi,i−1 = −ks

(
xi/C − xi−1/C −

Li

2
cosαi −

Li−1
2

cosαi−1

)
+ cs

(
Ûxi/C − Ûxi−1/C +

Li

2
Ûαi sinαi +

Li−1
2
Ûαi−1 sinαi−1

)

Yi,i+1 = ks

(
yi+1/C − yi/C −

Li+1
2

sinαi+1 −
Li

2
sinαi

)
+ cs

(
Ûyi+1/C − Ûyi/C +

Li+1
2
Ûαi+1 cosαi+1 +

Li

2
Ûαi cosαi

)

Yi,i−1 = −ks

(
yi/C − yi−1/C −

Li

2
sinαi −

Li−1
2

sinαi−1

)
+ cs

(
Ûyi/C − Ûyi−1/C +

Li

2
Ûαi cosαi +

Li−1
2
Ûαi−1 cosαi−1

)
Ti,i+1 =

Li

2
cosαiYi,i+1 −

Li

2
sinαiXi,i+1

Ti,i−1 = −
Li

2
cosαiXi,i−1 +

Li

2
sinαiYi,i−1

Mi,i+1 = kt (αi+1 − αi) + ct ( Ûαi+1 − Ûαi)

Mi,i−1 = −kt (αi − αi−1) − ct ( Ûαi − Ûαi−1)

For appendages on the left that have a appendage on either side, i ∈ [N + 2,2N − 1], the forces and moments are the
negation of what is shown above, because the indexing goes in the opposite direction.

For the appendage where i = 1 the forces and moments are as follows.

X1,2 = ks

(
x2/C − x1/C −

L2
2

cosα2 −
L1
2

cosα1

)
+ cs

(
Ûx2/C − Ûx1/C +

L2
2
Ûα2 sinα2 +

L1
2
Ûα1 sinα1

)

X1,C = −ks

(
x1/C − xc/c −

L1
2

cosα1 −
LC

2
cos γ

)
+ cs

(
Ûx1/C − Ûxc/c +

L1
2
Ûα1 sinα1 +

LC

2
Ûαc sin γ

)
= −ks

(
x1/C −

L1
2

cosα1 −
LC

2

)
+ cs

(
Ûx1/C +

L1
2
Ûα1 sinα1

)
Y1,2 = ks

(
y2/C − y1/C −

L2
2

sinα2 −
L1
2

sinα1

)
+ cs

(
Ûy2/C − Ûy1/C +

L2
2
Ûα2 cosα2 +

L1
2
Ûα1 cosα1

)

Y1,C = −ks

(
y1/C − yc/c −

L1
2

sinα1 −
LC

2
sin γ

)
+ cs

(
Ûy1/C − Ûyc/c +

L1
2
Ûα1 cosα1 +

LC

2
Ûαc cos γ

)
= −ks

(
y1/C −

L1
2

sinα1

)
+ cs

(
Ûy1/C +

L1
2
Ûα1 cosα1

)
T1,2 =

L1
2

cosα1Y1,2 −
L1
2

sinα1X1,2
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T1,C = −
L1
2

cosα1X1,C +
L1
2

sinα1Y1,C

M1,2 = kt (α2 − α1) + ct ( Ûα2 − Ûα1)

M1,C = −kt (α1 − γ) − ct ( Ûα1 − ÛαC)

= −kt (α1) − ct ( Ûα1)

For the appendage i = N + 1, which is the appendage directly to the left of the hub

XN+1,C = ks

(
−xN+1/C −

LC

2
−

LN+1
2

cosαN+1

)
+ cs

(
− ÛxN+1/C +

LN+1
2
ÛαN+1 sinαN+1

)
XN+1,N+2 = − ks

(
xN+1/C − xN+2/C −

LN+1
2

cosαN+1 −
LN+2

2
cosαN+2

)
+ cs

(
ÛxN+1/C − ÛxN+2/C +

LN+1
2
ÛαN+1 sinαN+1 +

LN+2
2
ÛαN+2 sinαN+2

)
YN+1,C = ks

(
−yN+1/C −

LN+1
2

sinαN+1

)
+ cs

(
− ÛyN+1/C +

LN+1
2
ÛαN+1 cosαN+1

)
YN+1,N+2 = − ks

(
yN+1/C − yN+2/C −

LN+1
2

sinαN+1 −
LN+2

2
sinαN+2

)
+ cs

(
ÛyN+1/C − ÛyN+2/C +

LN+1
2
ÛαN+1 cosαN+1 +

LN+2
2
ÛαN+2 cosαN+2

)
TN+1,C =

LN+1
2

cosαN+1YN+1,C −
LN+1

2
sinαN+1XN+1,C

TN+1,N+2 = −
LN+1

2
cosαN+1XN+1,N+2 +

LN+1
2

sinαN+1YN+1,N+2

MN+1,C = kt (−αN+1) + ct (− ÛαN+1)

MN+1,N+2 = −kt (αN+1 − αN+2) − ct ( ÛαN+1 − ÛαN+2)

For the case of the end appendage, i = N , the same equations as the middle appendages between i = 1, and i = N
are used, except Xi,i+1, Yi,i+1, Ti,i+1,Mi,i+1 are all zero, because there is only one adjacent appendage. Similarly, for
the other end appendage, i = 2N , the equations for i ∈ [N + 2,2N − 1] can be used, where Xi,i+1, Yi,i+1, Ti,i+1,Mi,i+1
are also all zero. The forces and moments acting on the hub are equal and opposite to those acting on the appendages
attached to the hub, i.e.,

XC ,1 = −X1,C

XC ,N+1 = −XN+1,C

YC ,1 = −Y1,C

YC ,N+1 = −YN+1,C

TC ,1 =
Lc

2 YC ,1

TC ,N+1 = −
Lc

2 YC ,N+1

MC ,1 = −M1,C

MC ,N+1 = −MN+1,C
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The total forces and moments are

Xi = Xi,i+1 + Xi,i−1

Yi = Yi,i+1 + Yi,i−1

Ti = Ti,i+1 + Ti,i−1

Mi = Mi,i+1 + Mi,i−1

Xc = XC ,1 + XC ,N

Yc = YC ,1 + YC ,N
Tc = TC ,1 + TC ,N

Mc = MC ,1 + MC ,N
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