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The long-term goal of this research is to provide theoretically justified control

strategies to operate autonomous vehicles in spatiotemporal flowfields. The specific

objective of this dissertation is to use estimation and nonlinear control techniques

to generate decentralized control algorithms that enable motion coordination for

multiple autonomous vehicles while operating in a time-varying flowfield. A coop-

erating team of vehicles can benefit from sharing data and tasking responsibilities.

Many existing control algorithms promote collaboration of autonomous vehicles.

However, these algorithms often fail to account for the degradation of control per-

formance caused by flowfields. This dissertation presents decentralized multivehicle

coordination algorithms designed for operation in a spatially or temporally vary-

ing flowfield. Each vehicle is represented using a Newtonian particle traveling in

a plane at constant speed relative to the flow and subject to a steering control.

Initially, we assume the flowfield is known and describe algorithms that stabilize a

circular formation in a time-varying spatially nonuniform flow of moderate intensity.

These algorithms are extended by relaxing the assumption that the flow is known:

the vehicles dynamically estimate the flow and use that estimate in the control.

We propose a distributed estimation and control algorithm comprising a consensus

filter to share information gleaned from noisy position measurements, and an infor-

mation filter to reconstruct a spatially varying flowfield. The theoretical results are

illustrated with numerical simulations of circular formation control and validated in

outdoor unmanned aerial vehicle (UAV) flight tests.
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Chapter 1

Introduction

In 1917, Archibald M. Lowe tested radio gear capable of remotely piloting

an airplane. He used a small monoplane powered with a 35-horsepower engine to

perform three test flights. In the first flight the airplane climbed too quickly causing

it to stall and crash. The next two flights were made with a fixed elevator setting in

order to prevent steep climbs, but that restricted the plane’s maneuverability and

those flights were also of short duration [72]. However, despite the limited flight

time, Lowe demonstrated the ability to remotely command an airplane. From this

inauspicious beginning great strides have been made, first in our ability to remotely

pilot vehicles and subsequently in allowing the vehicles to autonomously control

themselves.

Today autonomous vehicles are used in a wide variety of applications including

aerobiological sampling [74], gathering in situ measurements of severe storms [18, 19],

path planning of autonomous underwater gliders [40, 23], and much more [29, 12, 71,

20]. Recent research has focused on exploiting the synergy of multiple autonomous

vehicles to cooperatively accomplish objectives [43, 62, 4, 42, 44, 28]. A cooperating

team of vehicles can coordinate data collections and provide persistent coverage of

continuous spatiotemporal processes like environmental fields or discrete processes

such as moving ground targets. Unmanned platforms are particularly well-suited for

1



multiagent coordinated missions that require synoptic area coverage with consistent

revisit rates. Many algorithms are capable of providing decentralized control of

multiple agents with mobility and communication constraints [30, 65, 66, 49, 32, 22,

1].

The motion of an autonomous vehicle in the atmosphere or ocean can be

disrupted by unknown flowfields such as winds or currents. These disturbances

are difficult to model and may contribute to a significant portion of the vehicle’s

inertial velocity. Enabling cooperative control in the presence of a temporally and

spatially varying flowfield is an ongoing challenge that we partially address in this

dissertation. We provide cooperative control algorithms for multiple autonomous

vehicles in the presence of 1) a known time-varying and spatially varying flowfield

and 2) an unknown uniform or spatially varying flow.

Each vehicle is modeled as a planar, self-propelled particle that travels at unit

speed relative to the flow. The flowfield magnitude is assumed to be of moderate

intensity; that is, the flow speed does not exceed the vehicles’ speed relative to the

flow. (Motion coordination in strong, unknown flowfields is outside the scope of

this dissertation [16].) This ensures that the vehicles will always maintain forward

progress over ground. The particles are subject to a steering control perpendicular to

the direction of motion relative to the flowfield. This model, also known as a unicycle

model, is well suited to autonomous vehicles such as unmanned underwater vehicles

(UUVs) or unmanned aerial vehicles (UAVs), which are continually in motion and

operate primarily in a plane.

The steering control is designed to drive the particles into a circular formation

2



centered at either an arbitrary or prescribed location. We use Lyapunov theory

and nonlinear techniques to develop a set of theoretically justified algorithms to

cooperatively control multiple autonomous vehicles in the presence of a flowfield.

Initially we assume that the flowfield is known and may be temporally and spatially

varying. We then relax this assumption and provide observer-based control algo-

rithms which simultaneously estimate the flowfield and use that estimate to stabilize

a moving formation. Given a spatially uniform flowfield, each vehicle independently

estimates the flow using noisy measurements of its own position. For a spatially

varying flowfield, we provide a distributed estimation algorithm comprised of a con-

sensus filter to share information garnered from noisy position measurements, and

an information filter to reconstruct the flowfield.

1.1 Contributions of Dissertation

The contributions of this dissertation are the synthesis of theoretically justified

control algorithms to cooperatively stabilize vehicles in the presence of a flowfield.

Specifically they include:

1. Multivehicle control algorithms for circular formations in a known, time-varying,

and spatially varying flowfield

These controls are designed to drive vehicles into a circular formation centered

at either a prescribed point or an arbitrary location determined by initial con-

ditions.

2. Multivehicle coordinated encirclement to a time-splay configuration for a uni-
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form flowfield that rotates in time

A time-splay configuration regulates the temporal distance between particles.

3. Stabilization of cooperating vehicles to circular formations in a uniform or uni-

formly rotating flowfield when the vehicles are subject to turn-rate constraints

Incorporating a constraint provides more realistic behavior for vehicles with

limited turning capacities, such as UAVs which turn by banking the aircraft,

but have a limit on how far they can bank before stalling.

4. Stabilization of circular formations in an estimated uniform flow using only

noisy position measurements and knowledge of the vehicle’s wind relative head-

ing

Each vehicle individual estimates the flow and uses the estimate for motion

coordination.

5. Multivehicle estimation and control for circular formations in an unknown,

spatially varying flowfield using noisy position measurements

Using a distributed information-consensus filter we estimate the coefficients of

a parameterized flowfield. The estimated flowfield and its directional deriva-

tive at the vehicle locations are used in a decentralized control law that co-

operatively stabilizes vehicles to a moving formation. We require only noisy

position measurements to estimate the flow.

6. Development of accelerating-frame dynamics to provide control algorithms which

encircle maneuvering targets
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By accounting for target acceleration, one can follow targets as they execute

realistic maneuvers. Simulation results demonstrate the utility of the control

algorithms to this application.

7. Hardware-in-the-loop (HIL) simulations and outdoor flight experiments

To compliment the theoretical work we also performed flight experiments on

a UAV testbed. An HIL simulator was used to validate our motion coordi-

nation control algorithms. Once tested in the HIL simulator outdoor flight

experiments were made on multiple UAVs.

1.2 Outline of Dissertation

The dissertation proceeds as follows. In Chapter 2 we explain the Newtonian-

particle model used to describe the motion of a fleet of autonomous vehicles in an

external flowfield. The model incorporates a constraint on the turn-rate to portray

vehicles with limited turning capabilities. The coupling between the course over

ground steering and the vehicle’s low-level steering control is examined.

Chapter 3 develops Lyapunov-based circular control algorithms for the particle

model in a known, time-varying flowfield. Control laws are given to drive particles to

a circular formation with either a prescribed or arbitrary center point. We provide

algorithms which stabilize circular formations when the vehicles are subject to a

turn-rate constraint given a rotating or spatially uniform flowfield. For a uniform

flowfield that rotates in time we also introduce a time-splay configuration which

regulates the temporal spacing between particles. Regulating the spatial separation
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between particles is a first step toward collision avoidance. However, it does not

guarantee separation of the particles while they transition to the configuration.

Overall collision avoidance is not addressed in this dissertation.

In Chapter 4 and Chapter 5 we relax the assumption that the flowfield is

known and instead incorporate estimators into the control algorithms. Chapter 4

focuses on an observer-based algorithm for flowfields that are spatially uniform.

We show that this estimator is robust to measurement noise. In Chapter 5 we

provide motion coordination algorithms in a unknown spatially varying flowfield.

This follows the work in [41] where an information-consensus filter was used as a

decentralized estimator of a scalar field.

Chapter 6 applies the control algorithms developed in the previous chapters

to the problem of target encirclement. We derive the equations of motion for an

accelerating frame and provide performance results for circular configurations in a

variety of flowfields induced in a moving reference frame that is attached to the

maneuvering target.

In Chapter 7 we show the results from experimental flight tests. We apply

the control laws developed in Chapter 3 to Procerus Unicorn UAVs. The modifica-

tions needed to employ these algorithms on the UAVs are outlined in this chapter.

Hardware-in-the-loop simulations and experimental flight results are given.

Chapter 8 provides a summary of the work and highlights areas for ongoing

research.

6



Chapter 2

Dynamic Vehicle Model in a Flowfield

This chapter presents the dynamical system used to describe an autonomous

vehicle. Each vehicle is modeled as a planar, self-propelled particle moving at unit

speed relative to a spatially and temporally variable flowfield. This model has

been adopted frequently in previous works for a flow-free environment [65, 30, 79].

Each particle is steered by a gyroscopic control force that acts perpendicular to

the velocity relative to the flow. The flow-relative steering control, denoted by u,

is constrained for many systems. For example, with an unmanned aerial vehicle

(UAV) one factor limiting the steering control is the degree which an aircraft can

bank without stalling. To model this effect, we place a bound on the turn-rate by

saturating u.

In Section 2.1 we provide the turn-rate constrained vehicle model. Section 2.2

derives the relationship between our low-level vehicle control and the inertial steering

control.

2.1 Vehicle Model with Turn-Rate Constraint

The positions of N individual particles are denoted as rk, where k ∈ {1, . . . , N}.

The inertial velocity of the kth particle is denoted by ṙk. The particles do not

accelerate tangentially to their path and thus move with unit velocity eiθk relative
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to the flowfield. The flowfield at rk and time t is denoted by fk(t) = f(rk, t). The

equations of motion for particle k are

ṙk = eiθk + fk(t)

θ̇k = sat(uk;umax),

(2.1)

where umax > 0 and

sat(uk; umax) =


−umax uk < −umax

uk −umax ≤ uk ≤ umax

umax uk > umax.

(2.2)

For a vehicle with an unbounded turning rate, umax = ∞ and the model (2.1)

becomes

ṙk = eiθk + fk(t)

θ̇k = uk.

(2.3)

Let γk = arg(ṙk) equal the orientation of the inertial velocity of the kth particle

and sk(t) = s(t, rk, θk) = |ṙk| denote its magnitude. The particle model without the

turn-rate constraint is equivalent to [54]

ṙk = sk(t)e
iγk

γ̇k = νk,

(2.4)

where νk is the angular rate of change of the inertial-velocity orientation. Note, it is

required that |fk(t)| < 1 for all k, t, to ensure sk(t) > 0. This assumption guarantees

that the particles will always exhibit forward motion in an inertial reference frame.
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ṙ (t)
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r k

Figure 2.1: The inertial velocity of a particle is the sum of the flow velocity relative
to the ground and the velocity of the particle relative to the flow.

Figure 2.1 illustrates the Newtonian particle model for an air vehicle. Fig-

ure 2.1(a) shows the dynamics in a flowfield; the inertial velocity is the sum of

the velocity relative to the flow plus the velocity of the flow relative to the inertial

(ground fixed) frame. Figure 2.1(b) shows the kth particle in the complex plane.

The particle is located at rk and its velocity relative to the flow is eiθk . In the pres-

ence of a flowfield fk the inertial velocity of the particle is ṙk = eiθk + fk = sk(t)e
iγk .

The steering control is applied in the direction ieiθk which is perpendicular to the

velocity relative to the flow.

Section 3.1 discusses stabilization of circular formations using the uncon-

strained model (2.4) in a known flow. In Section 3.2 we show that these results

hold when using the turn-rate constrained model (2.1). The remaining chapters

also use the unconstrained model, but relax the known-flow assumption.
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2.2 Relationship of the Inertial and Flow-Relative Steering Control

The controller design of Chapter 3 focuses on obtaining a suitable inertial steer-

ing control νk; uk is seen as the low-level controller used as input for an autonomous

vehicle and should be recoverable from νk. Figure 2.1 exhibits the following rela-

tionship [54] between θk and γk:
1

sin θk = sk(t) sin γk − 〈fk(t), i〉 (2.5)

cos θk = sk(t) cos γk − 〈fk(t), 1〉, (2.6)

which gives

tan γk =
sin θk + 〈fk(t), i〉
cos θk + 〈fk(t), 1〉

. (2.7)

Differentiating (2.7) with respect to time and substituting in equations (2.5) and

(2.6) yields

γ̇k =(cos θk cos γk + sin θk sin γk)s
−1
k (t)θ̇k + 〈ḟk, i〉s−1

k (t) cos γk

− 〈ḟk, 1〉s−1
k (t) sin γk (2.8)

=(1− s−1
k (t)〈eiγk , fk(t)〉)uk + s−1

k (t)〈ieiγk , ḟk〉 , νk, (2.9)

with

ḟk =
∂fk
∂rk

ṙk +
∂fk
∂t

. (2.10)

1The inner product 〈x, y〉 = Re{x̄y} is used, where x, y ∈ C and x̄ is the complex conjugate of
x.
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Solving for uk(t) provides the flow-relative steering control as a function of νk:

uk(t) =
sk(t)νk − 〈ieiγk , ḟk〉
sk(t)− 〈eiγk , fk(t)〉

. (2.11)

The preceding equation is well-defined everywhere. Because the denominator sat-

isfies sk(t) − 〈eiγk , fk(t)〉 ≥ sk(t) − |fk(t)| > 0 [54]. In the following examples sk(t)

and uk(t) are calculated for a time-varying, spatially uniform flowfield and a time-

varying, spatially nonuniform flowfield.

Example 1. Time-varying, spatially uniform flowfield

Let a uniform flow be defined as f(t) = η(t)eiξ(t), where η(t) is the magnitude

of the flow and ξ(t) is the direction. The k subscript is dropped from f(t) since a

uniform flow at time t is identical for all particles. It is assumed that |η(t)| < 1 for

all t to ensure that sk(t) > 0. The inertial speed is

sk(t) =
√

Re{(η(t)eiξ(t) + eiθk)(η(t)e−iξ(t) + e−iθk)}

=
√

1 + (η(t))2 + 2η(t)(cos θk cos ξ(t) + sin θk sin ξ(t)). (2.12)

sk(t) is expressed as a function of γk and f(t) by substituting (2.5) and (2.6) into

(2.12) and rearranging the result to obtain the quadratic equation

(sk(t))
2 − 2η(t)(cos γk cos ξ(t) + sin γk sin ξ(t))sk(t) + (η(t))2 − 1 = 0. (2.13)
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Equation (2.13) has the following solution (using the positive root since sk(t) > 0):

sk(t) = η(t)(cos γk cos ξ(t) + sin γk sin ξ(t))

+
√

1 + (η(t))2((cos γk cos ξ(t) + sin γk sin ξ(t))2 − 1) (2.14)

= 〈eiγk , f(t)〉+
√

1− 〈ieiγk , f(t)〉2. (2.15)

uk(t) is found by substituting f(t) = η(t)eiξ(t) and ḟ(t) = η̇(t)eiξ(t)+iη(t)ξ̇(t)eiξ(t)

into (2.11) to obtain

uk(t) =
νksk(t) + η̇(t) sin (γk − ξ(t))− η(t)ξ̇(t) cos (γk − ξ(t))

sk(t)− η(t) cos (γk − ξ(t))
. (2.16)

This calculation shows that in order to use νk to compute the turn-rate control

uk in a time-varying flowfield the following variables need to be known: 1) the

magnitude of the flowfield, η(t), 2) the rate of change of the flowfield, η̇(t); and 3)

the difference between the direction of the flow and the orientation of the inertial

velocity, γk − ξ(t).

Example 2. Time-varying, spatially nonuniform flowfield

For this example let fk(t) = βk(t) + iαk(t), where βk(t) = β(t, rk) and αk(t) =

α(t, rk) are the real and imaginary components of the flowfield. Computing sk(t)

yields

sk(t) =
√

Re{(eiθk + βk(t) + iαk(t))(e−iθk + βk(t)− iαk(t))}

=
√

1− (βk(t))2 − (αk(t))2 + 2sk(t)(αk(t) sin γk + βk(t) cos γk). (2.17)

12



Next sk(t) is expressed as a function of γk and fk(t). Squaring both sides of (2.17)

and solving the resulting quadratic equation (using the positive root since sk(t) > 0)

gives

sk(t) = αk(t) sin γk + βk(t) cos γk +
√

1− (αk(t) cos γk − βk(t) sin γk)2

= 〈eiγk , fk(t)〉+
√

1− 〈ieiγk , fk(t)〉2. (2.18)

To solve for uk(t) let the position of particle k be rk = xk + iyk. The time-

derivative of fk(t) is

ḟk(t) =
∂βk
∂xk

ẋk +
∂βk
∂yk

ẏk +
∂βk
∂t

+ i

(
∂αk
∂xk

ẋk +
∂αk
∂yk

ẏk +
∂αk
∂t

)
.

Substituting ḟk into (2.11) yields

uk(t) =
νksk(t)− sin γk

(
∂βk
∂xk

ẋk + ∂βk
∂yk
ẏk + ∂βk

∂t

)
+ cos γk

(
∂αk

∂xk
ẋk + ∂αk

∂yk
ẏk + ∂αk

∂t

)
sk(t)− βk(t) cos γk − αk(t) sin γk

.

(2.19)

Thus, given the control, νk, the orientation of the inertial velocity, γk, the

flowfield, fk(t), and the directional derivative ḟk(t), one can solve for uk, which is

the control input to the vehicle model (2.1).
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Chapter 3

Motion Coordination in a Known Flowfield

To operate effectively in real-world environments motion coordination algo-

rithms must account for the complexity of flowfields which may be both temporally

and spatially varying. Given a known, time-varying flowfield we provide motion co-

ordination algorithms to steer multiple autonomous vehicles to circular formations.

This chapter builds upon prior coordination algorithms developed for flow-

free and time-invariant flowfields. In a flow-free environment with both all-to-all

[65] and limited [66] communication topologies Sepulchre et. al. provided constant-

speed controllers to generate parallel, circular, and coordinated circular formations.

Circular and coordinated circular formations were given in [54] for a time-invariant

flowfield. We expand this work to also include time-varying flows.

The circular formations converge to an arbitrary center determined by initial

conditions. For many applications it is useful to steer the formation to a specific

location. To prescribe the center of our circular formation, we introduce a symmetry-

breaking virtual particle. In [39] virtual particles were shown to change the dynamics

of a group. Coordinated tracking using a virtual particle was shown when the

communication topology is time-varying [9] and only partial state measurements

are shared among the group [8]. We follow the work of [66] which used a virtual

particle in a flow-free environment to specify the center of a circle.
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We use only circles as a formation shape, however related work shows that this

pattern can be expanded to convex paths in flow-free [53] and uniform flow [55, 73],

closed curves [79], foliums and spirographs [16]. Other formation patterns can be

created by allowing the circle center [2] and radius [3] to be time-varying.

We provide coordinated motion where the temporal spacing of the vehicles

is regulated. A uniform separation of vehicles traveling around a circle using de-

centralized steering control was introduced in [65] for no flow. In the absence of a

flowfield, the vehicles can be equally spaced both in space and time. Maintaining

an equal angular separation in the presence of a flowfield may not be possible with

a unit-speed vehicle model. A sliding-mode control algorithm was proposed in [32]

that provides coordinated encirclement in a uniform external flowfield, but was only

proven to be locally stable. A globally stable Lyapunov-based control design was

given in [54].

This chapter proceeds as follows. Section 3.1 discusses circular formations,

with both prescribed and non-prescribed centers, and coordinated encirclement in

a known time-varying flowfield. In this section we use the unconstrained particle

model (2.4). The constrained model is used in Section 3.2 to show that the previous

results hold for a known spatially invariant and rotating flowfield.
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3.1 Stabilization of a Circular Formation in a Known, Time-varying

Flowfield

This section provides decentralized control laws that stabilize a circular forma-

tion in a time-varying flowfield. For now the turning-rate constraint is relaxed and

it is assumed that the flow is known. Section 3.1.1 provides a control law for model

(2.3) to stabilize a circular formation about an arbitrary point in a spatially nonuni-

form flowfield. In Section 3.1.2, a symmetry-breaking virtual particle is introduced

that allows the formation center to be specified. The latter algorithm also enables

the particles to follow a constant velocity target. (A method is presented to follow

a maneuvering target in Chapter 6.) In Section 3.1.3 a circular-formation control

law is provided that regulates the temporal spacing of the particles in a spatially

uniform flowfield.

3.1.1 Circular Formation with an Arbitrary Center

A control law is developed that drives the particles into a circular formation

about an arbitrary, fixed point. All of the particles in the circular formation travel

in the same direction. In the case of a flow-free environment, setting uk equal to a

constant ω0 will drive the particles about a fixed center point with radius |ω0|−1. In

model (2.3), the center of a circular trajectory is [54]

ck , rk + ω−1
0 i

ṙk
|ṙk|

= rk + ω−1
0 ieiγk . (3.1)
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By differentiating (3.1) with respect to time, a steering control νk is derived that

drives a single particle around a circle in a time-varying flow. This gives

ċk(t) = sk(t)e
iγk − ω−1

0 eiγkνk = (sk(t)− ω−1
0 νk)e

iγk . (3.2)

Equation (3.2) with νk = ω0sk(t) ensures ċk = 0, which implies the center is fixed.

Particle k will traverse a circle with constant radius |ω0|−1 = |ck(0)− rk(0)|.

Next a steering control is proposed that drives all particles to orbit the same

center point in the same direction. Let 1 , (1, . . . , 1)T ∈ RN . In a circular forma-

tion, ck = cj for all pairs j and k, which implies the condition Pc = 0 [65], where P

is the N ×N projection matrix

P = diag{1} − 1

N
11 T . (3.3)

This matrix is equivalent to the Laplacian matrix of an all-to-all communication

topology [21]. (Since the intent of this chapter is to focus on the time-varying aspect

of the flowfield, all-to-all communication is assumed even though it is possible to

relax this constraint to a topology with limited communication [66].)

Following prior work, choose the Lyapunov function [65]

S(r,γ) ,
1

2
〈c, Pc〉 (3.4)

where r, γ, and c are the vector representations of the particle’s inertial positions,

orientations and circular trajectory centers respectively. Note that S is positive
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definite in the reduced space of relative centers. It is equal to zero only when

c = c01 , for some c0 ∈ C. The time derivative of S along solutions of (2.4) is

Ṡ =
N∑
k=1

〈ċk, Pkc〉 =
N∑
k=1

〈eiγk , Pkc〉(sk(t)− ω−1
0 νk), (3.5)

where Pk is the kth row of projection matrix P .

The following theorem extends [54, Theorem 3] to incorporate a time-varying

flowfield.

Theorem 1. Let fk(t) = f(rk, t) such that |fk(t)| < 1, ∀ k, t. Choosing the control

νk = ω0(sk(t) +K〈Pkc, eiγk〉), K > 0, ω0 6= 0, (3.6)

forces uniform convergence of solutions of model (2.4) to the set of a circular for-

mations with radius |ω0|−1 and direction determined by the sign of ω0.

Proof. The potential S(r,γ) is radially unbounded and positive definite in the (com-

plex) co-dimension one reduced space of relative centers. Under the control (3.6)

the time derivative of S along solutions to (2.4) is

Ṡ = −K
N∑
k=1

〈Pkc, eiγk〉2 ≤ 0.

According to an invariance-like theorem for nonautonomous systems [31, Theorem
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8.4], the solutions of (2.4) with control (3.6) converge to the set {Ṡ = 0} in which

〈Pkc, eiγk〉 = 0, ∀ k. (3.7)

In this set, control (3.6) evaluates to νk = ω0sk(t) and ċk = 0, which implies each

particle traverses a circle with a fixed center. Therefore, Pkc is constant and must

be zero for (3.7) to hold. Since the null space of P is spanned by 1 , then (3.7) is

satisfied only when Pc = 0, which implies ck = cj ∀ k, j. In the co-dimension one

reduced space of relative centers Ṡ ≤ −K〈Pkc, eiγk〉2 < 0 for k = 1, . . . , N showing

that S decreases over the interval [t, t+ δ] ∀ t ≥ 0, for some δ > 0. This implies the

set of circular formations with radius |ω0|−1 is uniformly asymptotically stable [31,

Theorem 8.5].

Figure 3.1 illustrates Theorem 1 for a time-varying, spatially nonuniform flow-

field. It shows the convergence of N = 5 particles to a circular formation whose cen-

ter was determined by initial conditions. The flowfield, is generated by the periodic

function fk = a(t)(sin(2πωxk−ϕ0) + i cos(2πωyk−ϕ0)), where a(t) = 0.75 sin(10t),

ω = 1, and ϕ0 = 10.

3.1.2 Circular Formation with a Prescribed Center

Under control (3.6) the center of the circular formation depends only on the

flowfield and the initial conditions of the particles. By introducing a virtual particle

(indexed by k = 0) and choosing initial conditions r0(0) and γ0(0) a center point for

the formation is prescribed to be c0(0) = r0(0)+ iω−1
0 eiγ0(0). The virtual particle has
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Figure 3.1: Stabilization of a circular formation with an arbitrary center in a time-
varying, spatially nonuniform flowfield.

dynamics r0(t) = s0(t)eiγ0 and γ̇0 = s0(t)ω0, which implies c0(t) = c0(0) by equation

(3.2). This makes possible applications such as encirclement of a moving target,

where the formation needs to be directed to a specific location that may be moving

with piecewise-constant velocity.

Consider the augmented potential S̃(r,γ) = S(r,γ) + S0(r,γ) [66] where

S0(r,γ) =
1

2

N∑
k=1

ak0|ck − c0|2. (3.8)

Value ak0 = 1 if particle k is informed of the reference center and ak0 = 0 otherwise.

The time-derivative of (3.8) is

˙̃S =
N∑
k=1

(
〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉

)
(sk(t)− ω−1

0 νk). (3.9)

The following theorem extends [54, Corollary 3] to incorporate a time-varying flow-

field.
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Theorem 2. Let fk(t) = f(rk, t) satisfy |fk(t)| < 1, ∀ k, t. Choosing the control

νk = ω0(sk(t) +K(〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉)), K > 0, ω0 6= 0, (3.10)

where ak0 = 1 for at least one k ∈ 1, . . . , N and zero otherwise, forces uniform

convergence of all solutions of the model (2.4) to the set of circular formations

centered on c0 with radius |ω0|−1 and direction determined by the sign of ω0.

Proof. The time-derivative of the augmented potential S̃(r,γ) satisfies

˙̃S = −K
N∑
k=1

(〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉)2 ≤ 0.

By an invariance-like principle for nonautonomous systems [31, Theorem 8.4], solu-

tions of (2.4) converge to the set { ˙̃S = 0} in which

〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉 = 0 ∀ k. (3.11)

If there exists a j such that aj0 = 0, then (3.11) reduces to 〈eiγj , Pjc〉 and control

(3.10) becomes νj = ω0sj(t). Following the proof of Theorem 1, equation (3.11)

holds only when ck = cj for all pairs k and j. For the informed particles where

ak0 = 1, (3.11) becomes

〈eiγk , ck − c0〉 = 0. (3.12)

This condition is satisfied only if ck = c0, ensuring that all particles will converge to a

circular formation around the prescribed center c0. The trivial case of ak0 = 1, ∀ k
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is addressed in [54, Corollary 1]. The rest of the proof follows from the proof of

Theorem 1.

The numerical results of this control are illustrated in Chapter 6.

3.1.3 Time-splay Circular Formation

In this section, a control algorithm is derived to stabilizes a circular formation

in which the temporal spacing between particles is regulated. Because all particles

are traveling at unit speed relative to the flowfield the spatial separation between

particles may not be controllable. However, the temporal spacing between parti-

cles can be adjusted to ensure that any point along the vehicle’s trajectory has a

consistent revisit rate. A spatially uniform flowfield is assumed to be of the form

f(t) = η0e
iΩt, in which the magnitude η0 is constant and the direction ξ(t) = Ωt

rotates at a constant rate Ω. (Such a flowfield arises in a reference frame fixed to a

constant-speed target that turns at a constant rate.)

Equation (3.2) shows that νk = ω0sk(t) drives particle k in a fixed circle of

radius |ω0|−1. Consider the change of variables γ′k = γk − Ωt, which implies

γ̇′k = γ̇k − Ω = ω0sk(t)− Ω. (3.13)

Using (2.15), the following expression for sk(t) is obtained, which depends on γ′k

instead of time:

sk(t) = s(γ′k) = η0 cos γ′k +
√

(1− η2
0 sin2 γ′k). (3.14)
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For the ensuing calculations to be nonsingular, it is required that (3.13) not

have a fixed point, as ensured by the following lemma.

Lemma 1. Choosing

|ω0| >
sgn(ω0)Ω

(1− |η0|)
or |ω0| <

sgn(ω0)Ω

(1 + |η0|)
(3.15)

ensures that (3.13) does not have a fixed point.

Proof. Requiring ω0sk(t)− Ω 6= 0 implies

min
γ′k

s(γ′k) >
Ω

ω0

(3.16)

or

max
γ′k

s(γ′k) <
Ω

ω0

. (3.17)

The minimum of s(γ′k) in (3.14) is s(γ′k) = 1 − |η0|, which occurs at γ′k = π if

η0 > 0 and γ′k = 0 if η0 < 0. Substituting s(γ′k) = 1 − |η0| into (3.16) yields

|ω0| > sgn(ω0)Ω/((1 − |η0|)). The maximum of s(γ′k) in (3.14) is s(γ′k) = 1 + |η0|

which occurs at γ′k = 0 if η0 > 0 and γ′k = π if η0 < 0. Substituting s(γ′k) = 1 + |η0|

into (3.17) yields sgn(ω0)|ω0| < Ω/((1 + |η0|)). Therefore, placing conditions (3.15)

on |ω0| ensures that (3.13) will not have a fixed point.

Integrating (3.13) by separation of variables yields

t =

∫ γ′k(t)

0

dγ′

ω0s(γ′)− Ω
. (3.18)

23



A time-phase variable is introduced to regulate the time separation of the N

particles [54]. The time-phase for a time-varying, uniform flow f(t) = η0e
iΩt is

ψk ,
2π

T

∫ γ′k(t)

0

dγ′

ω0s(γ′)− Ω
, (3.19)

where T , the period of a single revolution, is

T =

∫ 2π

0

dγ′

ω0s(γ′)− Ω
. (3.20)

The time-derivative of (3.19) is

ψ̇k =
2π

T

νk − Ω

ω0sk(t)− Ω
. (3.21)

Choosing ω0 to satisfy (3.15) ensures ψ̇k is non-singular by Lemma 1. Note

(3.21) implies that the control νk = ω0sk(t) yields a constant time-phase rate,

ψ̇k = 2π/T . To stabilize a circular formation in which the relative time-phases

are regulated, a phase potential is added to the Lyapunov function. The composite

potential is [65]

V (r,γ) = S(r,γ) +
T

2π
U(ψ). (3.22)

The phase potential U(ψ) is a smooth function satisfying the rotational symmetry

property U(ψ + ψ01 ) = U(ψ), which implies [65]

N∑
k=1

∂U

∂ψk
= 0. (3.23)
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Using (3.21) and (3.23), gives the following time-derivative of the potential (3.22):

V̇ =
N∑
k=1

〈eiγk , Pkc〉(sk(t)− ω−1
0 νk) +

T

2π

∂U

∂ψk
ψ̇k

=
N∑
k=1

(
sk(t)〈eiγk , Pkc〉 −

∂U

∂ψk

ω0sk(t)

ω0sk(t)− Ω

)(
ω0sk(t)− νk
ω0sk(t)

)
. (3.24)

The following theorem extends [54, Theorem 5] to incorporate a spatially in-

variant, time-varying flowfield.

Theorem 3. Let f(t) = η0e
iΩt be a spatially invariant flowfield satisfying the con-

ditions Ω ∈ R and |η0| < 1 ∀ t. Also, let U(ψ) be a smooth, rotationally symmetric

phase potential. Choosing the control

νk = ω0sk(t)

(
1 +K

(
sk(t)〈eiγk , Pkc〉 −

∂U

∂ψk

ω0sk(t)

ω0sk(t)− Ω

))
, K > 0, (3.25)

where ω0 6= 0 satisfies the constraint in Lemma 1, stabilizes a circular formation

with radius |ω0|−1 and direction determined by the sign of ω0 in which the time-

phase arrangement is a critical point of U(ψ).

Proof. Using control (3.25) with potential (3.24) yields
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V̇ = −K
N∑
k=1

(
(sk(t))

2〈eiγk , Pkc〉2 − 2
∂U

∂ψk

ω0sk(t)

ω0sk(t)− Ω
〈eiγk , Pkc〉

+

(
∂U

∂ψk

ω0sk(t)

ω0sk(t)− Ω

)2
)

(3.26)

= −K
N∑
k=1

(
sk(t)〈eiγk , Pkc〉 −

(
∂U

∂ψk

ω0sk(t)

ω0sk(t)− Ω

))2

≤ 0 (3.27)

By an invariance-like principle [31, Theorem 8.4], solutions of (2.4) converge to the

set {V̇ = 0} for which

sk(t)〈eiγk , Pkc〉 −
∂U

∂ψk

ω0sk(t)

ω0sk(t)− Ω
= 0, (3.28)

for k = 1, ..., N . By (3.25), in this set, νk = ω0sk(t). Thus each particle progresses

around a circle with a fixed center and radius |ω0|−1. Also ψ̇k = 2π/T , which implies

that U(ψ) is constant (by (3.23)) and ∂U/∂ψk = 0 ∀ k. Constraint (3.28) reduces

to

〈eiγk , Pkc〉 = 0. (3.29)

The rest of the proof follows the proof of Theorem 1.

Theorem 3 establishes convergence to a critical point of a rotationally symmet-

ric potential U(ψ). As an example consider a potential whose minimum corresponds

to a time-splay formation [54], in which all of the relative time-phases between con-
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Figure 3.2: Stabilization of a time-splay formation with an arbitrary center in a
time-varying, spatially uniform flowfield.

secutive particles around the formation are equal to 2π/N :

U (M,N)(ψ) =
M∑
m=1

KmUm, (3.30)

where

Um(ψ) =
N

2
|pmψ|2, pmψ ,

1

mN

N∑
k=1

eimψk ,

renders the set of time-splay formations uniformly asymptotically stable, since they

are the absolute minimum of U (M,N) when M = N . Note that Km > 0 for m =

1, . . . , N − 1, and KN < 0.

Figure 3.2 illustrates Theorem 3, showing N = 5 particles as they converge to

a time-splay configuration for a time-varying, spatially uniform flowfield of the form

f(t) = η0e
iΩt. Setting parameters η0 = 0.5 and Ω = 0.01 and choosing ω0 = 0.1

ensures that the constraint in Lemma 1 is satisfied. Figure 3.2(a) shows the particles

as they initially converge to a circle. Figure 3.2(b) shows the particles at time

t = 2000 after they have converged to a circular formation and an equal temporal
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spacing. (The particles have unequal spatial separation because they travel slower

when moving against the flowfield and faster when moving with the flowfield). The

clustering of particles in the slower speed region ensures equal temporal spacing.

Figure 3.2(c) shows convergence of the relative time-phases of sequential particles

to 2π/N , indicative of a time-splay configuration.

Introducing a virtual particle as in the previous section enables the center of

the time-splay formation to be prescribed, as described in the following corollary.

Corollary 1. Let f(t) = η0e
iΩt be a spatially invariant flowfield satisfying the con-

dition |η0| < 1, ∀ t. Also, let U(ψ) be a smooth, rotationally symmetric phase

potential. Choosing the control

νk = ω0sk(t)

(
1 +K

(
sk(t)

(
〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉

)
− ∂U

∂ψk

ω0sk(t)

ω0sk(t)− Ω

))
,

(3.31)

where K > 0 and ω0 6= 0 satisfies the constraint in Lemma 1 and ak0 = 1 for at

least one k ∈ 1, . . . , N and zero otherwise, stabilizes the set of circular formations

centered on c0 with radius |ω0|−1 and direction determined by the sign of ω0 in which

the time-phase arrangement is a critical point of U(ψ).

3.2 Circular Formation with a Bounded Turn-rate Constraint

Physical restrictions on an autonomous vehicle often constrain the turn-rate

control that may be applied to a system. In UAVs, a turn-rate constraint can result

from the aircraft’s maximum bank angle [60]. In the previous sections this bound
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was relaxed, allowing for potentially unlimited turn-rate control. In this section it is

shown that the previous results are valid even when there is a turn-rate constraint;

the constraint imposes a lower bound on the feasible radius of a circular formation

in a flowfield.

In terms of the inertial speed sk(t) and orientation γk, model (2.1) is equivalent

to

ṙk = sk(t)e
iγk

γ̇k = sat(νk; νmax),

(3.32)

where νmax , νk(umax) is a constraint on the steering control induced by the sat-

uration on uk. The relationship between νmax and umax is defined in Section 3.2.1

for a uniform, time-invariant flowfield and in Section 3.2.2 for a uniform, rotating

flowfield.

3.2.1 Turn-Rate Constraint in a Uniform, Time-Invariant Flowfield

The following result establishes the maximum required turn rate for a particle

to travel in a circle about a fixed center in a uniform, time-invariant flowfield.

(Because of the flow the turn rate changes as the particle travels around the circle).

Lemma 2. Consider circular motion with radius |ω0|−1 of a particle in a steady

flow fk = β ∈ R. The maximum required turn rate is

umax , max
γk

u(γk) = |ω0|(1 + |β|)2 > 0. (3.33)
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The maximum steering control is

νmax , ν(umax) = |ω0|(1 + |β|). (3.34)

Proof. Consider the particle model (2.1). For a uniform, time-invariant flowfield β,

the turn-rate control uk can be determined from (2.16) to be

uk =
νk

1− βs−1
k (t) cos γk

. (3.35)

Given a circular control νk = ω0sk(t) with inertial speed

sk(t) = β cos γk + (1− β2 sin2 γk)
1/2, (3.36)

the turn rate (3.35) is

uk = u(γk) =
ω0(β cos γk + (1− β2 sin2 γk)

1/2)2

(1− β2 sin2 γk)1/2
. (3.37)

The maximum turn rate

umax = max
γk

u(γk) = |ω0|(1 + |β|)2 (3.38)

occurs when sin γk = 0 and β cos γk = |β|, i.e., γk = 0 if β < 0 or γk = π if β > 0.

Under these conditions (3.36) becomes sk(t) = 1 + |β|. The controller νk is bounded

through its relationship to umax. Substituting sk(t) = 1 + |β| and (3.38) into (3.35)
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Figure 3.3: (a) Shows the maximum turn rate as a function of formation radius;
(b) illustrates the turn rate as a function of time for a particle on a circle of radius
|ω0|−1 = 10.

gives

νmax , ν(umax) =
umax

(1 + |β|)2
= |ω0|(1 + |β|). (3.39)

Figure 3.3(a) shows the maximum turn rate umax as a function of the formation

radius |ω0|−1 for β = 0.75. (The maximum turn rate is the value necessary to

maintain a circular formation of radius |ω0|−1 given a spatially uniform flow β).

Figure 3.3(b) plots the turn rate for a single particle initialized with a random

position and velocity as it converges under control νk = ω0sk(t) to a circle of radius

|ω0|−1 = 10. Note that the particle stays at or below the maximum turn rate as it

maintains a circle of the prescribed radius. The following result shows that, even if

the steering control is saturated the circular-formation control law is still justified.

Theorem 4. Consider model (3.32) with fk = β ∈ R, umax > 0, and νmax =
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νk(umax). If ω0 satisfies

|ω0| <
umax

(1 + |β|)2
, (3.40)

then control (3.6) forces convergence of all particles to the set of circular formations

with radius |ω0|−1 and direction determined by the sign of ω0.

Proof. Consider the Lyapunov function

V =
1

2
〈c, Pc〉. (3.41)

The time derivative of V along solutions of (3.32) is

V̇ =
N∑
k=1

〈Pkc, eiγk〉(sk(t)− ω−1
0 νk). (3.42)

Using control (3.6), observe that

〈eiγk , Pkc〉 =
νk − sk(t)ω0

Kω0

, (3.43)

which implies

V̇ = −
N∑
k=1

(sk(t)− ω−1
0 νk)

2

K
= − 1

Kω2
0

N∑
k=1

(ω0sk(t)− νk)2

K
≤ 0 ∀ νk. (3.44)

When −νmax ≤ νk ≤ νmax, V̇ ≤ 0; otherwise, V̇ is strictly less than zero. Applying

the invariance principle, solutions of (2.4) converge to the largest invariant set for
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which

〈Pkc, eiγk〉 = 0. (3.45)

In this set, (3.6) evaluates to νk = sk(t)ω0 and ċk = 0, which implies that the

particles travels in a circle with a fixed center. Pkc is constant and must evaluate

to zero. Because P is spanned by 1 , this condition is only satisfied when Pc = 0,

which implies ck = cj∀ k, j. The formation radius (3.40) satisfies (3.38) in Lemma 2,

ensuring that the control will drive all particles to a set of asymptotically stable

circular formations with radius |ω0|−1.

By introducing a virtual particle, as was done in Theorem 2, one can simi-

larly establish stabilization of a circular formation with a bounded turn rate at a

prescribed center point.

Corollary 2. Consider model (3.32) where fk = β ∈ R, umax > 0, and νmax =

νk(umax). If ω0 satisfies

|ω0| <
umax

(1 + |β|)2
, (3.46)

then control (3.10) forces convergence to the set of circular formations centered on

c0 with radius |ω0|−1 and direction determined by the sign of ω0.

Figure 3.4 compares a system of particles that conform to the umax constraint

(3.38) with one that does not. By violating (3.38), the particles do not have the

turn-rate control necessary to maintain a circular formation of the chosen radius.

This is illustrated in Figure 3.4(a), using a bound of umax = 0.1. The particles fail

to maintain a circular radius of |ω0|−1 = 10, i.e., the solution does not converge to
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Figure 3.4: Effects of a bounded turning control, umax = 0.35, in a spatially uniform
flowfield with β = 0.75. (a) Circular formation is unobtainable with radius |ω0|−1 =
10. (b) Stable circular formation with radius |ω0|−1 = 30.6.

a circular formation. Figure 3.4(b) shows convergence to a circular formation with

radius |ω0|−1 = 30.6, the smallest permissible radius for umax = 0.1, according to

Corollary 2.

3.2.2 Turn-Rate Constraint in a Uniform, Rotating Flowfield

This section shows that the previous results hold for a spatially invariant,

rotating flow, f(t) = η0e
iΩt.

Lemma 3. Consider circular motion of a particle with radius |ω0|−1 and flowfield

f(t) = η0e
iΩt. The maximum turn rate of the particle required to maintain a circular

formation is

umax , max
γk

u(γk) =


|ω0|(1 + |η0|)2 − |η0||Ω| if 2|ω0| > |Ω|;

|ω0|(1− |η0|)2 + |η0||Ω| if 2|ω0| ≤ |Ω|.
(3.47)
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The maximum steering control is

νmax , ν(umax) =


|ω0|(1 + |η0|) if 2|ω0| > |Ω|;

|ω0|(1− |η0|) otherwise.

(3.48)

Proof. From (2.16), it is seen that the turn-rate control uk for a particle with dy-

namics (2.1) in a rotating flowfield, f(t) = η0e
iΩt, is

uk = u(γ′k) =
sk(t)νk − Ωη0 cos(γ′k)

sk(t)− η0 cos(γ′k)
, (3.49)

where γ′k = γk − Ωt. The inertial speed sk(t), is determined by (2.15):

sk(t) = s(γ′k) = η0 cos(γ′k) + (1− η2
0 sin(γ′k)

2)
1
2 . (3.50)

Substituting the circular control νk = ω0sk(t) into (3.49) and finding the extrema

with respect to γ′k yields critical points at γ′k = 0 and γ′k = π, which implies

uk(0) = ω0(1 + η0)2 − η0Ω (3.51)

and

uk(π) = ω0(1− η0)2 + η0Ω. (3.52)

Either (3.51) or (3.52) is a maximum point depending on the values of η0, Ω and

ω0. If η0 > 0 then uk(0) > uk(π) when 2ω0 > Ω. If η0 < 0 then uk(0) > uk(π) when

2ω0 < Ω leading to (3.47). Under these conditions, (3.50) becomes sk(t) = 1 ± |η|
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and substituting sk(t) and (3.47) into (3.49) gives (3.48).

Theorem 5. Consider model (3.32) with f(t) = η0e
iΩt, |η0| < 1 ∀ t, and umax > 0.

If ω0 satisfies

|ω0| < (umax + |η0||Ω|)/(1 + |η0|)2 if 2|ω0| > |Ω|;

|ω0| < (umax − |η0||Ω|)/(1− |η0|)2 if 2|ω0| ≤ |Ω|.
(3.53)

then the control (3.6) with νmax given by (3.48) forces uniform convergence of solu-

tions to model (3.32) to the set of circular formations with radius |ω0|−1 and direction

determined by the sign of ω0.

The proof of Theorem 5 follows the proof of Theorem 4. Since f(t) is time-

varying, uniform asymptotic stability is established by the invariance-like principle

as in Theorem 1. The following theorem shows that stabilization of a time-splay

formation is possible even with a bounded turn rate, thereby extending Theorem 3.

Theorem 6. Consider model (3.32) with the spatially invariant, rotating flowfield

f = η0e
iΩt and |η0| < 1 ∀ t. Also, let U(ψ) be a smooth, rotationally symmetric

phase potential. With ω0 such that it satisfies both the constraint in Lemma 1 and

|ω0| < (umax + |η0||Ω|)/(1 + |η0|)2 if 2|ω0| > |Ω|;

|ω0| < (umax − |η0||Ω|)/(1− |η0|)2 if 2|ω0| ≤ |Ω|.
(3.54)

The control (3.25) and νmax given by (3.48) forces uniform convergence of solutions

to the model (3.32) to the set of circular formations with radius |ω0|−1 and direction

determined by the sign of ω0.
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Proof. Using the control (3.25), observe that

νk − ω0sk(t)

Kω0sk(t)
= sk(t)〈eiγk , Pkc〉 −

∂U

∂ψk

ω0sk(t)

ω0sk(t)− Ω
. (3.55)

Using the Lyapunov function (3.22) substitute (3.55) into (3.24) to obtain

V̇ =
1

Kω2
0

N∑
k=1

(νk − ω0sk(t))
2

(sk(t))2
≤ 0 ∀ νk. (3.56)

V̇ is strictly less than zero except when −νmax ≤ νk ≤ νmax. In this interval V̇ ≤ 0.

This case is covered by Theorem 3. The rest of the proof follows from Lemma 3 and

the proof of Theorem 3.
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Chapter 4

Motion Coordination in an Estimated Uniform Flowfield

This chapter provides cooperative control algorithms which operate in an un-

known, uniform flowfield. Each vehicle individually estimates the flow using an

observer-based methodology, which requires only noisy position measurements of

the vehicle.

Many approaches exist for estimation of unknown, uniform flowfields. Petrich,

et al. mapped a uniform flowfield with an added singular point to improve navigation

of shallow water underwater autonomous vehicles. They parameterize the flowfield

and use only a sparse set of GPS measurements in the estimation algorithm. All

vehicle measurements were shared at a centralized node [57]. Another centralized

approach given in [15] used information automatically broadcast by airplanes. The

estimation fit a circle to north and east components of ground speeds taken from

multiple airplanes with diverse headings but identical airspeed. The circle offset

gives an estimate of the direction and magnitude of the flow. Similar approaches

are given for a single plane which uses multiple measurements throughout the flight

to determine the longitudinal component [13] and the 3D estimate [56] of the wind.

Langelaan, et al. computed a 3D wind estimate and the wind acceleration using

sensors typically found on a small UAV [36].

Also for a single vehicle [37] uses Gaussian process regression to create a global
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map of the wind field based upon local observations. The wind field consisted of

a static field with added thermal bubbles. Using a cost function the vehicle then

balances exploration, improving the map estimate, with exploitation, using the wind

to gain energy for the vehicle.

In the relative frame between the vehicles and circle center, a uniform flowfield

is equivalent to a formation center moving in the opposite direction. Methods used

to estimate the constant velocity of a target can equivalently be used to estimate a

uniform flowfield. Summers et al. account for a constant-velocity moving target us-

ing adaptive estimates to drive cooperative vehicles in a loiter circle [70]. Burger and

Pettersen enable curved trajectory following of surface vehicles using a conditional

integrator to eliminate constant disturbances for vehicle formations [5].

This chapter proceeds as follows. Section 4.1 and 4.2 present methods to stabi-

lize circular formations with an arbitrary or prescribed center point in an unknown,

uniform flowfield. In Section 4.3 a time-splay formation is stabilized in a uniform,

rotating flow. In these sections it is assumed that each particle knows its measured

position, rk, and orientation, θk, although a dynamic estimate of position, r̂k, is

used to estimate the flow. In Section 4.4 we relax the assumption that we know the

exact position and use only a noisy measurement.

Given an estimated flow, f̂k(t) = f̂(t, rk), the estimated inertial velocity obeys

˙̂rk = ŝk(t)e
iγ̂k

˙̂γk = νk,

(4.1)
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where ŝk(t) and γ̂k are the magnitude and phase, respectively, of the estimated

inertial velocity for particle k.

4.1 Stabilization of Circular Formations with an Arbitrary Center

In this section a control law is developed to drive particles in a circular for-

mation about an arbitrary, fixed point in the presence of an estimated, uniform,

time-invariant flowfield. The control law works by dynamically estimating the flow

and using the estimate in the control law.

Let z1,k = r̂k − rk and z2,k = f̂k − fk denote the estimation errors for particle

k. Consider the estimator dynamics

˙̂rk = eiθk + f̂k −K1(r̂k − rk)
˙̂
fk = −K2(r̂k − rk).

(4.2)

This yields

ż1,k = eiθk + f̂k −K1(r̂k − rk)− eiθk − fk = −K1z1,k + z2,k

ż2,k = −K2(r̂k − rk) = −K2z1,k.

In matrix form, the estimator dynamics for particle k are

ż1,k

ż2,k

 =

−K1 1

−K2 0


︸ ︷︷ ︸

,A

z1,k

z2,k

 . (4.3)
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Lemma 4. Choosing gains K2 > 0 and K1 = 2
√
K2 > 0 in the error dynamics

(4.3) exponentially stabilizes the origin z1,k = z2,k = 0∀ k.

Proof. The eigenvalues of A are λ = (−K1±
√
K2

1 − 4K2)/2. Choosing K1 = 2
√
K2

results in λ = −K1 with multiplicity two.

The following is a result of Lemma 4.

Lemma 5. The matrix A defined in (4.3) is negative definite and the quadratic

form

Qk(A) =

[
z1,k z2,k

] −K1 1

−K2 0


z1,k

z2,k

 (4.4)

= −K1z
2
1,k −K2z1,kz2,k + z1,kz2,k ≤ 0 (4.5)

is equal to zero only when z1,k = z2,k = 0 for k ∈ {1, . . . , N}.

Let ĉk be the estimated center,

ĉk = r̂k + ω−1
0 ieiγ̂k . (4.6)

and consider the candidate Lyapunov function

Ŝ(r̂, γ̂) ,
1

2
〈ĉ, P ĉ〉+

1

2

(
||z1||2 + ||z2||2

)
, (4.7)

where z1 = [z1,1, z1,2, ..., z1,N ]T , z2 = [z2,1, z2,2, ..., z2,N ]T and ĉ is the vector of center

points defined by (4.6). Ŝ is equal to zero when ĉ = c01 , c0 ∈ C, and all estimation
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errors are zero. The time derivative of Ŝ along solutions of (4.1) and (4.3) is

˙̂
S =

N∑
k=1

(〈 ˙̂ck, Pkĉ〉+ ż1,kz1,k + ż2,kz2,k)

=
N∑
k=1

〈eiγ̂k , Pkĉ〉(ŝk(t)− ω−1
0 νk)− z1,k(K1z1,k − z2,k)− z2,k(K2z1,k)︸ ︷︷ ︸

=Qk(A)

 .(4.8)

The following theorem extends Theorem 1 to the case of an estimated, uniform,

time-invariant flowfield.

Theorem 7. Let fk(t) = β ∈ R, where |β| < 1, be an unknown time-invariant

flowfield. Also, let r̂k and f̂k evolve according to (4.2) with K2 > 0 and K1 = 2
√
K2.

Choosing the control

νk = ω0(ŝk(t) +K〈Pkĉ, eiγ̂k〉), K > 0, (4.9)

forces convergence of solutions of model (4.1) to the set of circular formations with

radius |ω0|−1 and direction determined by the sign of ω0.

Proof. Substituting (4.9) into (4.8) shows that the time-derivative of the potential

Ŝ(r̂, γ̂) satisfies

˙̂
S =

N∑
k=1

(
−K〈Pkĉ, eiγ̂k〉2 +Qk(A)

)
≤ 0. (4.10)

Using the invariance principle, all of the solutions of (2.4) with controller (4.9)
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converge to the largest invariant set where

−K〈Pkĉ, eiγ̂k〉2 +Qk(A) = 0, ∀ k. (4.11)

By Lemma 5 condition (4.11) is satisfied only when bothQk(A) = 0 and 〈Pkĉ, eiγ̂k〉 =

0 independently. Qk(A) = 0 implies that estimated values r̂k and f̂k equal the

measured values, rk and fk. Values γ̂k and ŝk(t) are functions of f̂k and θk. This

implies that γ̂k and ŝk(t) approach their measured values and, by (4.6), ĉk converges

to ck. The condition, 〈Pkĉ, eiγ̂k〉 = 0 is satisfied for all k only when Pkĉ is constant

and equal to zero. Since the null space of P is spanned by 1 this implies ĉk =

ĉj ∀ k, j. In this set, control (4.9) evaluates to νk = ω0ŝk(t) and ˙̂ck = 0 which implies

that each particle converges to circular motion around the same fixed center.

4.2 Stabilization of Circular Formations with a Prescribed Center

Under the control (4.9) the center of the circular formation depends only on

the initial conditions of the particles and the flowfield. As with the case of the

known flowfield, introducing a symmetry-breaking virtual particle (indexed by k =

0) will prescribe a center point for the formation. Consider the augmented potential

S̃(r̂, γ̂) = Ŝ(r̂, γ̂) + Ŝ0(r̂, γ̂), where

Ŝ0(r̂, γ̂) =
1

2

N∑
j=1

aj0|ĉj − c0|2 (4.12)
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and ĉk is defined by (4.6). Taking the time-derivative of (4.12) along solutions of

(4.1) and (4.3) gives

˙̃S =
N∑
j=1

[ (
〈eiγ̂j , Pj ĉ〉+ aj0〈eiγ̂j , ĉj − c0〉

)
(ŝj(t)− ω−1

0 νj)

+ z1,j(−K1z1,j + z2,j) + z2,j(−K2z1,j)︸ ︷︷ ︸
=Qj(A)

]
. (4.13)

Theorem 8. Let fk(t) = β ∈ R, where |β| < 1, be an unknown time-invariant flow.

Also, let r̂k and f̂k evolve according to (4.2) with K2 > 0 and K1 = 2
√
K2. Choosing

the control

νk = ω0(ŝk(t) +K(〈eiγ̂k , Pkĉ〉+ ak0〈eiγ̂k , ĉk − c0〉)), K > 0, (4.14)

forces convergence of solutions of model (4.1) to the set of circular formation centered

at c0 with radius |ω0|−1 and direction determined by the sign of ω0.

Proof. Substituting the controller (4.14) into (4.13) shows that the time-derivative

of the augmented potential S̃(r̂, γ̂) satisfies

˙̃S =
N∑
j=1

(
(−K〈eiγ̂j , Pj ĉ〉+ aj0〈eiγ̂j , ĉj − c0〉)2 +Qj(A)

)
≤ 0.

According to the invariance principle, all solutions of (2.4) with controller (4.14)

converge to the largest invariant set where

〈Pj ĉ, eiγ̂j〉2 + aj0〈eiγ̂j , ĉj − c0〉+Qk(A) = 0, ∀ j. (4.15)
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Figure 4.1: Stabilization of circular formation in uniform flowfield f = −0.8 with a
prescribed center point c0 = 0.

By Lemma 5, Qk(A) = 0 only when the estimated r̂k and f̂k values have converged

to their corresponding measured values. The convergence of these estimated values

also implies that ŝk(t), γ̂k and ĉk converge to their measured values. The remaining

terms in (4.15) become 〈Pjc, eiγj〉2 + aj0〈eiγj , cj − c0〉 and must be equal to zero

independently of Qk(A). Following the proof of Theorem 2 this occurs only when

ck = c0 and the controller (4.14) becomes νk = sk(t)ω0. Therefore, all of the particles

will converge to the set of circular formations with radius |ω0|−1 and center c0.

Figure 4.1 illustrates Theorem 8 with estimator gains K2 = 0.2 and K1 =

2
√
K2 = 0.894 and a uniform flowfield f = −0.8. Figures 4.1(a) and 4.1(b) show

tracks of the estimated (darker track) and actual (lighter track) particle positions

at 20 and 1000 seconds respectively, as they converge to a circular formation about

the prescribed center point, c0 = 0. Figure 4.1(c) shows convergence to zero of

estimator errors in the position and the flow for particle k = 3.
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4.3 Time-splay Formation with a Rotating Flowfield

We now derive a control law to stabilize particles to a time-splay formation in

an estimated, spatially invariant, rotating flowfield. (A rotating flowfield is defined

to be a uniform flowfield whose direction is rotating in time.) Without speed control

it may not be possible to regulate the spatial separation of particles, but it is possible

to regulate the temporal separation in an estimated flowfield as shown next.

Given a uniform time-varying flowfield f = η0e
iΩt, choose z1,k = r̂k − rk and

z2,k = f̂k − fk. The rotational rate, Ω, is assumed to be known; the flow speed, η0,

and initial orientation are unknown. Consider the estimator dynamics

˙̂rk = eiθk + f̂k −K1(r̂k − rk)
˙̂
fk = −K2(r̂k − rk) + Ωif̂k.

(4.16)

Taking the derivative of the error and plugging in (4.16) yields

ż1,k = eiθk + f̂k −K1(r̂k − rk)− eiθk − fk = −K1z1,k + z2,k

ż2,k = −K2z1,k + Ωiz2,k.

The estimator dynamics for particle k are

ż1,k

ż2,k

 =

−K1 1

−K2 Ωi


︸ ︷︷ ︸

,B

z1,k

z2,k

 . (4.17)
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Lemma 6. Choosing gains K1 > |Ω| and K2 = (K2
1 −Ω2)/4 in the error dynamics

(4.17) exponentially stabilizes the origin z1,k = z2,k = 0 for k = [1, . . . , N ].

Proof. The eigenvalues of B are

λ =
−(K1 − Ωi)±

√
(K1 − Ωi)2 − 4(−K1Ωi+K2)

2

=
−K1 + Ωi±

√
(K2

1 − Ω2 − 4K2) + (2K1Ω)i

2
.

The real part is given by

Re(λ) =
−K1 ± Re

(√
(K2

1 − Ω2 − 4K2) + (2K1Ω)i
)

2
. (4.18)

To evaluate the real part of the square root term, which contains a complex number,

observe that

Re(
√
a+ bi) = Re(

√
ρeϕi) =

√
ρ cos

ϕ

2
,

with ρ =
√
a2 + b2 and cosϕ = a/ρ. Using the half-angle formula for cosϕ =√

(1 + cos 2ϕ)/2, the real part of square root becomes

Re(
√
a+ bi) =

√
ρ

√(
1 + a

ρ

2

)
=

√
ρ+ a

2
. (4.19)

Evaluating (4.19) for (4.18) yields

Re(λ) =
−K1

2
±

√√
(K2

1 − Ω2 − 4K2)2 + 4K2
1Ω2 + (K2

1 − Ω2 − 4K2)

2
√

2
,
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which is the real portion of the eigenvalues of matrix B.

Letting K1 > |Ω| and K2 = (K2
1 −Ω2)/4 results in Re(λ) = (−K1±

√
K1Ω)/2.

K1 > |Ω|, which implies Re(λ) < 0.

The following result is a consequence of Lemma 6

Lemma 7. Matrix B defined in (4.17) is negative definite and the quadratic form

Qk(B) ,

[
z1,k z2,k

] −K1 1

−K2 Ωi


z1,k

z2,k

 = −K1z
2
1,k−K2z1,kz2,k+z1,kz2,k+Ωiz2

2,k ≤ 0

(4.20)

is only equal to zero when z1,k = z2,k = 0 ∀ k.

The estimator dynamics (4.17) are used to stabilize a time-splay formation for

a flowfield with known rotation rate Ω(t). Consider the Lyapunov function

V̂ (r̂, γ̂) =
1

2
〈ĉ, P ĉ〉+

T

2π
U(ψ̂) +

1

2

(
||z1||2 + ||z2||2

)
, (4.21)

where ĉ is the vector of estimated center points defined by (4.6). Taking the time-

derivative along solutions of (4.1) and (4.17) yields

˙̂
V =

N∑
k=1

[(
ŝk(t)〈eiγ̂k , Pkĉ〉 −

∂U

∂ψ̂k

ω0ŝk(t)

ω0ŝk(t)− Ω

)(
ω0ŝk(t)− νk
ω0ŝk(t)

)
+

z1,k(−K1z1,k + z2,k) + z2,k(−K2z1,k + Ωiz2,k︸ ︷︷ ︸
=Qk(B)

)

]
. (4.22)

The following result extends Theorem 3 to incorporate an estimated, spatially

invariant, rotating flow.
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Theorem 9. Let f(t) = η0e
iΩt be an unknown spatially invariant flowfield satisfying

the condition |η0| < 1, ∀ t. Also, let U(ψ̂) be a smooth, rotationally symmetric

phase potential. Let r̂k and f̂k evolve according to (4.16) with K1 > |Ω| and K2 =

(K2
1 − Ω2)/4. Choosing the control

νk = ω0ŝk(t)

(
1 +K

(
ŝk(t)〈eiγ̂k , Pkĉ〉 −

∂U

∂ψ̂k

ω0ŝk(t)

ω0ŝk(t)− Ω

))
, K > 0, (4.23)

where ω0 6= 0 satisfies the constraint in Lemma 1, stabilizes the set of circular

formations with radius |ω0|−1 and direction determined by the sign of ω0 in which

the time-phase arrangement is a critical point of U(ψ̂).

Proof. Using control (4.23) with potential (4.22) yields

˙̂
V =

N∑
k=1

(
−K

(
ŝk(t)〈eiγ̂k , Pkĉ〉 −

(
∂U

∂ψ̂k

ω0ŝk(t)

ω0ŝk(t)− Ω

))2

+Qk(B)

)
≤ 0.

By an invariance-like principle [31, Theorem 8.4], solutions of (2.4) converge to the

set { ˙̂
V = 0} for which

−K
(
ŝk(t)〈eiγ̂k , Pkĉ〉 −

∂U

∂ψ̂k

ω0ŝk(t)

ω0ŝk(t)− Ω

)2

+Qk(B) = 0, ∀ k. (4.24)

According to Lemma 7, both terms in (4.24) must equal zero and Qk(B) = 0 only

when the estimated r̂k and f̂k values have converged to their corresponding measured

values. The convergence of these estimated values along with the known value θk
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Figure 4.2: Stabilization of a circular time-splay formation centered at c0 = 0 in an
estimated rotating flowfield, f(t) = η0e

iΩt, with η0 = 0.5 and Ω = −0.01.

also implies that ŝk(t), γ̂k and ĉk converge to their measured values. The rest of the

proof follows from the proof of Theorem 3 and 7.

Figure 4.2 illustrates Theorem 9. The simulation uses estimator gains K1 = 0.1

and K2 = (K2
1 − Ω2)/4. The rotating flowfield parameters are η = 0.5, Ω = −0.01,

and ω0 = .1 which satisfies Lemma 1. Figures 4.2(a) and 4.2(b) show tracks of the

estimated (darker track) and actual (lighter track) particle positions at 20 and 3000

seconds respectively as they converge to a time-splay formation about the prescribed

center point, c0 = 0. Figure 4.2(c) shows convergence of the estimator errors to zero

for a single particle, k = 3. The initial conditions for all particles are set randomly.

In this simulation the initial estimated flowfield started in the opposite direction as

the actual flowfield causing the measured and estimated positions to temporarily

diverge as seen by the peak in Figure 4.2(c).
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4.4 Flowfield Estimation Using Noisy Position Measurements

In this section we show that the observer-based control law from Section 4.2

stabilizes particles to a circular formation even with noisy measurements of the

particle position.

Let the position measurement at time t be r̃k(t) = rk(t) + gk(t), where gk(t)

is a (bounded) error term, such as arises when navigating underwater or by GPS.

With the measurement error the error dynamics (4.2) become

˙̂rk = eiθk + f̂k −K1(r̂k + gk − rk)
˙̂
fk = −K2(r̂k + gk − rk).

(4.25)

In matrix form the estimator-error dynamics represent a perturbed system:

ż1,k

ż2,k

 =

−K1 1

−K2 0


︸ ︷︷ ︸

,B

z1,k

z2,k

− gk
K1

K2

 . (4.26)

Choosing Q ∈ R2×2 to be the identity matrix, the solution to the Lyapunov equation

FB +BTF = −Q is

F =

 (K2+1)
2K1

−1
2

−1
2

(K2+K2
1+1)

2K1K2

 . (4.27)

Let c1 = λmin(F ), c2 = λmax(F ), c3 = −λmin(Q) = 1, and c4 = 2λmax(F ), where λ

represents the matrix eigenvalue, and let zk = [z1,k, z2,k]
T . We have the following

result based on nonvanishing perturbation stability [31, Chapter 9].
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Lemma 8. Consider the perturbed error dynamics (4.26) and bounded perturbation

|gk max(K1, K2)| ≤ δ <
c3

c4

√
c1

c2

xε, (4.28)

with 0 < ε < 1 and zk(t) in domain D = {zk(t) ∈ C2 | ||zk(t)|| < x}. For all

||zk(t0)|| <
√

c1
c2
x the solution to (4.26) will obey

‖zk(t)‖ ≤
√
c2

c1

eζ(t−t0)‖z(t0)‖, (4.29)

where

ζ =
(1− ε)c3

2c2

(4.30)

and ‖zk(t)‖ is ultimately bounded by

‖zk(t)‖ ≤
c4

c3

√
c2

c1

δ

ε
. (4.31)

Proof. With candidate Lyapunov function V (zk) = zTkFzk, the unperturbed system

satisfies

c1‖zk(t)‖2 ≤ V (zk) ≤ c2‖zk(t)‖2

∂V

∂zk
≤ −c3‖zk(t)‖2∥∥∥∥ ∂V∂zk

∥∥∥∥2

≤ c4‖zk(t)‖2,

where c1 = λmin(F ), c2 = λmax(F ), c3 = −λmin(Q) = 1, and c4 = 2λmax(F ) [31,
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Example 9.1]. With positive gains K1, K2 the origin of the unperturbed system (4.3)

is exponentially stable by Lemma 4. By [31, Lemma 9.2] the perturbed system will

follow (4.29) and be ultimately bounded by (4.31).

Lemma 8 shows that the ultimate bound of the perturbed error dynamics

(4.26) is proportional to δ2, which is related to the measurement noise by (4.28).

Next we use this result to extend Theorem 7 to incorporate noisy position measure-

ments.

Theorem 10. Let fk = β ∈ R satisfy |β| < 1. Also, let r̂k and f̂k evolve according

to (4.25) with perturbation gk bounded by |gk| ≤ δ/max(K1, K2) and positive gains

K1, K2, and K3. The distance between solutions of model (4.1) with the control

(4.9) and the set of circular formations with radius |ω0|−1 and direction determined

by the sign of ω0 is ultimately bounded with ultimate bound proportional to δ2.

Proof. Consider the candidate Lyapunov function (4.7), whose time derivative along

closed-loop solutions of (4.1) is

˙̂
S =

N∑
k=1

(〈 ˙̂ck, Pkĉ〉+ ż1,kz1,k + ż2,kz2,k)

=
N∑
k=1

[
〈eiγ̂k , Pkĉ〉(ŝk − ω−1

0 νk)− z1,k(K1z1,k − z2,k +K2z2,k)

− gk(z1,kK1 + z2,kK2)

]
.
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Choosing control (4.9) and ultimate bound (4.31) from Lemma 8 gives gives

˙̂
S =

N∑
k=1

(
−K3〈Pkĉ, eiγ̂k〉2 − z1,k(K1z1,k + z2,k +K2z2,k)

− gk(z1,kK1 + z2,kK2)

)
≤

N∑
k=1

(
−K3〈Pkĉ, eiγ̂k〉2 +K1‖zk‖2 +

1

2
(K2 + 1)‖zk‖2

+ gk

√
K2

1 +K2
2‖zk‖2

)
≤

N∑
k=1

(
−K3〈Pkĉ, eiγ̂k〉2 +

(
K1 +

1

2
(K2 + 1) + δ

√
K2

1 +K2
2

)
‖zk‖2

)

≤
N∑
k=1

(
−K3〈Pkĉ, eiγ̂k〉2

+

(
K1 +

1

2
(K2 + 1) + δ

√
K2

1 +K2
2

)(
δc4

εc3

√
c2

c1

)2

︸ ︷︷ ︸
,b

)
, (4.32)

where we used the inequalities z1,kK1 + z2,kK2 <
√
K2

1 +K2
2‖zk‖2 and 2z1,kz2,k <

‖zk‖2. The term −K3〈Pkĉ, eiγ̂k〉2 ≤ 0 is equal to zero only when ck = cj for all pairs

k and j, which implies each particle steers to a circular formation around the same

fixed center. Let Ω be the set where ck = cj for all pairs k and j, which implies

νk = ω0ŝk and ˙̂ck = 0. In Ω,
˙̂
S is negative definite when K3〈Pkĉ, eiγ̂k〉2 > b. Thus

solutions are attracted to within b of Ω.

Figure 4.3 illustrates Theorem 10 for a uniform flowfield β = −0.5 and posi-

tion measurements perturbed by zero mean Gaussian noise (and not truncated as

required by Lemma 8) with standard deviation σ. Figure 4.3(a) shows a circular

formation of k = 5 particles. The red tracks indicate the noisy position measure-
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Figure 4.3: Stabilization to a circular formation in an unknown uniform flowfield
with noisy position measurements.

ments and the blue tracks show the actual particle position. With K1 = 2.83 and

K2 = 2, the constants in Lemma 8 become c1 = 0.204, c2 = 1.298, c3 = 1, and

c4 = 2.6. Choosing ε = 0.99 gives ultimate bound b = 2.83. A large ε value (less

than one) increases the bounding exponential, but decreases the overall bound b.

Figure 4.3(b) shows the evolving errors for particle k = 3 as well as their bounding

exponential functions and ultimate bound. The position error z1,k = r̂k − rk with

‖z1,k(t0)‖ = 3.2875 is bounded by 24.1586e−0.0051t (black line). The flowfield error

z2,k = f̂k−fk with ‖z2,k(t0)‖ = 1.1726 is bounded by 2.518e−0.0051t (blue line). Both

errors are ultimately bounded by b = 2.83 (red line).
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Chapter 5

Motion Coordination in an Estimated Nonuniform Flowfield

In this chapter we provide decentralized control algorithms that enable motion

coordination in an unknown, spatially varying flowfield by simultaneously estimating

the flow and using that estimate to steer multiple vehicles to a circular formation.

We parameterize the flowfield into a set of weighted basis functions. The coefficients

of the basis functions are estimated with a decentralized information-consensus filter.

The information filter is used to reconstruct the flowfield. The consensus filter

enables sharing of data among the vehicles given a limited communication topology.

The inter-vehicle communication constraints may be directed, provided they

are strongly connected and balanced [59]. (A strongly connected graph ensures that

a communication path that obeys edge direction may be found between any vehicle

to any other vehicle. The communication graph is balanced if for each vehicle the

number of incoming connections is equal to the number of outgoing connections.)

The estimated flowfield and its directional derivative at the vehicle locations are fed

into a decentralized control law that cooperatively stabilizes vehicles to a moving

formation. We require only noisy position measurements to estimate the flowfield.

Research shows that distributed control of many vehicles with communication

constraints may be achieved using consensus filters [48, 59]. Lynch et al. use a con-

sensus filter to estimate spatially varying environmental fields such as temperature
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[41]. The scalar-field estimate is coupled with a gradient control to move the vehicles

into sampling positions that minimize the estimation uncertainty. For a connected

undirected graph [48] or a strongly connected and balanced digraph [59] a consensus

filter asymptotically convergences to the average of the consensus inputs.

A consensus filter was used in combination with an information filter by Cas-

beer and Beard to estimate a system’s dynamic state [11]. Their work shows that

when the consensus filter did not converge prior to estimating the state, the decen-

tralized error covariance estimates were conservative, and the estimated state was

similar to the one obtained with the centralized estimator. Olfati-Saber also pro-

vided decentralized Kalman filter formulations [46, 50, 45, 47], developed techniques

applicable to a heterogeneous group of sensors [46], and established the properties

of stability for the information-consensus filter [47].

We follow the work of [41] where a combination information and consensus

filter is used to estimate a global scalar field in a distributed manner. Background

information on distributed estimation is provided in Section 5.1. The algorithm for

consensus-based flowfield estimation and motion coordination is presented in four

stages. Section 5.2 outlines the overall approach using a centralized information fil-

ter and noisy flow measurements. It also assumes that the flowfield basis vectors are

known. Section 5.3 replaces the centralized filter with a decentralized information-

consensus filter. Section 5.4 replaces the flow measurements with noisy position

measurements. Finally, Section 5.5 relaxes the assumption that the flowfield struc-

ture is known by the information filter and instead uses an orthogonal set of cosine

basis vectors in the flowfield estimation.
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5.1 Background: Distributed Estimation Using an Information-Consensus

Filter

This section summarizes the work of Lynch et al. [41] in which an information

filter and a consensus filter were used to estimate a scalar environmental field from

measurements collected by multiple vehicles. The environmental field fk at position

rk is [41]

fk = f(rk) =
l∑

n=1

anψn(rk), (5.1)

where ψ(rk) , ψk = [ψ1(rk), ψ2(rk), ..., ψl(rk)]
T is the matrix of known basis vectors

evaluated at rk and a = [a1, a2, ..., al]
T is the matrix of flowfield coefficients to be

estimated.

Although Lynch et al. allow the coefficients to be time-varying, here we assume

that the coefficients are constant, i.e., ȧn = 0 for all n, and estimate them using noisy

linear measurements. Each measurement f̃k is corrupted by Gaussian, zero-mean

measurement noise vk with variance Rk ∈ C, so that [41]

f̃k = ψT
ka+ vk. (5.2)

The information filter is a variation of the Kalman filter that propagates for-

ward the inverse of the error covariance [67]. Let M = E[(a − â)(a − â)T ] be the

coefficient error covariance.1 The inverse error covariance M−1 , I is called the

information matrix and i = Iâ is the information measurement [41]. The informa-

1E[·] is the expected value of [·].
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tion filter equations are obtained by substituting M = I−1 and â = I−1i into the

standard Kalman filter equations [67].

For this work we implemented a discrete form of the information filter. Let

t be the current time and ∆t the time step. The superscript (−) denotes the prior

estimates and (+) denotes the updated estimates. The information filter equations

are simplified under the assumption that the state a is constant and does not have

process noise. These conditions imply that the predicted information covariance and

information state at time t are equal to the prior values, i.e., I−(t) = I+(t−∆t) and

i−(t) = i+(t−∆t). The measurement-update equations for particle k are [67, 41]

I+
k = I−k +ψkR

−1
k ψ

T
k

i+k = i−k +ψkR
−1
k f̃k.

Rewriting these equations using Ck , ψkR
−1
k ψ

T
k and yk , ψkR

−1
k f̃k yields [41]

I+
k = I−k + Ck

i+k = i−k + yk.

(5.3)

The matrix Ck and vector yk represent the information gained from particle

k in a single update measurement. The estimated coefficients âk for particle k are

obtained from the information matrix using âk = I−1
k ik [41]. An advantage of us-

ing the information filter is that measurement updates are added to the predicted

information matrix and information measurement [11], rather than performing the

matrix multiplications and inversion of a standard Kalman filter. Multiple mea-
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surements may be incorporated in a single update step using the following sums:

[41]

C ,
N∑
k=1

Ck =
N∑
k=1

ψkR
−1
k ψ

T
k (5.4)

and

y ,
N∑
k=1

yk =
N∑
k=1

ψkR
−1
k f̃k. (5.5)

The measurement-update equations that incorporate the information from all par-

ticles are

I+ = I− + C

i+ = i− + y,

(5.6)

with the estimated coefficients â = I−1i. Note that the measurement variance

Rk is embedded in the information update of Ck and yk, making it easy to share

information among heterogeneous sensors in a group [11].

A centralized information filter can be used directly to estimate â when all-to-

all communication is available. When all-to-all communication is not available, the

information filter is supplemented by a consensus filter. The consensus filter approx-

imates the average value of an input parameter and converges to the true average

as long as the (directed) vehicle communication topology is strongly connected and

balanced [59], i.e., a communication link exists between all vehicles and the in-degree

is equal to the out-degree of each communication node. The information-consensus

filter allows vehicle k to approximate C and y using information from its neighbor

set Nk. Let C(i,j),k indicate the entry in the ith row and jth column of Ck. Likewise

yn,k is the nth entry of vehicle k’s measurement vector. The proportional-integral
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(PI) consensus filter is [41]

τ̇k = ξ(τ0,k − τk)−KP

∑
j∈Nk

(τk − τj) +KI

∑
j∈Nk

(ηk − ηj)

η̇k = −KI

∑
j∈Nk

(τk − τj),
(5.7)

where τ0,k is particle k’s input to the estimated value. That is, τ0,k = C(i,j),k where

i, j = 1, . . . , l or τ0,k = yn,k where n = 1, . . . , l. ξ > 0 determines how much the

consensus filter relies upon its own input relative to the inputs from other connected

particles. τk is the consensus variable, i.e., the approximate average of C(i,j),k or yn,k,

ηk is an integrator variable, and KP and KI are the proportional and integral gains,

respectively. The sums in (5.7) are computed for all the particles in the neighbor

set of k, where j ∈ Nk indicates that vehicle k receives communication from vehicle

j.

In the following sections we provide a distributed algorithm that uses (5.6)

and (5.7) to estimate a spatially varying flowfield. The flowfield is estimated using

(5.6) with inputs C and y approximated with the consensus filter (5.7).

5.2 Stabilization of Circular Formations and Centralized Flowfield

Estimation Using an Information Filter

Figure 5.1(a) illustrates the design of a centralized information filter that esti-

mates a spatially varying flowfield. The flowfield fk is approximated by a set of basis

functions as in (5.2), where the basis vector is known and the flowfield coefficients

are estimated. At each time step, each vehicle measures the local flowfield at its
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Figure 5.1: Flowfield estimation and multivehicle control architecture with (a) cen-
tralized information filter and (b) decentralized information-consensus filter.

position rk. Equations (5.4) and (5.5) are used to obtain C and y, which represent

the information gained from the local flowfield measurement. A centralized infor-

mation filter uses C and y to compute the global flowfield estimate f̂ . The estimate

f̂ (and its directional derivative) are fed into each particle’s steering controller. This

process is repeated at each time step and the global flowfield estimate improves from

the additional measurements.

Table 5.1 summarizes the centralized estimation and control algorithm.

Table 5.1: Centralized Information Filter Cooperative Control Algorithm

Input: Basis vectors ψ, sensor variances Rk, and circle formation radius |ω0|−1

At each time t, particle k = 1, . . . , N :

1: Takes a noisy flowfield measurement f̃k

2: Evaluates the basis vectors ψ(rk) = ψk = [ψ1(rk), ψ2(rk), ..., ψl(rk)]
T

3: Computes the information matrix Ck = ψkR
−1
k ψ

T
k and information measure-

ment yk = ψkR
−1
k f̃k

4: Shares its covariance matrix and measurement vector with all other particles
and computes C and y using Cj and yj, j = 1, . . . , N

5: Updates prior information matrix I− and measurement i− using (5.6)

6: Computes the estimated flowfield f̂ = ψkâ = ψkI
−1i and control νk using

(4.9)
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We propose the following result.

Proposition 1. Let f(rk) =
∑l

n=1 anψn(rk) be a spatially varying, time invariant

flowfield where the ψn(rk) are known basis vectors and the coefficients an are un-

known. The algorithm described in Table 5.1 forces convergence of solutions of model

(4.1) to the set of circular formations with radius |ω0|−1 and direction determined

by the sign of ω0.

Proposition 1 is justified because the estimation portion of Table 5.1 is sepa-

rate from the control dynamics. Due to the stability properties of the information

filter [47], the flowfield estimate will improve independently from the steering con-

trol. The control becomes more accurate as the estimated flowfield converges to

the true flowfield. Once the flowfield is estimated, Theorem 1 shows that steering

control (4.9) drives all particles to a circular formation with the same center point

and radius.

Figure 5.2 illustrates the results of numerical simulations of the centralized

information filter. The flowfield is modeled using a series of sines and cosines, fk =

a1 sin(Re(rk)) + a2 cos(Im(rk)) + a3 sin(2Re(rk))i+ a4 cos(2Im(rk))i with coefficients

a1 = 0.5, a2 = 0.5, a3 = 0.5, and a4 = 0.5. The basis vectors are ψ1 = sin(Re(rk)),

ψ2 = cos(Im(rk)), ψ3 = sin(2Re(rk))i, and ψ4 = cos(2Im(rk))i. The stabilized

formation of N = 15 particles is shown in Figure 5.2(a) after a simulation time

of t = 200 seconds. The tracks indicate that after a short transient the particles

converge to the final formation. Figure 5.2(b) shows the error between the estimated

and actual coefficients for k = 15. Despite being fed noisy flowfield measurements,
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Figure 5.2: Stabilization of a circular formation in an estimated, spatially varying
flowfield using a centralized information filter.

the coefficient errors rapidly converge to zero.

5.3 Stabilization of Circular Formations and Consensus-based Flow-

field Estimation Using Flow Measurements

In this section we use an information-consensus filter to estimate a spatially

varying flowfield in a decentralized architecture depicted in Figure 5.1(b). Each par-

ticle uses the PI consensus filter introduced in Section 5.1 to calculate C̄k, the ap-

proximate average of matrix (5.4), and ȳk, the approximate average of measurement

vector (5.5). C̄k and ȳk are multiplied by the number of particles N to approximate

C and y, which are used in each particle’s information filters to generate estimates of

the flowfield coefficients. Each particle may have different coefficient estimates due

to variances in the approximate average of the covariance and measurement matrix.

Table 5.2 describes the distributed algorithm. Note steps 1 and 2 are identical to

the centralized version.
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Table 5.2: Decentralized Information-Consensus Filter Cooperative Control Algo-
rithm 1
Input: Known basis vectors ψ, sensor variances Rk, circle formation radius

|ω0|−1, and a strongly connected and balanced communication topology
At each time step, particle k = 1, . . . , N :

1: Takes a noisy flowfield measurement f̃k

2: Evaluates the basis vector: ψ(rk) = ψk = [ψ1(rk), ψ2(rk), ..., ψl(rk)]
T

3: For n = 1, . . . , p, where p is the number of consensus filter iterations, repeat:

3a: Use the consensus filter (5.7) to estimate the components of C and y

4: Updates the approximate prior information matrix I− and measurement i−

using (5.6) and determines the estimated coefficients âk = I−1i

5: Computes the estimated flowfield f̂k = ψkâk = ψkI
−1i and control νk using

(4.9)

The estimated coefficients are fed into a control law that drives each particle

to a circular formation. To ensure fast convergence, multiple consensus updates

are performed for every steering control command. The information-consensus filter

runs as a separate process for each vehicle, completing as many as p = 10 consensus

iterations between measurement updates. We propose the following result.

Proposition 2. Let f(rk) =
∑l

n=1 anψn(rk) be a spatially varying, time invariant

flowfield where the ψn(rk) are known basis vectors and the coefficients an are un-

known. The algorithm described in Table 5.2 forces convergence of solutions of model

(4.1) to the set of a circular formations with radius |ω0|−1 and direction determined

by the sign of ω0.

As with Proposition 1, Proposition 2 is justified because estimation of the flow-

field is independent of the motion coordination. The combined consensus-estimation

filter behaves like Table 5.1 when the consensus filter is given time to converge to the
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average. Convergence of the consensus filter is assured for strongly connected and

balanced communication topologies [59]. Once the flowfield is known all particles

are driven to a circular configuration as proven in Theorem 1.

Figure 5.3 illustrates the result of numerical simulations of the decentralized

information-consensus filter with N = 15. Figure 5.3(a) shows the particle circular

formation after 250 seconds. The flowfield is identical to the one used in the cen-

tralized example. The particles have a strongly connected and balanced topology,

communicating with only four neighbors, such that particle k receives communi-

cation directly from particles k − 2, k − 1, k + 1 and k + 2, modulus N . We set

KI = 0.05, KP = 0.5, ξ = .01, and sensor variance Rk = .01. Figure 5.3(b) shows

the error in the coefficient estimates converges to zero for particle k = 15. Note the

error values for the consensus filter take longer to converge than in the centralized

implementation; the imperfect estimates of C and y increase the duration of the

transient.
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(b) Flowfield coefficient errors for particle k =
15.

Figure 5.3: Stabilization of a circular formation in an estimated spatially varying
flowfield using a decentralized information-consensus filter.
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5.4 Stabilization of Circular Formations and Consensus Based Flow-

field Estimation Using Noisy Position Measurements

In this section we relax the assumption that each particle measures the local

flowfield and instead require only noisy position measurements. Let mk(t) be the

change in position from t−∆t to t, subject to bounded measurement error gk(t):

mk(t) = rk(t) + gk(t)− rk(t−∆t)− gk(t−∆t). (5.8)

Using ṙk(t) = lim∆t→∞(rk(t)− rk(t−∆t))/∆t in (5.8) yields

mk(t) ≈ ṙk∆t+ gk(t)− gk(t−∆t)

mk(t) ≈ [eiθk(t) + fk(t)]∆t+ gk(t)− gk(t−∆t).

For a sufficiently small ∆t, we assume θk is constant. The approximate local

flowfield measurement f̃k(t) at time t is

f̃k(t) = m(t)
∆t
− eiθk(t) + gk(t)−gk(t−∆t)

∆t
. (5.9)

∆t must be chosen to be small enough so that θ can be considered constant, but

not so small that the position measurement error dominates (5.9). In order to

approximate a local flowfield we need to know the orientation of the velocity relative

to the flow θk. (The speed relative to the flow is one by assumption.)

Table 5.3 presents the information-consensus filter algorithm utilizing noisy

67



Table 5.3: Decentralized Information-Consensus Filter Cooperative Control Algo-
rithm 2
Input: Basis vector ψ, sensor variances Rk, circle formation radius |ω0|−1, and

strongly connected and balanced communication topology
At each time step t, each particle k = 1, . . . , N :

1: Takes a noisy position measurement r̃k

2: Use the difference between the previous and current position measurement to
approximate the local flowfield measurement using (5.9)

3: Evaluates the basis vector at the measured position: ψ(r̃k) , ψ̃k =
[ψ1(r̃k), ψ2(r̃k), ..., ψl(r̃k)]

T

4: For n = 1, . . . , p, where p is the number of consensus filter iterations, repeat:

4a: Use the consensus filter to estimate the components of C and y

5: Updates the approximate prior information matrix I− and measurement i−

using (5.6) and determines the estimated coefficients âk = I−1i

6: Computes the estimated flowfield f̂k = ψkâk = ψkI
−1i and control νk using

(4.9)

position measurements. Note that steps 3–6 are identical to Table 5.2, steps 2–5.

Figure 5.4 illustrates the architecture of the algorithm. We propose the following

result.

Proposition 3. Let f(rk) =
∑l

n=1 anψn(rk) be a spatially varying flowfield where

the ψn(rk) are known basis vectors and the coefficients an are unknown. Using the

algorithm described in Table 5.3 forces convergence of solutions of model (4.1) to

the set of a circular formations with radius |ω0|−1 and direction determined by the

sign of ω0.

When the time step is sufficiently small to ensure that the local flowfield is

approximately uniform, then (5.9) is an adequate replacement for the noisy flowfield

measurement of Table 5.2. Otherwise, the justification of Proposition 3 follows that
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Figure 5.4: Flowfield estimation and multivehicle control architecture with decen-
tralized information-consensus filter driven by noisy position measurements.

of Proposition 2.

Figure 5.5 illustrates the results of simulating the decentralized information-

consensus algorithm using noisy position measurements. Each particle approxi-

mates the local flowfield using (5.9) and uses that approximation in an information-

consensus filter to estimate the global flowfield. The flowfield model is identical to

the previous examples. In this simulation we use an undirected, time-varying topol-

ogy where communication is available between particles only when the distance

between them is sufficiently small (less than 12). Figure 5.5(b) shows the error in

the estimated flowfield coefficients, for particle k = 15. Using noisy position mea-

surements to approximate the local flowfield increases the time it takes to estimate

the flowfield coefficients, but the algorithm still converges to a circular formation.

5.5 Stabilization of Circular Formations and Consensus Based Flow-

field Estimation with an Arbitrary Flowfield Structure

The requirement that the information filter know the underlying basis vectors

which compose the flow may be too restrictive for many applications. We would like
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(b) Flowfield coefficient errors, k = 15.

Figure 5.5: Stabilization of a circular formation in an estimated spatially varying
flowfield using an information-consensus filter driven by noisy position measure-
ments.

to estimate the flowfield without need of any a prior information. In this example

we show it is possible to estimate an arbitrary flowfield using a series of 2D cosine

basis functions. The cosine functions replace the known basis vectors within the

information-consensus filter framework provided in the previous sections. The cosine

functions for the real and imaginary axis are

ψn(Re(rk)) = cos
(πn
X

Re(rk)
)

ψm(Im(rk)) = cos
(πm
Y

Im(rk)
)

with X and Y representing the flowfield boundary in the real and imaginary direc-

tions of the complex plane. Let the new basis vector be

ψ(rk) , [ψ0(Re(rk))ψ0(Im(rk)), ..., ψ0(Re(rk))ψm(Im(rk)), ..., ψn(Re(rk))ψm(Im(rk))].(5.10)
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The total number of basis vectors and coefficients is l = m×n. We assume that the

flowfield is within the span of a finite number of cosine basis vectors and therefore

may be estimated exactly. However in simulation we show an example where this

requirement is relaxed. As before the flowfield is defined with (5.1).

We generate a flowfield using random variables to weight coefficients in the

Fourier domain. The inverse transform of the coefficients yields the global flowfield.

We use the decentralized information-consensus filter presented in Section 5.4 to es-

timate a flowfield over a 50× 50 region in the complex plane. Figure 5.6 illustrates

the result of steering multiple vehicles to a circular formation in a flowfield estimated

using vector (5.10). We estimated l = 10 coefficients. For this example we increase

the number of consensus iterations completing as many as p = 40 iterations between

measurement steps. Note that the information-consensus algorithm is computation-

ally intense and does not scale well when estimating a large number of coefficients or

completing a high number of consensus iterations. Figure 5.6(a) shows the circular

formation with the actual (gray arrows) and estimated (gold arrows) flowfield as

background vectors. Figure 5.6(b) depicts the percent flowfield error between the

actual and estimated flowfield for particle k = 15. The estimated flow is not perfect

since the flowfield can only be estimated perfectly using an infinite number cosine

basis vectors. Errors are especially high toward the edges of the region. However,

the estimated flowfield was accurate enough to provide good convergence of particles

to the circular formation.
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Figure 5.6: Stabilization of a circular formation in an estimated spatially varying
flowfield using a decentralized information-consensus filter with unknown flowfield
basis vectors.
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Chapter 6

Application Example: Coordinated Encirclement of a Maneuvering

Target

Autonomous vehicles have been used successfully in operations and experi-

ments for target tracking and convoy protection applications [26, 69, 64, 38]. In

this chapter we show the applicability of the control laws developed in Chapter 3

and 4 to these applications by providing coordinated encirclement of a maneuvering

target.

Target tracking with cooperating autonomous vehicles has been studied ex-

tensively in past research, both for stationary [4, 24, 76] and moving [77, 33, 35]

targets. Frew et al. show collaborative encirclement of a constant-velocity target

while regulating the angular separation between two vehicles [25]. In [70] this was

expanded to include an unlimited number of vehicles. In both works, the desired

distance from the target is governed using Lyapunov-based guidance vector fields.

The spatial separation is preserved using a variable-speed controller. Each vehicle

adjusts its speed to maintain the correct angular separation with the vehicle directly

ahead of it. In [81] this approach was expanded to also create formations with equal

temporal spacing.

A temporal spacing target tracking algorithm using a unit speed vehicle model

was provided by Klein. The vehicles successfully follow a constant velocity target,
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but the algorithm restricts the number of vehicles in the formation [35]. For an

unlimited number of vehicles, Kingston proposed a sliding-mode algorithm that

encircles moving targets [32].

Another approach used to develop decentralized cooperative tracking algo-

rithms is to choose vehicle trajectories that optimize the potential information gain

of the system [27, 52, 75]. This is an appealing approach when working with many

vehicles because the total information of the system is equal to the linear combi-

nation of the information of the individuals. Using the Fisher information matrix

Ousingsawat and Campbell combine individual vehicle information in a cost func-

tion to determine optimal vehicle paths for the reconnaissance of stationary targets

[51]. Zhou et al. extend this approach to track a moving target with a team of

mobile vehicles [80]. Each vehicle uses a nonlinear, range-only measurement model.

In this work we do not implement a specific sensor model for our vehicles,

though other literature addresses this topic (e.g. cameras [17, 7, 76], GMTI Sensor

[68, 34], radar [6, 61], multi-static radar [10, 78]). Instead we assume each au-

tonomous vehicle measures the relative distance between itself and the target. The

target is not restricted to a constant velocity, but is assumed to be accelerating. We

also initially assume that the acceleration is known. However, in an application ex-

ample we partially relax this assumption by discretizing the track of an accelerating

target into constant velocity segments and using the control algorithms of Chapter 4

to estimate the velocity of each segment.

In this chapter we will first derive the dynamics for each unmanned vehicle

(Section 6.1). These are defined in terms of an accelerating reference frame B with
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r′k
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Figure 6.1: Relationship between inertial frame I and accelerating frame B with
path trajectories.

its origin fixed to the target. We then illustrate target encirclement with three

examples. In Section 6.2 a target is considered that is continuously accelerating and

decelerating between two points along a fixed track. The magnitude of the velocity

is always changing, but the target does not deviate from the path. Section 6.3

illustrates the coordinated encirclement of a target that is traversing a circle of

fixed radius and thus constantly changing its velocity direction while maintaining

a fixed magnitude. For this flowfield the time-phase parameter is used to regulate

the temporal spacing of the particles. Section 6.4 depicts encirclement of a target

driving through an urban environment. The target path was captured using a GPS

receiver attached to a car and includes typical traffic behavior such as turns and

stops. This example shows the utility of the algorithms developed in Chapter 4 to

encircle a target in an estimated flowfield. Additionally, a turning-rate constraint is

imposed on the vehicles as discussed in Section 3.2. All of the examples illustrate

basic maneuvers of a mobile ground vehicle.
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6.1 Accelerating Frame Dynamics

This section derives the equations of motion for a particle traveling in an

accelerating, non-rotating reference frame B with origin O′ fixed to the target. O′

moves with respect to the inertial frame I with a velocity and acceleration equal

to the target velocity. Two path frames are utilized for particle k as shown in

Figure 6.1. With no external flowfield, the kinematics in the inertial frame (2.3) are

ṙk = eiθk (6.1)

r̈k = θ̇kie
iθk . (6.2)

The steering control is θ̇k = uk. Let r′k be the position of the particle k relative to

O′. The inertial kinematics relative to O′ are

ṙ′k , sk(t)e
iγk

r̈′k = ṡk(t)e
iγk + sk(t)γ̇kie

iγk . (6.3)

sk(t) and γk are the magnitude and orientation of ṙ′k. Let rO′ be the position of O′

with respect to O. By vector addition we have

r̈′k = r̈k − r̈O′ . (6.4)

The velocity and acceleration between frames I and B is defined to be ṙ′O =

vO = vx + ivy and r̈′O = aO = ax + iay, respectively. To find the equations of motion
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for the particle k in frame B, substitute (6.2) and (6.3) into (6.4), which yields

ṡk(t)e
iγk + sk(t)γ̇kie

iγk = ukie
iθk − ax − iay. (6.5)

From Figure 6.1 and Euler’s formula, observe that

ieiθk = sin(γk − θk)eiγk + cos(γk − θk)ieiγk (6.6)

ax = ax(cos γke
iγk − sin γkie

iγk) (6.7)

ay = ay(sin γke
iγk + cos γkie

iγk). (6.8)

Substituting (6.6)–(6.8) into (6.5) yields

ṡk(t) = uk sin(γk − θk)− ax cos γk − ay sin γk (6.9)

γ̇k =
1

sk(t)
(uk cos(γk − θk) + ax sin γk − ay cos γk) , νk. (6.10)

Solving (6.10) for uk and substituting into (6.9) gives

ṡk(t) = (sk(t)νk − ax sin γk + ay cos γk) tan(γk − θk)− ax cos γk − ay sin γk. (6.11)

To eliminate θk from (6.11) we use

sk(t)e
iγk = eiθk − v (6.12)

sk(t)e
i(γk−θk) = 1− ve−iθk . (6.13)
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Equating the real and imaginary parts of (6.12) and (6.13) yields

sk(t) cos γk = cos θk − vx

sk(t) sin γk = sin θk − vy

and

sk(t) cos(γk − θk) = 1− vx cos θk − vy sin θk

= 1− vx(vx + sk(t) cos γk)− vy(vy + sk(t) sin γk)

sk(t) sin(γk − θk) = vx sin θk − vy cos θk

= vxsk(t) sin γk − vysk(t) cos γk

tan(γk − θk) =
vxsk(t) sin γk − vysk(t) cos γk

(1− v2
x − v2

y − vxsk(t) cos γk − vysk(t) sin γk)
. (6.14)

Substituting (6.14) into (6.11) yields

ṡk(t) =
(sk(t)νk − ax sin γk + ay cos γk)(vxsk(t) sin γk − vysk(t) cos γk)

1− v2
x − v2

y − vxsk(t) cos γk − vysk(t) sin γk

−ax cos γk − ay sin γk (6.15)

The kinematics for a particle motion relative to O′ is obtained by integrating (6.15)

and substituting it into (6.3). The trajectory for particle k in the inertial frame O

is

rk(t) = r′k(t) +
1

2
(ax + iay)t

2 + (vx(0) + ivy(0))t.
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Figure 6.2: Encirclement of a maneuvering target that is accelerating along a single
trackline.

6.2 Coordinated Encirclement of a Variable Speed Target

This example replicates a target that is accelerating between two points along a

single trackline. Since the target velocity only varies in magnitude, it can be aligned

with the real axis of an inertial frame without loss of generality. This scenario is

illustrated using control (3.10) and target acceleration

ax(t) =


−4l
T
, mod(t, T ) < T

2

4l
T
, mod(t, T ) ≥ T

2
,

(6.16)

where T and l represent the period and the maximum amplitude of the velocity,

respectively. The target speed is greatest in the middle of the track and slows down

to reverse direction at the edges.

Figure 6.2 illustrates the encirclement result of a target traversing with a

period T = 150 seconds and a maximum velocity equal to 75% of the particle’s

velocity (l = 0.75). Figure 6.2(a) shows the simulated results in an inertial reference

frame. The target is aligned with the real axis and travels left and right without
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turning. In this figure it is not apparent that the particles converge to a circular

formation. However, this is readily seen in the target-centered frame as illustrated in

Figures 6.2(b) and 6.2(c). The target-centered figures illustrate the velocity by using

the equivalent spatially uniform flowfield at that instance in time. Figure 6.2(b)

shows the formation at t = 400 seconds; figure 6.2(c) shows the formation at t = 600

seconds, when the target is traveling at its maximum velocity of l = 0.75. Both

target-centered figures show that the particle quickly converges to the target and

then maintains a circular configuration centered around it.

6.3 Coordinated Encirclement of a Turning Target

This example illustrates the behavior of multiple vehicles as they follow a

target performing a constant-rate turn of radius ρ. The target acceleration is aO(t) =

(η2
0/ρ)iei2πt/T with fixed speed η0 and a constantly changing direction of motion.

Figure 6.3 illustrates the results of using control algorithm (3.10) with speed η0 = 0.5

(50% of the particle’s velocity) and radius of curvature ρ = 39.79. The period of time

it takes the target to traverse the circle is T = 500 seconds. Figure 6.3(a) illustrates

the results in the inertial frame, showing the target track as it travels in a circle and

the resulting particle tracks. Figures 6.3(b) and 6.3(c) display the simulation results

in a target-fixed frame at t = 400 and t = 800 seconds, respectively. In these figures

the particles quickly converge to a circular formation and maintain that formation

even as the target accelerates.

The turning-target scenario is also used to illustrate control law (3.25), which
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Figure 6.3: Encirclement of a maneuvering target that is turning at a constant rate.
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Figure 6.4: Coordinated encirclement of a maneuvering target that is turning at a
constant rate.

drives the particles to a time-splay formation. Figure 6.4 illustrates this example

with N = 5 particles centered on a target circling at an angular rate of Ω = 2π/T ,

period T = 500 seconds, and target speed, η0 = 0.5. Setting ω0 = 0.1 satisfies

the requirement in Lemma 1. Figure 6.4(a) depicts the target and particles in

the inertial frame. Figures 6.4(b) and 6.4(c) show the convergence to the time-splay

configuration in the target-centered reference frame at t = 800 and t = 1000 seconds.

These figures show that the particles converge to a time-splay formation even as the

target accelerates.
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6.4 Coordinated Encirclement of an Urban Target

In this example the work of Sections 4.2 and 3.2 are combined to encircle a

maneuvering target moving with an unknown velocity. Control algorithm (4.14)

is used to estimate the velocity of the target. Additionally, a bounded turn-rate

constraint is placed on the autonomous vehicles. The combined particle model for

this simulation is

˙̂rk = ŝk(t)e
iγ̂k

˙̂γk = sat(νk; νmax).

A set of GPS waypoints is used to model realistic behavior of a vehicle traveling in

an urban environment. The vehicle tracks were collected during a twenty-minute

interval while driving through a Washington, D.C. suburb. The track included

stops, turns, and other kinematic behavior typical in urban traffic. The maximum

velocity of the target was 18.23 m/s (approx. 40 miles/hr). It is assumed that the

optimal velocity of the autonomous vehicles is 35 m/s. The velocity of the target

and autonomous vehicles are normalized such that the autonomous vehicles travel

at unit speed. (The normalized target velocity is 52% of the platform speed.) A

turn-rate of umax = 0.23 rad/s is imposed on the vehicles, which corresponds to a

UAV maximum bank angle of 40◦ [77]. Following (3.38) from Lemma 2 a formation

radius of |ω0|−1 = 10 was chosen.

Figure 6.5 illustrates the results from the urban-traffic scenario. Figure 6.5(a)
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Figure 6.5: Coordinated encirclement of a target moving through urban traffic.

displays the GPS waypoints on a street map of the area. The movement of the target-

fixed frame was generated from these waypoints by converting the GPS latitude

and longitude points into a topocentric North-East-Down (NED) coordinate frame

centered on the starting location. In this frame, the distances between the waypoints

and their associated timestamps were used to determine the velocity of the target

vehicle. The target velocity is piecewise constant because it is constructed out of

a discrete set of waypoints and does not consider acceleration. Discontinuities of

the velocity are especially pronounced when the vehicle turns sharply as both the

direction and magnitude may change suddenly. Although the velocity of the target

is being estimated, the vehicles are able to measure the relative position between

itself and the target. Figure 6.5(b) displays both the target and vehicle tracks in

the inertial frame. (The distance units are based upon the normalized speed of the

ground vehicle.) The figure shows separations in the vehicle tracks that correspond

to the velocity of the target. When the target is traveling quickly the cyclic tracks

are spaced farther apart than in the slower moving parts of the track. Points at
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which the target is stopped (due to traffic lights) are evident by the track circle

over that point. Figure 6.5(c) shows the circular formation in the target-fixed frame

for the twenty minute time interval. This figure highlights the effect of the velocity

discontinuities on the formation: particles exhibit a period of transient behavior

after each maneuver, before converging to a circular formation.
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Chapter 7

Experimental Results: Motion Coordination on an Unmanned Aerial

Vehicle Testbed

In this chapter the control algorithms developed in Chapters 3 are imple-

mented on two Procerus Unicorn UAVs. The Unicorn (pictured in Figure 7.1) is

a hand launchable, delta wing air vehicle that comes in various sizes. UAVs with

48 and 60 inch wingspans were used for these experiments. Each UAV uses a

Kestral autopilot and is commanded from the ground station, Virtual Cockpit, with

a wireless serial connection. A secondary connection between Virtual Cockpit and

Matlab is used to execute the algorithms by sending bank angle commands. Fig-

ure 7.2 illustrates the UAV experiment architecture. As shown, the ground station

may control multiple vehicles simultaneously. State information from each UAV is

sent to the ground station at regular intervals and then forwarded on to the Mat-

Figure 7.1: Four Procerus UAVs with 60 inch wingspan.
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Figure 7.2: UAV flight experiment architecture for multiple UAVs.

lab control module. The controller uses a unique identification number tied to the

autopilot to differentiate between aircrafts. This ID is present in all communication

packets, including the navigation and telemetry packets which are used to calculate

the aircraft’s desired roll angle. The roll angle is the only command input we send

to the autopilot. The autopilot automatically controls the altitude and airspeed.

Figure 7.3 shows the communication chain for the experimental setup. The

control commands are executed in Matlab which sends/receives information from

the ground station using TCP/IP packets. Commands are converted to a binary

stream in Virtual Cockpit and sent wirelessly to the vehicle’s autopilot through

a com box. The autopilot receives then executes the command using PID loops.

Vehicle state information is directed through the same communication chain in the

opposite direction.

The remainder of this chapter discusses the results from flight experiments and

the process taken to setup the experimental testbed. Equipment used to conduct

these tests was loaned to us from the Johns Hopkins University Applied Physics

Laboratory. Section 7.1 shows how we convert the turn-rate from the control al-
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Figure 7.3: Flight experiment communication diagram.

gorithms of Chapters 3 into a roll command for the autopilot. Prior to flight, we

incorporated the UAVs into a hardware-in-the-loop (HIL) simulator to test our al-

gorithms using a high fidelity model. HIL simulation results are given in Section 7.2.

The outdoor flight test results are shown in Figure 7.3.

7.1 Constant Velocity Dynamic Model

In this section we explain the implementation details needed to apply the con-

trol algorithms to flying UAVs. The UAVs steer using coordinated turns determined

by the bank angle. We assume the UAVs are traveling at constant, non-unit speed v0

(although the control algorithms update when the air speed of the vehicle changes)

and maintain a fixed altitude. As is done in previous work [14, 3, 40], the speed is

incorporated into the particle model (2.1) as follows

ṙk = v0e
iθk + fk = ske

iγk

ν̇k = γ̇k.

(7.1)

These experiments assume a uniform flowfield of moderate strength (i.e. |η(t)| <

v0) defined as f(t) = η(t)eiξ(t), where η(t) is the magnitude of the flow and ξ(t) is
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the direction. The inertial speed is

sk(t) =
√

Re{(η(t)eiξ(t) + v0eiθk)(η(t)e−iξ(t) + v0e−iθk)}

=
√
v2

0 + (η(t))2 + 2η(t)v0(cos θk cos ξ(t) + sin θk sin ξ(t)). (7.2)

sk(t) is expressed as a function of γk and f(t) by substituting (2.5) and (2.6) into

(7.2) and rearranging the result to obtain the quadratic equation

(sk(t))
2 − 2η(t)(cos γk cos ξ(t) + sin γk sin ξ(t))sk(t) + (η(t))2 − v2

0 = 0. (7.3)

Solving (7.3) for sk(t) (using the positive root since sk(t) > 0) yields

sk(t) = η(t)(cos γk cos ξ(t) + sin γk sin ξ(t))

+
√
v2

0 + (η(t))2((cos γk cos ξ(t) + sin γk sin ξ(t))2 − 1) (7.4)

= 〈eiγk , f(t)〉+
√
v2

0 − 〈ieiγk , f(t)〉2. (7.5)

Substituting (7.5) into (2.11) determines the steering control input for the UAV.

Each UAV is commanded by changing the desired bank angle. To convert

the steering control, uk, into a roll command we assume the UAV will execute

a coordinated turn (i.e. no side slip, constant airspeed, and level altitude). The

equation which relates a bank angle to a turn-rate for a coordinated turn is [58,

Chapter 5], [77]

uk = v−1
0 g tanφk (7.6)
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where φk is the airplane roll and g is the gravitational constant. Note that this

equation holds true even in the presence of wind [58, 63]. Inverting (7.6) gives the

roll command,

φk = tan−1(ukv0
g

). (7.7)

The assumptions made in order to derive this equation do not generally hold for

either aircraft flight or HIL simulations. To compensate for errors in the calculated

roll we also incorporate a PID control on the turn-rate error, zk = uk − ũk, where

ũk is the measured turn-rate as given by the autopilot. The PID control ensures the

desired turn-rate uk is achieved. The gap between the desired and actual turn-rate

can cause a large deviation when driving a UAV to a circle (HIL experimentation

shows a 10 meter error when commanding 50 meter radius circle). The correcting

PID control is

φP,k = KP zk +KD
˙̃zk +KI

∫ t
0
zk(τ) dτ, (7.8)

where t is the current time. z̃k(t) = α(zk(t−∆t)) + (1− α)(zk(t)) is the error after

a first-order smoothing. α is a gain determining how much we trust the current

measurement. We smooth the measurement prior to differentiating to reduce the

impact of noise. ˙̃zk is calculated using the difference between concurrent values and

the time difference of packet updates. (The simulator does not provide timestamps

with packet updates so we compute the time difference using the ground station

system time.) The desired bank angle sent to the autopilot is

φC,k = φA,k + φP,k (7.9)
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Figure 7.4: Feedback control loop to steer UAV into a circle using bank angle
commands.

where φA,k is the approximate roll command (7.7).

The bank angle control loop for a non-prescribed center point is given in Fig-

ure 7.4. The autopilot outputs the UAV position, ground speed sk, and course

heading which is used to compute the inertial steering control νk. This value is used

with the known wind (as estimated by the autopilot) to compute uk. The approxi-

mate bank angle (7.7) and correcting term (7.8) are feed back to the autopilot.

UAVs have a maximum maintainable bank angle before they stall. For a

desired radius we find the maximum bank angle needed to converge to a circle by

extending the analysis done in Section 3.2.1. Assuming a uniform, time-invariant

flowfield fk = η ∈ R, circle radius |ω0|−1, and constant airspeed v0 > 0, then the

maximum required turn-rate (see (3.38)) is

umax =
|ω0|(v0 + |η|)2

v0

> 0. (7.10)

Substituting (7.10) into (7.7) gives the maximum required bank angle to achieve a
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Figure 7.5: Maximum turn radius as a function of bank angle.

desired radius of |ω0|−1,

φmax = tan

( |ω0|(v0 + |η|)2

g

)−1

> 0. (7.11)

Figure 7.5 shows the relationship between the maximum bank angle and the

minimum possible turn radius |ω0|−1 given an airspeed of v0 = 14 m/s and η =

5 m/s. Relationship (7.11) only holds when (7.6) is exact. HIL simulations and

flight experiments show that (7.6) is an approximation that degrades at higher

bank angles. Figure 7.6 quantifies the bank angle approximation. In an HIL

experiment a UAV was commanded to a set of discrete bank angles ranging from 0◦

to 30◦ in one degree increments. After an initial transient, we measured the turn-

rate and compared it to the bank angle approximation (7.6). The results show that

the approximation is closest for low bank angles and diverges as the angle increases.

The test was repeated with a simulated wind of 2 m/s and 5 m/s and gave the same

results (also shown in Figure 7.6, but occluded by measurements with zero wind).
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Figure 7.7: Architecture of hardware-in-the-loop configuration.

7.2 Hardware-in-the-Loop Simulation

An HIL simulator was used to test the control algorithms. Figure 7.7 illustrates

the simulation architecture and shows its setup for a single vehicle. It resembles the

experimental configuration, but with the addition of the Avionus module. Avionus

is a flight simulator that takes the UAV actuator commands and uses them to deter-

mine state parameters. The simulated state is fed back to the UAV and subsequently

sent to the ground station either through a serial connection or wireless transceiver.

The HIL simulator allows testing of control algorithms on UAV hardware prior to

flying.
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The HIL simulation provides a good testing environment, but has some key

differences when compared with outdoor flight. They include:

1. HIL incorporates Avionus, a software program which provides a linear 6-DOF

model of the aircraft. In flight the aircraft dynamics will differ from the model.

2. The simulation has less noise due to projecting forward the exact position

according to the model.

3. The communication chain differs slightly with the simulator and flight config-

urations. Figure 7.8 shows the communication diagram for the HIL simulator.

The chain follows that of a flight configuration (Figure 7.3), but has an addi-

tion link to Avionus.

4. State information is less likely to be dropped or delayed in the HIL simulation.

In both the HIL simulations and outdoor experiments information can be

lost or delayed both connecting to the ground station through the wireless

transceiver and between the ground station and Matlab module. In our testing

we had fewer communication difficulties during simulation experiments than

outdoor flight tests.

5. HIL simulates a known, spatially-invariant wind rather than the time varying

and spatially varying wind of the real world. The UAVs estimate a wind

speed and direction based upon the difference between GPS and airspeed.

The estimate is only assumed to be correct after the UAV computes the speed

difference for the full range of headings. Variable winds and gusts will not be
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Figure 7.8: HIL communication diagram.

picked up in the UAVs estimates.

Using the HIL simulator we tested control algorithms (3.6) and (3.10) to steer

vehicles to circular formations with prescribed and non-prescribed centers. We first

tested (3.6) to drive two UAVs to a circle of radius 150 meters and center point

determined by initial conditions. Figure 7.9 illustrates the results. We used PID

values KP = .2, KD = .2, and KI = 1 and did not simulate wind. Figure 7.9(a) gives

the trajectories of the two aircraft along with the final instantaneous circle center and

trajectory (dashed lines). When the simulation started the aircraft were traveling

in nearly perpendicular directions, however, they quickly adjusted and converged to

a circular formation. Figure 7.9(b) gives the desired and measured turn-rates for

each aircraft. With no wind the desired turn-rate settles to a constant value and the

measured turn-rate quickly follows. Figure 7.9(c) gives an error value by measuring

the distance between the two UAV’s instantaneous circle centers as determined by

(3.1). This measure incorporates error in both the UAV position and orientation.

After a short duration (approx. 100 seconds) the UAVs converge to the same center

point giving a mean error of under 2 meters (1.3% of the circle radius) for the rest

of the flight.

The second HIL test also used control (3.6), but added a 2 m/s easterly wind
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Figure 7.9: Controlling to a 150 meter non-prescribed center circle (no wind).

while driving the vehicles to a 150 meter radius circular formation of unprescribed

center location. Figure 7.10 depicts the results. With wind we see that the trajec-

tories of the two aircraft (Figure 7.10(a)) take longer to converge and have a larger

error between the circle centers (Figure 7.10(c)). Also depicted in Figure 7.10(a) is

the wind magnitude and direction at intervals along the trajectories (gray arrows).

Figure 7.10(b) gives the desired and measured turn-rates for each aircraft. The

desired turn-rate is not constant, but oscillates as it progresses around the circle.

The measured turn-rate fluctuates significantly in the presence of a wind. After the

initial convergence toward each other (approx. 100 seconds) the UAVs maintain a

mean error of 10 meters between instantaneous centers, 6.7% of the circle radius.

We next tested control algorithm (3.10) to steer two vehicles to circular for-

mations with 150 meter radii and prescribed center locations for both wind and no

wind conditions. Without wind (Figure 7.11) the UAVs converge well to the circle

center. The distance from the prescribed circle center for each UAV is shown in

Figure 7.11(c). After 100 seconds, the mean error from the prescribed circle center

is 2.6 meters for the first UAV and 1.4 meters for the second (1.7% and 0.9% of the
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Figure 7.10: Controlling to a 150 meter non-prescribed center circle (2 m/s east
wind).
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Figure 7.11: Controlling to a 150 meter prescribed center circle (no wind).

circle radius respectively). The desired turn-rates converge well to the measured

turn-rates as depicted in Figure 7.11(b).

With wind the vehicles have greater difficulty converging to the desired circle

center. Figure 7.12 shows the trajectories of two vehicles in a 5 m/s east wind.

The mean error from the circle center is 7.2 meter and 12.3 meter for the first and

second UAVs (4.8% and 8.2% of the circle radius). Each UAV has a desired turn-rate

which oscillates as it progresses through the circle. The wind causes the measured

turn-rate to fluctuate as the UAV is trying to maintain a constant speed and fixed

altitude flight.
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Figure 7.12: Controlling to a 150 meter prescribed center circle (5 m/s east wind).

In Figure 7.13 we illustrate coordinated encirclement of a prescribed circle

with radius 100 meters using control (3.25) with a uniform flow, i.e. Ω = 0. In this

simulation the second UAV (green trajectory track) is traveling with a slightly faster

airspeed than the first UAV (blue trajectory track). To maintain the splay state,

the slower vehicle steers to a smaller circle radius. Figure 7.13(d) shows the phase

difference between the vehicles. The vehicles do not converge perfectly to the desired

separation (shown in the dashed line), keeping a 3% error in the phase differences.

Figure 7.13(c) gives a mean circle distance error of 12 meters for the first UAV and 14

for the second UAV. To implement control (3.25) we had to continuously recalculate

the progress of each UAV around the circle. This is due to the vehicles’s constantly

changing air speed and wind estimate which effect the orbit period. When deriving

the continuous simulation examples found in Section 3.1.3 it was observed that we

needed low error tolerances in the ODE algorithm to get the time-splay configuration

to converge. In simulation updates occur for the position approximately 3 times per

second. This frequency may be to slow to drive the vehicles to the splay state.
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Figure 7.13: Coordinated encirclement to a 100 meter prescribed center circle (3
m/s east wind).

7.3 Experimental Results

In this section we present the results from outdoor flight experiments. Test

data was gathered on two separate flight days. The first day we flew a single 48 inch

wingspan Unicorn UAV. On the second flight day we flew two UAVs each having

60 inch wingspans. An additional flight day was attempted (prior to the second

day), but it was unsuccessful due to reliance on inconsistently populated data. In

order to improve the accuracy of the PID control the algorithm was altered (after

the first flight day) to use the UAV’s GPS timestamp rather the ground station’s
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system time. Unfortunately, this value is not always set in the navigation packet

and resulted in erroneous roll commands to be sent to the autopilot. Representative

results from the successful flight days will be presented in the following two sections.

7.3.1 First UAV Flight Day

Preliminary tests were made on a single aircraft to vet the control algorithms.

The tests were made using a Procerus Unicorn with 48 inch wingspan. Figure 7.14

shows ground preparations made prior to the flight and Figure 7.15 shows the UAV

while in flight. Weather conditions were good with measured winds ranging from 1.5

to 6 m/s. We tested control (3.10) steering the vehicle to prescribed circle centers. In

Figure 7.16 we show a vehicle orbiting a 60 meter radius circle. Around 2.5 minutes

into the flight we lost communication with the aircraft for 11 seconds (dashed line

in Figure 7.16(a)). When communication returned the aircraft had lost airspeed

and altitude which it regained while reconverging to the circular formation. In

Figure 7.16(b) we show the error distance between the UAV’s instantaneous circle

(a) Levi DeVries checks the pitot tube on
the UAV prior to flight.

(b) Jon Castelli sets the UAV autopilot.

Figure 7.14: Preparing UAVs for flight outdoor tests.
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Figure 7.15: Procerus Unicorn UAV in flight.
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Figure 7.16: Controlling to a 60 meter prescribed center circle (variable wind approx.
1.5 m/s magnitude and north-northeast direction).

center and the desired circle center. The dashed line provides a reference of the

desired circle radius. For the entire flight the mean error distance was 19.4 meters

or 32% of the circle radius. Prior to the communication loss the error was 14.8

meters (25%).

Figure 7.17 depicts a second flight test. In this example we steer the UAV

to a circular formation of 70 meters in the presence of a stronger wind (approx. 5

m/s). The flight trajectory is depicted in Figure 7.17(a) and the circle center error

in Figure 7.17(b). The mean error for the UAV flight was 14.6 meters (21% of radius
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Figure 7.17: Controlling to a 75 meter prescribed center circle (variable winds av-
eraging 5 m/s in an east-southeast direction).

circle).

7.3.2 Second UAV Flight Day

On the second flight day we used two Unicorn UAVs to test control (3.10)

steering the vehicle to prescribed circle centers and coordinated control (3.25) which

drives the vehicles to a time-splay formation. Wind conditions were stronger ranging

from 3 to 6 m/s (7 to 13.5 miles/hour) with occasional gusts (as noted from the

ground) throughout all flights. We commanded each UAV to different altitudes

to ensure they would not collide. They were commanded to maintain a 14 m/s

airspeed. A different antenna was used in these flight tests which ameliorated the

communication problems experienced during the first day.

The first test was made using a single UAV (depicted with blue trajectory

tracks) using control (3.10) to drive the vehicle to a prescribed circle center with

radius of 150 meters. The flight lasted for approximately 5 minutes with variable
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Figure 7.18: Controlling to a 150 meter prescribed center circle (variable 3-4 m/s
south-southeast wind).

winds ranging from 3-4 m/s blowing in a east-southeast direction. Figure 7.18

illustrates the results. The UAV converged to the circle and made three additional

loops as shown in Figure 7.18(a). The measured verses desired turn rate for the

UAV is shown in Figure 7.18(b). The error between the UAVs instantaneous circle

center and the desired circle center is shown in Figure 7.18(c). After the initial

convergence which took approximately 50 seconds, the UAV maintains a mean error

of 27 meters or 13% of the circle radius.

A second UAV was launched to show cooperative control of two vehicles. The

second vehicle (depicted with green trajectory tracks) vehicle did not perform well.

It had trouble maintaining both its desired altitude and airspeed. The airspeed

oscillated with a high frequency, but averaged 14.5 m/s. The altitude also fluctuated

with occasional drops of 15+ meters. Figure 7.19 shows the trajectories of the two

vehicles. The measured turn rate is noisy, but the desired turn rate for each vehicle

follows the cyclic pattern needed to maintain a circle. The error between the first

vehicle’s instantaneous circle center and the desired circle center is 26 meters or 17%
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Figure 7.19: Encirclement to a 150 meter prescribed center circle (3 m/s east wind).

of the circle radius. As expected from the poorer performance of the second vehicle,

the mean error is 42 meters (28%). This test flight lasted approximately 10 minutes

and displayed highly variable winds measured between 3 − 5 m/s directed to the

southeast. Note that the winds are measured by the UAVs using the airspeed and

GPS velocity over a wide range of headings. It is not expected that the UAVs will

measure wind gusts or high frequency changes.

We also used algorithm (3.25) to illustrate coordinated control (Figure 7.20).

Figure 7.20(a) shows the trajectories of the two vehicles. When the algorithm starts

they are positioned in approximately the same location. They then separate and

endeavor to maintain the correct spacing along the path. The gains for the control

were chosen with a stronger pull towards the correct separation rather than con-

verging to the circular formation. With the two UAVs traveling at different speeds

this is difficult to maintain. However, as Figure 7.20(d) shows, the UAVs are able

to oscillate about the correct separation with a mean error of 14% error in phase.

Figure 7.20(c) shows the circle center error. UAV 1 has a mean circle center error

of 43 meters, 43% of the 100 meter radius. UAV 2 has a mean error of 53 meters.
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(a) Complex Plane, t = 300-500 s
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Figure 7.20: Coordinated encirclement to a 100 meter prescribed center circle ( 4
m/s east wind).

Wind varied between 3-6 m/s in an east-southeast direction over the 9 minute test.
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Chapter 8

Conclusions and Suggestions for Future Work

Cooperative control improves the capability of unmanned vehicles to gather

information, track targets, and perform various autonomous missions. The decen-

tralized algorithms presented in this dissertation regulate vehicle formations in a

spatiotemporal flowfield of moderate strength.

Given a known and time-varying flowfield, we provide an algorithm to steer

vehicles to a circular formation determined by the initial conditions of the vehicles.

A symmetry-breaking virtual particle is introduced to generate formations with a

prescribed center location. For a time-varying and spatially uniform flowfield, an

algorithm is provided to stabilize a circular formation in which the temporal spacing

between particles is regulated. Including a turning-rate bound on the vehicles does

not alter the main results.

For unknown flowfields observer-based control algorithms are presented which

simultaneously estimate the flowfield and use that estimate to stabilize a moving for-

mation. Initially, we provided an approach for uniform flowfields where each vehicle

independently estimates the flow using noisy measurements of its own position. We

then presented a distributed estimation algorithm comprised of a consensus filter to

share information garnered from noisy position measurements, and an information

filter to reconstruct a spatially varying flowfield.
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Numerical simulations illustrate the capability to cooperatively encircle ma-

neuvering targets that turn, accelerate, and operate in an urban environment. HIL

simulations and flight experiments show that the algorithms can be adapted to

UAVs. Each UAV inputs a roll command which is derived from the steering control

of our motion coordination algorithms using a bank angle approximation and PID

correction term. The HIL simulations show good performance for circular formations

with prescribed and non-prescribed circle centers and time-splay formation. Flight

experiments were also conducted with UAVs showing that the vehicle successfully

encircled a prescribed center location.

There are a number of potential areas in which this work can be extended.

Expanding the information-consensus filter to incorporate time-varying basis coeffi-

cients would provide estimation in time-varying as well as spatially varying flowfields.

Additionally, a more efficient representation of the flowfield could be determined.

Using an orthogonal set of basis vectors to describe a flow requires an arbitrarily

large number of coefficients to be estimated. It is likely that only a sparse set of these

basis functions are needed to represent the flow. Reducing the number of coefficients

would drastically improve the runtime performance of the consensus filter.

Much improvement could be made in implementing the motion coordination

algorithms on UAVs and analyzing the flight results. An examination of the full

aircraft model would provide insight into the performance degradation of HIL sim-

ulations and outdoor flights when operating in strong winds. The performance was

also effected by time delays. The control algorithms provided in this dissertation are

continuous, but a discrete version was implemented on the UAVs. An analysis of
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the effects of time-delay and stability on the discretized algorithms should be com-

pleted. From an implementation perspective time delays can be reduced by moving

the control algorithm to hardware linked directly to the autopilot. This bypasses

the ground station and wireless transmitter in getting the state information to the

control algorithm.
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