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Abstract

Cooperative control is an emerging engineering field infused with biology, mathematics,

and physics. Cooperative control engineers seek decentralized algorithms to coordinate

the motion of robotic vehicles. These algorithms—often inspired by animal and insect

grouping behavior—are relevant to applications in national security, geographic surveying,

and environmental monitoring. This dissertation studies motion control for autonomous

data collection by a network of underwater vehicles. Measurements of ocean circulation

enable scientists to study climate processes and ecosystems in the ocean.

We describe a systematic methodology for decentralized feedback stabilization of au-

tonomous vehicle formations. Vehicles are represented by self-propelled particles with

coupled-phase oscillator dynamics. The orientation of each particle’s velocity is described by

a phase angle that changes in response to the positions and phases of other particles. Particle

formations include parallel motion with arbitrary relative spacing and circular motion with

symmetric relative spacing. Interaction between particles is modeled by a (state-dependent)

graph that may be time-invariant or time-varying and undirected or directed.

We apply a cooperative control methodology to control a fleet of autonomous underwa-

ter gliders. Underwater gliders soar through the water on a pair of fixed wings, collecting

valuable oceanographic data for weeks at a time. We describe the Glider Coordinated Con-

trol System (GCCS), which steers multiple gliders to a set of coordinated trajectories. The

GCCS automatically controlled up to six gliders continuously for over three weeks in a 800

km2 region in California’s Monterey Bay in August 2006. The GCCS enables oceanogra-

phers to specify and adapt glider sampling patterns with minimal human intervention.
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Chapter 1

Introduction

Coordinated motion of an animal group is a remarkable phenomenon to observe. Flocks

of birds wheel and turn in unison, often forming large congregations before roosting at

dusk (see Figure 1.1). Fish schools turn and glide spontaneously, so that the impetus for

changing direction appears to travel through the school instantly. And from the deliberate

movement of ants within a colony a complex society emerges, notwithstanding the minimal

sizes and capabilities of its members.

Collective behavior of animal aggregations is often emulated by engineers in the design

of collaborating teams of mobile robots. Such robots, called autonomous or unmanned

vehicles, have recently made forays off of the printed pages of academic journals and out

of research laboratories into the challenging arenas of the air, sea, and space. The promise

of collaborative operation with minimal human intervention has been fulfilled in support of

missions pertaining to national defense, homeland security, and environmental monitoring.

Nonetheless, many exciting challenges remain.

A growing number of engineers and biologists interested in studying collective motion

have coalesced into an active, interdisciplinary research community. From this fertile mix

of disciplines has emerged the topic of cooperative control, which addresses the integration

of quantitative and empirical methods for the purpose of designing and modeling collective

motion algorithms. Advances in this topic have been enabled by tools from mathematics

1



2 Introduction

Figure 1.1: Flock of European starlings. These social birds form communal night roosts
that can contain millions of individuals [1]. Photo credit: H. Paley.

and motivated and validated by experiments.

In this dissertation, we present a mathematical framework to generate coordinated mo-

tion in a group of autonomous vehicles. We also describe the implementation and at-sea

demonstration of the framework to automatically control a fleet of autonomous underwater

vehicles. The framework uses simple models of individual motion and interaction to auto-

matically steer vehicles into coordinated, moving patterns. We describe a class of patterns

relevant to applications in environmental monitoring. When vehicle motion is coordinated

by our automatic control system, the fleet seeks to collect measurements containing the

most information about the ocean; this data enables scientists to make new discoveries that

may improve our understanding of climate processes and ecosystems in the ocean.



1.1 Statement of Problem 3

1.1 Statement of Problem

A common trait among groups that exhibit collective motion is the capability to act with-

out centralized control. By centralized control, we mean the actions of a single, omnipo-

tent entity that organizes the behavior of the group. For example, the coordinated action

of the tentacles of a octopus is likely generated by a central nervous system. Likewise,

the scripted maneuvers of battalions within a military regimen may be orchestrated by

a military commander. In both examples, the individual units—tentacles and battalions,

respectively—certainly have some capacity for autonomous movement and interaction with

one another and their environment, but without centralized control, organized behavior of

multiple units may not reliably occur.

Coordination under decentralized control, which emerges so effortlessly in biological

collectives, represents a major challenge for groups of autonomous vehicles. Decentralized

control (also called distributed control) is a process by which each agent in a group executes

a simple algorithm such that all of the agents converge to a common activity. Knowledge

of a desired group activity may be available to a few agents or to none at all. Convergence

to a common activity occurs literally or figuratively though the process of consensus. A

school of fish in tight formation is an example of consensus about the direction of motion;

formation flight of migrating geese is another example.

One challenge to achieving consensus in artificial agents is limited inter-vehicle sensing

and communication. Instruments for sensing and communication are not yet as refined as

their biological counterparts. Sensing and communication modalities that use mechanical

or electromagnetic wave transmission may not have sufficient bandwidth for a large group,

and may operate under restrictions on range and transmission medium. For example,

interaction between autonomous underwater vehicles using electromagnetic waves in the

visible or radio frequency ranges is restricted by the short attenuation length of such waves

in water. Underwater communication using acoustic waves is possible over long distances,

but competing and scattering sources can limit bandwidth.

As a result of limited sensing and communication, interaction between vehicles may
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be local in space and intermittent in time. In the absence of any single, absolute frame

of reference, inter-vehicle interaction may consist only of relative measurements. That is,

in order to direct its own motion, a robot may have available to it only the distance and

direction to each one of its neighbors; a robot may not know its own absolute position or the

absolute position of its neighbors. The direction of motion of a robot presents an additional

challenge for mathematical modeling since the space of all possible directions (angles) is

nonlinear and so not a vector space.

Interaction limitations are often compounded by vehicle kinematic constraints that limit

maneuverability. For example, rolling land vehicles are subject to the constraint that they

cannot move “sideways”, a limitation familiar to anyone who has parallel-parked an automo-

bile. A similar limitation exists for aerial and underwater vehicles. Aerial and underwater

vehicles may face the additional challenge of being dynamically underactuated; strong gusts

of wind or strong ocean currents impede or even preclude motion in certain directions.

For autonomous vehicles tasked to collect sensor data in a variable environment, it is

a challenge—even with centralized control—to automate vehicle trajectory planning. The

design of trajectories for optimal data collection is aided by use of metrics that quantitatively

distinguish between coordinated and uncoordinated motion. The desire to execute, evaluate,

and adapt these trajectories without human intervention motivates the development of a

control system that uses feedback: a principle at the heart of automatic control.

The three main challenges addressed in this dissertation are as follows:

1. Develop a methodology to provide decentralized cooperative algorithms that operate

with limited interaction and account for vehicle kinematic constraints.

2. Automate the motion planning for a collaborative group of autonomous underwater

vehicles monitoring a highly-variable region of ocean.

3. Demonstrate at sea the automated control of an underwater vehicle fleet in support of

an oceanographic experiment.
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1.2 Survey of Related Work

Due to the breadth and abundance of literature on topics related to this dissertation, we pro-

vide here an overview that is necessarily incomplete. We describe previous work pertaining

to collective motion, from both biological and engineering perspectives. Then we summa-

rize research related to ocean sampling, paying special attention to autonomous underwater

vehicles. References to these and other supporting materials also appear throughout the

dissertation.

1.2.1 Control of Collective Motion

Ecological Inspirations

Despite their ubiquity, biological collectives are difficult to define and model. In research

related to fish schools, Partridge asserts that common definitions of schooling are inadequate

to describe the wide variety of grouping behavior observed in fish [204, 205]; see also [11,

12, 203]. Since schools are highly variable in size and constituency, Partridge suggests that

any definition of a fish school should include the amount of time each individual spends in

the school and a description of the organization of the school, such as the ratio of distances

to first and second nearest neighbors. Nonetheless, the fact that collective motions occur

in such a diverse set of organisms implies there may exist common underlying principles

that can be placed in a single framework [76]. Deneubourg and Goss contend that the

ubiquity of collective motion and decision-making implies that complex social patterns may

originate from simple individual behaviors [68]. However, these authors note that—under

the influence of a variable environment—the same individual behavior may lead to different

group motion. Apparently, why animals aggregate is better understood than how they do

it. Selfishness (for example, reduced risk of predation) is a classic explanation [111]. For a

catalogue of benefits of group formation see, for example, [135, pp. 6-40].

Dynamic patterns of large animal groups have been modeled by ecologists using contin-

uum methods. By transforming a binomial distribution into a diffusion equation with linear
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temporal variance, Hallam and Levin demonstrate how a random walk model of individual

movement can generate a propagating wave at the front of a group [152]. Theoretical analy-

sis of these traveling wave fronts in wildebeest herds are validated by comparing solutions of

a partial differential equation with aerial photos [105]. The results from such comparisons

are better for short ranges, which implies that local interactions may be modeled more

accurately than group-level patterns. The dynamics of group formation are modeled by

Gueron and Levin in terms of fusion and fission processes: the parameters in this model

can be set to produce either small groups or a bimodal distribution of group size [106].

These authors also consider alternatives to continuum modeling, such as individual-based

modeling, where integration of many individuals is replaced by studying interaction be-

tween neighboring individuals [107]. They show that the eccentricity (elongation of shape)

of an animal formation depends on individual velocities, heterogeneity, and neighborhood

structure. More recently, a statistical-mechanics characterization of the types of collective

motion produced by pairwise interaction forces has been presented in [74].

Continuum models of animal aggregations have been studied mathematically using par-

tial differential equations, whereas ordinary differential or difference equations describing

the motions of individual fish have been studied by biologists using numerical simulations.

An early numerical-simulation study of fish schools by Aoki asserts that the behavior of

individual fish leading to collective motion necessarily includes attraction to neighbors and

turning to match neighbor velocities [12]. The behavior components of attraction and

orientation, along with repulsion from neighbors on a collision course, were subsequently

utilized by Huth for the purposes of studying cohesion in fish schools [120]. For a more

recent explanation of schooling behaviors, see, for example, [55], where Couzin reveals via

numerical simulation the co-existence of parallel and circular group motions for a single set

parameters. For a review of recent research on schooling fish, see [53].

Mathematical transformations between continuum- and individual-based models of ani-

mal aggregations engender a taxonomy of grouping behavior. In a pioneering work, Okubo

shows how individual behavior modeled using Newtonian dynamics resembles a diffusion
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process [188]. Grünbaum studies the transformation from stochastic individual-based (La-

grangian) models to continuum (Eulerian) models [102]. A comprehensive catalogue of

individual models of aggregation is presented in [86], including the following: directional

response to environmental cues (taxis), non-directional response to environmental cues (ki-

nesis), movement toward/away from neighbors, preference for neighbors’ velocities, and

non-directional social behavior, such as reduced movement in areas of high population den-

sity. Individuals can also be advected by environmental forces. A dynamic environment can

promote or prevent group formation depending on advection strength and turbulence. In

fact, the interplay between individuals and the environment may be as significant in mod-

eling group formation as the interplay between individual and population dynamics [151].

Proposed functional advantages of group formation—gradient-climbing [103], decision-

making [54], and migration [289, 288]—can be validated through field observations and

manipulative experiments on grouping organisms. Such experiments also shed insight on

grouping mechanisms. Early observations of migratory birds suggests that night calls facili-

tate flocking by providing other birds with directional cues and motivation to take-off [112].

Quantitative measurements of waves of turning in fish schools have revealed that the speed

of information travel exceeds by an order of magnitude faster than the speed of an individual

fish [214, pp. 77-99]. Parrish, Grünbaum, and Viscido have shown using system identifi-

cation methods that schooling fish data can be classified as either tight-milling (preference

for lateral nearest neighbor position) or diffuse-milling (preference for head/tail nearest

neighbor position) [104]. These authors quantify fish trajectory data using metrics based

on polarity, speed, and nearest-neighbor distance [281]. Sufficient organism density triggers

the onset of collective motion in desert locusts [41].

Analysis and Design

A seminal paper by Vicsek et al. catalyzed a burst of interest in collective behavior in

the physics community [280]. In this paper, the authors propose a simple, linear model

for collective motion in which individuals move in the average direction of their neighbors.
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Simulations of this model that exhibit long-range ordered motion were validated mathe-

matically using continuum models by Toner and Yu [268]. A key requirement of the model

is mobility: if the agents do not move, then long-range alignment is not possible. A com-

prehensive description of this continuum theory is available in [269]. For other references

in this vein, see, for example, [245, 100, 231, 99].

Interest in the Vicsek model bloomed in the controls community when Jadbabaie et al.

applied nearest-neighbor rules to the coordination of groups of autonomous agents [122].

Using tools from matrix analysis, the authors describe the coordination of direction of

motion using a switched linear system, and prove convergence to a common direction of

motion under certain restrictions on the switching times (see [92] for corrections and [154]

for extensions). As noted in [274], related results were previously available in the literature

on distributed and decentralized computing [273, 275]. In fact, early studies of the problem

of decentralized agreement or consensus appear in the statistics and probability literature:

DeGroot provided a condition for convergence of expert opinions [67]; his analysis was

extended and formalized by Chatterjee and Seneta [46].

Controls research on the topic of consensus has flourished recently. Consensus of agent

positions is studied in the contexts of rendezvous [154], flocking [266], and swarming [270].

We devote special attention here to research on groups with limited and time-varying inter-

action between individuals. Fax and Murray utilized algebraic graph theory to describe the

network of interactions between individuals, and related the spectrum of a matrix represen-

tation of the interaction network to rate of convergence in vehicle formations [79, 80]; see

also [140]. Building on the connection to graph theory, Olfati-Saber and Murray identified

the utility of a class of graphs—known as balanced graphs (see Section 3.3)—in solving

consensus problems with fixed or switching interaction networks [192]. The authors also

describe trade-offs between performance, robustness, and communication cost. Conver-

gence to consensus among interacting groups can be modeled by operations on graphs and

predicted by the spectra of the graph matrices [16].

The strongest results on the consensus problem provide necessary conditions on the
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minimum level of interaction required to achieve consensus. Two such results are utilized in

this dissertation (see Section 4.3) to support cooperative control algorithms with dynamic

interaction networks: (i) Moreau’s discrete-time analysis [175], extended to continuous-time

in [174], and (ii) Ren and Beard’s corresponding analysis on discrete- and continuous-time

consensus algorithms [219]. Moreau’s result, which uses a set-valued Lyapunov stability

approach to prove contraction of a convex hull of individual states, is extended to prove

contraction of non-convex sets in [10]. Contraction analysis is also applied to the consensus

problem with time-delayed communication in [270]. In the event that interaction between

individuals is probabilistic, Hatano and Mesbahi predict whether or not consensus will occur

based on time-averaged properties of the network [113]. For recent synopses of the consensus

literature, see, for example, [220, 191].

In most cases, the consensus literature models the agreement problem using linear dy-

namics. However, agreement among mobile robots about a common direction of motion

is a decidedly nonlinear problem. The direction of motion of a robot can be represented

by a point on the unit circle S1, which is the space of angles. Each direction is called a

phase. In a group of N mobile robots, the collection of all phases evolves on the N -torus

TN , which is equal to S1×· · ·×S1 (N times). Modeling on the torus leads to global results

such as Theorem 4.2, while modeling on the real line can provide only local results since the

configuration space is not Euclidean. An important leap from linear consensus to consensus

on the N -torus was made in Scardovi et al. [233], summarized here in Theorem 4.10.

Consensus on the N -torus, called synchronization, has a long and elegant history in the

literature on a set of periodic phenomena known as coupled-phase oscillators. This literature

can be traced back to mathematical models of interacting periodic processes developed in

biology by Winfree [292] and in chemistry by Kuramoto [138]. Coupled-phase oscillator

models seek to provide better understanding of the behavior of interacting populations of

oscillatory units. They have been applied and extended to study superconductors [285],

animal gaits [50], hopping and juggling robots [133], ant colonies [31], and neurons [39].

In many applications, variations of the Kuramoto model [139] are studied (see [259, 5] for
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a review). The Kuramoto model describes the evolution in time of a group of coupled-phase

oscillators with global interaction. The strength and form of this interaction determines the

group behavior. In populations of weakly interacting oscillators, Ashwin, Swift and others

study the existence of phase clusters [15, 189, 38]; see also [134, 271, 94, 156, 18, 257,

119]. When the interaction gain crosses a specific threshold, some populations tend to

synchronize [6]. Populations with repulsive or negative coupling have been studied [272], as

have populations with time-delayed interaction [296, 202]. Golubitsky et al. have shown that

network architecture can enforce synchronized oscillator behavior, independent of the form

of coupling [95]. Lyapunov-stability analyses of oscillator networks appear in [278, 206, 125].

The link between coupled-phase oscillators and collective motion is fundamental to the

mathematical model of individual movement employed in this dissertation. This dynamic

motion model was adopted from Justh and Krishnaprasad, who developed steering con-

trols for groups of autonomous air vehicles moving at constant speed [126, 127]. These

authors emphasize a geometric approach summarized in Section 3.2. The constant-speed

constraint—also applicable to many types of underwater vehicles—distinguishes the Justh

and Krishnaprasad motion model from an unconstrained motion model. When a vehicle

moves at constant speed, its only control authority is to steer its direction of motion. Such

a model is sometimes called a self-propelled or unicycle model. When a vehicle’s motion is

unconstrained, it is capable of moving (and accelerating) in any direction (see, for exam-

ple, [145] and [190], for work on coordinated control of unconstrained vehicles). Other work

on steering control of unicycle models includes [301, 176, 253, 232]. The latter two citations

study an early unicycle model called a Dubins’ vehicle, which is subject to an additional

constraint on the minimum turning radius [75].

In this dissertation, we represent each vehicle using a dynamic model of a particle subject

to Newtonian physics. When a particle obeys Newton’s second law, it accelerates in response

to an applied force—usually the control input. Note, steering control is an applied force

normal to the direction of motion. A particle model in which the velocity is determined

directly by the control input are called kinematic; see, for example, [270]. Note, a particle
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has no orientation. To represent the orientation of a vehicle, one could a rigid-body model.

Synchronization of rigid-body orientation is considered in [180], for a chain-like interaction

network, and in [230], for a more general class of limited interaction. Stability of satellite

rings in the scalar, gravitational potential of a large body is studied in [136]. Control of

particles using artificial scalar potentials is studied in [221, 145, 185] and artificial vector

potentials in [283].

1.2.2 Sampling with Autonomous Vehicles

An emerging topic of study within the cooperative control community is motion coordination

for information gathering. Sometimes motivated by social foraging behavior in animal

groups [9], control engineers have studied boundary tracking [262, 24, 301, 117], coverage

control [47, 52], gradient descent [17, 186], target tracking [164], and sensor networks [251,

45, 187]. Grocholsky incorporates Kalman filtering theory into a so-called information

filter (see, for example, [160]) that can be used to steer vehicles so as to maximize their

information collection [101]. Cortés formulates a distributed implementation of a classical

estimation algorithm from geostatistics to steer vehicles to extrema in a scalar field [51].

Steering underwater vehicles to gather data in the ocean has been envisioned on a

global scale. In a visionary article, Stommel describes the World Ocean Observing Sys-

tem (WOOS)—to be installed during the period 1995–2025—that parallels the network of

upper-air observation stations installed by meteorologists during the period 1945–1975 [258].

Stommel’s vision for WOOS consists of approximately 550 autonomous underwater vehicles

(AUVs) called gliders (see, for example, [65] and Section 2.1) that are distributed around

the world. Gliders and propeller-driven AUVs [21, 7, 297] are two modern platforms for

autonomous oceanographic data collection. Stommel’s vision has not yet materialized with

gliders or AUVs, but it has been effectively realized with drifting sensor platforms that col-

lect measurements while moving vertically in the water column [2]. Drifters are an effective

oceanographic monitoring device that periodically surface transmit data to scientists on

shore via satellites [61, 62].
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A major distinction between a drifting sensor platform and a self-propelled one is the

latter’s ability to maneuver in response to data collected so as to improve the value of future

measurements. Metrics to evaluate and design data-collection trajectories for individual ve-

hicles were defined in [290, 291] and used to analyze survey performance in [22]. Underwater

vehicles can be steered to identify important features in the ocean [23], classify an ocean

circulation process [303], or to simultaneously map its environment and then use that map

to navigate [81, 143]. Steering gliders in the presence of strong ocean currents is a difficult

challenge considered by Davis et al. using a ray tracing approach—assuming the flow field is

known [66]; see also [121]. The integration of multiple sensing platforms, both manned and

unmanned, for the purpose or environmental assessment has been dubbed an autonomous

ocean sampling network (AOSN) [59, 58]. Such networks seek to perform ocean mapping

surveys with at very high resolution [217]. Ocean sampling strategies can be designed to

improve ocean model predictive skill; see, for example, [246, 247], for optimization of a

sampling strategy to measure and model bioluminescence.

Control of multiple underwater vehicles plays an important role in enabling sustained

ocean observation [236, 207]. Since the inception of the AOSN concept, there have been

several demonstrations of (remote) control systems for multiple underwater vehicles. The

Glider Mission Control Center, which is an agent-based software system designed for man-

ual and automated control of underwater gliders, has been demonstrated in multi-vehicle

operations in the New York Bight and west coast Florida shelf [56]. Also, the Fleet Logis-

tical Interface and Control Software, developed to coordinate multi-vehicle missions such

as formation control of micro-AUVs, was tested in Newport River on the coast of North

Carolina [237]. The software application Autonomous Systems Monitoring and Control

has controlled a solar-powered underwater vehicle in Lake George, New York [178]. Semi-

autonomous coordination of gliders with manual assistance has been demonstrated [65, 83].

Data sets from multi-vehicle ocean surveys are incorporated into ocean forecasting sys-

tems through a process called data assimilation. There exists a broad literature on the as-

similation of a set of irregularly spaced measurements into stochastic models of physical and
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biological processes in the air and sea. An early pioneer in this field of research—Gandin—

developed computerized algorithms using classical linear estimation theory to form so-called

objective maps of weather patterns [91] (as opposed to subjective maps generated by a hu-

man). Gandin’s approach, called objective analysis (OA), was applied to oceanographic

experimental data by Bretherton et al. [36, 37, 63] and is described in Section 2.2. For

examples of OA techniques applied to measurement data in the mid-ocean, see [166, 118],

and in a coastal region, see [157]. More recent assimilation techniques supplement statisti-

cal models of the underlying oceanographic process with dynamic models, including Error

Subspace Statistical Estimation [150, 147], Ensemble Transform Kalman Filtering [27, 159],

multiscale optimization [167], and Monte Carlo techniques [8]. Two articles of a tutorial

nature on this topic are [223] and [149].

1.3 Contributions of Dissertation

This dissertation makes contributions to the general theory on stabilization of collective

motion and in the application to adaptive ocean sampling. Some materials from this dis-

sertation have been previously published or accepted for publication, including [239, 243,

241, 201, 197, 146]. Conference papers in which early versions of these results appeared

include [196, 238, 198, 123, 240, 242, 199]. Some results—including the analysis of the field

experiment described in Chapter 9—have not yet appeared elsewhere.

We study cooperative control of a planar model of self-propelled particles with coupled

phase-oscillator dynamics. We describe a systematic methodology that yields decentralized

feedback controls to provably stabilize relative equilibria of the particle model. Relative

equilibria correspond to either parallel motion of all particles with fixed relative spacing or

circular motion of all particles with fixed relative phases. Using the methodology, we can also

isolate circular motion of particles in symmetric patterns. We design artificial potentials to

serve as control-Lyapunov functions and gradient, or gradient-like, feedback laws to ensure

that these potentials monotonically decrease along solutions of the closed-loop system.

The potential-based design of feedback control laws applies to groups with all-to-all
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interaction and to groups with limited interaction [243, 243]. For groups with undirected

and time-invariant interaction, we utilize the gradient of a quadratic potential induced

from a matrix representation of the particle interaction network. In groups with directed

and/or time-varying interaction, we achieve gradient-like control by augmenting the gradient

algorithm with a decentralized filter to estimate averaged quantities.

We develop symmetry-breaking controls to stabilize patterns suitable for a mobile sensor

network. Stabilization to either parallel motion in a fixed direction or circular motion

about a fixed point is provided by introducing a virtual particle as a reference. We also

show how limitations in the interaction network can be introduced to advantage. By using

nests of multiple, limited graphs, we can steer particles to symmetric configurations on

multiple loops. The entire framework is portable to formations on convex loops that are

not necessarily circular [197].

The implementation our cooperative control framework on a fleet of underwater gliders

is called the Glider Coordinated Control System (GCCS) [201]. The GCCS automatically

steers a fleet of gliders to a set of coordinated trajectories. The GCCS uses both a simple

planar model for planning future trajectories and a detailed three-dimensional model to

predict vehicle motion underwater. We describe a vehicle simulator used the development

and evaluation of fleet-level feedback controllers. The simulator also provides an invaluable

tool for investigating how to tackle challenges like strong ocean currents and intermittent

communication—challlenges not yet fully addressed by theoretical methods.

The oceanographic utility of the GCCS has been demonstrated at sea. During a field

experiment in Monterey Bay, California in August 2006, the GCCS automatically steered

up to six gliders continuously to a series of coordinated trajectories for nearly twenty-four

days. The desired set of vehicle trajectories were modified by a human operator at a few

discrete times during the experiment, in response to changes in the ocean circulation. The

human adaptations were implemented by an interrupt followed by a restart of the automatic

routine. Otherwise, the twenty-four day operation was performed without a human in the

loop. The gliders were controlled in Monterey Bay by a computer at Princeton University.
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1.4 Dissertation Outline and Conventions

Chapter 2 contains an ocean-sampling primer that motivates the theoretical development

in the subsequent chapters. In Chapter 3, we introduce the mathematical description of

our cooperative control framework. Chapter 4 presents a control design methodology to

stabilize parallel formations. Chapter 5 extends this methodology to circular formations. In

Chapter 6, we study the stabilization of symmetric phase patterns and symmetric circular

formations. In the bridge between the theoretical and applied chapters, Chapter 7, we

augment the cooperative control framework for applications in environmental monitoring.

In Chapter 8, we describe the GCCS—the infrastructure created to control underwater

gliders for ocean sampling. In Chapter 9, we describe experimental results from the at-sea

demonstration of the GCCS. The concluding Chapter 10 discusses ongoing and proposed

work on both theoretical and applied topics.

In Chapter 2, we seek to provide the reader with intuition about the exciting and chal-

lenging problem of ocean sampling with autonomous vehicles. In Section 2.1, we introduce

an operational overview of autonomous underwater gliders, and their capacity to serve as

mobile ocean sensor platforms. A metric for evaluating ocean sensing—based on classical

linear estimation theory—is presented in Section 2.2, along with several illustrative exam-

ples. In Section 2.3, we formulate a coherent sampling strategy. This strategy is motivated

by performance analysis of a 2003 glider field experiment and a numerical example involving

a simplified model of two gliders.

Simple models of vehicle motion and interaction are the subject of Chapter 3, which pro-

vides an introduction to the theoretical analysis contained in Chapters 4–7. In Section 3.1,

we introduce the mathematical notation to describe a planar system of particles moving at

constant speed and identify a special set of solution trajectories to be feedback-stabilized.

Section 3.2 summarizes a geometric formulation of the closed-loop system with a control

law that depends on the position and direction of motion of each particle relative to other

particles (and not relative to an absolute frame of reference). In Section 3.3, we introduce

terminology from graph theory to describe the network formed from particle interaction.
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Levels of particle interaction are used to structure the contents of Chapters 4–6. Chap-

ters 4–6 contain results on stabilization of relative equilibria of the particle model using

state feedback. Our approach to relative-equilibrium stabilization depends on the level of

the interaction. In the first section of each of the three Chapters 4, 5, and 6, we consider

the case of all-to-all interaction, when each particle has access (either by communication or

sensing) to the relative state information of every other particle. Algorithms developed for

this level of interaction—called all-to-all interaction—serve as a roadmap for algorithms de-

veloped subsequently for particles with limited interaction. In the second section of each of

the three chapters, we introduce and analyze algorithms for time-invariant and undirected

interaction. Here the interaction network is fixed and interactions are mutual: that is, if

particle 1 has access to the relative state information of particle 2, then particle 2 has access

to the relative state information of particle 1. In the third and final section of each of the

three chapters, we examine the case of general interaction under very mild assumptions.

Chapter 4 describes stabilization of particles to formations with a common direction of

motion (and arbitrary spacing) or to formations in which the average position is fixed. In

Chapter 5, we consider the problem of stabilizing circular motion of all particles around

the same fixed point. In this chapter, we also show that combining the circular formation

algorithm with control of the particles’ direction of motion stabilizes circular formations in

which particles have a common direction of motion (they are all co-located) or have a fixed

average position. In Chapter 6, we present an algorithm that stabilizes circular formations

in which the particles are arranged in a symmetric pattern.

We bridge the theoretical results for stabilization of collective motion to applications

using mobile sensor networks in Chapter 7. In Section 7.1, by introducing a virtual particle

with dynamics unaffected by any other particle, we show how to break the continuous

symmetries of translation and rotation of the particle collective. A virtual particle can

provide a reference direction for a parallel formation or a reference center for a circular

formation. The discrete symmetry associated to permutation of the particle labels can be

broken as well. In Section 7.2, we describe how interaction networks that break permutation
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symmetries can be used to steer particles in symmetric patterns that span multiple circular

formations. Lastly, in Section 7.3, we describe a procedure to stabilize formations on convex

loops. This procedure links particle motion to a system coupled-phase oscillators: the

position of each particle on a loop is described by a phase angle.

Chapter 8 synthesizes of our theoretical tools to the coordination control of a fleet of

underwater gliders. We describe the Glider Coordinated Control System (GCCS), a modular

software application that automatically performs fleet-level feedback control a group of

gliders to a set of coordinated trajectories. In Section 8.1, we define the specification

of a set of glider coordinated trajectories (GCT) that serves as input to the GCCS. In

order to steer the gliders to a GCT, the GCCS uses both a simple, planar model of glider

motion—described in Section 8.2.1—and a detailed, three-dimensional model—described in

Section 8.2.2. Section 8.3 describes the architecture and operation of the three main GCCS

modules: the glider planner, which steers the gliders, the glider simulator, which is used to

test control algorithms during virtual deployments, and the remote input/output module,

which interacts with the gliders indirectly via the internet and satellite communication.

Chapter 9 describes experimental results from an at-sea demonstration of the GCCS.

This demonstration was conducted in support of a Department of Defense-sponsored re-

search initiative described in Section 9.1. The initiative seeks to develop optimal strategies

for the management of sensor platforms to support environmental assessment and forecast-

ing. Section 9.2 gives an overview of a virtual pilot experiment conducted using the GCCS

simulator. Section 9.3 evaluates the performance of the GCCS during the field experiment.

We conclude in Chapter 10. Section 10.1 summarizes the dissertation contributions. In

Section 10.2, we describe ongoing and proposed work, which has two major components.

The first component is to develop new capabilities to expand glider autonomy for both

local and global operations in support of applications relevant to national defense and

environmental monitoring. The second component is in the application of cooperative

control techniques to the modeling and analysis of collective motion in natural systems.

Supporting material is provided in four appendices: Appendix A provides supplemen-
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tary theoretical results for Chapters 4–6; Appendix B provides supporting calculations for

Section 7.3 on stabilization of trajectories to convex loops; Appendix C, a supplement to

Chapters 2 and 8, contains geodetic utilities; and Appendix D augments the glider field

experiment results in Section 9.3.

We apply the following conventions to present the theoretical results in Chapters 3–7.

We use theorem to label a primary result. There is usually no more than one theorem per

section. A lemma is a short theorem used to prove subsequent results. A corollary contains

a result that follows from one or more theorems. We also use corollary to label a theorem

whose proof is nearly identical to another theorem. A proposition is a theorem for which

the proof is not included. We accompany each proposition with references to supporting

theorems/proofs.

To help find definitions and usage of key terminology, we append to the end of the

dissertation a terminology index.



Chapter 2

Ocean Sampling with Gliders

There are many—sometimes competing—objectives in ocean sampling, including gradient-

climbing [186], feature tracking [84], boundary monitoring [262], and perimeter surveil-

lance [130]. The sampling objective considered here is mapping [146]. We seek to minimize

the uncertainty in the estimate of a dynamic signal for a long time over a large domain by

adapting the trajectories of a limited number of mobile sensor platforms. The dynamic sig-

nal of interest can be any scalar field—temperature, salinity, fluorescence—that varies over

space and time. The estimate of this signal is a time-varying map generated by assimilation

of measurement data [177, 129].

When using autonomous sensor platforms to collect measurements, the number of plat-

forms and the mobility required to achieve the mapping objective depends on the spatial and

temporal variability of the field. We illustrate this principle below using a simple analogy.

In Section 2.1, we describe a class of autonomous sensor platforms known as underwater

gliders. In Section 2.2, we define a metric to evaluate mapping performance and, in Sec-

tion 2.3, we formulate an adaptive sampling strategy and summarize selected challenges to

the implementation of the strategy with underwater gliders.

Consider the following analogy. Mapping a scalar field in a region of the ocean, called

the mapping domain, with one or more (autonomous) sensor platforms is like mowing a

lawn with one or more lawn mowers. A lawn, like a mapping domain, can be parametrized

19
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Figure 2.1: Parameter space of lawn-mowing analogy for ocean sampling. The temporal
variability of a lawn is a measure of the rate at which the grass grows. Very small lawns
and lawns with low temporal variability can be adequately mowed by one mower, whereas a
large, highly-variable lawn requires multiple, coordinated mowers (or one very fast mower).

by its size and its temporal variability. The temporal variability of a lawn is a measure of

the rate at which the grass grows, whereas the temporal variability of a mapping domain

describes the magnitude of fluctuations in the field that occur over time. Simply put, the

greater the temporal variability, the more frequent the need arises to revisit a patch of lawn

or a portion of the mapping domain. The temporal variability of a normal lawn is quite

low, since a single patch of lawn requires only a single visit from a mower during the time

it takes to mow the lawn. We are interested in mapping a domain with high temporal

variability. We gain insight into this challenge by considering a highly variable lawn in

which each patch requires a return visit from the mower during the time it takes to mow a

normal lawn of the same size.

Lawn size and temporal variability span a two-dimensional parameter space illustrated

in Figure 2.1. Each point in the parameter space represents a lawn of a particular size and

temporal variability. By considering points first near the boundary of the parameter space,

and then in its interior, we gain intuition about how size and temporal variability of a lawn

affect the required number and mobility of mowers. We then translate this intuition from

the lawn-mowing scenario to the mapping scenario.

The vertical strip of parameter space just inside the vertical axis of the plot in Figure 2.1
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corresponds to normal lawns. These lawns can be adequately mowed by a single mower,

even if the lawn is quite big. The maximum size of a lawn that can be adequately mowed by

a single mower scales like the inverse of the temporal variability. For example, if each patch

of an extremely large lawn needs to be mowed once a week and, after a week of continuously

mowing, the mower has not visited each patch at least once, then that lawn needs multiple

mowers. Any lawn that is smaller than this extremely-large lawn can be mowed by a single

mower (although it may be advantageous to use multiple mowers to save time).

The portion of parameter space consisting of very small lawns lies along the horizontal

axis of the plot in Figure 2.1. To mow a lawn that is the same size as—or smaller than—

the mower, the mower itself does not need to be mobile. A non-mobile mower is called

stationary. If the lawn is very small but bigger than the mower, then multiple, stationary

mowers would be adequate for any level of temporal variability.

Now consider large lawns with high temporal variability. When mowing such a lawn,

each patch may need to be visited more than once during the time it takes to mow a normal

lawn of the same size. Consequently, a single mower is inadequate, unless the mower is very

fast and can continue mowing— even at high speeds—for a long time. On the other hand,

a large, highly-variable lawn can be adequately mowed by several mowers, provided that

they are coordinated in some way. For example, one coordination scheme is to “divide and

conquer”. That is, divide the large lawn into smaller, equally-sized lawns to be mowed by a

single mower. Multiple mowers acting independently may not perform significantly better

than a single mower. For example, one mower might unnecessarily revisit a patch recently

mowed by another mower.

For the purpose of mapping a large and highly-variable ocean domain, the lawn-mower

analogy motivates the coordinated use of multiple, mobile sensor platforms. The domain

size drives the need for mobility of sensor platforms, since the number of sensor platforms

required to map a large domain is reduced when the sensor platforms are mobile. The

temporal variability of the domain drives the need for multiplicity of sensor platforms, since

a single vehicle would have to move very fast to cover the domain. Although fast-moving
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underwater vehicles do exist, they may not have sufficient endurance to sustain a high speed

for the duration of interest. When using multiple, mobile sensor platforms, each vehicle does

not have to be particularly fast, but they should be coordinated. Coordination of sensor

platforms helps avoid inefficiencies in collective sensing such as redundant sampling of a

single point in space or time.

Another benefit of coordination of sensor platforms that is not addressed by the lawn-

mower analogy is synergy between sensor platforms. Synergy between sensor platforms

yields mapping performance that scales super-linearly with respect to the number of sensor

platforms. It can arise, for example, when the temporal variability within a mapping do-

main is not homogeneous. Inhomogeneities in the mapping domain lead to inhomogeneities

in the desired distribution of sensor platforms. That is, one seeks to take more samples

in the highly-variable patches and fewer samples in the less-variable patches [142]. In an

inhomogeneous mapping domain, the divide-and-conquer approach should be modified so

that the domains after division are small if the local variability is high and the domains

are large if the local variability is high. The discovery of inhomogeneities in the mapping

domain and subsequent adaptation of the sampling pattern can lead to synergy between

sensor platforms.

2.1 Autonomous Underwater Gliders

A class of autonomous underwater vehicle (AUV) particularly well-suited for long-duration

oceanographic sampling is the underwater glider. An underwater glider soars through the

ocean on a pair of fixed wings using an efficient, buoyancy-driven propulsion system [65, 229].

A type of underwater glider called the Slocum glider is shown in Figure 2.2. The Slocum

glider is manufactured by the Webb Research Corporation in Falmouth, Massachusetts [286].

One group that operates the Slocum glider for a variety of oceanographic objectives—

including mapping—is the Autonomous Systems Laboratory of the Woods Hole Oceano-

graphic Institution (WHOI) in Woods Hole, Massachusetts. Another underwater glider,

the Spray glider, was created by the Scripps Institution of Oceanography (SIO) in La Jolla,
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Figure 2.2: Slocum gliders prepared for deployment on the deck of R/V Shana Rae in
August 2003. When a Slocum is on the surface, the vehicle tail, which houses antennas for
satellite communication, is elevated by an internal air bladder to obtain better reception.
Photograph (taken by the author) previously appeared in [146].

California and is manufactured by the Bluefin Robotics Corporation in Cambridge, Mas-

sachusetts [244]. A third model of glider, the Seaglider, is the result of a collaborative

effort of the Applied Physics Laboratory (APL) at the University of Washington and the

University of Washington School of Oceanography [77].

Although the design and capabilities of each glider model may differ, all of the glider

models use a propulsion system called a buoyancy engine, which changes the vehicle’s buoy-

ancy to produce vertical velocity [65]. A glider’s vertical velocity is converted to horizontal

velocity by the force of lift generated by the flow of water over its wings. A glider follows

a “roller-coaster” motion through the water, as shown in Figure 2.3, by cyclically changing

its buoyancy and glide angle. A glider controls its glide angle, which is the sum of its pitch

angle and angle of attack, by moving an internal mass until it reaches a desired pitch. When

ascending and descending, the lift force on a glider balances its buoyancy and hydrodynamic
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Figure 2.3: The stages of a glider dive. A glider descends by becoming nose-heavy and
ascends by becoming nose-light. A single dive might consist of multiple inflections, which
are transitions between descending and ascending. When on the surface, a glider can
communicate with a shore station. During each descent and ascent, a glider intermittently
samples the surrounding sea water. The set of all measurements of a scalar field (such as
temperature) collected during a descent or ascent is called a profile (see box on right).

drag so that the vehicle travels at nearly constant speed relative to the water. On a single

dive, a glider can ascend or descend multiple times between its minimum dive depth and

maximum dive depth. The transition from ascending to descending or from descending to

ascending is called an inflection.

Gliders steer to a desired heading in the horizontal plane by moving an internal mass

to bank and turn or by actuating an external rudder. How a glider chooses its desired

heading depends on glider-specific control algorithms. One such algorithm, described in

Section 8.2.2, chooses the desired heading so that the glider homes in on destination point

called a waypoint , specified by its latitude and longitude coordinates. Gliders can be sup-

plied by an operator with a list of waypoints, in which case a glider steers to reach each

waypoint in order. In the presence of a strong current, a glider might instead choose its

desired heading using a “river-crossing” algorithm [64], in which the glider seeks to head in

a direction perpendicular to the current.

Steering to avoid a strong current can improve a glider’s speed over ground, which is

the glider speed through the water plus the speed of the water current. A glider typically

travels through the water at a lower speed than a propeller-driven AUV. The through-water
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speed of a glider is on the order of 0.3 m/s to 0.5 m/s, whereas a propeller-driven AUV is

typically configured to travel at 1.5 m/s to 3 m/s, and some are capable of achieving even

higher speeds. A newer glider model, the XRAY glider under development by the Marine

Physical Laboratory at SIO, seeks to address this limitation by using a “flying-wing” design

that improves gliding efficiency [124].

An advantage of traveling at low speeds relative to the water is a significant reduc-

tion in hydrodynamic drag, which scales like the square of speed [141, p. 180]. Reduced

drag translates into reduced energy consumption and enables longer deployments. Glider

designers seek to further extend deployments by limiting the energy consumption of the

scientific and control electronics carried onboard, called the hotel load. A glider typically

carries only small, low-power instruments that intermittently sample the ocean water, un-

like a propellor-driven AUV, which can carry a high-power sonar that continuously collects

detailed images of the ocean bottom. Low drag and small hotel load enable a glider to be

deployed for several weeks to several months, whereas a propellor-driven AUV deployment

rarely exceeds a day or two.

Energy and size constraints prevent gliders from carrying accurate navigation sensors

commonly carried by propeller-driven AUVs. For example, a glider does not carry a Doppler

Velocity Log (DVL), which is a device that uses acoustic waves to measure vehicle velocity

over ground. A glider navigates underwater by integrating an estimate of its velocity over

ground to find its (horizontal) position. To estimate its velocity over ground, a glider

must estimate the water velocity over ground as well as its own through-water velocity (see

Section 8.2.2). Inaccuracies in the velocity estimate accumulate into position errors on the

order of 10% to 20% of distance travelled.

To reset errors in its position estimate and to communicate with a shore station, a

glider periodically comes to the surface. A glider is equipped with both satellite and radio

frequency communication systems. It is also possible to equip a glider with acoustic modems

to communicate over short distances underwater [224], although this configuration is not

yet common. A glider uses the Global Position System (GPS) to find its actual position. By
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comparing its actual position to its estimated position, a glider can estimate the magnitude

and direction of the depth-averaged ocean current encountered during the previous dive.

Before diving again, a glider may receive an updated waypoint list from a computer or

operator on shore. A glider can also be configured to transmit scientific data.

The scientific measurements collected by a glider depends on its sensor suite. A glider

can sample physical properties of sea water including temperature, salinity, dissolved oxy-

gen, and density, and bio-optical properties like optical backscatter and chlorophyll fluo-

rescence. Bio-optical properties indirectly measure the concentration of microscopic plants

(phytoplankton) and animals (zooplankton). Spray glider can also measure variations in

water speed and/or direction over short distances using a device called an Acoustic Doppler

Current Profiler (ADCP).

The set of all measurements of a single scalar field collected during a glider descent

or ascent is called a profile.1 These measurements are typically plotted versus depth, as

illustrated on the right-hand side of Figure 2.3. Note a glider moves both vertically and

horizontally when producing a single profile. Nonetheless, to represent the profile position,

we use the GPS position of the glider at either the start or the end of the dive. The profile

time is the time of the GPS position fix.

Because of its deployment duration, a glider is capable of collecting profiles over horizon-

tal scales ranging from meters to hundreds of kilometers and temporal scales from seconds

to months. In Figure 2.4, we illustrate for both a glider and a propellor-driven AUV the

space-time sampling regime, which is the portion of the space-time plane that a sensor plat-

form can effectively sample. The spatial limit of a sensor platform’s sampling regime is

determined by the sensor platform’s speed, whereas the temporal limit is determined by the

duration of a single deployment. Note in Figure 2.4 that the greater speed of an AUV, as

compared to the speed of a glider, increases the spatial extent of the sampling regime, but

this does not yield access to additional oceanographic processes. The greater endurance of

a glider, however, increases the temporal extent of its sampling regime, which yields access
1A glider automates the process of collecting profile data. Profile data can also be collected by an

instrument cast over the side of a research vessel.
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Figure 2.4: Selected oceanographic processes in the space-time sampling regime of gliders
and propellor-driven AUVs. The sampling regime of a sensor platform is the portion of the
space-time plane that it can effectively sample. Note, the vertical axis is on a logarithmic
scale and the horizontal axis is quasi-logarithmic. Compared to a propellor-driven AUV, a
glider has greater endurance, which yields access to additional oceanographic processes like
plankton patches, fronts, eddies, and seasonal cycles. Figure based on [72, 115, 290].

to additional, important oceanographic processes like zooplankton patches, fronts, eddies,

and seasonal cycles. For example, one type of seasonal cycle effectively sampled by gliders is

the annual upwelling of cold, nutrient-rich water in regions such as coastal California [218]

(see Section 9.1).

A glider is faced with the predicament of trying to measure properties of the fluid in

which the glider is itself advected, often in an undesirable direction. A glider is especially

vulnerable at the ocean surface, where it drifts passively. Attempts by a glider to com-

municate or navigate on the surface can be thwarted by waves breaking over its antenna,

since electromagnetic waves at radio frequencies attenuate over very short distances in sea
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water. Coastal surface tides and constructive interference between internal waves can gen-

erate currents at speeds greater than that of a glider [88].2 An important figure of merit

for a glider is its effective speed , which is the speed over ground between sequential profile

positions. A glider’s effective speed is reduced by long surface intervals and can be reduced

or increased by ocean currents.

2.2 Mapping Performance Metric

Quantitatively evaluating a set of glider profiles, or optimizing a glider mapping trajectory,

requires a quantitative performance metric. For example, one might consider as performance

metric the density of profile positions, which is inversely proportional to the sampling area.

For a simple divide-and-conquer strategy with equally-sized subdivisions and a fixed deploy-

ment duration, this metric scales linearly with the number of sensor platforms.3 However,

profile-position density may be inadequate as a performance metric if the desired profile

distribution is not uniform, that is, if the profile-position density varies in space and time.

Assuming that the profiles are to be assimilated into a time-varying estimate of a scalar

field, another performance metric is based on the objective analysis (OA) estimation er-

ror [91, 36]. Computing the OA estimation error, called the mapping error, requires an

a priori description of the covariance of fluctuations around the mean of the scalar field,

parametrized by the field’s spatial and temporal decorrelation lengths. OA provides the

residual uncertainty in an estimate of the field—the mapping error—which can be used

to compute mapping performance. If an a priori description of the mean of the field is

available, OA also provides an estimate or map of the field itself.

Consider an OA framework for sampling a scalar field T with respect to two (horizontal)
2Surface, or barotropic, tides are depth-independent oscillations of sea water generated by the pressure

gradients that arise from variations in sea height due to astronomical influences [88]. An internal wave is a
depth-dependent oscillation generated by the opposing pressure gradients that arise from variations in the
depth of the thermocline, a layer of sea water that has a rapid decrease of temperature with depth. Internal
tides are a type of internal wave. Variations in the depth of the thermocline are driven by the barotropic
tide sloshing against the topography of the bottom and of the coastline.

3To see this, let A0 be area of the mapping domain and A0/N be the area of each subdivision, where N is
the number of sensor platforms. The increase in sampling density generated by adding one sensor platform
is (N + 1)/A0 −N/A0 = 1/A0.
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space dimensions and time. The scalar field T at a point R and time t can be viewed

as a random variable T (R, t) (for example, temperature at a fixed depth as a function of

horizontal position and time). Let E[·] denote an operator that produces the expected value

of a random variable. The mean T̄ is defined by T̄ (R, t) , E[T (R, t)] and the covariance C

of fluctuations about the mean is

C(R, t,R′, t′) , E[(T (R, t)− T̄ (R, t))(T (R′, t′)− T̄ (R′, t′))]. (2.1)

For a stationary, homogeneous, and isotropic field, the variance σ0 , C(R, t,R, t) of T (R, t)

around its mean T̄ (R, t) is independent of R and t. The covariance C(R, t,R′, t′) of such

a field is often approximated by a function parametrized by the spatial σ and temporal τ

decorrelation lengths. For example, a common model of the covariance of an oceanographic

process is the exponential function [64]

C(R, t,R′, t′) = σ0e
−Γ(R,R′)

σ
− |t−t′|

τ , (2.2)

where Γ(R,R′) ≥ 0 is a measure of the distance between R and R′ (see Appendix C). Note

that C(R, t,R′, t′)/σ0, which we call the normalized covariance function, evaluates to 1/e

when Γ(R,R′) = σ and t = t′, or when R = R′ and |t− t′| = τ . The exponential covariance

function is illustrated in Figure 2.5, along with a normal or Gaussian covariance function,

variations of which are frequently used to describe oceanographic processes [115, 147].

Let T̃ (Rk, tk), k = 1, . . . , P , denote a set of P discrete measurements collected by one

or more gliders at the points Rk and times tk. Assuming that the measurements are noisy

and that the noise is uniform and uncorrelated, then the P × P measurement covariance

matrix C̃ has entries [C̃]kj , σ̃0δkj + C(Rk, tk, Rj , tj) for all pairs k and j, where σ̃0 is the

measurement-noise variance and δkj ∈ {0, 1} is the Dirac delta function. Suppose that we

linearly combine all of the measurements T̃ (Rk, tk) to form an estimate T̂ (R, t) of the scalar

field at a point R and time t. The covariance Ĉ(R, t,R′, t′) of the error in the estimate is

given by

Ĉ(R, t,R′, t′) , E[(T (R, t)− T̂ (R, t))(T (R′, t′)− T̂ (R′, t′))]. (2.3)
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Figure 2.5: Exponential and normal covariance functions C(R, t,R′, t′) for t = t′. Note,
the vertical axis is normalized by the variance σ0 and the horizontal axis is normalized
by the spatial decorrelation scale σ. By setting t = t′, only the variation of C(R, t,R′, t′)
with distance Γ(R,R′) is evaluated. Exponentially-correlated points are less correlated at
short lengths and more correlated at large lengths than normally-correlated points. When
Γ(R,R′) = σ, both covariance functions evaluate to 1/e.

According to the Gauss-Markov theorem, the covariance (2.3) of the error in a linear mini-

mum mean-square estimate T̂ (R, t) is [153, p. 138]

Ĉ(R, t,R′, t′) = C(R, t,R′, t′)−
P∑
k=1

P∑
j=1

C(R, t,Rk, tk)[C̃−1]kjC(Rj , tj , R′, t′), (2.4)

where [C̃−1]kj denotes the entry in the kth row and jth column of the inverse C̃−1 of

the measurement covariance matrix C̃. The OA map, also provided by the Gauss-Markov

theorem, is the estimate

T̂ (R, t) = T̄ (R, t) +
P∑
k=1

P∑
j=1

(T̃ (Rk, tk)− T̄ (Rk, tk))[C̃−1]kjC(Rj , tj , R, t). (2.5)

This leads to the following definition.
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Definition 2.1. Mapping error The mapping error at point R and time t is the error

variance Ĉ(R, t,R, t), defined in (2.4), of the corresponding point in the OA map. The

normalized mapping error Ĉ(R, t,R, t)/σ0, where σ0 is the variance of a stationary, homo-

geneous, and isotropic process, is a number in the interval [0, 1].

Typically, the mapping error and OA map are evaluated over a regularly-spaced grid

of points and times, although the OA computation at each grid point R and time t is

independent of the OA computation at all of the other grid points. OA can be viewed as an

optimal method of interpolating an irregularly-spaced set of measurements. To compute the

mapping error one needs to know the profile positions and times, estimate the measurement

noise variance σ̃0, and choose a functional form of the covariance function C(R, t,R′, t′)

parametrized by the decorrelation lengths σ and τ . The mapping error does not depend on

the measurement values T̃ (Rk, tk).

Next we define a mapping performance metric based on the mapping error, after [146].

Definition 2.2. Mapping performance The mapping performance I (t) in mapping

domain B is the area integral over B of the mapping error at time t, normalized by the

process variance σ0 and represented in log-space by

I (t) , − log
(

1
σ0|B|

∫
B
Ĉ(R, t,R, t)dR

)
, (2.6)

where |B| is the area of B. The mapping performance I (t) on the boundary δB of B is

the line integral over δB of the mapping error at time t, normalized by the process variance

σ0 and represented in log-space by

I (t) , − log
(

1
σ0|δB|

∫
δB
Ĉ(R, t,R, t)dR

)
, (2.7)

where |δB| is the perimeter of B.

The metric (2.6) can be viewed as the amount of information at time t contained in

the measurements T̃ (Rk, tk), for all k = 1, . . . , P [101, pp. 34-35]. Mapping performance

on the boundary of a domain is a measure of the effectiveness with which measurements
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can be used to compute the flux of quantities like heat and mass into or out of the do-

main [64].4 In order to compute mapping performance at time t, one theoretically uses

all of the measurements collected before and after time t. However, for an exponential

covariance function, measurements outside the interval (t− 4τ, t+ 4τ) have less than a 2%

correlation with measurements at time t and, consequently, no appreciable effect on I (t).

In order to decrease the time to compute I (t) without a significant reduction in accuracy,

measurements outside this interval may be ignored.

Oceanographic processes typically contain energy at multiple scales. The decorrelation

lengths σ and τ , which can be estimated from local or remote (satellite) measurements of

the mapping domain, correspond to the average decorrelation length in space and time of all

signals across the energy spectrum. Estimates exist for ocean process decorrelation lengths

on a global scale [256] and in the eastern Mediterranean Sea [148], the northwest Atlantic

Ocean [279], the northeastern Atlantic Ocean [168], the tropical Pacific Ocean [171], and

the California Current System [212, 69, 229, 213].

An alternative to the mapping objective is collecting measurements to best estimate the

decorrelation scales. One approach to this problem is called co-array design [64]. Results

for the co-array design of static sensors [19, 109, 78] suggest that co-array design for mobile

sensors may yield different trajectories than array design for optimal mapping performance.

Estimation of decorrelation lengths requires the collection of samples over a range of separa-

tion distances and times, whereas minimization of mapping error occurs when measurements

are separated by the characteristic decorrelation lengths, as we see next.

2.2.1 Example of Mapping Error in Space

To illustrate the computation of mapping error and its implications for measurement place-

ment, we present a simple, one-dimensional example where R ∈ R (the real line). In this

example, we consider two, simultaneous measurements at positions R1 = −dσ/2 < 0 and

R2 = dσ/2 > 0, where the separation parameter d , (R2−R1)/σ > 0 determines the spatial
4Flux measurements can be used to compute a heat or mass budget [228].
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Figure 2.6: Mapping error example. (a) The normalized mapping error Ĉ(R, t,R, t)/σ0 in
the vicinity of two measurements located at ±σ/2; (b) the normalized mapping error at the
origin R = 0 versus parameter d, which determines the separation of the two measurements.
There is negligible reduction in mapping error when measurements separated by 10% of σ
are moved closer. Measurements separated by more than 3σ generate a coverage gap with
high mapping error.

separation of the measurements. We investigate the impact of varying d on the mapping

error evaluated at the origin R = 0.

Using the exponential covariance function (2.2), the measurement covariance matrix is

C̃ =

σ̃0 + σ0 σ0e
−d

σ0e
−d σ̃0 + σ0

 .
According to (2.4), the normalized mapping error is

Ĉ(R, t,R, t)
σ0

= 1− σ0

2∑
k=1

2∑
j=1

e−
|R−Rk|

σ
−
|R−Rj |

σ [C̃−1]kj , (2.8)

where

C̃−1 =
1

(σ̃0 + σ0)2 − σ2
0e
−2d

σ̃0 + σ0 −σ0e
−d

−σ0e
−d σ̃0 + σ0

 .
In Figure 2.6(a), we plot the normalized mapping error (2.8) with d = 1 and measure-

ment noise σ̃0 equal to 10% of σ0. The normalized mapping error reaches its minimum

value at the measurement positions R = R1 and R = R2. Its minimum value of 0.1 is deter-

mined by the measurement noise. The normalized mapping error approaches its maximum
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value of 1.0 when R < 3σ or R > 3σ. Among all of the points between R1 and R2, the

normalized mapping error is maximum at R = 0.

The value Ĉ(0, t, 0, t)/σ0 of the normalized mapping error at the origin, given by

Ĉ(0, t, 0, t)
σ0

= 1−
2e−d

(
σ̃0
σ0

+ 1− e−d
)

(
σ̃0
σ0

+ 1
)2
− e−2d

,

is plotted as a function of d in Figure 2.6(b). If d < 0.1, then the measurements are nearly

co-located and the mapping error at the origin is on the order of the measurement noise. If

the measurements move closer to one another, there is neglible reduction in mapping error

at the origin. On the other hand, if d > 3 (log10 d > 0.5), then the normalized mapping

error at the origin is nearly one, which is its maximum value. For 0.1 < d < 3, the mapping

error varies smoothly between approximately 10% and 100% of σ0, with largest slope in the

vicinity of d = 1, or |R2 −R1| = σ.

From this example, we produce the following heuristic: the greatest reduction in map-

ping error obtained from a limited set of simultaneous measurements occurs when the

measurements are spatially separated by a distance approximately equal to the spatial

decorrelation length σ. Measurements much closer together than σ do not yield significant

reduction in mapping error, whereas measurements much further apart than σ leave portions

of the domain under-sampled. For sequential measurements collected at the same point,

a similar heuristic holds: the greatest reduction in mapping error occurs when the mea-

surements are temporally separated by a time interval approximately equal to the temporal

decorrelation length τ . A more complicated situation is, of course, when measurements are

neither co-located nor simultaneous. We examine this situation next.

2.2.2 Example of Mapping Error in Space and Time

We now consider the reduction of mapping error in space and time along a sensor path,

using as an example a mobile sensor platform with constant heading and constant speed

s0. Assume that the time period between sequential measurements is small compared with

the overall time spent collecting measurements. In this example, we treat the sensor as
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sensor swath
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s0

R
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σ

2

τ

2

sensor path

(a) Spatially constrained: 1/s0 ≥ τ/σ

R

t

s0τ

(b) Temporally constrained: 1/s0 < τ/σ

Figure 2.7: Sensor swath and sampling constraints. The area of reduced mapping error due
to a single sensor platform moving along the positive R axis at a constant speed s0 can be
represented by a sensor swath (gray patch) in the (t, R)-plane whose width is determined
either by σ (a, spatially constrained) or by s0τ (b, temporally constrained).

collecting measurements continuously. Using the insight gained from the previous section,

we represent the reduction in mapping error in the (t, R)-plane by a sensor swath, which

contains a set of points along the sensor path as illustrated in Figure 2.7. A point (t, R)

is contained in the sensor swath if the distance between R and the position of the sensor

position at time t is less than σ/2, or the time span between t and when the sensor passes

over R is less than τ/2. As shown in Figure 2.7(a), the slope of the sensor swath in the

(t, R)-plane is 1/s0.

The sensor swath representation of the reduction of mapping error along a sensor

path allows us to characterize a sensor platform as either spatially constrained or tem-

porally constrained. For a given σ and τ , the type of constraint is determined by the

non-dimensionalized speed, given by [146]

s0 ,
s0τ

σ
. (2.9)

A sensor platform is spatially constrained if s0 ≤ 1. In this case, the slope 1/s0 of the

sensor swath satisfies 1/s0 ≥ τ/σ, which means the swath width σ is independent of τ . A

stationary sensor platform is always spatially-constrained. A sensor platform is temporally

constrained if s0 > 1, that is, 1/s0 < τ/σ. In this case, the swath width s0τ is independent

of σ. A mobile sensor platform may be spatially- or temporally-constrained depending on
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Figure 2.8: Mapping a one-dimensional domain with periodic boundary conditions. Portions
of the (t, R)-plane that are gray are contained in a sensor swath. (a) A single, spatially-
constrained sensor inadequately maps the domain if the sensor swath σ is less than the width
|B| of the domain; (b) three spatially-constrained sensors adequately map the domain; (c)
a single temporally-constrained sensor platform moving at the minimum speed required to
adequately map the same domain.

its speed and the decorrelation lengths. The swath width of a spatially-constrained sensor

platform depends only on the spatial decorrelation scale, whereas the swath width of a

temporally-constrained sensor platform depends on the temporal decorrelation scale and

the platform speed. Note, the swath width as defined here is measured along the sensor

platform trajectory.

We now use swath width to determine the number of sensor platforms required to

adequately sample a finite, one-dimensional domain B with periodic boundary conditions.

That is, we identify the edges of B so that a sensor platform exiting to the right will

re-enter from the left as shown in Figure 2.8(a). In this setting, if the swath width is

less than the width |B| of the domain, then a single sensor cannot adequately map the

domain. We consider a domain to be adequately mapped from t = 0 to t = T0 if every

point in the (t, R)-plane where 0 ≤ t ≤ T0 and R ∈ B is contained in a sensor swath. For
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a set of spatially-constrained sensor platforms with identical speed, the minimum number

of sensor platforms needed to map the domain is d|B|/σe, where dxe is the smallest integer

greater than or equal to x. If the sensor platforms are temporally constrained, then the

number needed to map the domain is d|B|/(s0τ)e. We show in Figure 2.8(b) a set of three

spatially-constrained sensor platforms that collectively map domain B. In Figure 2.8(c),

a single, temporally-constrained sensor platform is adequate to map the same domain if it

moves fast enough: traveling at the minimum speed, the sensor swath fills the (R, t)-plane

with no gaps or overlap.

This subsection and the previous one illustrate how glider spacing and speed can sig-

nificantly impact mapping performance. In particular, we observe that gliders should not

bunch together, or else their profiles may become redundant. In addition, gliders should

be configured to travel as fast as possible and not backtrack. This implies that a glider

should seek to travel in the direction of the prevailing ocean currents and not attempt

to fight against currents as that may decrease its effective speed over ground. In order

to adequately map a closed path represented by a one-dimensional domain with periodic

boundary conditions, multiple gliders traveling at the same speed should be evenly spaced

around the path. We utilize in the next section data analysis of real glider trajectories to

further develop this intuition and to formulate a concise statement of sampling strategy.

2.3 Adaptive Sampling Strategy and Challenges

We describe here an adaptive sampling (AS) strategy for mapping one or more scalar fields

with a fleet of underwater gliders. The strategy, intended to minimize mapping error subject

to constraints on glider trajectories, was developed in collaboration with D. Fratantoni of

WHOI and R. Davis of SIO. The strategy can also be used to reduce errors in ocean-model

forecasts; see, for example, [222]. In developing the strategy we were motivated by the

2003 Autonomous Ocean Sampling Network (AOSN-II) field experiment [217]. Analysis

of the AOSN-II glider sampling strategy via mapping performance is summarized below.

This analysis, the glider kinematic constraints, and the intuition provided by the simple
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heuristics in the previous two sections, lead naturally to an AS strategy in which gliders

are automatically coordinated to travel around closed curves that are adapted according to

evolving knowledge of dynamic processes within the mapping domain.

A central component of our AS strategy is the automatic control of a fleet of gliders

to a set of coordinated trajectories. The automatic control system described in Chapter 8

enables a glider fleet to operate effectively with only minimal intervention, while conven-

tional approaches require manual trajectory planning. The specification of a set of glider

coordinated trajectories—described in detail in Chapter 8—contains a description of the

path followed by each glider as well as the position of each glider on its path relative to the

other gliders.

In order to design glider paths in a coastal mapping domain, we adopt a method con-

sistent with previous glider deployments. We assume that each glider travels around an

elongated, closed path called a track (short for racetrack). The long sides of a track should

be nearly straight and oriented so that the glider crosses over the shelf break [64], which

is the end of the continental shelf characterized by a sharp increase in the slope of the

ocean bottom. Each time a glider travels around a track it samples a cross-section of the

dynamic ocean processes that propagate parallel to the shelf break. By constructing a time

sequence of cross-section plots, oceanographers can reconstruct, identify, and monitor ocean

processes even before assimilating the glider profile data into a sophisticated ocean model

(see Figure 2.9). Each cross-section plot is a snapshot of an ocean process generated by

interpolating glider measurements, for example, using OA. A snapshot is typically plotted

as a function of depth on the vertical axis—the direction of increasing depth is down—

versus time/distance on the horizontal axis—the direction of increasing time/distance is to

the right. For slow platforms like gliders, the time-evolution of an ocean process during a

single snapshot can make it difficult to identify the process [302, pp. 39-41].

Accurately mapping a dynamic ocean process using a track-based design method requires

coordination of gliders on the tracks. When there are multiple tracks, they should be

designed so that any two gliders assigned to different tracks maintain a minimum separation
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Figure 2.9: Constructing a time sequence of cross-shelf ocean dynamics from glider mea-
surements. When a glider travels around a closed path whose long sides (when viewed from
above) are nearly straight and orthogonal to lines of constant bathymetry, it can repeat-
edly sample the coastal processes in a vertical plane across the shelf break. (a) A glider
travels from left to right collecting measurements over the shelf break (note, the horizontal
length scale is not proportional to the vertical length scale); (b) each time the glider travels
over the shelf break it generates a new snapshot of the ocean dynamics. By constructing
a time-sequence of snapshots, oceanographers can analyze changes in the ocean dynamics
even without assimilating the glider data into a sophisticated ocean model.

from one another. Even so, gliders may bunch together and collect redundant measurements

if they deviate off course. Glider bunching can also occur on a single track, particularly

in the presence of strong ocean currents. We use mapping error to assess the impact

of gliders traveling off course during the AOSN-II experiment in the next section and, in

Section 2.3.2, we illustrate current-driven bunching on a single track using a simple example.

These analyses motivate a coherent sampling strategy, described in Section 2.3.3.

2.3.1 Analysis of a Field Experiment

As part of the AOSN-II experiment, more than a dozen gliders were simultaneously deployed

in the vicinity of Monterey Bay, California during the annual upwelling event in August

2003. The gliders were deployed in two groups to capture signals at multiple scales within

two overlapping domains. The first group, a set of five Spray gliders, patrolled a large

mapping domain spanning 123 km by 143 km as shown in Figure 2.10(a). Deployed and

recovered inside the bay, the Spray gliders traveled back and forth on five linear tracks

evident in Figure 2.10(a) from the glider profile positions, which are depicted by black dots.
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(b) Slocum glider profiles

Figure 2.10: AOSN-II glider profile positions. Each black dot represents the position of
a glider profile collected in Monterey Bay, California during August 2003. Contour lines
representing bottom depths of 50, 150, 400, and 1000 m are shown. (a) Five Spray gliders,
deployed and recovered in the bay, were assigned to five cross-shelf linear tracks spanning a
123 km by 143 km domain; (b) concurrently, ten Slocum gliders were assigned to orbit five
trapezoidal tracks across the mouth of the bay.

The second group, consisting of ten Slocum gliders, was deployed on five trapezoidal tracks

inside a second, smaller domain across the mouth of the bay. The Slocum glider tracks are

evident from the profile positions illustrated in Figure 2.10(b).

We evaluate the mapping performance of the Spray gliders using OA, after [146]. We

use spatial and temporal decorrelation lengths estimated from the glider data to be 22 km

and 2.2 days, respectively [229]. We set the measurement noise σ̃0 equal to 10% of σ0. A

snapshot of the mapping error at midnight GMT on August 14 is shown in Figure 2.11(a).

At this point in the experiment, the mapping performance I (t) in the large mapping domain

is equal to 0.16. A second snapshot of the mapping error from midnight GMT on August

21 is shown in Figure 2.11(b). At this point, the mapping performance has dipped to 0.13,

because two gliders have deviated off course. The off-course gliders bunched together with

gliders on neighboring tracks.

The Spray gliders’ mapping performance during AOSN-II, plotted versus time in Fig-
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(a) Midnight GMT August 14 (b) Midnight GMT August 21

Figure 2.11: AOSN-II Spray glider mapping error. The black dots represent the positions
of profiles collected by the five Spray gliders during the previous 24 hours. The gray scale
represents the value of the normalized mapping error, which is smallest (dark gray) at
the current position of each glider. (a) When all five gliders are on-course, the mapping
performance is 0.16; (b) when two gliders deviate off course, the mapping performance dips
by nearly 20% to 0.13.

ure 2.12, illustrates that mapping performance is related to the number of glider profiles,

unless the profiles are poorly distributed in space or time. Figure 2.12 shows variations

in mapping performance not caused by changes in the number of profiles. These variations

are due to changes in the profile-position distribution in space and time. In a distribution

of profiles leading to a downward fluctuation of mapping performance some profiles may

be spaced too close together and others may be spaced too far apart. The large dip in the

mapping performance that occurred around August 22 was a result of the course deviations

of two gliders. The smaller dips in performance that occurred with a period of about one

week might have been due to the distribution of all the gliders within the mapping domain,

since one week was approximately the time it took for a glider to travel the length of its

track. Mapping performance suffered when all of the gliders were either near shore or off-

shore. To avoid this reduction in performance, one could stagger the back-and-forth motion

of gliders across the domain.
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Figure 2.12: AOSN-II Spray glider mapping performance I (t) and average number of
profiles used per day to compute I (t). The mapping performance of the Spray gliders from
July 28, 2003 to September 1, 2003 is related to the number of profiles used to compute
the mapping error, except when the profiles are poorly distributed in space and time. The
black dots correspond to the snapshots of the mapping error illustrated in Figures 2.11(a)
and 2.11(b).

The AOSN-II results demonstrate how glider mapping performance depends on glider

spacing. Glider spacing is determined in part by track placement and partly by the ability

of each glider to stay on its track. It also depends on the position of each glider on its

track relative to the position of other gliders on the same or even different tracks. A central

component of the AS strategy is to coordinate the glider movements around their assigned

tracks in order to maintain proper spacing. A major challenge to this type of motion

coordination is the presence of ocean currents. The impact an ocean current can have on

along-track glider spacing is illustrated in the following simple example, which motivates

the use of feedback control to maintain proper spacing.

2.3.2 Example of an Open-Loop Survey with Flow

Consider two gliders traveling counterclockwise around a circular track in a uniform flow

field as shown in Figure 2.13(a). We study the impact of the flow speed on the distance

between the gliders, which are initially on opposite sides of the circle. Bunching together
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(a) Gliders in flow

θ1
θ2

2

(b) Beads on a wire ring (c) Beads bunching together

Figure 2.13: Simple model of two gliders on a circular track in a uniform flow field. (a)
Two gliders, initially on opposite sides of the track, seek to travel counterclockwise; (b)
the gliders are represented by a beads on a wire ring of unit radius (dimensionless); (c) the
beads bunch together along the top of the ring, where they travel slowly.

on a closed track leads to reduction in mapping performance since the portion of the track

between the gliders is over-sampled and the opposite side is under-sampled.

Assume that the gliders do not adjust their course to regulate their spacing. Also assume

that, in the presence of light or moderate flow, each glider’s trajectory precisely traces the

track. This allows us to represent the gliders by a pair of beads on a frictionless wire ring

as shown in Figure 2.13(b). The latter assumption is reasonable, because a glider’s onboard

control system is typically configured to steer the glider to compensate for the component

of the flow orthogonal to its desired direction of motion. (On the other hand, modeling the

gliders as beads fails to account for the reduction in speed necessary to fight the flow to

keep the glider on the track.)

We normalize the dimensions of the problem so that the wire ring has unit radius. We

place the ring’s center at the origin of the complex plane. In the absence of flow, the beads

move at a constant speed around the ring. The bead positions can be represented by the

unit vectors eiθ1 and eiθ2 , where θ1 and θ2 are measured relative to the positive real axis as

shown in Figure 2.13(b). The motion of bead k ∈ {1, 2} around the ring is described by the

constant rate ω0 of the angle θk, that is, θ̇k = ω0, for k = 1, 2. Since the beads are initially

on opposite sides of the track, θ1(t) = θ2(t) + π for all time t in the absence of flow.

In the presence of a uniform flow field parallel to the positive real axis, a bead slows
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Figure 2.14: Numerical results for the simple model of Figure 2.13: two gliders on a circular
track in a flow field. Each row represents a histogram of the distance |eiθ2 − eiθ1 | between
the beads for flow strength equal to ε times the bead speed. Although the beads are initially
on opposite sides of the track (so their initial distance apart is 2), as flow strength increases,
the beads are increasingly likely to bunch together.

down at the top of the ring where it is traveling against the flow and speeds up at the

bottom of the ring where it is traveling with the flow, as shown in Figure 2.13(c). The bead

kinematics in the presence of flow of strength ω0ε, where 0 ≤ ε < 1, can be modeled by

θ̇k = ω0(1− ε sin θk), k = 1, 2, (2.10)

since θ̇k < ω0 when θk = π/2 (the top of the ring) and θ̇k > ω0 when θk = 3π/2 (the bottom

of the ring). We have θ̇k = ω0 when θk = 0 or θk = π.

We numerically study the dependence of glider separation on the flow speed parameter

ε by integrating the two differential equations in (2.10) for several values of ε. We consider

ε = 0.01, 0.25, 0.5, and 0.75. Figure 2.14 shows a histogram of the distance |eiθ2 − eiθ1 |

between the beads after many revolutions around the ring. Since the beads are initially

on opposite sides of the unit circle, their initial separation is 2. For a flow strength of only
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1% of bead speed, shown in the top row of Figure 2.14, the beads remain at this spacing.

However, as flow strength increases, we observe that the beads are increasingly likely to

bunch together, which is indicated by a separation distance less than 2. For example, when

ε = 0.5, the frequency distribution of particle spacing extends as low as 1.2. For ε = 0.75,

the frequency distribution extends lower than 0.6.

This example illustrates how the presence of even moderate flow degrades glider along-

track spacing. Glider deployments are called open-loop if each glider does not adjust its

course to regulate the distance to other gliders. For example, the AOSN-II field experiment

described in the previous section was primarily an open-loop deployment.5 Glider deploy-

ments are called closed-loop if each glider adjusts its course to regulate glider spacing using

feedback control at the level of the fleet. The ASAP field experiment described in Chapter 9

was a closed-loop deployment. Note, a glider under fleet-level feedback control necessarily

diverts some onboard control authority away from the task of following a track and applies it

to the task of regulating glider spacing. Consequently, fleet-level feedback control improves

mapping performance at the cost of a reduction in track-following performance.

2.3.3 Feedback Control at the Level of the Glider Fleet

Feedback control at the level of the fleet can be used to stabilize coordinated glider motion.

Two illustrations of coordinated glider movement are shown in Figure 2.15(a) and 2.15(c)

(again assuming near continuous sampling rate for each individual). In the first illustration,

two gliders travel on opposite sides around a single track. Each point on the track is sampled

at a regular interval equal to half of a glider’s period of revolution around the track. The

configuration shown in Figure 2.15(b), where the gliders are not on opposite sides of the

track, may not achieve as high mapping performance as in Figure 2.15(a) because the

gliders are bunched together. In the second illustration, two gliders travel in unison around

two, identical tracks: that is, if one track were placed on top of the other track, then the

gliders would be co-located as they move around their tracks. The configuration shown
5Closed-loop control of several gliders was demonstrated during portions of the deployment [83].
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(a) Good for mapping (b) May not be as good as (a)

(c) Good for mapping (d) May not be as good as (c)

Figure 2.15: Illustrations of coordinated glider movement. (a) Two gliders travel on opposite
sides around a single track so that each point on the track is sampled at a regular interval;
(b) an undesirable configuration of two gliders bunched together on a single track; (c)
two gliders traveling in unison around two identical tracks; (d) a configuration with two
gliders traveling in opposite directions around two identical tracks may be better suited for
estimating the spatial decorrelation length than for maximizing mapping performance.

in Figure 2.15(d), where the two gliders travel in opposite directions so that the distance

between them oscillates over time, may not yield as high mapping performance. On the other

hand, this configuration, in which the pair of gliders collect simultaneous measurements over

a range of spatial separations, may be effective for estimating spatial decorrelation length.

The cartoons in Figure 2.15 illustrate the concept and guidelines for coordinated glider

movement, but implementation of these guidelines depends on the specific flow conditions.

The presence of strong flow can drive a pair of gliders from the configuration shown in

Figure 2.15(a) to the one shown in Figure 2.15(b), unless the gliders are able to adjust

their course to regulate their spacing. For some flow conditions, the two counter-revolving

gliders in Figure 2.15(d) might yield the higher mapping performance than the two gliders in

Figure 2.15(c). For example, consider a flow condition in which the flow circulates clockwise

in the left track and counterclockwise in the right track. This configuration would boost

glider effective speed, which could improve mapping performance.



2.3 Adaptive Sampling Strategy and Challenges 47

AS1. (Every second) Use feedback control onboard each glider to steer it along a path
connecting an ordered list of waypoints.

AS2. (Hourly) Use feedback control at the level of the fleet to generate and update
waypoint lists in order to produce coordinated trajectories.

AS3. (Daily-weekly) Design and adapt the glider coordinated trajectories to maxi-
mize mapping performance.

Table 2.1: Adaptive sampling strategy. The strategy involves three nested feedback loops
labeled AS1, AS2, and AS3, whose periodicity ranges from seconds to weeks. The first
two loops are automated: AS1 is automated onboard each glider and AS2 is automated on
shore. AS3 requires operator intervention.

Table 2.1 summarizes our strategy for glider mapping. The strategy consists of three

nested feedback loops labeled AS1, AS2, and AS3. These three loops are listed in order

of the magnitude of the period of time between successive iterations of the loop, which

ranges from every second (AS1) to daily or even weekly (AS3). AS1 represents a capability

developed by glider manufacturers and is described in Section 2.1. AS2—one of the main

contributions of this thesis—represents the implementation of decentralized control algo-

rithms (described in Chapter 7) by an automatic control system (described in Chapter 8).

A practical implementation of AS3, yet to be fully automated, is described in Chapter 9.

Many challenges faced in the implementation of AS2 in Table 2.1 arise from limitations

of underwater gliders [83, 146]. A glider’s relatively low speed renders it highly vulnerable

to ocean currents and, when it is on the surface and drifting passively, it is completely at

the mercy of currents, tides, and wind. In order to mitigate drifting and other hazards

faced by gliders during surface intervals, one seeks to limit time on the surface by reduc-

ing the frequency and duration of out-of-water communication. Limiting the frequency

of out-of-water communication—by configuring a glider to surface for communication less

frequently—presents a challenge to achieving AS2, because it increases the interval between

updates to the glider waypoint list. From the standpoint of a digital control system, in-

creasing the sample period degrades control performance [87, p. 646-705]. Choosing the

interval between waypoint list updates requires trading-off degradation in the fleet-level

feedback control performance, which leads to degradation of overall mapping performance,
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with improvements in glider effective horizontal speed, which improves individual mapping

performance.

Limiting the duration of communication on the surface also presents a challenge to

achieving AS2, since it may preclude “closing the loop” when the glider is on the surface.

That is, after uploading data from the previous dive, a glider may not wait on the surface for

a waypoint list to be generated by a fleet-level feedback controller. In this scenario, updated

waypoint lists must be computed and made available for each glider before it surfaces. Since

waypoint lists can be as much as one dive old, this scenario introduces time delay into the

fleet-level feedback control, leading to degradation in control performance [87, p. 331-334].

Another challenge to implementation of AS2 is the fact that gliders come to the surface

to communicate asynchronously. That is, there is no guarantee at any given time that more

than one glider will be on the surface. Therefore, although the time-averaged communication

network of a glider fleet may be represented by a “hub and spoke” model, it is rare for more

than one “spoke” in the communication network to be instantaneously active. Consequently,

information communicated to a glider about any other glider is necessarily old [146].

In Chapters 3–7 we develop a design methodology for fleet-level feedback control that

stabilizes collective motion suitable for oceanographic sampling. Another design for fleet-

level feedback of underwater gliders is described in Fiorelli et al. [83]. Strategies for con-

troller design with infrequent and asynchronous sensing have been studied in [300]. However,

since this and other challenges have yet to be fully addressed from a theoretical standpoint,

their consideration is deferred to Chapters 8 and 9.



Chapter 3

Motion and Interaction Models

In this chapter we describe the mathematical models that underly our design of cooperative

control laws to stabilize collective motion. We study a dynamic model of self-propelled

particles with possibly limited interaction. Section 3.1 presents the particle model. Sec-

tion 3.2 describes symmetries and steady motions of the particle model. Section 3.3 uses

graph theory to present our notation for describing particle interaction.

3.1 Particles with Phase Oscillator Dynamics

Consider a collective with N individuals. We model each individual in the collective as a

Newtonian point mass (particle) constrained to a two-dimensional Euclidean plane R2. We

identify R2 with the complex plane C to facilitate our analysis. Let I = (O, 1, i) denote an

inertial reference frame with origin O and orthonormal basis vectors 1 and i ,
√
−1. We

label each particle with an index from the set of integers N , {1, . . . , N}.

We derive the particle kinematics using the coordinates shown in Figure 3.1. The

position of the kth particle with respect to the origin of the inertial frame is rk ∈ C,

where k ∈ N . The velocity of the kth particle is the time-derivative with respect to the

inertial frame of the position, that is, ṙk , d
dtrk. We express the velocity in complex polar

coordinates as ṙk = ske
iθk , where sk > 0 is the speed of particle k and θk is the direction of

motion of particle k. We call θk ∈ T the phase of particle k, where T , S1 is the circle or

49
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Figure 3.1: Planar particle dynamics. Each individual is modeled as a self-propelled particle
with position rk, speed sk, phase θk, and mass mk. Particle k is steered by control uk.

one-torus. We will represent T also by the interval [0, 2π), where 0 and 2π are identified.

The acceleration of the kth particle is

r̈k ,
d

dt
ṙk = ṡke

iθk + skθ̇kie
iθk . (3.1)

We use Newton’s second law to describe the particle dynamics. Let Bk = (rk, eiθk , ieiθk)

denote a path coordinate reference frame fixed to particle k with origin rk and orthonormal

basis vectors eiθk and ieiθk . Let mk > 0 denote the mass of particle k. We assume that the

only force acting on each particle is mkukie
iθk , where uk ∈ R is the steering control. Since

the steering force acts on particle k in the direction of the unit vector ieiθk and there is no

force in the direction of motion eiθk , the steering force is conservative and does no work.

Using (3.1) and Newton’s second law, we have

mkukie
iθk = mk(ṡkeiθk + skθ̇kie

iθk) (3.2)

Projecting (3.2) onto the unit vectors of the path frame Bk—equivalent to equating real

and imaginary parts—yields two scalar equations:

ṡk = 0 (3.3)

skθ̇k = uk. (3.4)

From (3.3), we observe that the speed of the kth particle remains fixed at its initial value

sk(0). Equation (3.4) yields the equation of motion for the phase θk; the equation is
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nonsingular for sk(0) > 0. In fact, we assume that sk(0) = 1 for all k ∈ N . This leads to

the following definition.

Definition 3.1. Particle model Let N denote the number of particles. Let rk ∈ C,

θk ∈ T, and uk ∈ R denote the position, phase (direction of motion), and steering control

for particle k ∈ N , respectively. The particle model is

ṙk = eiθk

θ̇k = uk.
(3.5)

The particle model (3.5) assumes all of the particles travel in a plane at unit speed.

Under these assumptions, solutions of the particle model conserve total kinetic energy but

not total linear momentum. The kinetic energy of particle k is (1/2)mk|ṙk|2. To compute its

time-derivative, we use the inner product 〈z1, z2〉 , Re{z∗1z2} = Re{z∗2z1}, where z1, z2 ∈ C

and ∗ denotes complex conjugate.1 The time-derivative of the kinetic energy of particle k

along solutions of (3.5) is

d

dt

(
1
2
mk|ṙk|2

)
= mk〈ṙk, r̈k〉 = mk〈eiθk , ukie

iθk〉 = mkukRe{i} = 0,

which implies that the total kinetic energy is constant. On the other hand, the linear

momentum of particle k is mkṙk. The time-derivative of the linear momentum of particle

k along solutions of (3.5) is
d

dt

(
mke

iθk

)
= mkukie

iθk ,

which implies that the time-derivative of the total linear momentum is

d

dt

 N∑
j=1

mje
iθj

 =
N∑
j=1

mjujie
iθj .

In general, the total linear momentum is time-varying. If uk = 0 for all k or mkuk = mjuj

for all pairs j and k and
∑N

j=1 e
iθj = 0, then the total linear momentum is constant. The

sum
∑N

j=1 e
iθj = 0 plays an important role in our control of total linear momentum.

1This inner product is equivalent to the standard inner product on R2. To see this consider 〈z1, z2〉 for
some zk = xk + iyk, k = 1, 2, which equals Re{(x1 − iy1)(x2 + iy2)} = x1x2 + y1y2.
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We use state feedback to define the steering control uk. Let r , (r1, . . . , rN )T ∈ CN

and θ , (θ1, . . . , θN )T ∈ TN . If each steering control uk is a function of some or all of

the positions r and phases θ, then we refer to uk as a closed-loop control and (3.5) as the

closed-loop particle model. Otherwise, if uk is not a function of r or θ, then we refer to uk

as an open-loop control and (3.5) as the open-loop particle model. If the steering control

u , (u1, . . . , uN )T ∈ RN is a function of θ only, then we can study the phase dynamics

independent of the position dynamics. This leads to the following definition.

Definition 3.2. Phase model Let N denote the number of particles. Let θk ∈ T and

uk ∈ R denote the phase (direction of motion) and steering control for particle k ∈ N ,

respectively. The phase model is

θ̇k = uk, (3.6)

where uk is a function of θ only.

The phase model (3.6) is equivalent to a system of coupled phase oscillators. Every

solution of the oscillator system induces a trajectory in the particle model. The interplay

between the phase model and the particle model (3.5) is fundamental to our control design

methodology. To illustrate this interplay, we introduce and relate their collective properties.

Let p(z) , (1/N)
∑N

j=1 zj denote the centroid of z , (z1, . . . , zN )T ∈ CN . In the

particle model, the centroid of the particle positions is pr , p(r) = (1/N)
∑N

j=1 rj . If

all of the particles have unit mass, then the position centroid is the center of mass of the

collective. In the phase model, we refer to the unit vector eiθk as the phasor of particle k.

Let eiθ = (eiθ1 , . . . , eiθN )T ∈ CN . The centroid of the particle phasors is called the phase

order parameter [139, p. 71] and is denoted by

pθ , p(eiθ) =
1
N

N∑
j=1

eiθj . (3.7)

If all of the particles have unit mass, then the phase order parameter is the average linear

momentum. In fact, the phase order parameter is equal to the time-derivative of the position
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Figure 3.2: Phase synchronization and balancing for N = 2. (a,b) Two particles with
synchronized phases move in parallel; (c,d) two particles with balanced phases move in
opposite directions.

centroid along solutions of (3.5), that is,

ṗr =
1
N

N∑
j=1

ṙj = p(eiθ) = pθ.

This implies that the motion of the position centroid depends on the value of the phase

order parameter. The magnitude |pθ| of the phase order parameter satisfies 0 ≤ |pθ| ≤ 1.

We use the phase order parameter in the following two definitions, illustrated in Figure 3.2.

Definition 3.3. Phase synchronization and balancing The phase arrangement θ is

synchronized if the modulus of the phase order parameter (3.7) equals one, that is, |pθ| = 1.

The phase arrangement θ is balanced if the phase order parameter (3.7) equals zero, that

is, pθ = 0.

If the phases are synchronized, then all of the particles travel in the same direction. The

set of synchronized states, which we call the synchronized set, is an isolated point modulo

the action of the symmetry group S1. The synchronized set defines a manifold of dimension
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one. If the phases are balanced, then the particles travel in such a way as to keep the

position centroid fixed. The set of balanced states, which we call the balanced set, includes

all of the phase arrangements θ ∈ TN for which pθ = 0.

The codimension of the manifold defined by the balanced set equals the rank of the

equation pθ = 0 [32, pp. 68-69]. The equation pθ = 0 is equivalent to

cos θ1 + cos θ2 + · · ·+ cos θN = 0 (3.8)

sin θ1 + sin θ2 + · · ·+ sin θN = 0. (3.9)

The rank of (3.8)–(3.9) is the rank of the 2×N Jacobian matrix

Dpθ ,

− sin θ1 − sin θ2 · · · − sin θN

cos θ1 cos θ2 · · · cos θN

 . (3.10)

The matrix Dpθ loses rank if there exists an α ∈ R such that

α cos θk − sin θk = 0, ∀ k ∈ N . (3.11)

Using the identity sin2 θk + cos2 θk = 1, (3.11) becomes

cos θk =
±1√
α2 + 1

and sin θ =
±α√
α2 + 1

, ∀ k ∈ N . (3.12)

Let N1 be the number of phases for which cos θk = 1/
√
α2 + 1 and N2 be the number

of phases for which cos θk = −1/
√
α2 + 1. There exists a balanced phase arrangement that

satisfies (3.12) for any α if and only if N is even. This is because in order for (3.12) to hold

in the balanced set, it must be true that

N1 +N2 = N (3.13)

and ∑
j=1

cos θj =
1√

α2 + 1
(N1 −N2) = 0. (3.14)

Equations (3.13) and (3.14) hold only if N1 = N2, which implies N must be even.

For N odd, the equation pθ = 0 has full rank everywhere and the balanced set defines a

manifold of codimension two. For N even, the balanced set is not a manifold of codimension
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two. The equation pθ = 0 loses rank at points where (3.12) holds. For example, pθ = 0

loses rank when there is a cluster of N/2 phases at 0 and another cluster of N/2 phases

at π (α = 0). The equation pθ = 0 also loses rank for phase arrangements with four

clusters—each with N/4 phases—and mirror symmetry about both axes.

In Chapter 4, we derive a steering control u that stabilizes synchronized and balanced

phase arrangements and the corresponding collective particle motion. In Chapter 6, we use

phase synchronization and balancing to stabilize symmetric phase patterns, defined next.

Definition 3.4. Symmetric phase pattern Let M be a divisor of N . An (M,N)-pattern

θ, called a symmetric phase pattern, is a phase arrangement of N phases consisting of M

clusters with N/M synchronized phases in each cluster. If M = 1, then the phases are

synchronized and all of the phases are contained in one cluster; if M > 1, then the clusters

are uniformly spaced around the unit circle.

For any N , there exist at least two symmetric phase patterns: the (1, N)-pattern,

which is the synchronized pattern, and the (N,N)-pattern, which is the so-called splay

pattern [110], characterized by N phases uniformly spaced around the circle.2 For example,

for N = 12, there are six symmetric phase patterns corresponding to the six divisors of N ;

these patterns are illustrated in Figure 3.3. An early classification of symmetric phase

patterns appears in [15], and is extended in [38].

Every symmetric phase pattern shown in Figure 3.3 other than the synchronized pattern

is balanced. For each balanced phase pattern, consider what happens to the pattern if we

multiply all of the phases by the number of phase clusters. (Note, multiplying phase θk

by M rotates θk by (M − 1)θk radians.) For example, starting with the (2, 12)-pattern,

if we multiple all of the phases by M = 2, then the resulting pattern is synchronized. In

fact, multiplying any (M,N)-pattern by M yields the synchronized pattern. Less obvious

is the fact that if θ is an (M,N)-pattern, then each phase arrangement mθ, where m =

1, . . . ,M − 1, is balanced. We summarize the synchronization and balancing properties of
2Also called “antiphase” states [110, 287] and “ponies on a merry-go-round” [13], splay patterns in coupled

oscillator systems have been studied in [298, 249, 260, 183].
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Figure 3.3: Symmetric phase patterns. The six symmetric phase patterns for N = 12
correspond to the six divisors of N , which are M = 1, 2, 3, 4, 6, and 12. Each pattern
contains one to twelve phase clusters depicted here on a unit circle (dashed line). The
number N/M of phases in each cluster is depicted by the width of the cluster annulus.

symmetric phase patterns in the following lemma; the lemma is proven in Chapter 6, where

we provide feedback controls to stabilize symmetric phase patterns.

Lemma 3.5. Symmetric phase pattern Let M be a divisor of N . An arrangement θ

of N phases is an (M,N)-pattern if and only if, for all m ∈ {1, . . . ,M − 1}, the phase

arrangement mθ is balanced and the phase arrangement Mθ is synchronized.

As a precursor to the design of closed-loop controls to stabilize synchronized, balanced,

and symmetric phase patterns, we describe two open-loop steering controls and the resulting

particle motion. In the case uk = 0, the phase θk remains fixed at its initial value θk(0)

and particle k travels in a straight line. In the case uk = ω0 6= 0, where ω0 is constant,

the phase θk evolves linearly with time according to θk(t) = ω0t + θk(0). In this case, to

find the trajectory of particle k, we integrate the particle velocity ṙk = ei(ω0t+θk(0)) using

separation of variables:

rk(t) = rk(0) + iω−1
0 eiθk(0) − iω−1

0 ei(ω0t+θk(0))

We observe that

ck(t) , rk(t) + iω−1
0 eiθk(t) (3.15)

is constant along solutions of the particle model with uk = ω0. The particle trajectory is

rk(t) = ck(0) − iω−1
0 ei(ω0t+θk(0)), which implies particle k orbits a circle of radius |ω0|−1
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centered at ck(0). The direction of rotation of particle k around the circle depends on the

sign of ω0. If ω0 > 0, then the particle travels counterclockwise; if ω < 0, then it travels

clockwise.

The simple examples of straight line and circular motion are building blocks for two

types of collective motion: straight line motion of all particles in the same direction and

circular motion of all particles around the same circle in the same direction.

Definition 3.6. Parallel and circular formations Let 1 , (1, . . . , 1)N ∈ RN and θ0 ∈ T.

A parallel formation of the particle model is a set of trajectories for which θ = θ01, that

is, all of the phases are constant and synchronized. The relative positions of particles in a

parallel formation are arbitrary. Let ck be given by (3.15), c , (c1, . . . , cN )T ∈ CN , c0 ∈ C,

ω0 ∈ R, and ω0 6= 0. A circular formation of the particle model is set of trajectories for

which θ̇ = ω01 and c = c01, that is, all of the particles travel around a circle of radius

|ω0|−1, the direction of rotation is determined by the sign of ω0, and all of the circle centers

ck are equal. The relative phases of particles in a circular formation are arbitrary.

For particles in a circular formation, the (relative) phase arrangement is arbitrary. To

describe circular formations with specific phase arrangements, we use the corresponding

phase pattern terminology. That is, synchronized, balanced, and symmetric circular forma-

tions are circular formations in which the phase arrangement is a synchronized, balanced,

and symmetric, respectively.

3.2 Shape Control and Relative Equilibria

Relative equilibria correspond to steady motions of an uncontrolled system that are fixed

points in a reduced configuration space [161, p. 263], [42, pp. 21, 57]; see also [29]. Parallel

and circular formations are relative equilibria of the particle model (3.5), that is, they are

fixed points in the reduced configuration space called shape space. We describe below the

shape space of the particle model and its equilibria using a Lie group formulation, after [127].

A control law that depends only on coordinates of shape space is called a shape control.
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In the particle model, the state of each particle is (rk, θk), which implies that solutions of

the particle model evolve on the configuration space (C×T)× . . .× (C×T) (N times). This

configuration space is topologically equivalent to N copies of the special Euclidean group

in the plane SE(2), which we denote SE(2)N . Let z1, z2 ∈ C and θ1, θ2 ∈ T. In complex

notation, the special Euclidean group SE(2) acts on C according to (z1, θ1) ·z2 = eiθ1z2+z1.

The group operation is (z1, θ1) · (z2, θ2) = (eiθ1z2 +z1, θ1 +θ2), which is suitably represented

by matrix multiplication. A complex matrix representation iseiθ1 z1

0 1

eiθ2 z2

0 1

 =

ei(θ1+θ2) eiθ1z2 + z1

0 1

 .
If the closed-loop particle model is invariant under the action of SE(2) on the config-

uration space SE(2)N , then solutions evolve on the reduced shape space SE(2)N/SE(2).

The space SE(2)N/SE(2) is called shape space since it describes the position and phase

of the particles relative to one another as opposed to the absolute particle positions and

phases (relative to the inertial frame I). SE(2)-invariance of the closed-loop particle model

means that solutions do not depend on the origin or orientation of the inertial frame I. In

order for the closed-loop particle model to be SE(2)-invariant, then the steering control u

must be SE(2)-invariant, which means that the control does not depend on the origin or

orientation of I; SE(2)-invariant controls are called shape controls.

To illustrate SE(2)-invariance and to formalize the requirement for u to be a shape

control, let r0 ∈ C, let θ0 ∈ T, and consider the smooth SE(2) map Φ : (rk, θk) 7→ (r̄k, θ̄k) ,

(eiθ0rk + r0, θk + θ0). The output (r̄k, θ̄k) relative to the frame I = (0, 1, i) is equal to the

input (rk, θk) relative to the frame (O − r0, e
−iθ0 , ie−iθ0), which is frame I rotated by −θ0

and translated by −r0. Inverting Φ(rk, θk) yields rk = (r̄k − r0)e−iθ0 and θk = θ̄k − θ0. The

time-derivatives of rk and θk in the transformed coordinates are

ṙk = ˙̄rke−iθ0

θ̇k = ˙̄θk.
(3.16)

Using the closed-loop particle model (3.5) with u = u(r,θ), rk replaced by (r̄k − r0)e−iθ0 ,
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and θk replaced by θ̄k − θ0, we find

ṙk = ei(θ̄k−θ0)

θ̇k = uk((r̄ − r01)e−iθ0 , θ̄ − θ01).
(3.17)

Using (3.16) and (3.17), we obtain ˙̄rk = eiθ̄k and ˙̄θk = uk((r̄ − r01)e−iθ0 , θ̄ − θ01). The

closed-loop particle model is SE(2)-invariant if uk((r̄ − r01)e−iθ0 , θ̄ − θ01) = uk(r̄, θ̄) for

all k ∈ N . This leads to the following definition.

Definition 3.7. Shape control Let r0 ∈ C and θ0 ∈ T. The steering control u = u(r,θ)

is a shape control of the particle model (3.5) if

uk((r − r01)e−iθ0 ,θ − θ01) = uk(r,θ), ∀ k ∈ N . (3.18)

The steering control u = u(θ) is a shape control of the phase model (3.6) if

uk(θ − θ01) = uk(θ), ∀ k ∈ N . (3.19)

In order to satisfy condition (3.18) or (3.19), the control u must depend only on the

so-called shape variables. We derive the shape variables for N = 2 using a Lie group

formulation of the particle model (3.5), after [127]. Let g1, g2 ∈ SE(2) be given by

g1 =

eiθ1 r1

0 1

 , g2 =

eiθ2 r2

0 1

 . (3.20)

Since N = 2, the shape space is SE(2)2/SE(2). Let g ∈ SE(2)2/SE(2) be given by

g , g−1
1 g2. The entries of g and its inverse g−1 are shape variables. Let θk,j , θk − θj

denote phase θk relative to phase θj and let rk,j = rk − rj denote position rk relative to

position rj . We have

g =

e−iθ1 −e−iθ1r1

0 1

eiθ2 r2

0 1

 =

eiθ2,1 r2,1e
−iθ1

0 1

 (3.21)

and

g−1 =

eiθ1,2 r1,2e
−iθ2

0 1

 . (3.22)
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Figure 3.4: Shape variables. The shape variables are shown for control u2 with N = 2.

Using (3.21) and (3.22), we observe that the quantity eiθ1,2 = (eiθ2,1)−1 is a shape variable,

which implies that the relative phase θ1,2 = −θ2,1 is a shape variable. The quantities

r2,1e
−iθ1 and r1,2e

−iθ2 are also shape variables. We interpret the quantity r1,2e
−iθk as the

relative position r1,2 with respect to the path frame Bk, k = 1, 2. The steering controls

u1 = u1(r1,2e−iθ1 , θ1,2) and u2 = u2(r1,2e−iθ2 , θ1,2) satisfy the shape control condition (3.18)

since

uk((r1,0e−iθ0 − r2,0e
−iθ0)e−iθk,0 , θ1,0 − θ2,0) = uk(r1,2e−iθk , θ1,2).

The shape variables for control u2 are shown in Figure 3.4.

The discussion for N = 2 help to identify shape variables for N ≥ 2, given in the

following lemma.

Lemma 3.8. Shape variables For all j, k ∈ N , j 6= k, the relative phases θj,k and the

relative positions rj,k with respect to the path frame Bk are shape variables of the closed-loop

particle model (3.5). The relative phases θj,k are shape variables of the closed-loop phase

model (3.6).

Proof. Steering controls of the form

uk = (r1,ke−iθk , . . . , rN,ke
−iθk , θ1,k, . . . , θN,k), k ∈ N ,

are shape controls of the particle model because they satisfy condition (3.18).

Note that we don’t need all θj,k, j 6= k, to span the phase shape space TN/T, since

only N − 1 of the relative phases are linearly independent. Similarly, we need only N − 1
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relative phases and N − 1 relative positions to span the shape space SE(2)N/SE(2), which

is topologically equivalent to SE(2)N−1.

If the particle model is SE(2)-invariant, then the shape variables evolve on the shape

space. Fixed points of the shape dynamics are called relative equilibria of the particle

model. We find the relative equilibria for N = 2 using a Lie group formulation, after [127].

The time-derivatives of g1 and g2 from (3.20) along solutions of (3.5) are

ġ1 =

u1ie
iθ1 eiθ1

0 0

 , ġ2 =

u2ie
iθ2 eiθ2

0 0

 .
Let a, b ∈ se(2), where se(2) is the Lie algebra of SE(2), be given by

a ,

0 1

0 0

 , b ,

i 0

0 0

 . (3.23)

In the Lie formulation, the particle model (3.5) with N = 2 becomes

ġ1 = g1(a + bu1)

ġ2 = g2(a + bu2).
(3.24)

Note that the Lie bracket of a and b is [a, b] , a · b − b · a =

0 −i

0 0

, which implies

that the basis (a, b, [a, b]) spans se(2). Therefore, even though the particle model is not

small-time local controllability (see, for example [263, Theorem 2.4]), it is locally strongly

accessible (see, for example [184, Theorem 3.21]). That is, even though a particle cannot

stop or move directly sideways, it can be steered to reach any nearby point in a short

amount of time.

Let uk be a shape control of the particle model, that is, uk depends only on the shape

variables θ1,2 and r1,2e
−iθk . The time-derivative of g = g−1

1 g2 along the solutions of (3.24)

yields the shape dynamics

ġ = −g−1
1 ġ1g

−1
1 + g−1

1 ġ2

= −(a + bu1)g + g(a + bu2).
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Fixed points of the shape dynamics satisfy ġ = 0, which evaluates tou2ie
iθ2,1 eiθ2,1

0 0

 =

u1ie
iθ2,1 1 + u1ir2,1e

−iθ1

0 0

 . (3.25)

Equation (3.25) holds for u1 = u2 and eiθ2,1 = 1 + u1ir2,1e
−iθ1 . If u1 6= 0, the latter

condition is equivalent to r2,1 + u−1
1 i(eiθ2 − eiθ1) = 0. Two relative equilibria that satisfy

these conditions are (i) u1 = u2 = 0 and θ1,2 = 0; and (ii) u1 = u2 = ω0 6= 0 and

c1,2 , c1 − c2 = 0, where the center ck is defined in (3.15). These two relative equilibria

correspond to a parallel formation and a circular formation, respectively. More generally,

the following proposition holds [127, Proposition 4].

Proposition 3.9. Relative equilibria of the particle model Let j, k ∈ N . On the

collision-free configuration space {SE(2)N | rj,k 6= 0 ∀ j 6= k}, relative equilibria of the

closed-loop particle model (3.5) with shape control u satisfy u1 = u2 = · · · = uN and either:

(a) u1 = u2 = . . . = uN = 0, in which case relative equilibria are parallel formations; or (b)

u1 = u2 = . . . = uN 6= 0, in which case relative equilibria are circular formations.

3.3 Interaction Networks and Graph Theory

In the previous section we describe the steering control restrictions that enable the closed-

loop particle and phase models to evolve on a reduced shape space. In this section, we

describe the steering control restrictions that enable the closed-loop particle and phase

models to accurately reflect (limited) interaction between particles. Particle interaction

induces (or is limited by) a particle interaction network that we describe by a time-varying

and directed graph. For general graph theory references, see, for example [26, 49, 73].

Definition 3.10. Interaction network Let j, k ∈ N . An interaction network is described

by the graph G(t) , (N , E(t)), where E(t) ⊂ N ×N is a set of ordered pairs (j, k), j 6= k.

Each node k in the graph is identified with a particle or phase. Each edge (j, k) in the graph

represents the directed flow from the tail j to the head k of information used to compute the

steering control uk at time t.
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Figure 3.5: Interaction network. An interaction network is shown at time t for N = 3 with
graph G(t) = ({1, 2, 3}, {(2, 1), (3, 2)}), which contains a directed edge from node 2 to node
1 and another from node 3 to node 2.

We illustrate the graph representation of the interaction network in the complex plane.

In the particle model, the ordered pair (j, k) corresponds to the relative position rk,j . In

the phase model, the ordered pair (j, k) corresponds to the relative phasor eiθk − eiθj . See

Figure 3.5 for an illustration of an interaction network for N = 3 with graph G(t) =

({1, 2, 3}, {(2, 1), (3, 2)}). This notation means that, between the three nodes k = 1, 2, 3

there is one directed edge from node 2 to node 1 and another from node 3 to node 2.

If (j, k) ∈ E(t), then node j is a neighbor of node k at time t. The set Nk(t) , {j |

(j, k) ∈ E(t)} contains the neighbors of node k at time t. The number of neighbors of node

k at t is the cardinality |Nk(t)|. Graph G(t) is undirected if, for all t, j is a neighbor of k

if and only if k is a neighbor of j. Graph G(t) is time-invariant if E(t1) = E(t2) for all t1

and t2 and we write G(t) = G and E(t) = E, etc. A complete graph is an undirected and

time-invariant graph in which every pair of nodes is connected, that is, (j, k) ∈ E for all

j, k ∈ N .

We define the connectivity of an interaction network as follows. A path is an ordered

sequence of distinct edges in which the head of every edge in the sequence is the tail of

the next edge, except for the head of the last edge in the sequence, which is arbitrary. For

example, let (j, k), (k, l), (l,m) ∈ E(t), then {(j, k), (k, l), (l,m)} is a path in E(t) from node

j to node m through nodes k and l. If there is a path from one node (the root) to every

other node in a graph, then the graph is rooted . This leads to the following definition.
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Definition 3.11. Graph connectivity Consider a graph G(t) = (N , E(t)). Assume that

E(t) is piecewise constant over finite lengths of time. Graph G(t) is strongly connected if

and only if there is a path in E(t) between every pair of distinct nodes for all t. Graph

G(t) is uniformly connected if and only if there is a bounded time T > 0 such that the

graph Ḡ(t) , (N ,
⋃
τ∈[t,t+T ]E(τ)) is rooted for all t. Graph G(t) is uniformly connected to

a single node if and only if it is uniformly connected and there exists a k ∈ N such that

node k is the root of Ḡ(t) for all t.

Note, a graph is weakly connected if and only if there is an edge sequence that does not

necessarily obey the edge directions between every pair of distinct nodes. Weak and strong

connectivity are identical for undirected graphs. A strongly connected, undirected graph

is called connected. Note, if graph G is time-invariant and strongly connected, then G is

uniformly connected to a single node.

We have the following matrix representation of the interaction network.

Definition 3.12. Graph Laplacian Let Nk denote the neighbors of k in graph G(t) =

(N , E(t)). The Laplacian matrix L(t) , [lkj(t)] ∈ RN×N of G(t) has components

lkj(t) =


−1, j ∈ Nk(t),

|Nk(t)|, j = k,

0, otherwise.

(3.26)

For example, consider the special case of all-to-all interaction, which means that the

interaction network is described by a complete graph. In this case, the Laplacian matrix is

L = NP , where

P , diag{1} − 1
N

11T =
1
N


N − 1 −1 · · · −1

−1 N − 1 · · · −1

...
. . .

−1 · · · −1 N − 1

 (3.27)

is a symmetric projection matrix [170, pp. 386-388]. That is, P = P T and P 2 = P . The

matrix P has only two distinct eigenvalues: zero, which has multiplicity one, and one, which

has multiplicity N − 1. The eigenvector associated to the eigenvalue zero is 1. We have
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P1 = 1TP = 0 for 0 = (0, . . . , 0)T ∈ RN , which means P projects from CN to the subspace

complementary to the space spanned by 1.

By inspection of (3.26), we observe that L(t) is symmetric if and only if G(t) is undi-

rected. Also, by inspection, the Laplacian has zero row sums, which implies that the vector

1 is in the kernel of L(t), that is, L(t)1 = 0 for all t. We have
∑N

j=1,j 6=k |lkj(t)| = lkk(t) ≥ 0,

which implies by the Gershgorin circle theorem [116, Theorem 6.1.1] that all of the eigen-

values of L(t) other than zero have positive real part. Consequently, if G(t) is undirected,

then L(t) is positive semidefinite. If G(t) is strongly connected, then the zero eigenvalue

of L(t) is simple [192, Theorem 1]. For additional spectral properties of the Laplacian,

see, for example, [173]. If L(t) has zero column sums then the number of edges in E(t)

with head k equals the number of edges with tail k and we call G(t) balanced . Balanced

graph Laplacians satisfy L(t) + LT (t) ≥ 0 [174, Proposition 1]. Every undirected graph is

balanced.

If G(t) = (N , E(t)) is undirected, then the Laplacian L(t) factors into the product of

a non-square matrix B(t) and its transpose, that is L(t) = B(t)B(t)T = L(t)T [93, p.

279]. The matrix B(t) is called the incidence matrix of G(t). The incidence matrix has

N rows and |E(t)| columns, where |E(t)| is the edge set cardinality. Each column of B(t)

corresponds to an edge (j, k) ∈ E(t) in the following way: entry j is −1, entry k is +1, and

all of the other entries are zero. Note that the vector B(t)Tr contains all of the relative

positions rk,j such that (j, k) ∈ E(t).

A relevant generalization of the complete graph is the circulant graph. Graph G is

circulant if and only if L is a circulant matrix, that is, L is defined completely by its first

row. If L is circulant then every row other than the first is equal to the last entry of the

previous row followed by the first N − 1 entries of the previous row. Let Lk denote the kth

row of a graph Laplacian at time t. An example of a circulant graph is the time-invariant

and undirected graph with L1 = (1, 0,−1, 0) shown in Figure 3.6(a). The complete graph

is a circulant graph with L1 = (N − 1,−1, . . . ,−1) (see Figure 3.6(b)). A cycle is a path in

which the head of the last edge is equal to the tail of the first edge. The cyclic graph, which
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Figure 3.6: Circulant graphs. Three undirected circulant graphs for N = 4. The graph in
(b) is a cycle; the graph in (c) is complete. Only (b) and (c) are connected.

contains one cycle through all of its nodes, is a circulant graph with L1 = (2,−1, 0, . . . , 0, 1)

(see Figure 3.6(c)). We refer to an interaction network described by a cyclic graph as a ring.

Note cyclic graphs are balanced because each node has exactly one incoming edge and one

outgoing edge. Cyclic pursuit is type of rendezvous problem in which agents have a directed

ring interaction network [155, 163, 250]. Circulant graphs have been studied in the context

of oscillator synchrony [209, 226], formation control [162, 225], and network reliability [30].

Circulant graphs play an important role in stabilization of symmetric phase patterns

with time-invariant and undirected interaction, described in Chapter 6. This is because

circulant graph Laplacians are circulant matrices, which have the following spectral prop-

erty: every circulant matrix is diagonalized by the discrete Fourier transform matrix [60,

Theorem 3.2.2], [98, p. 187]. We formalize this statement in the following proposition [241,

Lemma 1].

Proposition 3.13. Eigenvectors of circulant graph Laplacians Let L be the Laplacian

of an undirected circulant graph G = (N , E). Set φk = 2π
N (k − 1) for k ∈ N . The vectors

f (l) , eiφ(l−1), l ∈ N , (3.28)

define a basis of N orthogonal eigenvectors of L. The unitary matrix F whose columns

are the N normalized eigenvectors 1√
N
f (l) diagonalizes L, that is, L = FΛF ∗, where Λ =

diag{λ1, . . . , λN} ≥ 0 is the (real) diagonal matrix of eigenvalues of L.

A meaningful class of time-varying and directed interaction networks is generated by

local interaction between neighboring particles. This leads to the following definition.
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Definition 3.14. Proximity-based interaction networks A network in which particle

interaction occurs only between particles in proximity to one another is called a proximity-

based interaction network.

We give several examples of proximity-based interaction and the network each generates.

One type of proximity-based interaction occurs between two particles j and k if particle j is

in the kth particle’s perceptual zone, which is a set points in C (not necessarily containing

rk). For example, if the perceptual zone of the kth particle at time t is a circle of radius

ρk(t) > 0 centered at rk(t), then particle j is a neighbor of k at time t if and only if the

relative position rk,j(t) satisfies ‖rk,j(t)‖ ≤ ρk(t). We refer to interaction networks with

this type of interaction as zonal interaction networks. Another type of proximity-based

interaction occurs between each particle k and up to |Nk|max of its nearest neighbors. We

refer to interaction networks with this type of interaction as nearest-neighbor interaction

networks. The intersection of zonal and nearest-neighbor interaction generates a third type

of proximity-based interaction network in which interaction occurs between each particle

k and up to |Nk|max nearest neighbors contained in the perceptual zone of particle k.

Interactions weighted by distance between individuals is studied in, for example, [57].

The interaction network and the corresponding graph G(t) impact the design of steering

control of the particle and phase models. In fact, we classify the steering control algorithms

according to three types of interaction networks: (i) all-to-all interaction, (ii) undirected

and time-invariant interaction, and (iii) general interaction. We refer to the corresponding

steering algorithms as all-to-all, Laplacian, and dynamic, respectively. In Chapters 4–6,

we describe feedback control algorithms that stabilize synchronized, balanced, and sym-

metric phase patterns. We also describe algorithms that stabilize arbitrary, synchronized,

balanced, and symmetric circular formations. A Venn diagram of these algorithms and the

requirements imposed on the interaction network appears in Figure 3.7. For each algo-

rithm, the approach we take for all-to-all interaction provides a roadmap for the approach

to limited interaction.
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General

Uniformly connected

Uniformly connected w.r.t. a single node

(Dynamic phase pattern)
synchronized* 4.3

Dynamic circular formation
arbitrary 5.3 and synchronized* 5.3

Balanced

(Dynamic phase pattern)
balanced 4.3

Dynamic circular formation
balanced 5.3 and symmetric 6.3

Time-invariant and undirected

Circulant

Laplacian phase pattern 
balanced 4.2 and symmetric 6.2
Laplacian circular formation

balanced 5.2 and symmetric 6.2

All-to-all

All-to-all phase pattern 
synchronized 4.1, balanced 4.1 

and symmetric 6.1
All-to-all circular formation

arbitrary 5.1, synchronized 5.1,
balanced 5.1 and symmetric 6.1

(Euclidean consensus)
exponential convergence 4.3

Laplacian phase pattern
synchronized 4.2

Laplacian circular formation
arbitrary 5.2 and synchronized 5.2

Connected

(Euclidean consensus)
asymptotic convergence 4.3

Figure 3.7: Results by level of interaction. A Venn diagram of the feedback control algo-
rithms described in Chapters 4, 5, and 6 (algorithms are labeled with chapter and section
numbers). The algorithm position indicates the requirements imposed on the interaction
network. Each of the next three chapters describes all-to-all control algorithms for all-to-
all interaction (gray set), Laplacian control algorithms for time-invariant and undirected
interaction (light gray set), and dynamic control algorithms for general interaction (white
set). The design of algorithms contained in parenthesis (·) did not involve the author; these
algorithms are important to the design of the dynamic circular formation algorithms and
are summarized here. The dynamic control algorithms marked with an asterisk * converge
with probability one; convergence is guaranteed if the interaction network is balanced.



Chapter 4

Phase Synchronization and

Balancing

We now consider the design of steering controls that stabilize synchronized and balanced

phase arrangements. Recall that the phase model (3.6) describes the first-order dynamics

θ̇k = uk(θ) of N phases on the N -torus TN . We describe shape controls uk(θ1,k, . . . , θN,k)

that preserve the rotation symmetry of the closed-loop phase model and adhere to the lim-

itations of the interaction network. We start in Section 4.1 by considering the phase model

with all-to-all interaction, that is, the interaction network is described by a time-invariant

and complete graph G. In Section 4.2, we extend the control design to time-invariant and

undirected interaction networks that are not all-to-all; in this case, the Laplacian L of G

plays a significant role. In Section 4.3, we describe a control algorithm for time-varying and

directed interactions that recovers the all-to-all results.

4.1 All-to-all Interaction

Let G = (N , E) be the complete graph that describes an all-to-all interaction network. The

set of neighbors of node k of graph G is Nk = {j | j ∈ N , j 6= k}. Consequently, we seek

a shape control of the form uk = uk(θ1,k, . . . , θN,k}. That is, the control of phase θk may

69
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depend on the relative phase of every other phase j 6= k. This suggests a control design

that depends on average quantities.

Consider the all-to-all phase potential

U(θ) ,
N

2
|pθ|2 =

1
2N

∣∣∣∣∣∣
N∑
j=1

eiθj

∣∣∣∣∣∣
2

, (4.1)

which reaches its minimum when pθ = 0 (balancing) and its maximum N/2 when |pθ| = 1

(synchronization). Let θ0 ∈ T. The potential U(θ) is invariant to rigid rotation of all of the

phases since U(θ + θ01) = (N/2)|pθeiθ0 |2 = U(θ). Let ∇U , ( ∂U∂θ1 , . . . ,
∂U
∂θN

)T denote the

gradient of U(θ). The kth component of ∇U is

∂U
∂θk

= N
2 (〈∂pθ

∂θk
, pθ〉+ 〈pθ, ∂pθ

∂θk
〉) = 〈ieiθk , pθ〉

= 1
N

∑N
j=1 Re{−ieiθj ,k} = 1

N

∑N
j=1 sin θj,k.

(4.2)

Critical points of U(θ) satisfy ∇U = 0. For example, the global extrema of phase synchro-

nization and phase balancing are critical points. We characterize critical points that are

not synchronized or balanced as follows [243, Theorem 1].

Lemma 4.1. Critical points of the all-to-all phase potential Critical points of the

all-to-all phase potential U(θ) defined in (4.1), where 0 < |pθ| < 1, are isolated in the phase

shape space TN/T and are saddle points of U(θ).

Proof. Let θ̄ ∈ TN be a critical point of U(θ) with 0 < |p̄θ| < 1, where p̄θ , p(eiθ̄). We

have ∂U
∂θk

= 〈ieiθ̄k , p̄θ〉 = 0 for all k ∈ N , which implies p̄θ = ±|p̄θ|eiθ̄k . We observe that the

phases θ̄k necessarily lie in one of two clusters that are on opposite sides of the unit circle;

all of the phases within each cluster are identical. The clusters have an unequal number

of phases since θ̄ is not balanced and each cluster has at least one phase since θ̄ is not

synchronized. If θ̄k is in the bigger cluster then 〈eiθ̄k , p̄θ〉 > 0 and if θ̄k is in the smaller

cluster then 〈eiθ̄k , p̄θ〉 < 0. The modulus |p̄θ| satisfies |p̄θ| ≥ 1/N , where |p̄θ| = 1/N if and

only if N is odd and the number of phases in each cluster differs by one.

First we prove that θ̄ is isolated in the phase shape space. Let ϕ , (ϕ1, . . . , ϕN−1)T ∈

TN/T denote coordinates in shape space, where ϕj , θk+1,k = θk+1 − θk. Let ϕ̄ ∈ TN/T
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be the point that corresponds to θ̄. We observe ϕ̄j ∈ {0, π} for all j ∈ {1, . . . , N − 1},

that is, ϕ̄k = 0 or ϕ̄ = π. Let Φ , {ϕ | |ϕj − ϕ̄j | < ε, j = 1, . . . , N − 1} define an open

neighborhood about ϕ̄. If ε < π, then the neighborhood Φ contains only one critical point,

which is ϕ̄. This completes the first part of the proof.

Let δθ , (δθ1, . . . , δθN )T ∈ RN be a small variation of the vector θ. The Taylor series

expansion of U(θ) about the critical point θ̄ is

U(θ̄ + δθ) = U(θ̄) + (∇U(θ̄)︸ ︷︷ ︸
0

)T δθ + δθTH(θ̄)δθ +O(‖δθ‖3), (4.3)

where H(θ̄) = [hkj(θ̄)] is the Hessian of U(θ) evaluated at θ̄. We find the components

hkj(θ) of the Hessian H(θ) by evaluating the second derivatives ∂2U
∂θk∂θj

for all pairs j and

k, which yields

hkj(θ) ,


1
N 〈e

iθk , eiθj 〉, j 6= k,

1
N − 〈eiθk , pθ〉, j = k.

(4.4)

We prove that θ̄ is a saddle point by showing that δU(θ̄) , U(θ̄ + δθ) − U(θ̄) can be

positive or negative. Consider the variation δθ = (δθ1, δθ2, 0, . . . , 0)T , which implies

δU(θ̄) = h11(θ̄)δθ2
1 + (h12(θ̄) + h21(θ̄))δθ1δθ2 + h22(θ̄)δθ2

2. (4.5)

First, consider the case |p̄θ| > 1/N . In this case, set δθ2 = 0, which implies δU(θ̄) =

h11(θ̄)δθ2
1 = 1/N − 〈eiθ1 , p̄θ〉. In this case, if θ̄1 is in the big cluster, then δU(θ̄) < 0;

otherwise, if θ̄1 is in the small cluster, then δU(θ̄) > 0. Next, consider the case |p̄θ| = 1/N .

In this case, assume, without loss of generality, that both θ̄1 and θ̄2 are in the big cluster,

which implies h11(θ̄) = h22(θ̄) = 0, h12(θ̄) = h21(θ̄) = 1/N , and δU(θ̄) = (2/N)δθ1δθ2. In

this case, if δθ1 and δθ2 have opposite signs, then δU(θ̄) < 0; if δθ1 and δθ2 have the same

sign, then δU(θ̄) > 0. This completes the proof.

The time-derivative of U(θ) along solutions of the phase model (3.6) is

U̇ =
N∑
j=1

∂U

∂θj
uj =

N∑
j=1

〈ieiθj , pθ〉uj

Choosing the gradient control

uk = −K〈ieiθk , pθ〉, (4.6)
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yields

U̇ = −K
N∑
j=1

〈ieiθj , pθ〉2.

This leads to the following theorem, extracted from [243, Theorem 1]. This result is related

to [40, Propositions 4.3.4], on gradient control of the phase model, and [40, Propositions

4.3.5], on gradient control using sinusoids.

Theorem 4.2. All-to-all phase synchronization and balancing For the shape con-

trol (4.6), all of the solutions of the closed-loop phase model (3.6) converge to the critical

set of the all-to-all phase potential (4.1). If K < 0, then all of the synchronized phase

arrangements are asymptotically stable and all of the remaining equilibria are unstable. If

K > 0, then the balanced equilibria for which pθ = 0 are asymptotically stable and all of the

remaining equilibria are unstable.

Proof. The closed-loop phase model (3.6) with the shape control (4.6) evolves on the com-

pact shape space TN/T under the gradient dynamics

θ̇ = −K∇U. (4.7)

The potential KU(θ) : TN/T → R is a continuously differentiable function with d
dt(KU) ≤

0 along solutions of (4.7). Let Ω denote the set of all points in the shape space where

d
dt(KU) = 0. Points in Ω satisfy

〈ieiθk , pθ〉 = 0. (4.8)

The set Ω is invariant since the condition (4.8) implies θ̇k,j = uk−uj = 0 for all pairs j and

k. By the invariance principle [131, Theorem 4.4], every solution of (4.7) approaches Ω as

t→∞. Comparing (4.2) and (4.8), we conclude that Ω is the set of critical points of U(θ),

which completes the first part of the proof.

Critical points where pθ = 0 are global minima of U(θ), which implies the balanced set

is asymptotically stable if K > 0 and unstable if K < 0. Similarly, critical points where

|pθ| = 1 are global maxima of U(θ), which implies the synchronized set is asymptotically

stable if K < 0 and unstable if K > 0. By Lemma 4.1, all other critical points of U(θ) are
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Figure 4.1: All-to-all phase control. Simulations of the closed-loop particle model with the
all-to-all phase control (4.6) for N = 12. We denote the position centroid pr by a circle
marked with an x; the velocity ṗr equals the order parameter pθ. (a) Phase synchronization
generates a parallel formation; (b) phase balancing fixes the position centroid. Only (a) is
a relative equilibrium of the particle model.

isolated in the shape space and are saddle points of U(θ), which implies they are unstable

for any K 6= 0.

Theorem 4.2 enables control of the magnitude |pθ| of the order parameter. In the particle

model, control of |pθ| corresponds to control of the speed |ṗr| of the particle position centroid.

By Theorem 4.2, almost all solutions of the closed-loop particle model (3.5) under the phase

control (4.6) with K > 0 converge to the balanced set where the velocity of the position

centroid is zero. If K < 0, then almost all solutions converge to a parallel formation, which

is a relative equilibrium of the particle model. The direction of motion of the parallel

formation depends on the initial conditions since (4.6) is a shape control and is invariant to

rigid rotation of all of the phases. We illustrate these results with the simulations shown in

Figures 4.1(a) and 4.1(b).

The control (4.6) is rotationally invariant because it is proportional to the gradient of the

rotationally invariant phase potential U(θ). The rotational invariance of U(θ) has another

implication that is described in the following corollary. Let ω0 ∈ R and consider the shape
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control

uk = ω0 −K〈ieiθk , pθ〉 = ω0 −
K

N

N∑
j=1

sin θj,k. (4.9)

Corollary 4.3. All-to-all phase synchronization and balancing The results of The-

orem 4.2 still apply if control (4.6) is replaced by (4.9).

Proof. The time-derivative of U(θ) along solutions of the closed-loop particle model with

the control (4.9) is

U̇ =
N∑
j=1

(
ω0〈ieiθj , pθ〉 −K〈ieiθj , pθ〉2

)
= ω0N 〈ipθ, pθ〉︸ ︷︷ ︸

0

−K
N∑
j=1

〈ieiθj , pθ〉2.

The remainder of the proof is identical to the proof of Theorem 4.2 since the constant ω0

vanishes in the reduced shape space.

Recall that the open-loop control u = ω01, where ω0 6= 0, drives each particle around a

circle of radius |ω0|−1 in a direction determined by the sign of ω0. The control (4.9) drives

each particle around a (different) circle with a collective phase arrangement that is a critical

point of U(θ). If K < 0, then only the set of synchronized solutions is asymptotically stable

and every other equilibrium is unstable. If K > 0, then only the set of balanced solutions

where ṗr = pθ = 0 is asymptotically stable and every other equilibrium is unstable. We

illustrate these results with the simulations shown in Figures 4.2(a) and 4.2(b).

The control (4.9) is a simplified version of the Kuramoto model [138] of a system phase

oscillators that are sinusoidally coupled. If one interprets the constant term ω0 as the natural

frequency of each oscillator θk, then all of the oscillators are identical; in the Kuramoto

model, the oscillators have different natural frequencies. Another property of the Kuramoto

model is all-to-all interaction. In the next section we consider a version of the Kuramoto

model with identical oscillators and limited interaction.

4.2 Time-invariant and Undirected Interaction

The all-to-all phase control (4.6) requires an all-to-all interaction network, because one

must use the relative phases θj,k for all pairs j and k in order to compute uk. In this
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Figure 4.2: All-to-all phase control during circular motion. Simulations of the closed-loop
particle model with the all-to-all phase control (4.9) for N = 12 and ω0 = 0.1. We denote
the position centroid pr by a circle marked with an x; the velocity ṗr equals the order
parameter pθ. (a) Phase synchronization in circular orbits; (b) phase balancing fixes the
position centroid. Neither (a) nor (b) are relative equilibria of the particle model.

section, we consider a generalization of the all-to-all phase control methodology that enables

phase synchronization and balancing with time-invariant and undirected interaction that

is limited. We start by generalizing the all-to-all phase potential (4.1) using a Laplacian

quadratic form defined as follows [169].

Definition 4.4. Laplacian quadratic form Let L be the Laplacian matrix of graph G =

(N , E). Let x,y,z ∈ CN . The Laplacian quadratic form associated to L is

QL(z) , 〈z, Lz〉, (4.10)

where 〈x,y〉 ,
∑N

k=1〈xk, yk〉 =
∑N

k=1 Re{x∗kyk}.

The first part of the following lemma is based on [192, Theorem 6].

Lemma 4.5. Properties of the Laplacian quadratic form If G is strongly connected

and balanced, then the Laplacian quadratic form QL(z) defined in (4.10) is positive semidef-

inite and is zero if and only if z = z01, z0 ∈ C. Furthermore, QL(z) is invariant to the

action of SE(2) on the argument z.
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Proof. Let z0 ∈ C and θ0 ∈ T. If G is strongly connected and balanced, then L1 = 1TL = 0,

L + LT ≥ 0, and 1 spans the kernel of L. To prove the first part of Proposition 4.5, we

observe that

QL(z) =
1
2

〈z, (L+ LT )z〉︸ ︷︷ ︸
≥0

+
1
2

〈z, (L− LT )z〉︸ ︷︷ ︸
0

.

Let z 7→ eiθ0z + z01 denote the action of (z0, θ0) ∈ SE(2) on z ∈ CN . To prove the

second part of the proposition, we observe that

QL(eiθ0z + z01) = 〈eiθ0z + z01, L(eiθ0z + z01)〉 = 〈eiθ0z + z01, eiθ0Lz〉

= 〈eiθ0z, eiθ0Lz〉︸ ︷︷ ︸
QL(z)

+ 〈z0LT1, eiθ0z〉︸ ︷︷ ︸
0

.

This completes the proof.

If G = (N , E) is undirected and connected, then L = BBT . Suppose we identify node

k of G with component zk of the vector z ∈ CN for all k ∈ N . In this case,

QL(z) = 〈BTz, BTz〉 =
∑

(j,k)∈E

|zj − zk|2. (4.11)

Consequently, we interpret the Laplacian quadratic form of an undirected and connected

graph as the sum of the squared length of the graph edges.

The Laplacian quadratic form leads naturally to a generalization of the all-to-all phase

potential (4.1) for limited, time-invariant interaction. Note the all-to-all phase potential

can be written

U(θ) =
N

2
〈pθ, pθ〉 =

1
2N

〈1T eiθ,1T eiθ〉 =
1
2
〈eiθ, 1

N
11T eiθ〉. (4.12)

Compare this expression to the Laplacian phase potential [240]

WL(θ) ,
1
2
QL(eiθ) =

1
2
〈eiθ, Leiθ〉. (4.13)

We see that the term (11T )/N = diag{1} − P in (4.12) has been replaced by L in (4.13),

where P is the projection matrix defined in (3.27) and L is the graph Laplacian.
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The Laplacian phase potential WL(θ) preserves many of the same properties as U(θ),

and permits us to define a gradient control law that respects limitations in particle inter-

action. If G is either undirected or directed, then the Laplacian phase potential (4.13) is

positive semidefinite, since

WL(θ) =
N∑
k=1

〈eiθk , |Nk|eiθk −
∑
j∈Nk

eiθj 〉 =
N∑
k=1

|Nk| −
∑
j∈Nk

〈eiθk , eiθj 〉


︸ ︷︷ ︸

≥0

.

If θ is synchronized, that is, if eiθ = eiθ01 for any θ0 ∈ T, then WL(θ) = 0. If G is strongly

connected, then WL(θ) = 0 if and only if θ is synchronized. If G is strongly connected

and balanced, then the Laplacian phase potential is invariant to rotation by θ0 of all of the

phases by Lemma 4.5.

If G is undirected, then k ∈ Nj if and only if j ∈ Nk and the kth component of the

gradient of WL(θ), k ∈ N , is

∂WL
∂θk

= 1
2

∑N
j=1

∂
∂θk
〈eiθj , Lje

iθ〉 = 1
2

(
〈ieiθk , Lke

iθ〉+
∑N

j=1〈eiθj , ∂
∂θk

(Ljeiθ)〉
)

= 1
2(〈ieiθk , Lke

iθ〉 −
∑
j∈Nk

〈eiθj , ieiθk〉︸ ︷︷ ︸
−〈ieiθk ,Lkeiθ〉

) = 〈ieiθk , Lke
iθ〉 =

∑
j∈Nk

sin θk,j . (4.14)

If G is undirected and connected, we see by (4.11) that WL(θ) is maximum in the set of

phase arrangements that maximizes the total length of all of the graph edges. By comparing

(4.14) with (4.2), we observe that if G is complete, then the critical points of WL(θ) are

identical to the critical points of the all-to-all phase potential U(θ). The Laplacian of a

complete graph is NP , where P is the projection matrix defined in (3.27). We have

WNP (θ) =
N

2

N∑
j=1

〈eiθj , Pje
iθ〉 =

N

2

N∑
j=1

〈eiθj , eiθj−pθ〉 =
N

2
(N−N |pθ|2) = N

(
N

2
− U(θ)

)
.

Thus, if G is complete, then the minimum of U(θ) (balancing) corresponds to the maximum

of WL(θ). If G is undirected and connected, we have the following partial characterization

of the critical points of WL(θ).

Lemma 4.6. Critical points of the Laplacian phase potential Let L be the Laplacian

of an undirected and connected graph G = (N , E). Consider the Laplacian phase potential
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WL(θ) defined in (4.13). If eiθ is an eigenvector of L, then θ is a critical point of WL(θ)

and θ is either synchronized or balanced. The potential WL(θ) reaches its global minimum

if and only if θ is synchronized. If G is circulant, then WL(θ) reaches its global maximum

in a balanced phase arrangement.

Proof. Let eiθ̄ be an eigenvector of L with eigenvalue λ ∈ R. Then Leiθ̄ = λeiθ̄ and

∂WL

∂θk

∣∣∣∣
θ=θ̄

= 〈ieiθ̄k , Lke
iθ̄〉 = λ〈ieiθ̄k , eiθ̄k〉 = 0,

which implies that θ̄ is a critical point of WL(θ). Since graph G is undirected, then the

Laplacian L is Hermitian and the eigenvectors of L associated with distinct eigenvalues are

mutually orthogonal. Since G is also connected, then 1 spans the kernel of L. Therefore,

the eigenvector associated to λ = 0 is eiθ̄ = eiθ01 for any θ0 ∈ T, which implies θ̄ is

synchronized. All of the remaining eigenvectors satisfy 1T eiθ̄ = 0, which implies that θ̄ is

balanced.

By Proposition 3.13, a sufficient condition for L to have eigenvectors of the form eiθ is

that G be a circulant graph. If G is circulant, then, using the notation of Proposition 3.13,

we have L = FΛF ∗, where F is unitary and Λ is the diagonal matrix whose entries are all

of the eigenvalues of L. Let λmax , maxk∈N λk > 0 be the maximum eigenvalue of L. We

find

WL(θ̄) =
1
2
〈F ∗eiθ̄,ΛF ∗eiθ̄〉 ≤ 1

2
λmax‖F ∗eiθ̄‖ =

√
N

2
λmax.

The upper bound (
√
N/2)λmax is attained if eiθ̄ is the eigenvector of L associated to the

maximum eigenvalue. Since eiθ̄ is orthogonal to 1, the phase arrangement θ̄ that maximizes

WL(θ) must be balanced.

If G is undirected, taking the time-derivative of WL(θ) along solutions of the phase

model (3.6) yields

ẆL =
N∑
j=1

∂WL

∂θj
uj =

N∑
j=1

〈ieiθj , Lje
iθ〉uj .

Choosing the gradient control

uk = K〈ieiθk , Lke
iθ〉 (4.15)
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yields

ẆL = K

N∑
j=1

〈ieiθj , Lje
iθ〉2,

which leads to the following result [241, Theorem 2].

Theorem 4.7. Laplacian phase synchronization and balancing Let L be the Lapla-

cian of an undirected and connected graph G = (N , E). For the shape control (4.15), all of

the solutions of the closed-loop phase model (3.6) converge to the critical set of the Lapla-

cian phase potential WL(θ) defined in (4.13). If K < 0, then all of the synchronized phase

arrangements are asymptotically stable. If K > 0, then all of the synchronized phase ar-

rangements are unstable. If K > 0 and G is circulant, then all of the phase arrangements

where WL(θ) reaches its global maximum are balanced and asymptotically stable.

Proof. As in the proof of Theorem 4.2, we prove Theorem 4.7 using the invariance princi-

ple [131, Theorem 4.4]. The closed-loop phase model (3.6) evolves on the compact shape

space TN/T under the gradient dynamics θ̇ = K∇WL. The potential −KWL(θ) : TN/

T 7→ R is a continuously differentiable function with d
dt(−KWL) ≤ 0 along solutions of

(3.6). Let Ω denote the set of all points in the shape space where d
dt(−KWL) = 0. Points

in Ω satisfy

〈ieiθk , Lke
iθ〉 = 0. (4.16)

The set Ω is invariant since the condition (4.16) implies θ̇k,j = 0 for all pairs j and k.

By the invariance principle [131, Theorem 4.4], every solution of the closed-loop dynamics

approaches Ω as t → ∞. Comparing (4.14) and (4.16), we conclude that Ω is the set of

critical points of WL(θ), which completes the first part of the proof.

Critical points where θk,j = 0 for all pairs j and k, are global minima of WL(θ), which

implies the synchronized set is asymptotically stable if K < 0 and unstable if K > 0. By

Lemma 4.6, if G is circulant, then the global maximum of WL(θ) is balanced; this set is

asymptotically stable if K > 0.

Rotational invariance of the phase potential WL(θ) leads to the following result, analo-
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gous to Corollary 4.3. Let ω0 ∈ R and consider the shape control

uk = ω0 +K〈ieiθk , Lke
iθ〉 = ω0 −K

∑
j∈Nk

sin θj,k (4.17)

Corollary 4.8. Laplacian phase synchronization and balancing The results of The-

orem 4.7 still apply if the control (4.15) is replaced by (4.17).

Proof. The time-derivative of WL(θ) along solutions of the closed-loop particle model with

the control (4.17) is

ẆL =
∑N

j=1

(
ω0〈ieiθj , Lje

iθ〉+K〈ieiθj , Lje
iθ〉2

)
= ω0N〈ieiθ, Leiθ〉 +K

∑N
j=1〈ieiθj , Lje

iθ〉2

= ω0N 〈iBT eiθ, BT eiθ〉︸ ︷︷ ︸
0

+K
∑N

j=1〈ieiθj , Lje
iθ〉2.

The remainder of the proof is identical to the proof of Theorem 4.7 since the constant ω0

vanishes in the reduced shape space.

4.3 General Interaction

In this section, we describe an approach to phase synchronization and balancing with time-

varying and/or directed interaction networks. Such networks preclude the use of the gradi-

ent algorithms from the previous section, since that algorithm requires undirected interac-

tion. Nonetheless, the gradient algorithm with all-to-all interaction motivates the approach

below, which achieves the same result under very mild assumptions on the interaction net-

work connectivity. The results in this section were developed by Scardovi et al. [234, 233].

Recall that the all-to-all phase control (4.6) depends on the average quantity pθ. That

is, control of phase θk is proportional to

〈ieiθk , pθ〉 = 〈ieiθk ,
1
N

N∑
j=1,j 6=k

eiθj 〉.

The Laplacian control (4.15) is proportional to

−〈ieiθk , Lke
iθ〉 = |Nk|〈ieiθk ,

1
|Nk|

∑
j∈Nk

eiθk〉.
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In both algorithms, the control uk depends on the instantaneous centroid of the neighboring

phases. In the general setting, which has possibly time-varying and directed interaction, we

use an algorithm for control uk that replaces the instantaneous centroid pθ of all of the phases

with another quantity. In the phase balancing algorithm below, it is accurate to interpret

this quantity as a dynamic estimate of pθ. On the other hand, in the phase synchronization

algorithm below, the dynamics of the quantity that replaces pθ are decoupled from the

phase dynamics. This quantity is the output of a decentralized consensus algorithm.

We consider the dynamic phase balancing algorithm first. The estimation of pθ is de-

centralized, which means that each control uses a different estimate. Let zk ∈ C denote the

estimate of pθ used in control k ∈ N . To introduce this approach, consider the all-to-all

phase control (4.6) with pθ replaced by zk, that is,

uk = −K〈ieiθk , zk〉, (4.18)

with the trivial estimator dynamics

żk = ṗθ. (4.19)

Integrating (4.19) yields zk(t) − zk(0) = pθ(t) − pθ(0). Thus, if zk(0) = pθ(0) then zk(t) =

pθ(t). In this case, the control (4.18) is identical to the all-to-all phase control (4.6) since

uk = −K〈ieiθk , pθ〉.

Now suppose zk(0) 6= pθ(0), which implies zk(t) 6= pθ(t) in (4.18). We can force each zk

to asymptotically converge to pθ by modifying its dynamics as follows. Let

żk = ṗθ +
N∑
j=1

(zj − zk), zk(0) = eiθk(0), (4.20)

which is equivalent to

ż = ṗθ1−NPz, z(0) = eiθ(0).

Note that P is the symmetric projection matrix defined in (3.27) and NP is the Laplacian

of the complete graph with N nodes, which means the estimator dynamics (4.20) require

knowledge of zk for all k ∈ N . The function V (z) = (1/2)‖Pz‖2 is positive definite with
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respect to the set where z = z̄1 for any z̄ ∈ C. The time-derivative of V (z) along solutions

of the closed-loop phase model (3.6) with control (4.18) and estimator (4.20) is

V̇ = 〈Pz, P ż〉 = 〈Pz, P (ṗθ1−NPz)〉 = −N〈Pz, Pz〉 + 〈z, ṗθP1〉︸ ︷︷ ︸
0

= −2NV (z(t)).

This means that V (z(t)) = V (z(0))e−2Nt, which implies V (z(t)) decays exponentially to

zero. Consequently, we observe that zk → z̄ for some z̄ ∈ C as t→∞ for all k ∈ N .

Next, we show that z̄ = pθ. Multiplying the z dynamics in (4.20) from the left by 1T

yields

1T ż = Nṗθ −N1TPz︸ ︷︷ ︸
0

= Nṗθ.

This means d
dt

(
(1/N)

∑N
j=1 zj

)
= ṗθ, which, when integrated, yields

1
N

N∑
j=1

zj(t)−
1
N

N∑
j=1

zj(0)︸ ︷︷ ︸
pθ(0)

= pθ(t)− pθ(0).

In the limit t→∞, we have (1/N)
∑N

j=1 zk(t) = z̄ = pθ. This means that the control (4.18)

asymptotically converges as desired to

uk = −K〈ieiθk , z̄〉 = −K〈ieiθk , pθ〉.

The estimator (4.20) achieves the desired result, but we must modify it for use with

limited, time-varying interaction. Note that in order to compute żk we use the term

ṗθ = (1/N)
∑N

j=1 ie
iθjuj . This means that control (4.18) of phase θk with estimator (4.20)

requires knowledge of uj for all j ∈ N and knowledge of the relative variables zk,j , zk− zj

for all j ∈ N . In the particle model, we assume that the instantaneous value of the control

uj for all j ∈ N are not transmitted over the interaction network. However, let us assume

that the consensus variables zj are transmitted over the interaction network to each node

k ∈ N from its neighboring nodes j ∈ Nk(t). That is, we assume that, to compute (4.20)

for node k, we have available the values uk and zk,j for all j ∈ Nk(t). This suggests that we

modify (4.20) as follows:

żk =
d

dt
eiθk +

N∑
j∈Nk(t)

(zj − zk), zk(0) = eiθk(0), (4.21)
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which is equivalent to

ż = idiag{u}eiθ − L(t)z, z(0) = eiθ(0).

Under mild assumptions on the Laplacian L(t), we prove in Theorem 4.10 that the control

(4.18) with K > 0 and estimator (4.21) stabilizes the set of balanced phases. Note that,

if Nk(t) = ∅ for all t ≥ 0, then integrating (4.21) gives zk(t) = eiθk(t). In this case, the

control (4.18) is uk = −K〈ieiθk , eiθk〉 = 0. We interpret the estimator algorithm (4.21) as a

consensus algorithm and the limit z̄ as a consensus value.

We also use a consensus algorithm for phase synchronization. Eliminating the term

d
dte

iθk from (4.21) decouples the phase dynamics from the żk dynamics, that is,

ż = −L(t)z, z(0) = eiθ(0), (4.22)

is independent of u. In this case, the z are not estimates of pθ(t), t > 0, but they still can

reach consensus to some z̄ ∈ C as described below. The means that the closed-loop phase

model (3.6) asymptotically converges to

θ̇k = −K〈ieiθk , z̄〉 = −K|z̄| sin(arg{z̄} − θk). (4.23)

We prove in Theorem 4.10 that the limiting dynamics (4.23) with K < 0 stabilizes the set of

critical points with θ = arg{z̄}1. The proof of Theorem 4.10 requires the following result,

which is based on [219, Theorem 3.12] and [174, Theorem 1].

Proposition 4.9. Euclidean consensus algorithm Let L(t) be the Laplacian matrix of

a graph G(t) = (N , E(t)). Consider the linear time-varying system

ẋ = −L(t)x, x ∈ RN , (4.24)

which is a consensus algorithm. Let x = x̄1 denote a consensus state, where x̄ ∈ R.

If G(t) is uniformly connected, then the consensus algorithm (4.24) asymptotically con-

verges to a consensus state.

If G(t) is uniformly connected to a single node, then the consensus algorithm (4.24)

uniformly exponentially converges to a consensus state.
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If G(t) is balanced for all time and the consensus algorithm (4.24) converges to a con-

sensus state, then the asymptotic consensus value x̄ is the centroid of the initial conditions,

that is, x̄ = 1
N

∑N
j=1 xk(0).

We summarize the proof of Proposition 4.9. The consensus algorithm (4.24) has the

solution x(t) = Φ(t, 0)x(0), where Φ(t, 0) = e
R t
0 L(τ)dτ is the transition matrix. The proof of

the first part of Proposition 4.9 uses the fact that limt→∞ Φ(t, 0) = 1yT for some y ∈ RN ,

which implies that xk → x̄ = yTx(0) for all k ∈ N [219, Theorem 3.12]. The proof of the

second part of Proposition 4.9 uses the Lyapunov function

V (x) , max{x1, . . . , xN} −min{x1, . . . , xN},

which is positive definite with respect to the set of consensus states [174, Theorem 1]. Under

the dynamics ẋk = −Lk(t)x =
∑

j∈Nk(t)(xj − xk) each xk moves only in the direction of

its neighbors. Consequently, it can be shown that V (x) is non-increasing. The proof of

the third part of Proposition 4.9 starts with the assumption that G(t) is balanced, which

implies 1T ẋ = 1TL(t)x = 0. This means
∑N

j=1 xj is a constant of motion of the system

(4.24) and
∑N

j=1 xj = Nx̄.

Proposition 4.9 shows that the decoupled dynamics (4.22) converge to an arbitrary

consensus z̄. This is because (4.22) is equivalent to the two independent subsystems

d
dtRe{z} = −L(t)Re{z} and d

dt Im{z} = −L(t)Im{z}, each of which is an instance of

the Euclidean consensus algorithm (4.24).

The main result of this section is a dynamic phase synchronization and balancing algo-

rithm for general interaction. In order to use shape coordinates, we introduce the variable

wk , zke
−iθk . Also let H(x), where x ∈ R, denote the Heaviside step function

H(x) ,


0 x < 0

1
2 x = 0

1 x > 0.

(4.25)

The dynamic phase synchronization and balancing algorithm is the control (4.18). For phase

balancing, we use K > 0 and the consensus dynamics (4.21). For phase synchronization, we
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use K < 0 and the consensus dynamics (4.22). We have, equivalently in shape coordinates,

uk = −K〈wk, i〉, K 6= 0

ẇk = uki(H(K)− wk)−
∑N

j=1 lkj(t)wje
iθj,k , wk(0) = 1.

(4.26)

The term
∑N

j=1 lkj(t)wje
iθj,k =

∑
j∈Nk(t)(wk − wje

iθj,k) is in shape coordinates, but it

requires the transmission to node k of the variable wj from node j for all j ∈ Nk(t) and

all t. Furthermore, to compute (4.26) we must have available at each node k the variable

wk. We have the following result [233, Theorems 3 and 4], which was summarized in [241,

Theorems 3 and 4].

Theorem 4.10. Dynamic phase synchronization and balancing Let L(t) be the

Laplacian matrix of a graph G(t) = (N , E(t)). Consider the closed-loop phase model (3.6)

with the shape control (4.26).

Let K < 0 and assume G(t) is uniformly connected. All of the solutions of (3.6) converge

to the critical set of the autonomous system (4.23), where z̄ ∈ C is the consensus limit. If

|z̄| > 0, then all of the synchronized phase arrangements where θ = arg z̄1 are asymptotically

stable and all of the remaining equilibria are unstable. If G(t) is balanced and the initial

phase arrangement θ(0) is not balanced, then the consensus limit satisfies z̄ = pθ(0) 6= 0.

Let K > 0 and assume G(t) is uniformly connected to a single node and balanced for all

time. All of the balanced phase arrangements are asymptotically stable equilibria of (3.6) and

all of the remaining equilibria are unstable. The consensus limit is z̄ = limt→∞ pθ(t) = 0.

Proof. Let K < 0, which means H(K) = 0, and assume G(t) is uniformly connected. The

time-derivative of zk , wke
iθk along solutions of the closed-loop phase model (3.6) with

control (4.26) is

żk = ẇke
iθk + ukiwke

iθk = −
N∑
j=1

lkj(t)wjeiθj = −Lk(t)z.

Consequently, z obeys the consensus dynamics (4.24), which means it exponentially con-

verges to the asymptotic consensus value z̄1 by Proposition 4.9. The limit set of the

closed-loop phase model is the critical set of the limiting (autonomous) system (4.23) [172,
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Theorem 1.8]. If |z̄| = 0, then there are no isolated critical points of (4.23). If |z̄| > 0, the

critical points of (4.23) satisfy θk = arg{z̄} mod π for all k ∈ N . Linearization of (4.23)

at these critical points shows that synchronization of all of the phases to arg{z̄} is expo-

nentially stable and the set of phase arrangements where at least one phase (but not all)

equals arg{z̄}+π is unstable. If G(t) is balanced, then z̄ = (1/N)
∑N

j=1wj(0)eiθj(0) = pθ(0)

is a constant of motion. If, in addition to G(t) being balanced, θ(0) is not balanced, then

|z̄| > 0 and the critical points of (4.23) are isolated.

Let K > 0, which means that H(K) = 1, and assume G(t) is uniformly connected to a

single node and balanced for all time. The time-derivative of zk , wke
iθk along solutions of

the closed-loop phase model (3.6) with control (4.26) is

żk = −
N∑
j=1

lkj(t)wjeiθj + ukie
iθk = −Lk(t)z +

d

dt
eiθk . (4.27)

This implies that z obeys the consensus dynamics (4.24) with an additive perturbation. We

now show that the perturbation is vanishing. Under a vanishing perturbation, the set of

consensus states z = z̄1 is an exponentially stable set of the perturbed system (4.27) [131,

Lemma 9.1].

Consider the positive definite and proper quadratic form V (z) , 1
2‖z‖

2.1 The time-

derivative of V (z) is

V̇ = 〈z, ż〉 = 〈z,−L(t)z + diag{u}ieiθ〉

= −〈z, L(t)z〉 +
∑N

j=1〈zj , ieiθj 〉uj = −QL(t)(z)− 1
K ‖u‖

2 ≤ 0,

which implies V (z) is nonincreasing along the solutions. This means that ‖z(t)‖2 ≤

2V (z(0)) is bounded. Using Lemma A.1 with φ1(t) , QL(t)(z(t)) and φ2(t) , (1/K)‖u‖2

(see Appendix A), we observe that ‖u(t)‖2 : [0,∞) → R is bounded. The time-derivative

φ̇2 =
1
K

d

dt
‖u(t)‖2 =

2
K

N∑
j=1

|uj |2u̇j

is bounded if u̇k is bounded for all k ∈ N . We have

u̇k = −K〈żk, ieiθk〉+K〈zk, eiθk〉uk = −K〈ieiθkuk − Lkz, ie
iθk〉+K〈zk, eiθk〉uk,

1In this context, proper means lim‖z‖→∞ V (z) = ∞.
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which is bounded because both zk and uk are bounded for all k ∈ N . Consequently, a second

application of Lemma A.1 proves that ‖u(t)‖2 → 0 as t → ∞. This means uk(t) → 0 as

t→∞ for all k ∈ N and the perturbation diag{u}ieiθ of the dynamics (4.27) vanishes.

Now that we have shown that zk → z̄ as t → ∞, we find the consensus limit z̄. Since

G(t) is balanced, then 1TL(t) = 0. Consequently, multiplying from the left by 1T the żk

dynamics (4.27) yields

1T ż =
N∑
j=1

d

dt
eiθj ,

which means
d

dt
(1Tz) =

d

dt
(Npθ). (4.28)

Integrating (4.28) yields 1Tz(t)− 1Tz(0) = Npθ(t)−Npθ(0). We have

1Tz(0) =
N∑
j=1

wj(0)eiθj(0) = Npθ(0),

which implies 1Tz(t) = Npθ(t). In the limit t→∞, we have 1T z̄ = Nz̄ = Npθ(t), that is,

z̄ = pθ(t).

Thus, we have shown that the dynamics of the closed-loop phase model asymptotically

converge to

θ̇k = −K〈ieiθk , z̄〉 = −K〈ieiθk , pθ〉 = −K ∂U

∂θk
, (4.29)

where U(θ) is the all-to-all phase potential defined in (4.1). In addition, we have shown

that θ̇k → 0 as t → ∞, since θ̇k = uk and limt→∞ uk(t) = 0. This implies that θ(t)

asymptotically converges to the set of critical points where ∂U
∂θk

= 0, which is the set of

critical points of U(θ). The stability of critical points of (4.29) with K > 0 follows from

Theorem 4.2, which completes the proof.

Theorem 4.10 requires G(t) to be balanced in order for the dynamic algorithm (4.26)

to isolate either the set of synchronized phases or the set of balanced phases. If G(t) is

balanced, then zk is an estimator in the following sense: if K < 0, then zk estimates

the initial state pθ(0); if K > 0, then zk estimates the limiting state pθ(t). We illustrate

this result in Figure 4.3 for a time-invariant, directed ring interaction network, which is
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strongly connected. In Figure 4.3(c), the asymptotic value of the order parameter is equal

to the normalized initial value of the order parameter, that is, limt→∞ pθ(t) = z̄/|z̄| =

pθ(0)/|pθ(0)|.

The balancing requirement on G(t) for phase synchronization need not be strictly en-

forced. This is because the dynamic algorithm (4.26) with K < 0 fails to isolate the set of

synchronized phases only if G(t) is not balanced for all time and the asymptotic consensus

value z̄ = 0. Since the Euclidean consensus dynamics (4.24) are invariant to translation in

the complex plane, they converge with probability one to z̄ 6= 0 [233, Theorem 3]. This im-

plies that the dynamic phase synchronization algorithm applies to non-balanced interaction

networks. If G(t) is not balanced, then the order parameter pθ asymptotically converges to

an arbitrary (normalized) limit z̄/|z̄|.

Next we address the addition to the control (4.18) of a constant ω0 ∈ R. In this case,

the dynamic phase synchronization and balancing algorithm (4.26) becomes

uk = ω0 −K〈wk, i〉, K 6= 0

ẇk = (uk − ω0)i(H(K)− wk)−
∑N

j=1 lkj(t)wje
iθj,k , wk(0) = 1.

(4.30)

We have the following corollary to Theorem 4.10.

Corollary 4.11. Dynamic phase synchronization and balancing The results of The-

orem 4.10 still apply when control (4.26) is replaced by (4.30).

Proof. This proof follows the proof of Theorem 4.10 using the definition zk , wke
i(θk−ω0t).

Note, if ω0 = 0, then this definition is zk , wke
iθk , which is the previous definition for zk.

The time-derivative of zk along solutions of the closed-loop phase model (3.6) with control

(4.30) is

żk = ẇke
i(θk−ω0t) + (uk − ω0)iwkei(θk−ω0t) = (uk − ω0)iH(K)ei(θk−ω0t)−∑N

j=1 lkj(t)wje
i(θj−ω0)t = H(K) ddte

i(θk−ω0t) − Lk(t)z.

If K < 0, then H(K) = 0 and z obeys the consensus dynamics (4.24). Let z̄ denote the

consensus value, that is, zk → z̄, k ∈ N , as t→∞. The limiting dynamics are

θ̇k − ω0 = −K〈iei(θk−ω0t), z̄〉 = −K|z̄| sin(arg{z̄} − (θk − ω0t)), K < 0. (4.31)
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We express (4.31) in a frame rotating at ω0 using the change of coordinates φk , θk − ω0t.

In the rotating frame, the dynamics are

φ̇k = −K〈ieiφk , z̄〉 = −K|z̄| sin(arg{z̄} − φk), K < 0,

which is equivalent to (4.23) with θk replaced by φk. Consequently, the remaining proof of

the synchronization results of Theorem 4.10 hold with θk replaced by φk.

If K > 0 and G(t) is balanced, then H(K) = 1 and z obeys the consensus dynamics

(4.24) with an additive perturbation proportional to u − ω01. In order to show that the

perturbation vanishes, consider V (z) , 1/2)‖z‖2. The time-derivative of V (z) is

V̇ = 〈z, ż〉 = 〈z,−L(t)z + diag{u− ω01}iei(θ−ω0t1)〉

= −〈z, L(t)z〉 +
∑N

j=1〈zj , iei(θj−ω0t)〉(uj − ω0) = −QL(t)(z)− 1
K ‖u− ω01‖2 ≤ 0.

Using Lemma A.1 with φ1(t) , QL(t)(z(t)) and φ2(t) , 1
K ‖u(t) − ω01‖2, one can show

that uk(t) → ω0 as t → ∞ for all k ∈ N , which means that the perturbation vanishes.

Consequently, the remaining proof of the balancing results of Theorem 4.10 hold with θk

replaced by φk.

The estimator component (4.21) of the dynamic phase balancing algorithm, which first

appeared in [234], is an example dynamic consensus filter . One can view eiθk as the filter

input and zk as the filter output. The output of a dynamic consensus filter tracks the average

of a set of time-varying inputs [255], in this case, pθ. Lynch et al. have studied dynamic

consensus filters for cooperative control and sensing [89, 295, 158]. A “low-pass” variation

of the dynamic consensus filter is described in [193]. Proportional and proportional-integral

versions are described in [90].

The convergence rate of a dynamic consensus filter depends on the magnitude of the

second smallest eigenvalue of the Laplacian matrix [192]. Algorithms to improve the conver-

gence rate by weighting the entries of the Laplacian matrix have been studied in [293, 132,

44, 195, 294]. This topic is related to the optimal mixing rate in a Markov process [34, 261].
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(d) Estimator trajectories, K > 0

Figure 4.3: Dynamic phase control. Simulations of the closed-loop particle model with the
dynamic phase control (4.26) for N = 12. The interaction network is a time-invariant,
directed ring. (a, b) We denote the position centroid pr by a circle marked with an x; the
velocity ṗr equals the order parameter pθ. (c, d) We denote the initial phase order parameter
pθ(0) by a circle and the limiting phase order parameter limt→∞ pθ(t) by a circle marked
with +. (a) Phase synchronization generates a parallel formation. (b) Phase balancing
fixes the position centroid. (c) Every estimator zk = wke

iθk , wk(0) = 1, starts on the unit
circle and converges to z̄ = pθ(0). In addition, each phase converges to z̄, which means that
the phases synchronize and pθ(t) converges to z̄/|z̄| = pθ(0)/|pθ(0)|. (d) Every estimator
converges to z̄ = limt→∞ pθ(t) = 0, which implies that the phases balance.



Chapter 5

Circular Formations

In the previous chapter, we describe synchronization and balancing algorithms for the phase

model (3.6) with three levels of interaction. Phase synchronization generates a parallel for-

mation in the particle model. Parallel formations are relative equilibria of the particle model

because they are invariant to rigid rotation and rigid translation of all particles. Another

class of relative equilibria of the particle model is the set of circular formations, in which all

particles travel around the same circle in the same direction. In this chapter, we describe

control algorithms that stabilize circular formations in the particle model with three levels

of interaction. Using results from the previous chapter, we also describe algorithms that

isolate subsets of circular formations in which the particle phases are either synchronized or

balanced. We call these relative equilibria synchronized circular formations and balanced

circular formations, respectively.

Recall that to drive a particle in a circle, we need simply to use an open-loop control

equal to a nonzero constant ω0 6= 0. The center ck of the circle, which is defined in (3.15),

has the dynamics

ċk = eiθk − ω−1
0 eiθkuk = ω−1

0 (ω0 − uk)eiθk . (5.1)

If uk = ω0, then particle k travels around a circle with radius |ω0|−1 and direction of

rotation determined by the sign of ω0. In this case, ċk = 0 and ck is a constant of motion.

Let uk = ω0 + u′k, where u′k = u′k(r,θ). This means that each particle orbits a circle and

91
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the center dynamics of each circle are ċk = −ω−1
0 u′ke

iθk . We seek to find the u′k that drives

the centers to a consensus value c̄ ∈ C.

5.1 All-to-all Interaction

As with the all-to-all phase control algorithm, we develop the all-to-all circular formation

control algorithm by designing a potential that has a minimum at the desired configuration.

In this case, the desired configuration is θ̇ = ω01 and c = c̄1. The all-to-all circular

formation potential

S(r,θ) ,
1
2
‖Pc‖2, (5.2)

where the projection matrix P is defined in (3.27), is zero if and only if c = c̄1 and positive

otherwise. Using (5.1), the time-derivative of S(r,θ) along solutions of the closed-loop

particle model is

Ṡ = 〈ċ, Pc〉 = ω−1
0

N∑
j=1

(ω0 − uj)〈eiθj , Pjc〉.

Choosing the circular formation control

uk = ω0(1 +K0〈eiθk , Pkc〉), K0 > 0, (5.3)

yields

Ṡ = −K0

N∑
j=1

〈eiθj , Pjc〉2 ≤ 0. (5.4)

The control (5.3) is a shape control since the terms

〈eiθk , Pkc〉 =
N∑
j=1

〈eiθk , rk,j + ω−1
0 ieiθj 〉

depend only on the shape variables e−iθkrk,j and θk,j for all pairs j and k. Lyapunov analysis

produces the following result [243, Theorem 2].

Theorem 5.1. All-to-all circular formation control For the shape control (5.3), all of

the solutions of the closed-loop particle model (3.5) converge to the set of circular formations

with radius |ω0|−1 and direction of rotation determined by the sign of ω0 6= 0.
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Proof. Since the control (5.3) is a shape control, then the closed-loop particle model evolves

on the reduced shape space with coordinates e−iθkrk,j and θk,j for all pairs j and k. The

potential S(r,θ) is positive definite and proper in the reduced shape space, since

S(r,θ) =
1
2

N∑
k=1

|Pkc|2 =
1
2

N∑
k=1

N∑
j=1

|ck,j |2

and

|ck,j | = |rk,j + ω−1
0 i(eiθk − eiθj )| = |e−iθkrk,j + ω−1

0 i(1− eiθj,k)|,

which is a function of shape variables.

Note Ṡ(r,θ) ≤ 0 by (5.4). Let the set Ω contain all of the points in the reduced shape

space where Ṡ = 0, that is,

〈eiθk , Pkc〉 = 0. (5.5)

In Ω, θ̇ = ω01 and c is constant, which implies that (5.5) can hold only if Pc = 0. Since

zero is a simple eigenvalue of P and the corresponding eigenvector is 1, then the condition

Pc = 0 is equivalent to c = c̄1 for some c̄ ∈ C. Let Λ denote the set of all of the points in

Ω where θ̇ = ω01 and c = c̄1. For all pairs j and k in Λ, we have d
dt(θk,j) = 0, d

dt(ck,j) = 0,

and

0 =
d

dt
(ck,j) =

d

dt

(
eiθk(e−iθkrk,j + ω−1

0 i(1− eiθj,k))
)

= ω0i ck,j︸︷︷︸
0

+eiθk
d

dt

(
e−iθkrk,j

)
,

which implies d
dt

(
e−iθkrk,j

)
= 0. This means that Λ is the largest invariant set in Ω. By

the invariance principle [131, Theorem 4.4 and Corollary 4.2], every solution of the closed-

loop particle model approaches Λ as t→∞. Since Λ is the set of circular formations, this

completes the proof.

The all-to-all circular formation control (5.3) stabilizes the set of circular formations.

Within this set, the position centroid pr is confined to the area within the circular formation.

In fact, the position centroid orbits the formation center c̄ at a constant speed less than or

equal to one and a constant distance less than or equal to the radius |ω0|−1 of the formation.
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To see this, consider the quantity p̃r , pr−c̄, which is a (complex) vector from the formation

center to the position centroid. Note ˙̃pr = ṗr = pθ. Since c = c̄1, we have

p̃r =
1
N

N∑
j=1

(rj − cj) = −iω−1
0

1
N

N∑
j=1

eiθj = −iω−1
0 pθ = −iω−1

0 ṗr, (5.6)

which implies |p̃r| ≤ ω−1
0 and ˙̃pr = iω0p̃r. Let p̃r = |p̃r|ei arg{p̃r}. We have

˙̃pr = ei arg{p̃r} d

dt
|p̃r|+ i|p̃r|ei arg{p̃r} d

dt
(arg{p̃r}) = iω0|p̃r|ei arg{p̃r}.

That is, d
dt |p̃r| = 0 and d

dt arg{p̃r} = ω0.

Equation (5.6) suggests a means to control the position centroid of a circular formation.

If pθ = 0, that is, if the phases are balanced, then p̃r = pr − c̄ = 0 and the position centroid

coincides with the formation center. If |pθ| = 1, that is, if the phases are synchronized, then

|p̃r| = |ω0|−1, which implies that the position centroid orbits the same circle as all of the

particles (this is possible only if all of the particles are co-located). We refer to these two

types of configurations as: (i) balanced circular formations and (ii) synchronized circular

formations, respectively.

Next we provide an algorithm to isolate either the set of balanced circular formations or

the set of synchronized circular formations using a linear combination of the circular forma-

tion control (5.3) with the phase synchronization and balancing control (4.6). Intuitively,

such a composite control should simultaneously stabilize the set of circular formations and

the set of synchronized or balanced phase arrangements. This intuition is formalized below.

Consider the composite potential

V (r,θ) , ω2
0K0S(r,θ) +KU(θ), K0 > 0,K ∈ R. (5.7)

The time derivative of V (r,θ) along solutions of the closed-loop particle model (3.5) is

V̇ = ω0K0
∑N

j=1(ω0 − uj)〈eiθj , Pjc〉+K
∑N

j=1〈ieiθj , pθ〉uj

=
∑N

j=1

(
ω0K0〈eiθj , Pjc〉 −K〈ieiθj , pθ〉

)
(ω0 − uj),

where we used the fact that
∑N

j=1〈ieiθj , pθ〉 = N〈ipθ, pθ〉 = 0. Choosing a shape control

that is a composite of (5.3) and (4.6), that is,

uk = ω0(1 +K0〈eiθk , Pkc〉)−K〈ieiθk , pθ〉, K0 > 0, (5.8)
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Figure 5.1: All-to-all composite phase and formation control. Simulations of the closed-loop
particle model with the all-to-all, composite circular formation control (5.8) for N = 12,
ω0 = K0 = 0.1, and K ∈ {−0.1, 0, 0.1}. We denote the position centroid pr by a circle
marked with an x; the velocity ṗr equals the order parameter pθ. (a) Synchronized circular
formation; (b) arbitrary circular formation; (c) balanced circular formation.

yields

V̇ = −
N∑
j=1

(
ω0K0〈eiθj , Pjc〉 −K〈ieiθj , pθ〉

)2
≤ 0. (5.9)

This leads to the following corollary to Theorem 5.1 [243, Theorem 3], which is illustrated

in Figure 5.1.

Corollary 5.2. All-to-all synchronized and balanced circular formation control

The results of Theorem 5.1 apply when control (5.3) is replaced by (5.8). If K 6= 0, then all

of the circular formations in the limiting set have a phase arrangement in the critical set of

the all-to-all phase potential (4.1). If K < 0, then all of the synchronized circular formations

are asymptotically stable and all of the remaining circular formations are unstable. If K > 0,

then all of the balanced circular formations are asymptotically stable and all of the remaining

circular formations are unstable.

Proof. This proof follows the proof of Theorem 5.1. Since the control (5.8) is a shape control,

then the closed-loop particle model evolves on the reduced shape space. Furthermore, the

potential V (r,θ) is positive definite and proper in the reduced shape space and V̇ (r,θ) ≤ 0

by (5.9). Let Ω be the set of all of the points in the reduced shape space where V̇ = 0. In
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this set,

ω0K0〈eiθk , Pkc〉 −K〈ieiθk , pθ〉 = 0, (5.10)

which implies θ̇ = ω01 and c is constant. Let Λ denote the largest invariant set in Ω.

Taking the time-derivative of (5.10) in Ω yields

〈ieiθk , Pkc〉ω2
0 + 〈eiθk ,

N∑
j=1

ċk,j︸︷︷︸
0

〉ω0 + 〈eiθk , pθ〉ω0 − 〈ieiθk , ipθ〉ω0︸ ︷︷ ︸
0

= 0,

where we used ṗθ = ω0ipθ. Consequently, for all points in Λ, we have

〈ieiθk , Pkc〉 = 0. (5.11)

Equation (5.11) holds only if Pc = 0, which implies c = c̄1 for some c̄ ∈ C. Since c = c̄1 in

Λ, then using (5.10) with K 6= 0, we observe that points in Λ also satisfy

〈ieiθk , pθ〉 =
∂U

∂θk
= 0, (5.12)

where the all-to-all phase potential U(θ) is defined in (4.1). Equation (5.12) holds only if θ

is a critical point of U(θ). By the invariance principle [131, Theorem 4.4 and Corollary 4.2],

every solution of the closed-loop particle model approaches Λ as t→∞. Using Lemma A.2

with V1(x) replaced by ω2
0K0S(r,θ) and V2(x) replaced by KU(θ), we obtain the stability

of critical points of U(θ) in Λ from Theorem 4.2.

The set of circular formations defines a manifold of dimension N , since the particle

model has 3N states and the equation c = c̄1 has rank 2N .1 The set of synchronized circular

formations is a manifold of dimension 1, since the equation |pθ| = 1 imposes N − 1 linearly-

independent constraints. The dimension of the manifold defined by the set of balanced

circular formations depends on the parity of N (see discussion after Definition 3.3). For N

odd, the equation pθ = 0 has rank two and the set of balanced circular formations defines

a manifold of dimension N − 2. For N even, the equation pθ = 0 is not full rank and the

set of balanced circular formations is an (N − 1)-parameter family.
1When a submanifold is defined by an equation, the codimension of the submanifold is the rank of the

Jacobian matrix of the equation [32, pp. 68-69].
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5.2 Time-invariant and Undirected Interaction

We now derive the circular formation control for limited interaction that is time-invariant

and undirected. The development mirrors the all-to-all analysis in Section 5.1 with the all-

to-all potentials replaced by Laplacian quadratic forms. We combine the Laplacian circular

formation control with the Laplacian phase control to isolate circular formations where the

phase arrangement is a critical point of the phase potential.

Let L be the Laplacian of a time-invariant and undirected graph G = (N , E). The

Laplacian circular formation potential is

SL(r,θ) ,
1
2
QL(c) =

1
2
〈c, Lc〉. (5.13)

By the properties of the Laplacian quadratic form, the potential (5.13) is zero if c = c̄1.

Note that the all-to-all circular formation potential S(r,θ) defined in (5.2) is equivalent to

1
N SNP (r,θ), since NP is the Laplacian matrix of a complete graph. The time-derivative of

SL(r,θ) along solutions of the closed-loop particle model (3.5) is

ṠL =
1
2
〈ċ, (L+ LT )︸ ︷︷ ︸

2L

c〉 = ω−1
0

N∑
j=1

(ω0 − uj)〈eiθj , Ljc〉.

Choosing the Laplacian circular formation control

uk = ω0(1 +K0〈eiθk , Lkc〉), K0 > 0, (5.14)

results in

ṠL = −K0

N∑
j=1

〈eiθj , Ljc〉2 ≤ 0.

The control (5.14) is a shape control since the terms

〈eiθk , Lkc〉 =
∑
j∈Nk

〈eiθk , rk,j + ω−1
0 ieiθj 〉

depend only on the shape variables e−iθkrk,j and θk,j for all pairs j and k.

Following Section 5.1, we consider a linear combination of the Laplacian circular for-

mation potential SL(r,θ) and the Laplacian phase potential WL(θ) defined in (4.13). The
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composite potential is

VL(r,θ) = ω2
0K0SL(r,θ)−KWL(θ), K0 > 0,K ∈ R. (5.15)

The time-derivative of VL(r,θ) along solutions of the closed-loop particle model (3.5) is

V̇L = ω0
∑N

j=1(ω0 − uj)〈eiθj , Ljc〉 −K
∑N

j=1〈ieiθj , Lje
iθ〉uj

=
∑N

j=1

(
ω0K0〈eiθj , Ljc〉+K〈ieiθj , Lje

iθ〉
)
(ω0 − uj),

where we used the fact that
∑N

j=1〈ieiθj , Lje
iθ〉 = 〈ieiθ, Leiθ〉 = 〈iBT eiθ, BT eiθ〉 = 0.

Choosing a shape control that is a composite of (5.14) and (4.15), that is,

uk = ω0(1 +K0〈eiθk , Lkc〉) +K〈ieiθk , Lke
iθ〉, K0 > 0, (5.16)

yields

V̇L = −
N∑
j=1

(
ω0K0〈eiθj , Ljc〉+K〈ieiθj , Lje

iθ〉
)2
≤ 0. (5.17)

This leads to the following result [241, Theorem 5].

Theorem 5.3. Laplacian circular formation control Let L be the Laplacian of an

undirected and connected graph G. All solutions of the closed-loop particle model (3.5)

with the shape control (5.16) converge to the set of circular formations with radius |ω0|−1

and direction of rotation determined by the sign of ω0. If K 6= 0, then the limiting phase

arrangement is in the set of critical points of the Laplacian phase potential WL(θ) defined in

(4.13). If K < 0, then all of the synchronized circular formations are asymptotically stable,

whereas, if K > 0, then all of the synchronized circular formations are unstable. If K > 0

and G is circulant, then all of the balanced circular formations with phase arrangements

that maximize WL(θ) are asymptotically stable.

Proof. The first part of the proof follows the proofs of Theorem 5.1 and Corollary 5.2.

Since the control (5.8) is a shape control, then the closed-loop particle model evolves on the

reduced shape space. Furthermore, the potential VL(r,θ) is positive definite and proper in

the reduced shape space and V̇L(r,θ) ≤ 0 by (5.17). Let Ω be the set of all of the points in

the reduced shape space where V̇L = 0. In this set,

ω0K0〈eiθk , Lkc〉+K〈ieiθk , Lke
iθ〉 = 0, (5.18)



5.3 General Interaction 99

which implies θ̇ = ω01 and c is constant. Let Λ denote the largest invariant set in Ω.

Taking the time-derivative of (5.18) in Ω yields

〈ieiθk , Lkc〉ω2
0 + 〈eiθk ,

∑
j∈Nk

ċk,j︸︷︷︸
0

〉ω0 + 〈−eiθk , Lke
iθ〉ω0 + 〈ieiθk , iLke

iθ〉ω0︸ ︷︷ ︸
0

= 0,

where we used d
dt(Lke

iθ) = ω0iLke
iθ. Thus, points in Λ satisfy

〈ieiθk , Lkc〉 = 0. (5.19)

Equation (5.19) holds only if Lc = 0, which implies c = c̄1 for some c̄ ∈ C. Since c = c̄1 in

Λ, then using (5.18) with K 6= 0, we observe that points in Λ also satisfy

〈ieiθk , Lke
iθ〉 =

∂WL

∂θk
= 0. (5.20)

Equation (5.20) holds only if θ is a critical point of WL(θ). By the invariance principle [131,

Theorem 4.4 and Corollary 4.2], every solution of the closed-loop particle model approaches

Λ as t→∞. Using Lemma A.2 with V1(x) replaced by ω2
0K0SL(r,θ) and V2(x) replaced by

−KWL(θ), we obtain the stability of critical points of WL(θ) in Λ from Theorem 4.7.

5.3 General Interaction

In this section, we design a dynamic algorithm to stabilize the set of circular formations with

possibly time-varying and/or directed interaction. Let L(t) denote the graph Laplacian of

an interaction network G(t) that is uniformly connected. The development of the dynamic

circular formation control follows the design of the dynamic phase control. In the design of

the dynamic phase control, we started by revisiting the all-to-all phase control. Here, we

start by revisiting the all-to-all circular formation control (5.3).

We rewrite the all-to-all circular formation control in such a way as to expose its depen-

dence on two average quantities: the phase order parameter pθ and the position centroid

pr. The all-to-all circular formation control is

uk = ω0

(
1 +K0〈eiθk , rk + ω−1

0 ieiθk − 1
N

∑N
j=1(rj + ω−1

0 ieiθj )〉
)

= ω0(1 +K0〈eiθk , rk − pr〉) +K0〈ieiθk , pθ〉, K0 > 0.
(5.21)
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Let u′k = ω0K0〈eiθk , rk−pr〉, so that uk = ω0 +u′k+K0〈ieiθk , pθ〉. For the moment, consider

the control uk with u′k = 0. In this case, uk is equivalent to (4.9) with K = −K0 < 0.

This means that the all-to-all circular formation control includes a term that is identical

to the all-to-all phase synchronization control. For the purposes of designing the dynamic

circular formation control, this suggests to incorporate the dynamic phase synchronization

algorithm. That is, in place of the average quantity pθ, we use the consensus variable zk,

where (see Theorem 4.10)

ż = −L(t)z. (5.22)

We also seek to replace the position centroid pr in (5.21) with a consensus variable

yk ∈ C. Consider the estimator dynamics

ẏk = ṗr +
∑

j∈Nk(t)

(yj − yk) = pθ − Lk(t)y. (5.23)

If yk(0) = pr(0), then the solution to (5.23) is yk(t) = pr(t). If yk(0) 6= pr(0), then it

seems reasonable that the estimator dynamics (5.23) converge to ȳ ∈ C and that ȳ =

limt→∞ pr(t). However, the value of pθ may not be available at each node. One might

consider using a dynamic phase balancing algorithm in order to estimate pθ, but this would

require interaction network to be balanced. To avoid this requirement, we consider an

alternative algorithm.

Suppose, instead of (5.23), we let yk obey the consensus dynamics

ẏ = −L(t)y. (5.24)

Using (5.24), each yk converges to ȳ by Proposition 4.9. But (5.24) is not an estimator of pr

since it is uncoupled from the particle dynamics. Nonetheless, we use (5.24) and (5.22) to

create the dynamic circular formation algorithm, which is the all-to-all circular formation

control (5.21) with pr replaced by yk and pθ replaced by zk. We write the dynamic circular

formation algorithm in shape coordinates using yk , vke
iθk + rk and zk , wke

iθk :

uk = ω0(1−K0〈vk, 1〉) +K0〈wk, i〉, K0 > 0

ẇk = −ukiwk −
∑N

j=1 lkj(t)wje
iθj,k , wk(0) = 1

v̇k = −1− ukivk −
∑N

j=1 lkj(t)(vje
iθj,k − rje

−iθk), vk(0) = 0.

(5.25)
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Note that the terms
∑N

j=1 lkj(t)wje
iθj,k =

∑
j∈Nk(t)(wk−wjeiθj,k) and

∑N
j=1 lkj(t)(vje

iθj,k −

rje
−iθk) =

∑
j∈Nk(t)(vk − vje

iθj,k − rk,je
−iθk) are indeed in shape coordinates. However,

computing (5.25) requires the transmission to node k of the consensus variables wj and vj

from each node j ∈ Nk(t) for all t. We have the following result [241, Theorem 6]).

Theorem 5.4. Dynamic circular formation control Let L(t) be the Laplacian matrix

of a graph G(t) that is uniformly connected. The shape control (5.25) enforces asymptotic

convergence of zk , wke
iθk to z̄ ∈ C and yk , vke

iθk + rk to ȳ ∈ C. In addition, all of the

solutions of the closed-loop particle model (3.5) converge to the set of circular formations

with radius |ω0|−1, direction of rotation determined by the sign of ω0 6= 0, and center

c̄ , ȳ + ω−1
0 iz̄. If G(t) is balanced, then z̄ = pθ(0), ȳ = pr(0), and c̄ = pc(0), where

pc , p(c) = pr + ω−1
0 ipθ is the centroid of all the circle centers.

Proof. The time-derivatives of zk and yk along solutions of the closed-loop particle model

(3.5) with shape control (5.25) are

żk = ẇke
iθk + ukwkie

iθk = −
N∑
j=1

lkj(t)wjeiθj = −Lk(t)z

and

ẏk = v̇ke
iθk + ukvkie

iθk + eiθk = −
N∑
j=1

lkj(t)(vjeiθj − rj) = −Lk(t)y,

which means that z and y obey the consensus dynamics (5.22) and (5.24). By Proposi-

tion 4.9, the set of consensus states z = z̄1 and y = ȳ1 is asymptotically stable. If G(t)

is balanced, then z̄ = (1/N)
∑N

j=1wk(0)eiθk(0) = pθ(0) and ȳ = (1/N)
∑N

j=1(vk(0)eiθk(0) +

rk(0)) = pr(0). In the limit t→∞, the control (5.25) converges to

uk = ω0(1 +K0〈eiθk , rk − ȳ〉) +K0〈ieiθk , z̄〉

= ω0(1 +K0〈eiθk , rk − (ȳ + ω−1
0 iz̄)︸ ︷︷ ︸
c̄

〉) (5.26)

The limit set of the closed-loop particle model in the reduced shape space is the set of

relative equilibria of the closed-loop particle model with the limiting control (5.26) [172,
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Theorem 1.8]. The closed-loop particle model with the control (5.26) is a collection of N

decoupled, autonomous subsystems:

ṙk = eiθk

θ̇k = ω0(1 +K0〈eiθk , rk − c̄〉).
(5.27)

Along the solutions of (5.27), the quadratic form

S̄(r,θ) ,
1
2
‖c− c̄1‖2

has the time-deriviative

˙̄S =
∑N

j=1〈ċj , cj − c̄〉 = ω−1
0 〈eiθj , rj + ω−1

0 ieiθj − c̄〉(ω0 − uj)

= −K0
∑N

j=1〈eiθj , rj − c̄〉2 ≤ 0.

Let Ω be the set of all of the points for which ˙̄S = 0. In this set,

〈eiθk , rk − c̄〉 = 〈eiθk , ck − c̄〉 = 0, (5.28)

which implies θ̇ = ω01 and c is constant. Equation (5.28) holds only if c = c̄1. Let Λ

denote the set of circular formations with radius |ω0|−1, direction of rotation determined

by the sign of ω0, and center c̄. Note Λ is the largest invariant set in Ω. By the invariance

principle [131, Theorem 4.4 and Corollary 4.2], every solution of (5.27) approaches Λ as

t→∞.

If the interaction network is uniformly connected and balanced, then by Theorem 5.4,

we have z̄ → pθ(0), ȳ → pr(0), and ck → c̄ = ȳ + ω−1
0 iz̄ = pc(0). Furthermore, we have

c̄ = lim
t→∞

1
N

N∑
j=1

(rk(t) + ω−1
0 ieiθk(t)) = lim

t→∞
pc(t),

which implies pc(t) → pc(0) as t→∞.

We illustrate in Figure 5.2 a numerical simulation of the closed-loop particle model (3.5)

with the dynamic circular formation control (5.25) and a time-varying interaction network

G(t). In the simulation, proximity-based interaction occurs between two particles j and

k if the relative position rk,j satisfies ‖rk,j‖ ≤ ρ0. The perceptual zone radius ρ0 > 0
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(c) Center trajectories

Figure 5.2: Dynamic circular formation control. Simulations of the closed-loop particle
model (3.5) with the dynamic circular formation control (5.25) for N = 12, K0 = 0.1,
and ω0 = 0.1. The interaction network is proximity-based and zonal; there is interaction
only between neighboring particles separated by less than |ω0|−1. We denote the position
centroid pr by a circle marked with an x; the velocity of pr equals the order parameter pθ.
We denote the final center centroid pc(t), t→∞, by a circle marked with •. (a) Trajectories
of the particles converge to a circular formation centered at pc(0). In (b), trajectories of
the consensus quantity yk + ω−1

0 izk converge to pc(0). In (c), trajectories of the centers ck
converge to pc(0).

is the same for all particles, which means that G(t) is an example of a zonal interaction

network that is balanced. This type of interaction network is not guaranteed to be uniformly

connected with respect to a single node. For example, if ρ0 is infinitesimally small, then the

particles may not interact at all. In the simulation shown in Figure 5.2, we used N = 12

and ρ0 = |ω0|−1 = 10. The particle initial positions were selected at random from a uniform

distribution, such that −25 ≤ Re{rk(0)} < 25 and −25 ≤ Im{rk(0)} < 25, k ∈ N .

The simulation interaction network is not initially connected since the initial graph

Laplacian L(0) has three zero eigenvalues (the multiplicity of zero as an eigenvalue of L(t)

is the number of connected components of G(t) [93, Lemma 13.1.1]). Furthermore, after

becoming connected, the interaction network does not necessarily stay connected since the

multiplicity of zero as an eigenvalue of L(t) increases from one to two on several occasions.

Nonetheless, we infer that the interaction network is most likely uniformly connected since

the simulated particle trajectories converge to a circular formation, shown in Figure 5.2(a),
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with a connected interaction network.2 Since the circular formation is a relative equilibrium

of the particle model, the interaction network will remain connected in the limit t → ∞.

Therefore, a value of T that satisfies the definition of uniform connectivity in Definition 3.11

is T = t∗, where t∗ is the end time of the simulation.

Figure 5.2 also confirms several expectations for the simulated solutions. First, Fig-

ure 5.2(b) shows that the consensus quantity yk +ω−1
0 izk converges to the center consensus

c̄ = pc(0), which is the initial center centroid. Note that the trajectories of the consensus

quantity are piecewise-smooth; the discontinuities occur in the kth trajectory whenever the

neighbor set Nk(t) changes. Second, Figure 5.2(c) shows that each center ck converges to

the initial center centroid pc(0). The trajectories of all of the ck appear to be cycloidal; the

discontinuities are presumably due to changing neighbor sets. Thirdly, Figures 5.2 shows

that the limiting center centroid limt→∞ pc(t) = pc(0), although pc(t) is not conserved (pc(0)

may not be visible if it is hidden behind pc(t)).

In addition, Figure 5.2 illustrates an unexpected and possibly revealing phenomenon,

which is, the consensus trajectories in Figure 5.2(b) tend to coalesce in a tree-like pat-

tern. That is, individual trajectories (leaves) merge with neighboring trajectories to form

branches; the branches merge with neighboring branches to form the trunk; and the trunk

leads to the root (the final formation center pc(t) = pc(0)). This phenomenon is also ap-

parent in Figure 5.2(a)), which shows that the particle trajectories collectively trace several

intermediate circular formations before finally converging on a single common formation.

The incremental path from local to global consensus illustrated in Figure 5.2 is perhaps a

fundamental tendency of consensus algorithms with time-varying interaction. This obser-

vation is perhaps related to recent results on time-scale separations due to weak and strong

coupling in networks [28].

To complete this section, we provide a corollary to Theorem 5.4 analogous to Corol-

lary 5.2. In Corollary 5.5 below, we provide an algorithm by which to isolate either the set
2We cannot conclude from convergence to an arbitrary circular formation that the network is uniformly

connected, because by Proposition 4.9, uniform connectedness is sufficient condition for consensus, not a
necessary one. In fact, there may be a weaker sufficient condition.
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of synchronized circular formations or the set of balanced circular formations with time-

varying and/or directed interaction. The design of this algorithm is intuitive in that it

follows the design of the corresponding algorithm described in Corollary 5.2. Namely, we

combine the dynamic circular formation control (5.25) with the dynamic phase synchroniza-

tion and balancing control (4.26) defined in Section 4.3. Recall H(K) denotes the Heaviside

function defined in (4.25). The composite control is

uk = ω0(1−K0〈vk, 1〉) +K0〈wk, i〉 −K〈w(1)
k , i〉, K0 > 0,

ẇk = −ukiwk −
∑N

j=1 lkj(t)wje
iθj,k , wk(0) = 1

v̇k = −1− ukivk −
∑N

j=1 lkj(t)(vje
iθj,k − rje

−iθk), vk(0) = 0

ẇ
(1)
k = (uk − ω0)i(H(K)− w

(1)
k )−

∑N
j=1 lkj(t)w

(1)
j eiθj,k , w

(1)
k (0) = 1.

(5.29)

(The choice of the superscript (1) notation to distinguish the term w
(1)
k from wk is motivated

by Section 6.3.) The following result is a consequence of Theorems 5.4 and 4.10.

Corollary 5.5. Dynamic synchronized and balanced circular formation control.

The results of Theorem 5.4 apply when control (5.25) is replaced by (5.29). Furthermore,

the control (5.29) enforces asymptotic convergence of z(1)
k , w

(1)
k ei(θk−ω0t) to z̄(1) ∈ C.

Let K < 0 and assume |z̄(1)| > 0. The synchronized circular formations where θ −

ω0t1 = arg z̄(1)1 are asymptotically stable and all of the remaining circular formations are

unstable. If G(t) is balanced and the initial phase arrangement θ(0) is not balanced, then

z̄(1) = pθ(0) 6= 0.

Let K > 0 and assume G(t) is balanced and uniformly connected to a single node. All of

the balanced circular formations are asymptotically stable and all of the remaining circular

formations are unstable. In addition, z̄(1) = limt→∞ pθ(t) = 0.

Proof. As in the proof of Theorem 5.4, the consensus variables z and y obey the consensus

dynamics (4.24). This means that limt→∞ zk(t) = z̄ and limt→∞ yk(t) = ȳ. Let c̄ ,

ȳ+ω−1
0 iz̄. The time-derivative of z(1)

k along solutions of the closed-loop particle model with

control (5.29) is

ż
(1)
k = H(K)(uk − ω0)iei(θk−ω0)t − Lk(t)z(1) = H(K)

d

dt
ei(θk−ω0t) − Lkz

(1).
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We consider the case K < 0 first. In this case, H(K) = 0 and the consensus variable

z(1) obeys the consensus dynamics (4.24), which means that limt→∞ z
(1)
k (t) = z̄(1). In the

limit t→∞, the closed-loop particle model with the control (5.29) converges to

ṙk = eiθk

θ̇k = ω0(1 +K0〈eiθk , rk − c̄〉)−K〈iei(θk−ω0t), z̄(1)〉.
(5.30)

The limit set of the closed-loop particle model is the critical set of the limiting (autonomous)

system (5.30) [172, Theorem 1.8]. Along the solutions of (5.30), the quadratic form

V (r,θ) , ω2
0

K0

2
‖c− c̄1‖2 − K

2
‖ei(θ−ω01) − z̄(1)1‖2

has the time-derivative

V̇ =
∑N

j=1

(
ω0K0〈eiθj , rj + ω−1

0 ieiθj − c̄〉 −K〈iei(θj−ω0t), ei(θj−ω0t) − z̄(1)〉
)
(ω0 − uj)

=
∑N

j=1

(
ω0K0〈eiθj , rj − c̄〉 −K〈iei(θj−ω0t), z̄(1)〉

)2 ≤ 0.

Let Ω be the set of all of the points for which V̇ = 0. In this set,

ω0K0 〈eiθj , rj − c̄〉︸ ︷︷ ︸
〈eiθj ,cj−c̄〉

−K〈iei(θk−ω0t), z̄(1)〉 = 0, (5.31)

which implies θ̇ = ω01 and c is constant. Let Λ denote the largest invariant set in Ω.

Taking the time-derivative of (5.31) in Ω yields

〈ieiθk , ck − c̄〉ω0 + 〈eiθk , ċk〉︸ ︷︷ ︸
0

−〈ei(θk−ω0), z̄〉 (θ̇k − ω0)︸ ︷︷ ︸
0

= 0.

Thus, points in Λ satisfy 〈ieiθk , ck − c̄〉 = 0, which holds only if c = c̄1 (that is, every point

in Λ is a circular formation centered at c̄). Using (5.31) with K 6= 0, this implies that points

in Λ also satisfy

〈iei(θk−ω0t), z̄(1)〉 = |z̄(1)| sin(arg{z̄(1)} − (θk − ω0t)) = 0. (5.32)

Equation (5.32) holds only if |z̄(1)| = 0 or both |z̄(1)| > 0 and φk , θk−ω0t = arg{z̄(1)} mod

π. If |z̄(1)| = 0, then θ = φ + ω01 is arbitrary. If |z̄(1)| > 0, then synchronization of

all phases φk to arg{z̄(1)} is exponentially stable and the set of phase arrangements φ
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where at least one phase equals arg{z̄(1)} + π is unstable. If G(t) is balanced, then z̄(1) =

1
N

∑N
j=1w

(1)
k (0)eiθk(0) = pθ(0) is conserved. If, in addition to G(t) being balanced, θ(0) is

not balanced, then z̄(1) > 0. By the invariance principle [131, Theorem 4.4 and Corollary

4.2], every solution of the limiting dynamics (5.30) approaches Λ as t→∞. This completes

the proof for K < 0.

Let K > 0, which means that H(K) = 1, and assume G(t) is balanced and uniformly

connected to a single node. In this case, the control (5.29) converges to

ūk , ω0(1 +K0〈eiθk , ck − c̄〉)−K〈iei(θk−ω0t), z
(1)
k 〉

ż
(1)
k = (ūk − ω0)iei(θk−ω0)t − Lk(t)z(1).

(5.33)

Let z(1) , (z(1)
1 , . . . , z

(1)
N )T ∈ CN . Note z(1) obeys the consensus dynamics (4.24) with an

additive perturbation. To prove that the perturbation vanishes, consider the quadratic form

V (r,θ,z(1)) = ω2
0

K0

2
‖c− c̄1‖2 +

K

2
‖z(1)‖2.

Along solutions of the closed-loop particle model with control (5.33), V (r,θ,z(1)) has the

time-derivative

V̇ =
∑N

j=1

(
ω0K0〈eiθj , cj − c̄〉 −K〈iei(θj−ω0t), z

(1)
j 〉
)

(ω0 − ūj)−K〈z(1)
j , Lj(t)z(1)〉

= −‖ū− ω01‖2 −QL(t)(z(1)) ≤ 0.

This means that ‖c − c̄1‖2 and ‖z(1)‖2 are bounded on the interval t ∈ [0,∞). By two

successive applications of Lemma A.1 with φ1(t) , QL(t)(z(1)(t)) and φ2(t) , ‖ū− ω01‖2,

one can show that (i) ‖ū(t)− ω01‖ : [0,∞) → R is bounded and (ii) ūk(t) → ω0 as t→∞.

Since |ūk − ω0| is the magnitude of the perturbation of the consensus dynamics ż(1)
k , this

implies that the perturbation in (5.33) vanishes.

The computation of the consensus limit z̄(1) also follows the proof of Theorem 4.10.

Since G(t) is balanced, then 1TL(t) = 0. Consequently, left-multiplying ż(1) defined in

(5.33) by 1T yields

1T ż(1) =
N∑
j=1

d

dt
ei(θj−ω0t) =

d

dt
(Npθe−iω0t),

which integrates to 1Tz(1)(t) = Npθ(t)e−iω0t. In the limit t → ∞, we have 1Tz(1) =

Nz̄(1) = Npθ(t)e−iω0t, that is, z̄(1)eiω0t = pθ(t).
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The closed-loop particle model with the control (5.33) asymptotically converges to the

time-invariant dynamics

ṙk = eiθk

θ̇k = ω0(1 +K0〈eiθk , rk − c̄〉)−K〈ieiθk , pθ〉.
(5.34)

Since θ̇k = ūk asymptotically converges to ω0, the solutions of (5.34) asymptotically converge

to the set Λ of relative equilibria with

ω0K0 〈eiθk , rk − c̄〉︸ ︷︷ ︸
〈eiθk ,ck−c̄〉

−K〈ieiθk , pθ〉 = 0. (5.35)

In Λ, θ̇ = ω01 and c is constant. Taking the time-derivative of (5.35) in Λ yields

ω2
0K0〈ieiθk , ck − c̄〉+ 〈eiθk , ċk〉︸ ︷︷ ︸

0

+K〈eiθk , pθ〉ω0 −K〈ieiθk , ipθ〉ω0︸ ︷︷ ︸
0

= 0,

where we used ṗθ = ω0ipθ. Thus, points in Λ satisfy 〈ieiθk , ck − c̄〉 = 0, which holds only

if c = c̄1, and 〈ieiθk , pθ〉 = ∂U
∂θk

= 0, where U(θ) is the all-to-all phase potential defined

in (4.1). That is, every point in Λ is a circular formation with a phase arrangement in

the critical set of U(θ). Using Lemma A.2 with V1(x) replaced by ω2
0(K0/2)‖c − c̄1‖2

and V2(x) replaced by U(θ), we obtain the stability of critical points of U(θ) in Λ from

Theorem 4.2.



Chapter 6

Symmetric Circular Formations

In the previous chapter we describe control algorithms to stabilize circular formations in

the particle model. We combine the circular formation algorithms with the phase synchro-

nization and balancing algorithms from Chapter 4 in order to stabilize synchronized and

balanced circular formations. That is, a composite phase and formation algorithm stabilizes

the set of circular formations where the phase arrangement is a critical point of the all-to-all

phase potential.

In this chapter we seek to identify an algorithm to stabilize the set of symmetric circular

formations, which are circular formations where the phase arrangement is an (M,N)-pattern

(see Definition 3.4 and Figure 3.3). Circular formations with symmetric phase arrangements

also have symmetric particle arrangements, that is, the particles are arranged around the

circular formation in the same pattern as the phases are arranged around the unit circle.

To see this, let c̄ denote the center of a circular formation and assume θ is a symmetric

phase pattern. The vector rk − c̄ represents the position of particle k relative to the center

of the formation. We have

r − c̄1 = ω−1
0 ieiθ 6= 0.

This implies arg{r − c̄1} = θ + π
21 is also a symmetric phase pattern.

To find a symmetric circular formation algorithm with all-to-all interaction, we first

describe a general composite phase and formation algorithm that stabilizes the set of circular

109
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formations where the phase arrangement is a critical point of a rotationally symmetric phase

potential. Then we describe the design of phase potentials that are minimized on the set of

(M,N)-patterns. The desired algorithm is an immediate consequence of these two results.

The all-to-all algorithm in Section 6.1 provides a roadmap for the design of symmetric

circular formation algorithms with limited interaction in Sections 6.2 and 6.3.

6.1 All-to-all Interaction

Motivated by the composite phase and formation algorithm in Section 5.1, we first describe

a methodology that stabilizes the set of circular formations where the phase arrangement

is in the critical set of a phase potential. The only requirements on the phase potential are

rotational symmetry and nondegeneracy of the desired critical points in the phase shape

space. That is, the phase potential must be invariant to rigid rotation of all of the phases

and the critical points of interest must be isolated in the reduced space of relative phases.

Let U∗(θ) be a rotationally symmetric phase potential. Rotational symmetry implies

that U∗(θ) is invariant to the change of coordinates θ 7→ θ+ θ01, where θ0 ∈ T. Expanding

U∗(θ + θ01) about the point θ yields

U∗(θ + θ01) = U(θ) + θ01T∇U∗(θ) + θ2
01

TH∗(θ)1 + · · · , (6.1)

where ∇U∗ ,
(
∂U∗

∂θ1
, . . . , ∂U

∗

∂θN

)T
and H∗ are the gradient and Hessian of U∗(θ), respectively.

If U∗(θ + θ01) = U(θ), then (6.1) requires that every term on the right-hand side of (6.1),

other than U(θ), is identically equal to zero (to see this, take θ0 arbitrarily small). This

implies that the vector 1 is orthogonal to the gradient ∇U∗ and 1 is in the kernel of the

Hessian H∗. Let θ be a critical point of U∗(θ). Note that 1 spans the kernel of H∗ evaluated

at θ if and only if θ is isolated in shape space.

Consider the composite potential

V ∗(r,θ) , ω2
0K0S(r,θ) + U∗(θ), K0 > 0, (6.2)

where the circular formation potential S(r,θ) is defined in (5.2). The time derivative of
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V ∗(r,θ) along solutions of the closed-loop particle model (3.5) is

V̇ ∗ = ω0K0
∑N

j=1(ω0 − uj)〈eiθj , Pjc〉+
∑N

j=1
∂U∗

∂θj
uj

=
∑N

j=1

(
ω0K0〈eiθj , Pjc〉 − ∂U∗

∂θj

)
(ω0 − uj),

where we used the fact that
∑N

j=1
∂U∗

∂θj
= 1T∇U∗ = 0. Choosing the composite shape

control

uk = ω0(1 +K0〈eiθk , Pkc〉)−
∂U∗

∂θk
, K0 > 0, (6.3)

yields

V̇ ∗ = −
N∑
j=1

(
ω0K0〈eiθj , Pjc〉 −

∂U∗

∂θk

)2

≤ 0. (6.4)

This leads to the following result [243, Theorem 3].

Lemma 6.1. All-to-all composite phase and circular formation control Let U∗(θ)

be a smooth and rotationally symmetric phase potential. For the shape control (6.3), all of

the solutions of the closed-loop particle model (3.5) converge to the set of circular forma-

tions with radius |ω0|−1 and direction of rotation determined by the sign of ω0 6= 0. Each

circular formation in the limiting set has a phase arrangement in the critical set of the

phase potential U∗(θ). Every isolated local minimum of U∗(θ) defines an asymptotically

stable set of circular formations; every circular formation for which U∗(θ) does not attain

a minimum and θ is isolated in shape space is unstable.

Proof. This proof follows the proof of Corollary 5.2 with V (r,θ) replaced by V ∗(r,θ) and

〈ieiθk , pθ〉 = ∂U
∂θk

replaced by ∂U∗

∂θk
. Since the control (6.3) is a shape control, then the closed-

loop particle model evolves on the reduced shape space. Furthermore, the potential V ∗(r,θ)

is positive definite and proper in the reduced shape space and V̇ ∗(r,θ) ≤ 0 by (6.4). Let Ω

be the set of all of the points in the reduced shape space where V̇ ∗ = 0. In this set,

ω0K0〈eiθk , Pkc〉+
∂U∗

∂θk
= 0, (6.5)

which implies θ̇ = ω01 and c is constant. Let Λ denote the largest invariant set in Ω.

Taking the time-derivative of (6.5) in Ω yields

K0〈ieiθk , Pkc〉ω2
0 + 〈eiθk ,

N∑
j=1

ċk,j︸︷︷︸
0

〉ω0 +
d

dt

(
∂U∗

∂θk

)∣∣∣∣
Ω

= 0,
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where
d

dt

(
∂U∗

∂θk

)∣∣∣∣
Ω

=
N∑
j=1

∂2U∗

∂θj∂θk
ω0 = ω0(H∗)k1 = 0.

Thus, points in Λ satisfy

〈ieiθk , Pkc〉 = 0. (6.6)

Equation (6.6) holds only if Pc = 0, which implies c = c̄1 for some c̄ ∈ C. Since c = c̄1 in

Λ, then using (6.5), we observe that points (r,θ) in Λ also satisfy

∂U∗

∂θk
= 0. (6.7)

Equation (6.7) holds only if θ is a critical point of U∗(θ). By the invariance principle [131,

Theorem 4.4 and Corollary 4.2], every solution of the closed-loop particle model approaches

Λ as t→∞. Using Lemma A.2 with V1(x) replaced by ω2
0K0S(r,θ) and V2(x) replaced by

U∗(θ) completes the proof.

Lemma 6.1 provides the framework with which we stabilize symmetric circular forma-

tions. In order to use this framework, we must identify phase potentials that are minimized

by symmetric phase patterns. This is done using Lemma 3.5: an arrangement θ of N phases

is an (M,N)-pattern where M is a divisor of N if and only if, for all m ∈ {1, . . . ,M − 1},

the phase arrangement mθ is balanced and the phase arrangement Mθ is synchronized. In

order to prove Lemma 3.5, we first generalize the notion of the phase order parameter pθ

in the following way. Let pmθ , (1/m)p(mθ), where m ∈ N , {1, 2, 3, . . .}, that is

pmθ ,
1
mN

N∑
j=1

eimθk . (6.8)

Equation (6.8) represents the centroid of the phasors eiθ raised to the power m. For this

reason, we refer to pmθ as the mth moment of the phasors eiθ, or mth phase moment for

short. Note, the phase order parameter pθ = p1θ is the first phase moment. Using (6.8),

if the phase arrangement mθ is synchronized then m|pmθ| = 1; if mθ is balanced, then

pmθ = 0. The following proof is based on [243, Theorem 6].
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Proof of Lemma 3.5. Assume the phase arrangement θ is an (M,N)-pattern, where M is

a divisor of N . This means that every phase θk, k = 1, . . . , N , belongs to one of M equally

spaced clusters such that there are N/M phases in each cluster. Let Θm denote the phase

of cluster m ∈M , {1, . . . ,M}, where

Θm =
2π
M

(m− 1). (6.9)

We have

pmθ =
1
mN

N∑
j=1

eimθj =
1

mM

M∑
l=1

eimΘl =
1

mM

M∑
l=1

ei
2πm
M

(l−1) =
e−i

2πm
M

mM

M∑
l=1

ei
2πm
M

l. (6.10)

Evaluating (6.10) using Lemma A.3, yields pmθ = 0 for m = 1, . . . ,M −1, and M |pMθ| = 1.

This means that θ, 2θ, . . . , (M − 1)θ are balanced and Mθ is synchronized.

Next, assume that θ, 2θ, . . . , (M − 1)θ are balanced and Mθ is synchronized. This

implies pmθ = 0 and M |pMθ| = 1. Let Mθk = φ0 ∈ T. We evaluate θk = φ0/M as follows:

ei
φ0
M =

(
eiφ0

) 1
M = ei(φ0+ 2π

M
(k−1)), k = 1, . . . , N.

This means that θk = φ0 + (2π/M)(k − 1) and θk,j = (2π/M)(k − j) for all pairs j and

k. Since every pair of phases is separated by an integer multiple of 2π/M radians, then

each phase θk belongs to one of M equally spaced clusters defined in (6.9). Let Nm, where

m ∈ M, denote the number of phases in cluster m. We seek to prove that Nm = N/M for

all m ∈M. We have

mpmθ =
1
N

M∑
j=1

Nje
i 2πm

M
j = 0, (6.11)

for m = 1, . . . ,M − 1 and

MpMθ =
1
N

M∑
j=1

Nje
i2πj = 1. (6.12)

Equations (6.11) and (6.12) are a system of linear equations in the unknown variables

x , (N1, . . . , NM )T . Namely, (6.11) and (6.12) can be written as Ax = b where A , [akj ] ∈

CM×M and b , (0, . . . , 0, N)T ∈ RM . The entries in A are defined by [a]kj , ei
2π
M
kj for all

pairs j and k, which means that A = AT . The inverse of A is given by A−1 = (1/M)A†,
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where A† is the conjugate transpose of A. To see this, observe that

[AA†]kj =
1
M

M∑
l=1

ei
2π(k−j)

M
l. (6.13)

If j = k, then (6.13) evaluates to M . If j 6= k, then 0 < |j − k| < M and equation (6.13)

evaluates to zero by Lemma A.3. Therefore, the solution to the system of equations (6.11)

and (6.12) is x = (1/M)A†b. Since the Mth column of A† is 1 and b has only one non-zero

entry, which is N , we find that x = (N/M)1, which completes the proof.

Lemma 3.5 characterizes an (M,N)-pattern according to synchronization and balancing

conditions for the first M phase moments. These conditions lead directly to the following

expression for an all-to-all (M,N)-pattern potential:

UM,N (θ) = N
2

∑M
m=1Km|pmθ|2,

Km > 0, m = 1, . . . ,M − 1, KM < 0.
(6.14)

The global minimum of UM,N (θ) occurs when pmθ = 0, m = 1, . . . ,M−1, and M |pMθ| = 1.

We have the following result [243, Theorem 6, Theorem 7].

Theorem 6.2. All-to-all symmetric phase pattern potential Let M be a divisor of

N . The potential UM,N (θ) defined in (6.14) is smooth and rotationally symmetric. The

phase arrangement θ ∈ TN is an (M,N)-pattern if and only if it is a global minimum of

UM,N (θ), which is isolated in the phase shape space.

Proof. The potential UM,N (θ) is smooth since each phase moment pmθ is a smooth function

of θ. The potential UM,N (θ) is rotationally symmetric if UM,N (θ+θ01) = UM,N (θ), where

θ0 ∈ T. In fact, we have

UM,N (θ + θ01) =
1
2

M∑
m=1

Km

m2

∣∣∣∣∣∣
N∑
j=1

eim(θj+θ0)

∣∣∣∣∣∣
2

=
1
2

M∑
m=1

Km

m2

∣∣∣eimθ0∣∣∣︸ ︷︷ ︸
1

2

∣∣∣∣∣∣
N∑
j=1

eimθj

∣∣∣∣∣∣
2

= UM,N (θ).

That phase arrangement θ ∈ TN is an (M,N)-pattern if and only if it is a global

minimum of UM,N (θ) is a direct consequence of Lemma 3.5, (6.8), and (6.14). Thus we

need only prove that the set of (M,N)-patterns is isolated in the reduced shape space of
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relative phases. Let θ be an (M,N)-pattern. We prove θ is isolated in shape space by

computing the multiplicity of zero as an eigenvalue of the Hessian HM,N of UM,N evaluated

at θ. We know that zero is an eigenvalue of HM,N (θ) because UM,N (θ) is rotationally

symmetric; if zero is a simple eigenvalue, then θ is isolated in shape space.

The Hessian HM,N is equivalent to (minus) the Jacobian of the closed-loop phase model

(3.6) with the gradient control

u = −∇UM,N , −
(
∂UM,N

∂θ1
, . . . ,

∂UM,N

∂θN

)T
. (6.15)

We calculate the eigenvalues of the closed-loop phase model with the control (6.15) by

expressing ∇UM,N in terms of a phase coupling function for all-to-all interaction. Then

we apply formulas for the eigenvalues of all-to-all phase coupling functions evaluated in

symmetric phase patterns from [189]; see also [15, 38].

The kth component of the gradient of UM,N (θ) is

∂UM,N

∂θk
=

M∑
m=1

Km〈ieimθk , pmθ〉 =
1
N

M∑
m=1

N∑
j=1

Km

m
sin(mθj,k).

Let Γ(θk,j) denote the phase coupling function, defined by

Γ(θk,j) ,
M∑
m=1

Km

m
sin(mθk,j) (6.16)

Using (6.16), the closed-loop phase model with the control (6.15) is equivalent to

θ̇k =
1
N

N∑
j=1

Γ(θk,j). (6.17)

According to [189], the linearization of (6.17) near an (M,N)-pattern has N eigenvalues

that can be described as the union of two sets. The first set consists of N −M identical

eigenvalues associated with intra-cluster fluctuation; we denote these eigenvalues by λ̃(M).

The second set consists of M eigenvalues associated with inter-cluster fluctuation; we denote

these eigenvalues by λ(M)
p , where p = 0, . . . ,M−1. Since the Jacobian of (6.17) is the Hessian

matrix HM,N , which is necessarily symmetric, then all of the eigenvalues are real.
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We calculate both sets of eigenvalues by taking the Fourier series expansion of the

derivative of Γ(θk,j) with respect to its argument θk,j . The derivative is

Γ′(θk,j) =
M∑
m=1

Km cos(mθk,j), (6.18)

which is an even function. The Fourier series expansion of (6.18) has the even coefficients

a′l given by a′l , Kl, l ∈ M, and a′l , 0, l = 0 or l > M ; the odd coefficients are zero. We

use the Fourier coefficients to evaluate the eigenvalues using the following formulas [189]:

λ̃(M) =
∞∑
l=1

a′Ml (6.19)

λ(M)
p =

∞∑
l=1

(
a′Ml −

a′M(l−1)+p + a′Ml−p

2

)
. (6.20)

We have

λ̃(M) = a′M = KM < 0

and

λ(M)
p =

KM − Kp+KM−p

2 < 0, p = 1, . . . ,M − 1

0, p = 0.

Consequently, the zero eigenvalue λ(M)
0 is simple, which completes the proof.

The following result is an immediate consequence of Lemma 6.1 and Theorem 6.2 [243,

Theorem 7]. Consider the shape control

uk = ω0(1 +K0〈eiθk , Pkc〉)−
∂UM,N

∂θk
, K0 > 0. (6.21)

Corollary 6.3. All-to-all symmetric circular formation control Let M be a divisor

of N . The results of Lemma 6.1 hold when control (6.3) is replaced by (6.21), where the all-

to-all symmetric phase potential UM,N (θ) is defined in (6.14). The limiting set of circular

formations has a phase arrangement in the critical set of UM,N (θ). All of the circular

formations where the phase arrangement is an (M,N)-pattern are asymptotically stable.

All of the circular formations where UM,N (θ) does not reach a minimum and θ is isolated

in shape space are unstable.
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Proof. Application of Lemma 6.1 and Theorem 6.2 yields the desired result.

For M = 1, we have UM,N (θ) = K1U(θ), where K1 < 0. In this case, the symmetric

circular formation control (6.21) stabilizes the set of synchronized circular formations and

is equivalent to control (5.8) with K = K1. This implies that Corollary 6.3 with M = 1 is

equivalent to Corollary 5.2 with K < 0. Both corollaries state that all of the synchronized

circular formations are asymptotically stable. However, Corollary 5.2 is a stronger result

than Corollary 6.3, since Corollary 5.2 states that all circular formations that are not

synchronized are unstable whereas Corollary 6.3 proves instability only for the set of circular

formations for which the phase arrangement is a critical point of UM,N (θ) that is isolated

in shape space but not a minimum. This difference is a consequence of the fact that we

have a characterization of the critical points of U(θ) (see Lemma 4.1) but we don’t have

such a characterization for UM,N (θ).

Simulations of the closed-loop particle model with the control (6.21) confirm that the

set of (M,N)-patterns (for any M) has a large but not gloabl region of attraction. We

illustrate such simulation results in Figure 6.1 for N = 12 and M = 1, 2, 3, 4, 6, and

12. All of the simulations converge to the corresponding (M,N)-pattern, except for the

simulation with M = 2, which is shown in Figure 6.1(b). In this simulation, the position

traces a small circle, which means that the limiting phase arrangement is unbalanced and

not a (2, N)-pattern. We have discovered that one can avoid convergence to unbalanced

phase patterns using a heuristic, such as increasing the magnitude of gain K1. Nonetheless,

Figure 6.1(b) vividly demonstrates the limitations of Corollary 6.3.

We explore the limitations of Corollary 6.3 by seeking critical points of UM,N (θ) that

are local minima, not isolated in shape space, or both. We conjecture that a reasonable

starting point for this search is the set of symmetric patterns that are not (M,N)-patterns.

That is, let M̃ be a divisor of N . The conjecture is that if θ̃ is a (M̃,N)-pattern, then θ̃

may also be a local minimum of UM,N (θ) and/or a critical point of UM,N (θ) that is not

isolated in shape space. If the conjecture holds, than we may find evidence for it in the
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(f) M = 12 (splay)

Figure 6.1: All-to-all symmetric circular formation control. Simulations of the closed-loop
particle model with the all-to-all symmetrc circular formation control (6.21) for N = 12,
ω0 = K0 = 0.1, and |Km| = 0.1 for all m ∈ M. We denote the position centroid pr by a
circle marked with an x; the velocity of pr equals the order parameter pθ. Each subfigure
shows convergence to the set of circular formations with number of particle clusters equal
to M . In subfigure (b), the position centroid traces a small circle, which means that the
simulation has converged to an unbalanced phase arrangement. In every other subfigure,
the limiting position centroid is fixed, which means that the phase arrangement is balanced.

eigenvalues of the Hessian HM,N (θ̃). The Hessian is defined by its components:

(hM,N )kj ,


∑M

m=1
Km
mN 〈e

imθk , eimθj 〉, j 6= k∑M
m=1

Km
mN (1−mN〈eimθk , pmθ〉), j = k.

(6.22)

We evaluate the eigenstructure of HM,N (θ̃) using specific choices of N , M , and M̃ that

facilitate the analysis; a general result has not been developed. Let N = M = 4 and

M̃ = 2. This means that UM,N (θ) = U4,4(θ) is minimized by the splay pattern shown in

Figure 6.2(a). The phase arrangement θ̃ is a (2, 4)-pattern, which has two synchronized

clusters on opposite sides of the unit circle as shown in Figure 6.2(b). Observe that θ̃ and
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(a) (4, 4)-pattern (b) (2, 4)-pattern

Figure 6.2: Symmetric phase patterns with all-to-all interaction. Two symmetric phase
patterns for N = 4 depicted on the unit circle (dashed line). (a) The splay pattern has four
uniformly spaced clusters with one phase in each; (b) The (2, 4)-pattern has two opposing
clusters with two phases in each.

3θ̃ are balanced and 2θ̃ and 4θ̃ are synchronized, which implies pθ = p3θ = 0, p2θ = 1/2,

and p4θ = 1/4. Using (6.22), we find

HM,N (θ̃) = C1


1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

+ C2


−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3

, (6.23)

where C1 , (1/N) (K1 +K3/3) is positive and C2 , (1/N) (K2/2 +K4/4) can be either

positive or negative.

Using (6.23), we show, for certain choices of the gains Km, that θ̃ can be either degen-

erate or a local minimum. Recall that zero is an eigenvalue of HM,N because UM,N (θ) is

rotationally symmetric. If zero as an eigenvalue of HM,N (θ̃) has multiplicity greater than

one, then θ̃ is not isolated in shape space. If zero has multiplicity one and every other

eigenvalue is positive, then θ̃ is a local minimum of UM,N (θ) that is isolated in shape space.

If we take C2 = C1 > 0, then (6.23) becomes

HM,N (θ) = 2C1


−2 2 0 0

2 −2 0 0

0 0 −2 2

0 0 2 −2

.
In this case, HM,N (θ̃) has eigenvalues zero and 8C1, which each have multiplicity two. This

means that, for this choice of gains, θ̃ is not isolated in shape space. The set of gains with
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C1 = C2 satisfy

K1 +
K3

3
=
K2

2
+
K4

4
> 0, (6.24)

In this set, the gain K4, which is the only negative gain, has absolute value less than 2K2.

Alternatively, if we take C2 < 0 and |C2| � C1, then (6.23) becomes

HM,N (θ) ≈ −C2


3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

.
In this case, HM,N (θ̃) has the following eigenvalues: zero, which has multiplicity one, and

4|C2|, which has multiplicity three. This means that, for this choice of gains, θ̃ is isolated

in shape space and a local minimum of UM,N (θ). The set of gains with |C2| � C1 satisfy

|K4| � −4K1 −
4
3
K3 + 2K2, (6.25)

which holds, for example, if |K4| is much larger than the other three gains.

This analysis shows that it is possible for the control (6.21) to stabilize circular forma-

tions where the phase arrangement is a symmetric phase pattern other than the desired

(M,N)-pattern. The occurrence of such an event depends on the choice of the gains Km in

the (M,N)-pattern potential. Although we have not yet found a quantitative rule, we have

insight from (6.24) and (6.25). The first equation implies that we should avoid choosing

|KM | less than the other M −1 gains and the second equation implies that we should avoid

choosing |KM | significantly larger than the other gains. That is, we should make |KM | rel-

atively large, which will also increase the rate of convergence of the highest phase moment

to synchronization. However, we should avoid the temptation to make |KM | very large, else

we may converge to an undesired phase arrangement.

6.2 Time-invariant and Undirected Interaction

The design of a symmetric circular formation algorithm with fixed, limited interaction

parallels the design of the corresponding all-to-all algorithm. The first result in this section,
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which is analogous to Lemma 6.1, reduces the design problem to the design of an appropriate

phase potential.

Let L be the Laplacian of a time-invariant and undirected graph G = (N , E). The

following calculations are nearly identical to those in the previous section with the projector

P replaced by the graph Laplacian L and U∗(θ) replaced by a rotationally symmetric

Laplacian phase potential W ∗
L(θ). We use the term Laplacian phase potential here to imply

that the kth component of the gradient ofWL(θ) depends only on the neighboring phases θj ,

where j ∈ Nk. Rotational symmetry of WL(θ) implies W ∗
L(θ + θ01) = W ∗

L(θ). Expanding

W ∗
L(θ + θ01) about the point θ yields

W ∗
L(θ + θ01)−WL(θ) = θ01T∇W ∗

L(θ) + θ2
01

TW ∗
L(θ)1 + · · · , (6.26)

where ∇W ∗
L and H∗

L are the gradient and Hessian of W ∗
L(θ), respectively. Rotational

symmetry requires that every term on the right-hand side of (6.26) is identically equal to

zero. This implies that the constant vector 1 is orthogonal to the gradient ∇W ∗
L and 1 is

in the kernel of the Hessian W ∗
L.

Consider the composite potential

V ∗
L (r,θ) , ω2

0K0SL(r,θ)−W ∗
L(θ), K0 > 0, (6.27)

where the circular formation potential SL(r,θ) is defined in (5.13). The time derivative of

V ∗
L (r,θ) along solutions of the closed-loop particle model (3.5) is

V̇ ∗
L = ω0K0

∑N
j=1(ω0 − uj)〈eiθk , Ljc〉 −

∑N
j=1

∂W ∗
L

∂θj
uj

=
∑N

j=1

(
ω0K0〈eiθj , Ljc〉+ ∂W ∗

L
∂θj

)
(ω0 − uj),

where we used the fact that
∑N

j=1
∂W ∗

L
∂θj

= 1T∇W ∗
L = 0. Choosing the composite shape

control

uk = ω0(1 +K0〈eiθk , Lkc〉) +
∂W ∗

L

∂θk
, K0 > 0, (6.28)

yields

V̇ ∗
L = −

N∑
j=1

(
ω0K0〈eiθj , Ljc〉+

∂W ∗
L

∂θk

)2

≤ 0, (6.29)

which leads to the following result.
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Lemma 6.4. Laplacian composite phase and circular formation control Let L be

the Laplacian of an undirected and connected graph G = (N , E) and W ∗
L(θ) be a smooth and

rotationally symmetric Laplacian phase potential. For the shape control (6.28), all of the

solutions of the closed-loop particle model (3.5) converge to the set of circular formations

with radius |ω0|−1 and direction of rotation determined by the sign of ω0 6= 0. All of the

circular formations in the limiting set have phase arrangements in the critical set of the

phase potential W ∗
L(θ). Every isolated local minimum of W ∗

L(θ) defines an asymptotically

stable set of circular formations; every circular formation where W ∗
L(θ) does not reach a

minimum and θ is isolated in shape space is unstable.

Proof. This proof follows the proof of Lemma 6.1 with V ∗(r,θ) replaced by V ∗
L (r,θ).

To stabilize symmetric circular formations using the control (6.28), we first consider

the choice W ∗
L(θ) = KWL(θ). Using this choice, Lemma 6.4 is equivalent to Theorem 5.3.

Recall that Theorem 5.3 describes stabilization of synchronized and balanced circular for-

mations with limited interaction. In order to prove asymptotic stability of certain balanced

circular formations, we need the additional assumption that the graph G is circulant. It

turns out that the circulant assumption also allows us to prove asymptotic stability of cer-

tain symmetric circular formations. We use the following result [241, Lemma 2], which is a

consequence of Proposition 3.13 and Lemma 4.6.

Lemma 6.5. Symmetric critical points of the Laplacian phase potential Let L be

the Laplacian of an undirected and connected circulant graph G = (N , E). Also let M be a

divisor of N . If θ is an (M,N)-pattern, then, for all m ∈ M, eimθ is an eigenvector of L

and mθ is a critical point of the Laplacian phase potential WL(θ) defined in (4.13).

Proof. Assume θ ∈ T is an (M,N)-pattern, which means that each phase θk belongs to

one of M equally spaced clusters such that there are N/M phases in each cluster. Let

Θm , (2π/M)(m − 1) denote the phase of cluster m ∈ M. Without loss of generality,

assume phase θk is contained in cluster m = 1 + (k − 1) mod M , that is,

θk = Θ1+(k−1) mod M =
2π
M

(k − 1) mod M =
2π
M

(k − 1), (6.30)
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where the last equality holds because we identify θk and θk + 2π on the torus T. Let

φk , (2π/N)(k − 1), which implies mθ = (mN/M)φ. Using Proposition 3.13, we find

eimθ = ei
mN
M
φ = ei(l−1)φ

is the lth eigenvector of L. It is of interest to find l in terms of m, M , and N . On the torus,

we have

(l − 1)φk =
mN

M
φk =

mN

M

2π
N

(k − 1) =
mN

M

2π
N

(k − 1) mod N =
mN

M
φk mod N,

which implies l = 1 + (mN/M) mod N .

If eimθ is an eigenvector of L, then, using Lemma 4.6, this implies mθ is a critical point

of WL(θ), which completes the proof.

Lemma 6.5 motivates us to investigate WL(θ), where L is circulant, as a candidate

symmetric phase pattern potential. In order to apply Lemma 6.4 to stabilize a symmetric

circular formation, we need to find a set of (M,N)-patterns that locally extremizes WL(θ)

and is isolated in the phase shape space. We characterize such a set in the following result,

which also characterizes a set of (M,N)-patterns that are not isolated in shape space.

Theorem 6.6. Laplacian phase potential, revisited Let L denote the Laplacian of an

undirected and connected circulant graph G = (N , E). Also let M be a divisor of N . Let

ψ ∈ T|E| denote the vector of all of the relative phases θk,j for all pairs j and k such that

(k, j) ∈ E. Let E , {1, . . . , |E|}. The Laplacian phase potential WL(θ) is defined in (4.13).

Let Ψ1 denote the set of (M,N)-patterns in which either cosψf > 0 for all f ∈ E or

cosψf < 0 for all f . Every phase arrangement θ in Ψ1 is a local extremum of WL(θ) that

is isolated in the phase shape space. If cosψf > 0 for all f ∈ E, then θ is a local minimum;

if cosψf < 0 for all f ∈ E, then θ is a local maximum.

Let Ψ2 denote the set of (M,N)-patterns in which ψ mod π = (π/2)1. The set Ψ2

contains no phase arrangements that are isolated in the phase shape space.

Proof. Assume θ is an (M,N)-pattern, which implies it is a critical point of WL(θ), by

Lemma 6.5. To prove Theorem 6.6, we compute the eigenvalues of the Hessian HL of
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(a) (8, 8)-pattern (b) (8, 8)-pattern (c) (4, 8)-pattern

Figure 6.3: Symmetric phase patterns with ring interaction. Three symmetric phase pat-
terns for N = 8 depicted on the unit circle (dashed line). (a,b) The splay patterns have eight
uniformly spaced clusters with one phase in each; (c) The (4, 8)-pattern has four uniformly
spaced clusters with two phases in each.

WL(θ) evaluated at θ. The multiplicity of zero as an eigenvalue of HL(θ) determines if θ

is isolated in shape space. Furthermore, if zero is a simple eigenvalue of HL(θ), then the

sign of the remaining eigenvalues determines if θ is a local extremum of WL(θ).

Recall that the incidence matrix B of graph G satisifes L = BBT . For every edge

(j, k) ∈ E there is an integer f ∈ E , {1, . . . , |E|} such that ψf = (BT )fθ = θk,j is the

phase θk relative to θj . Observe that

∑
j∈Nk

θk,j = Lkθ = BkB
Tθ = Bkψ. (6.31)

Let sinψ , (sinψ1, . . . , sinψ|E|) and cosψ , (cosψ1, . . . , cosψ|E|). Using (4.14) and (6.31),

the kth term of the gradient of WL(θ) is

∂WL

∂θk
=
∑
j∈Nk

sin θk,j = Bk sinψ,

which means ∇WL = B sinψ. The Hessian HL of WL(θ) has components

(hL)kj ,


− cos θk,j , j ∈ Nk,∑
l∈Nk

cos θk,l, j = k,

0, otherwise

 =
|E|∑
f=1

Bkf cosψf (BT )fj . (6.32)

This means HL = BΦLB
T , where ΦL , diag{cosψ}, is a weighted Laplacian [93, p. 286].

The remainder of the proof is a consequence of Proposition A.4.



6.2 Time-invariant and Undirected Interaction 125

To illustrate Theorem 6.6, we consider the specific case of a ring interaction network,

which is described by a cyclic graph. (A complete characterization of the critical points

of the Laplacian phase potential WL(θ), where L is the Laplacian of a cyclic graph, is

presented in [123, Theorems 1 and 2].) Let N = 8. According to Theorem 6.6, the two

splay patterns shown in Figures 6.3(a) and 6.3(b) are local extrema of WL(θ). Pattern

6.3(b) is a local minimum because the absolute relative phase between every neighbor pair

is π/4 < π/2. Pattern 6.3(b) is a local maximum because the absolute relative phase

between every neighbor pair is 3π/8 > π/2. The (4, 8)-pattern shown in Figure 6.3(c) is

not isolated in the phase shape space, because the absolute relative phase between every

neighbor pair is π/2.

Together, Lemma 6.4 and Theorem 6.6 yield a simple yet limited algorithm that locally

stabilizes certain symmetric circular formations and destabilizes others. The algorithm is to

use control (6.28) with W ∗
L(θ) = KWL(θ). If K < 0, all of the circular formations where the

phase arrangement is a local minimum (respectively, maximum) ofWL(θ) are asymptotically

stable (respectively, unstable); if K > 0, all of the circular formations where the phase

arrangement is a local maximum (respectively, minimum) of WL(θ) are asymptotically

stable (respectively, unstable). Simulations of this algorithm suggest that the basin of

attraction of certain (M,N)-patterns is relatively large (presumably the global extrema of

WL(θ)) and the basin of attraction of other (M,N)-patterns is rather small (presumably

local extrema). Since M is not a parameter of WL(θ), there is no way to configure the

algorithm to converge to a specified set of (M,N)-patterns. In addition, convergence to

certain (M,N)-patterns is not guaranteed by Theorem 6.6, such as the (4, 8)-pattern shown

in Figure 6.3(c)).

Limitations in this symmetric circular formation algorithm are due to limitations in the

phase potential W ∗
L(θ) = KWL(θ) (which was not designed for this purpose). We improve

the effectiveness of the algorithm by replacing WL(θ) with a symmetric phase pattern

potential WM,N
L (θ) that is motivated by the all-to-all potential UM,N (θ). The Laplacian
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(M,N)-pattern potential is

WM,N
L (θ) , −

∑M
m=1

Km
m2 WL(mθ) = −1

2

∑M
m=1

Km
m2 〈eimθ, Leimθ〉,

Km > 0, m = 1, . . . ,M − 1, KM < −
∑M−1

m=1 Km.
(6.33)

We illustrate the relationship between WM,N
L (θ) and UM,N (θ) by evaluating (6.33) with

L = NP , where P , diag{1} − (1/N)11T is the projection matrix. This yields

WM,N
NP (θ) = −N

2

M∑
m=1

Km

m2

N∑
j=1

〈eimθj , Pje
imθ〉 = −N

2

M∑
m=1

Km

m2

N∑
j=1

〈eimθj , eimθj −mpmθ〉

= −N
2

M∑
m=1

Km

m2
(N −m2N |pmθ|2) = −N

2

2

M∑
m=1

Km

m2
+NUM,N (θ).

Consequently, in the case of all-to-all interaction, the two potentials WM,N
L (θ) and UM,N (θ)

share the same critical points. In the case of limited interaction, we have the following

result [241, Theorem 7].

Theorem 6.7. Laplacian symmetric phase pattern potential Let L denote the Lapla-

cian of an undirected and connected circulant graph G = (N , E). Also let M be a divisor

of N . The potential WM,N
L (θ) is smooth and rotationally symmetric. If phase arrangement

θ ∈ TN is an (M,N)-pattern, then θ is a local minimum of WM,N
L (θ) that is isolated in the

phase shape space.

Proof. The potentialWM,N
L (θ) is smooth and rotationally symmetric sinceWL(θ) is smooth

and rotationally symmetric. The kth term in the gradient of WM,N
L (θ) is

∂WM,N
L

∂θk
= −

M∑
m=1

Km

m
〈ieimθk , Lke

imθ〉. (6.34)

Assume θ is an (M,N)-pattern, which implies, by Lemma 6.5, that θ is a critical point

of WM,N
L (θ). For every edge (j, k) ∈ E there is an integer f ∈ E , {1, . . . , |E|} such that

ψf = (BT )fθ = θk,j is the relative phase of k and j, where B is the incidence matrix of

graph G. Using (6.34), we find that the Hessian HM,N
L of WM,N

L (θ) has components

(hL)kj,


∑M

m=1Km cos(mθk,j), j ∈ Nk,

−
∑M

m=1Km
∑

l∈Nk
cos(mθk,l), j = k,

0, otherwise

=−
M∑
m=1

Km

|E|∑
f=1

Bkf cos(mψf )(BT )fj .

(6.35)
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Let sin(mψ) , (sin(mψ1), . . . , sin(mψ|E|)), cos(mψ) , (cos(mψ1), . . . , cos(mψ|E|)), and

ΦM,N
L ,

M∑
m=1

Kmdiag{cos(mψ)}. (6.36)

Using (6.35) and (6.36), we find

HM,N
L = BΦM,N

L BT ,

which is a weighted Laplacian [93, p. 286]. Evaluating (6.36) at θ yields

ΦM,N
L (θ) =

M−1∑
m=1

Kmdiag{cos(mψ)}+KMdiag{cos(Mψ)}. (6.37)

Since cos(mψf ) ≤ 1, for m = 1, . . . ,M −1, and cos(Mψf ) = 1 for all f ∈ E , equation (6.37)

means that the upper bound on KM defined in (6.33) ensures that every diagonal element

of ΦM,N
L (θ) is negative. The remainder of the proof is a consequence of Proposition A.4.

The following result is an immediate consequence of Lemma 6.4 and Theorem 6.7 [241,

Theorem 7]. Consider the shape control

uk = ω0(1 +K0〈eiθk , Lkc〉)−
∂WM,N

L

∂θk
, K0 > 0. (6.38)

Corollary 6.8. Laplacian symmetric circular formation control Let L denote the

Laplacian of an undirected and connected circulant graph G = (N , E). Also let M be a divi-

sor of N . The results of Lemma 6.4 apply when control (6.28) is replaced by (6.38), where

the Laplacian symmetric phase potential WM,N
L (θ) is defined in (6.33). All of the circular

formations in the limiting set have a phase arrangement in the critical set of WM,N
L (θ). All

of the circular formations where the phase arrangement is an (M,N)-pattern are asymptot-

ically stable. All of the circular formations where WM,N
L (θ) does not reach a minimum and

θ is isolated in shape space are unstable.

Proof. Application of Lemma 6.4 and Theorem 6.7 yields the desired result.

Corollary 6.8 does not exclude convergence to other local minima of WM,N
L (θ). Simula-

tions of the closed-loop particle model with the control (6.38), where L is the Laplacian of
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a time-invariant and connected circulant graph G other than the complete graph, indicate

that the basin of attraction of certain (M,N)-patterns is quite small. With all-to-all inter-

action, the basin of attraction of the same (M,N)-patterns is much larger. The closed-loop

particle model with all-to-all interaction makes use of the averaged quantities pr and pmθ.

For general interaction, which we describe in the next section, these quantities are replaced

by consensus variables.

6.3 General Interaction

The symmetric circular formation algorithms described in Sections 6.1 and 6.2 are not

applicable to particle collectives with time-varying and/or directed interaction networks. In

this section, we extend the dynamic circular formation control algorithm to stabilize the set

of circular formations where the phase arrangement is an (M,N)-pattern.

The dynamic symmetric circular formation control is a composite (dynamic) phase and

formation control motivated by the dynamic circular formation control (5.29) that stabi-

lizes synchronized and balanced phase arrangements. Once again, the dynamic algorithm

adopts the form of the all-to-all algorithm, which, in this case, is the all-to-all symmetric

circular formation control (6.21). We reproduce (6.21) here, in such a way as to expose its

dependence on the position centroid pr and phase moments pmθ:

uk = ω0(1 +K0〈eiθk , rk − pr〉) +K0〈ieiθk , pθ〉+
∑M

m=1Km〈ieimθk , pmθ〉,

K0 > 0, Km > 0, m = 1, . . . ,M − 1, KM < 0.
(6.39)

In order to replicate the control (6.39) with limited interaction, we augment (5.29)

with M − 1 additional consensus variables. Each additional consensus variable z
(m)
k ,

w
(m)
k ei(θk−ω0t) represents the phase moment pmθ. The augmented algorithm broadens the

class of interaction networks for which we can stabilize symmetric circular formations at

the cost of increased algorithm complexity.

Recall H(·) denotes the Heaviside function defined in (4.25). The dynamic symmetric
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circular formation algorithm is described by the following shape control:

uk = ω0(1−K0〈vk, 1〉) +K0〈wk, i〉 −
∑M

m=1
Km
m 〈w(m)

k , i〉,

K0 > 0, Km > 0, m = 1, . . . ,M − 1, KM < 0,

ẇk = −ukiwk −
∑N

j=1 lkj(t)wje
iθj,k , wk(0) = 1,

v̇k = −1− ukivk −
∑N

j=1 lkj(t)(vje
iθj,k − rje

−iθk), vk(0) = 0,

ẇ
(m)
k = m(uk − ω0)i(H(Km)− w

(m)
k )−

∑N
j=1 lkj(t)w

(m)
j eimθj,k , w

(m)
k (0) = 1.

(6.40)

Computing (6.40) requires the transmission to node k of the consensus variables wj , vj , and

w
(m)
j , for all m ∈ M, from each node j ∈ Nk(t) for all t. It also requires the solution of

M + 2 simultaneous first-order differential equations at each node.

Theorem 6.9. Dynamic symmetric circular formation control Let L(t) be the Lapla-

cian matrix of a graph G(t) that is uniformly connected to a single node. Also let M be a

divisor of N . The shape control (6.40) enforces exponential convergence of zk , wke
iθk to

z̄ ∈ C, yk , vke
iθk + rk to ȳ ∈ C, and z

(m)
k , (1/m)w(m)

k eim(θk−ω0t) to z̄(m) ∈ C for all

k ∈ N and m ∈ M. For the shape control (6.40), all of the solutions of the closed-loop

particle model (3.5) converge to the set of circular formations with radius |ω0|−1, direction

of rotation determined by the sign of ω0 6= 0, center c̄ , ȳ+ ω−1
0 iz̄, and phase arrangement

in the set of critical points of UM,N (θ) defined in (6.14).

If G(t) is balanced, then the following holds: (i) all of the circular formations where the

phase arrangement is an (M,N)-pattern are asymptotically stable; (ii) all of the circular

formations where UM,N (θ) does not reach a minimum and θ is isolated in shape space

are unstable; and (iii) the consensus limits are z̄ = pθ(0), ȳ = pr(0), c̄ = pc(0), z̄(m) =

limt→∞ pmθ(t) = 0, for m = 1, . . . ,M − 1, and z̄(M) = pMθ(0).

Proof. As in the proof of Theorem 5.4, the consensus variables z and y obey the consensus

dynamics (4.24). This means that limt→∞ zk(t) = z̄ and limt→∞ yk(t) = ȳ. Each consensus

variable z(M)
k has the dynamics

ż
(M)
k = 1

M ẇke
iM(θk−ω0t) + (uk − ω0)wkieiM(θk−ω0t)

= − 1
M

∑N
j=1 lkj(t)wje

iM(θj−ω0t) = −Lk(t)z(M),
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where z(M) , (z(M)
1 , . . . , z

(M)
N )T . This implies that z(M) also obeys the consensus dynamics

(4.24) and that limt→∞ z
(M)
k (t) = z̄(M). If G(t) is balanced, then

z̄(M) =
1

MN

N∑
j=1

w
(M)
k (0)eiMθk(0) = pMθ(0)

is a constant of motion.

The control (6.40) converges to

ūk , ω0(1 +K0〈eiθk , rk − c̄〉)−
∑M−1

m=1 Km〈ieim(θk−ω0t), z
(m)
k 〉

−KM 〈ieiM(θk−ω0t), z̄(M)〉

ż
(m)
k = (ūk − ω0)ieim(θk−ω0)t − Lk(t)z(m), m = 1, . . . ,M − 1.

(6.41)

Note z(m) obeys the consensus dynamics (4.24) with an additive perturbation. Along solu-

tions of the closed-loop particle model with the control (6.41), the perturbation is

(ūk − ω0)ieim(θk−ω0)t =
d

dt

(
1
m
eim(θk−ω0t)

)
. (6.42)

To prove that the perturbation (6.42) vanishes, consider the quadratic form

V (r,θ,z(1), . . . ,z(M−1)) , ω2
0
K0
2 ‖c− c̄1‖2 + Km

2

∑M−1
m=1 ‖z(m)‖2

−KM
2

∥∥ 1
M e

iM(θ−ω0t1) − z̄(M)1
∥∥2
.

Along solutions of the closed-loop particle model with control (6.41), V (r,θ,z(1), . . . ,z(M−1))

has the time-derivative

V̇ =
N∑
j=1

(
(ω0 − ūj)2 −

∑
m=1

Km〈z(m)
j , Lj(t)z(m)〉

)
= −‖ū− ω01‖2 −

M−1∑
m=1

QL(t)(z
(m)) ≤ 0.

This means that ‖c− c̄1‖2, ‖z(m)‖2, and ‖z̄(M)1‖ are all bounded on the interval t ∈ [0,∞).

By two successive applications of Lemma A.1 with φ1(t) ,
∑M−1

m=1 QL(t)(z(m)(t)) and φ2(t) ,

‖ū− ω01‖2, one can show the following: (i) ‖ū(t)− ω01‖ : [0,∞) → R is bounded and (ii)

ūk(t) → ω0 as t→∞. Since |ūk−ω0| is the magnitude of the perturbation of the consensus

dynamics ż(m)
k , this implies that the perturbation in (6.41) vanishes.

Assume G(t) is balanced. The computation of the consensus limit z̄(m) also follows

the proof of Theorem 4.10. Since G(t) is balanced, then 1TL(t) = 0. Consequently, left-
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multipliying ˙̄z(m) defined in (6.41) by 1T yields

1T ż(m) =
N∑
j=1

d

dt

(
1
m
eim(θj−ω0t)

)
=

d

dt
(Npmθe−iω0t),

which integrates to 1T z̄(m)(t) = Npmθ(t)e−iω0t. In the limit t → ∞, we have 1T z̄(m) =

Nz̄(m) = Npmθ(t)e−iω0t, that is, z̄(m)eiω0t = pmθ(t).

The closed-loop particle model with the control (5.33) asymptotically converges to the

time-invariant dynamics

ṙk = eiθk

θ̇k = ω0(1 +K0〈eiθk , ck − c̄〉)−
∑M

m=1Km〈ieimθk , pmθ〉.
(6.43)

Since θ̇k = ūk asymptotically converges to ω0, the solutions of (6.43) asymptotically converge

to the set Λ of relative equilibria with

ω0K0〈eiθk , ck − c̄〉 −
M∑
m=1

Km〈ieimθk , pmθ〉 = 0. (6.44)

In Λ, θ̇ = ω01 and c is constant. Taking the time-derivative of (6.44) in Λ yields

ω2
0K0〈ieiθk , ck − c̄〉+ 〈eiθk , ċk〉︸ ︷︷ ︸

0

+
M∑
m=1

Km

(
m〈eimθk , pmθ〉ω0 −m〈ieimθk , ipmθ〉ω0

)
︸ ︷︷ ︸

0

= 0,

where we used ṗmθ = ω0mipmθ. Thus, points in Λ satisfy 〈ieiθk , ck−c̄〉 = 0, which holds only

if c = c̄1, and
∑M

m=1Km〈ieimθk , pmθ〉 = ∂UM,N

∂θk
= 0. That is, every point in Λ is a circular

formation with a phase arrangement in the critical set of UM,N (θ). Using Lemma A.2

with V1(x) replaced by ω2
0(K0/2)‖c− c̄1‖2 and V2(x) replaced by UM,N (θ), we obtain the

stability of critical points of UM,N (θ) in Λ from Theorem 6.2.

To demonstrate Theorem 6.9 we include simulation results for the closed-loop particle

model with control (6.40) and a proximity-based (zonal) interaction network. Let L(t)

denote the Laplacian of the graph G(t) that describes the interaction network. In the

simulation, interaction between two particles occurs if and only if their relative distance

is less than or equal to ρ0 = |ω0|−1, which is the radius of the circular formation. We

seek to stabilize the splay circular formation with N = 12 particles, which means M =
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Figure 6.4: Dynamic symmetric circular formation control. Stabilization of the splay cir-
cular formation with a zonal interaction network. The perceptual zone of each particle is
a circle centered at the particle with radius ρ0 = |ω0|−1 = 10. The remaining parameter
values are N = M = 12, K0 = 0.1, and |Km| = 0.1 for all m ∈ M. (a) Trajectories
generated by the Laplacian algorithm (6.38) with the (normalized) Laplacian (1/N)L(t);
(b) trajectories generated by the dynamic algorithm (6.40).

12. Figure 6.4(b) illustrates the trajectories generated by the dynamic algorithm (6.40)

starting from random initial conditions over a time period equivalent to six revolutions of

the formation. For comparison, Figure 6.4(a) illustrates the trajectories generated by the

Laplacian algorithm (6.38) with a time-varying (normalized) Laplacian (1/N)L(t) starting

from the same initial conditions over a time period equivalent to six hundred revolutions

(only the final six revolutions are shown). Note, for all-to-all interaction, normalizing the

Laplacian by N renders the Laplacian algorithm equivalent to the limiting dynamics of the

dynamic algorithm, which is the all-to-all control (6.21). Figure 6.4 demonstrates that the

deficiency of the Laplacian algorithm in supporting time-varying interaction is ameliorated

by the dynamic algorithm.



Chapter 7

Applied Control Design

In this chapter we describe extensions to the cooperative control framework motivated by

applications in mobile sensor networks. In Section 7.1 we introduce a virtual particle to serve

as a phase reference. A virtual particle can also serve as a beacon about which to center

a circular formation. In Section 7.2 we describe the design of multiple, nested interaction

networks to stabilize symmetric patterns on multiple circular formations. In Section 7.3 we

describe control laws that stabilize symmetric formations on convex loops more suitable for

oceanographic sampling.

7.1 Continuous Symmetry Breaking Using a Virtual Particle

In the previous chapter we describe an approach to stabilize solutions of the particle model

corresponding to symmetric circular formations. This approach, like all of the steering algo-

rithms presented thus far, relies only on shape variables to define the control law. Controls

that depend only on shape variables are invariant to rigid rotation and rigid translation of all

of the particles (see Section 3.2). For phase synchronization algorithms, rotation invariance

means that the steady-state collective direction of motion is arbitrary; it depends only on

initial conditions. Likewise, for circular formation algorithms, translation invariance means

that the steady-steady formation center depends arbitrarily on initial conditions.

In this section we describe an approach to break the continuous symmetries of rotation

133
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1

2

3

(3, 2) (2, 1)

(0, 1)(0, 3)

0

Figure 7.1: Augmented interaction network. Virtual particle 0 augments graph G(t) =
({1, 2, 3}, {(2, 1), (3, 2)}) with edges (0, 1) and (0, 3). The augmented graph is G̃(t) =
({0, 1, 2, 3}, {(2, 1), (3, 2), (0, 1), (0, 3)}).

and translation in the closed-loop particle model. We start by introducing a virtual particle

with index 0 into the set of actual particles. The position r0 and phase θ0 of particle 0 have

the dynamics

ṙ0 = eiθ0

θ̇0 = ω0,
(7.1)

where ω0 ∈ R is constant. Note, the dynamics of particle 0 do not depend on the dynamics of

particles 1, . . . , N , whereas the dynamics of particles 1, . . . , N may depend on the dynamics

of particle 0. This observation has implications for the overall interaction network.

Let G(t) = (N , E(t)) describe the interaction network of the actual particles. The

overall interaction is described by the augmented graph G̃(t) , (Ñ , Ẽ(t)), which has node

indices Ñ , {0, . . . , N} and edge set Ẽ(t) ⊂ Ñ × Ñ . In particular, Ẽ(t) is the union of

set E(t) with a set of edges of the form (0, k), where k ∈ N . There are no edges in Ẽ(t)

directed towards node 0, as illustrated in Figure 7.1. The augmented Laplacian matrix

L̃(t) , [l̃kj ] of G̃(t) is

L̃(t) =



0 0 . . . 0

l̃10(t)
...

l̃N0(t)

L(t)− diag{(l̃10(t), . . . , l̃N0(t))T }


, (7.2)

where l̃k0(t) = −1 if and only if (0, k) ∈ Ẽ(t) and l̃k0 = 0 otherwise. There are no entries on

the first row of the augmented Laplacian matrix, because there are no inputs to particle 0.

Because the dynamics of particle 0 are decoupled from the collective, its role is to serve
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as an absolute reference in the inertial frame. When a particles is informed of the iner-

tial reference it (temporarily) leads the remaining particles. In the case when ω0 = 0, then

θ0(t) = θ0(0) and synchronization of phases 0, . . . , N necessarily results in all phases aligned

with the reference phase θ0(0). Likewise, in the case ω0 6= 0, then particle 0 travels in a

circular orbit about the fixed center c0 , r0 + ω0ie
iθ0 . We show below augmented forms

of the Laplacian and dynamic circular formation algorithms that stabilize the set of circu-

lar formations around the reference center c0(0). In this section, the all-to-all interaction

algorithms are subsumed in the discussion of time-invariant and undirected interaction.

7.1.1 Time-invariant and Undirected Interaction

In this section we consider the case when G(t) = G(0) is time-invariant and undirected and

the augmented graph G̃(t) = G̃(0) is time-invariant and directed (since node 0 has only

outgoing edges). We provide corollaries to Theorems 4.7 and 5.3 that prove convergence to

parallel and circular formations, respectively, in the presence of virtual particle 0.

Consider the augmented Laplacian phase potential

W̃L(θ) , WL(θ)− 1
2

N∑
j=1

l̃j0|eiθj − eiθ0 |2, (7.3)

where WL(θ) is defined by (4.13). The potential W̃L(θ) is positive-semidefinite and, if G

is connected, then, by Lemma 4.6, W̃L(θ) = 0 if and only if θk = θ0 for all k ∈ N . Using

θ̇0 = ω0, the time-derivative of W̃L(θ) along solutions of the phase model (3.6) is

˙̃WL =
∑N

j=1〈ieiθj , Lje
iθ〉uj − lj0〈eiθj − eiθ0 , ieiθjuj − ieiθ0ω0〉

= −
∑N

j=1〈ieiθj , Lje
iθ + l̃j0e

iθ0〉(ω0 − uj),

where we used
∑N

j=1〈ieiθj , Lje
iθ〉 = 〈iBT eiθ, BT eiθ〉 = 0. Choosing the control

uk = ω0 +K〈ieiθk , Lke
iθ + l̃k0e

iθ0〉, K < 0, (7.4)

yields

˙̃WL = K

N∑
j=1

〈ieiθj , Lje
iθ + l̃j0e

iθ0〉2 ≤ 0,

which leads to the following result [241, Section VI.A].
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Corollary 7.1. Augmented Laplacian phase synchronization Let L be the Laplacian

of an undirected and connected graph G = (N , E). Let L̃ be the Laplacian of the augmented

graph G̃ 6= G. For the augmented control (7.4), all of the synchronized phase arrangements

where θk(t) = θ0(0)+ω0t for all k ∈ N are asymptotically stable solutions of the closed-loop

phase model (3.6) with θ̇0 = ω0.

Proof. Using the invariance principle [131, Theorem 4.4], all of the solutions of the phase

model converge to the largest invariant set Ω where

〈ieiθk , Lke
iθ + l̃k0e

iθ0〉 = 0. (7.5)

In Ω, θ̇ = ω01. A sufficient condition for θ ∈ Ω is for θ to be in the set Λ ⊂ Ω of synchronized

phase arrangements where θk = θ0 for all k ∈ N . The set Λ is the global minimum of W̃L(θ)

defined in (7.3), which shows that all of the solutions in Λ are asymptotically stable.

In the case ω0 6= 0, then Corollary 7.1 describes a scenario in which all of the particles

orbit (different) circles such that their phases track the reference θ0(0) +ω0t. This scenario

is effectively depicted by Figure 4.1(a), although the reference phase is not shown. In the

case ω0 = 0, then Corollary 7.1 suggests an algorithm to stabilize a parallel formation that

tracks a reference trajectory [243, Section VIII.B]. The trajectory tracking algorithm, which

combines (7.4) with an open-loop impulsive control, assumes that the reference phase θ0(t)

is piecewise-constant. Let tn, n = 1, 2, . . ., denote the times at which the reference changes.

Each time the reference changes, the impulse control

∆θk(tn) = θ0(tn)− θk(tn) (7.6)

orients the velocity eiθk in the direction of the reference. Then the continuous control (7.4)

asymptotically stabilizes a parallel formation moving in this direction. In the absence of the

impulse control, the continuous control tracks the reference with a visible transient. Such

a scenario is illustrated in Figure 7.2 for a complete graph G. In this simulation, particle

1 is informed by the reference phase θ0.
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Figure 7.2: Augmented Laplacian phase control. A group of 12 particles with all-to-all
interaction tracks a piecewise-constant reference phase θ0(0) ∈ {π8 ,

π
4 } using the control

(7.4) with K = 1, l̃10 = −1, and l̃k0 = 0 otherwise. (top) phases θ (solid gray lines) track
reference phase θ0 (dashed line); (bottom) corresponding particle trajectories in the plane.

Corollary 7.1 provides a local description of the effect of the reference phase θ0 on the

set of synchronized phase arrangements. It does not characterize other phase arrangements

in Ω, that is, phase arrangements that satisfy the invariance condition (7.5). We present

such a characterization here. Since a general result has not been developed, we consider

the case when there is exactly one edge from node 0 to a node k ∈ N and, without loss of

generality, assume k = 1. In this case, (7.5) becomes

〈ieiθ1 , L1e
iθ − eiθ0〉 = 0 (7.7)

and

〈ieiθk , Lke
iθ〉 =

∂WL

∂θk
= 0, k = 2, . . . , N. (7.8)

If θ is a critical point of WL(θ), then θ satisfies (7.8) and (7.7) becomes 〈ieiθ1 , eiθ0〉 = 0.

This shows that Ω contains the set of critical points of WL(θ) where θ1 = θ0 mod π. In

fact, Ω is equal to the set of critical points of WL(θ) where θ1 = θ0 mod π, which we prove

by contradiction. Assume θ is not a critical point of WL(θ). Summing (7.7) and (7.8) for

all k = 2, . . . , N yields 〈ieiθ1 , eiθ0〉 = 0 since
∑N

j=1〈ieiθj , Lje
iθ〉 = 〈iBT eiθ, Beiθ〉 = 0. This

implies that (7.7) and (7.8) are equivalent to 〈ieiθk , Lke
iθ〉 = ∂WL

∂θk
= 0 for all k ∈ N , which
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is a contradiction.

We do not have such a characterization of Ω when there are two or more outgoing edges

from node 0. For example, suppose there is an edge from node 0 to node 1 and from node

0 to node 2. One can show that, if θ is a critical point of WL(θ) with θ1 + θ2 = θ0 mod π

or both θ1 = θ0 mod π and θ2 = θ0 mod π, then θ ∈ Ω. However, Ω may contain other

phase arrangements that are not in the critical set of WL(θ). Consider, for example, phase

arrangement θ where 〈ieiθk , Lke
iθ〉 = 〈ieiθk , eiθ0〉 6= 0 for k = 1, 2 and 〈ieiθk , Lke

iθ〉 = 0 for

k = 3, . . . , N . Using (7.5), we observe that θ ∈ Ω though θ is not a critical point of WL(θ).

Next we describe the corresponding analysis of the effect of a virtual particle on the

circular formation algorithm. For the purposes of stabilizing a circular formation at a

reference center c0 , r0 + ω−1
0 ieiθ0 , ω0 6= 0, consider the augmented Laplacian circular

formation potential

S̃L(r,θ) , SL(r,θ)− 1
2

N∑
j=1

l̃j0|cj,0|2, (7.9)

where SL(r,θ) is defined in (5.13) and cj,0 , cj − c0. The potential S̃L(r,θ) is positive-

semidefinite and, if G is connected, then S̃L(r,θ) = 0 if and only if ck = c0 for all k ∈ N .

Using ċ0 = 0, the time-derivative of S̃L(r,θ) along solutions of the particle model (3.5) is

˙̃SL =
∑N

j=1〈eiθj , Ljc〉ω−1
0 (ω0 − uj)− l̃j0〈cj,0, eiθj 〉ω−1

0 (ω0 − uj)

= ω−1
0

∑N
j=1〈eiθj , Ljc− l̃j0cj,0〉(ω0 − uj).

Choosing the control

uk = ω0(1 +K0〈eiθk , Lkc− l̃k0ck,0〉), K0 < 0, (7.10)

yields

˙̃SL = K0

N∑
j=1

〈eiθj , Ljc− l̃j0cj,0〉2 ≤ 0,

which leads to the following result [241, Section VI.A].

Corollary 7.2. Augmented Laplacian circular formation control Let L be the Lapla-

cian of an undirected and connected graph G = (N , E). Let L̃ be the Laplacian of the aug-

mented graph G̃ 6= G. For the augmented control (7.10), all of the solutions of the closed-loop
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phase model (3.6) with θ̇0 = ω0 6= 0 converge to the set of circular formations with radius

|ω0|−1, direction of rotation determined by the sign of ω0, and center c0 , r0 + ω−1
0 ieiθ0.

Proof. Let Ñk , {0,Nk} if (0, k) ∈ Ẽ and Ñk , Nk otherwise. Using the invariance

principle [131, Theorem 4.4 and Corollary 4.2], all of the solutions of the phase model

converge to the largest invariant set Ω where

〈eiθk , Lkc− l̃k0ck,0〉 = 〈eiθk ,
∑
j∈Ñk

ck,j〉 = 0. (7.11)

In Ω, θ̇ = ω01 and c is constant, which implies (7.11) holds only if ck = c0 for all k ∈ N .

Corollary 7.2 is relevant to applications with an unknown, bounded drift vector field

f(t, rk) ∈ C on the positions rk. Assume |f(t, rk)| < 1. We model the effect of f(t, rk)

on the particle model simply by adding it to the inertial velocity ṙk, that is, ṙk = eiθk +

f(t, rk). For example, consider a constant, uniform vector field f(t, rk) = f . Using the

velocity ṙk − f = eiθk , which is relative to the vector field, one can show that the circular

formation algorithms from Chapter 5 stabilize circular formations that rigidly translate at

constant velocity f relative to the inertial frame. On the other hand, the augmented circular

formation algorithm (7.10), which breaks the translational symmetry, seeks to stabilize

circular formations that are fixed in the inertial frame. We illustrate the effectiveness of the

augmented algorithm in the presence of a drift vector field.

Since a general result has not been developed, consider the case in which all of the

particles are informed by the virtual particle. Using ċk = ω−1
0 (ω0 − uk) + f , the time-

derivative of S̃L(r,θ) defined in (7.9) along solutions of the closed-loop particle model with

the control (7.10) is

˙̃SL =
∑N

j=1 ω
−1
0 〈eiθj , Ljc− l̃j0cj,0〉(ω0 − uj) + 〈f, Ljc− l̃j0cj,0〉

=
∑N

j=1K0 〈eiθj , Ljc+ cj,0〉2︸ ︷︷ ︸
≤|Ljc+cj,0|2

+ 〈f, Ljc+ cj,0〉︸ ︷︷ ︸
≤|f ||Ljc+cj,0|

.

The second term on the right-hand side is indefinite, which implies that S̃L(θ) is not guar-

anteed to decrease if |K0||Lkc+ ck,0| ≤ |f |. In the case ck = cj for all pairs k 6= 0 and j 6= 0,



140 Applied Control Design

0 20-80 -60 -40 -20
-30

-20

-10

0

10

20

30

(a) Reference c0 = 0, f = 0, t = 10 rev.

0 20-80 -60 -40 -20
-30

-20

-10

0

10

20

30

(b) No reference, f = −0.1, t = 10 rev.
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(c) Reference c0 = 0, f = −0.1, t = 10 rev.
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(d) Reference c0 = 0, f = −0.1, t = 100 rev.

Figure 7.3: Augmented Laplacian circular formation control. Simulations with N = 12,
ω0 = 0.1, K0 = 0.01, f ∈ {0,−0.1} (vector field not to scale), and all-to-all interaction. The
simulation duration is t ∈ {10, 100} revolutions. The reference center c0 = 0 is depicted by
a black dot; the centroid of circle centers is depicted by a circle marked with a •. (a,c,d)
Augmented control (7.10) stabilizes circular formation fixed in inertial frame; (b) original
control (5.14) stabilizes circular formation fixed in frame moving at speed f .

we cannot conclude from this Lyapunov function that |ck,0| decreases below |f/K0|. This

analysis suggests that the formation center is bounded away from the reference center by

an error proportional to the magnitude of the flow.

We test for the existence of a lower error bound in simulation. Figure 7.3 compares the

results of simulations of the augmented control (7.10) with the original control (5.14) in

the presence of a drift vector field f = −0.1. The simulations show that the augmented

control stabilizes a circular formation fixed in the inertial frame, whereas the original control

stabilizes a circular formation fixed in a frame moving at f . In the case f = 0, the steady-

state error ck,0 = 0 for all k ∈ N . In the case f = −0.1, we observe an error of 2|f/K0|,

consistent with the predicted lower bound to within a factor of two.

For long simulation times, particles using control (7.10) in the presence of uniform
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flow converge to two, nearly opposite clusters on the circle, even though no symmetric

pattern is imposed by the control law. This phenomenon—reminiscent of the beads-on-a-

wire example in Section 2.3.2—appears driven by the phase-dependent rotation rate about

the circle center. That is, when a particle phasor eiθk is parallel to f , then its rotation rate

about the center is faster than when eiθk is antiparallel to f . For a constant rate of turning

θ̇k = ω0, this apparently leads to particle clustering.

Note that the control (7.10) does not require knowledge of the flow f , although we use

f to integrate the particle trajectories. In order to drive the formation center to the desired

location, one might consider endowing the reference center c0 with dynamics that drive

|ck,0| to zero. Otherwise, each particle could estimate the flow field and use this estimate

in its control algorithm.

7.1.2 General Interaction

In this section we augment the dynamic phase synchronization and circular formation algo-

rithms to break continuous symmetries. Once again, we assume particle 0 is virtual and has

the dynamics given in (7.1). Let G(t) = (N , E(t)) represent a time-varying and/or directed

interaction network. Graph G̃(t) = (Ñ , Ẽ(t)) is the augmentation of G(t), where Ẽ(t) is the

union of E(t) and a set of edges of the form (0, k), k ∈ N . We assume that G̃(t) is uniformly

connected, which implies G̃(t) is uniformly connected to node 0. Let L̃(t) , [l̃kj(t)] be the

Laplacian matrix of G̃(t) given by (7.2).

For the purposes of synchronization with the reference phase θ0, particle 0 is assigned the

consensus variable z0 , w0e
i(θ0−ω0t) such that ż0 = ẇ0 = 0. Using (4.30), the augmented

dynamic phase synchronization algorithm is

uk = ω0 −K〈wk, i〉, K < 0

ẇk = −(uk − ω0)iwk −
∑N

j=0 l̃kj(t)wje
iθj,k , wk(0) = 1, k ∈ N .

(7.12)

If (0, k) ∈ Ẽ(t), this algorithm requires the transmission to node k of the variable w0 from

node 0. If ω0 is zero, then w0(t) = w0(0) = 1 for all t. We have the following result [241,

Section VI.A].



142 Applied Control Design

Corollary 7.3. Augmented dynamic phase synchronization Let L̃(t) be the Laplacian

of an augmented graph G̃(t) = (Ñ , Ẽ(t)). Consider the closed-loop phase model (3.6) with

the augmented control (7.12). If G̃(t) is uniformly connected, then all of the solutions of

(3.6) converge to the set where θk = θ0 mod π for all k ∈ N . All of the synchronized phase

arrangements where θk(t) = θ0(0) + ω0t are asymptotically stable and all of the remaining

equilibria are unstable.

Proof. For all k ∈ Ñ , the time-derivative of zk , wke
i(θk−ω0)t along solutions of the closed-

loop phase model (3.6) with control (7.12) is

żk = ẇke
i(θk−ω0t) + (uk − ω0)iwkei(θk−ω0t) = −

N∑
j=0

l̃kj(t)zj .

This shows that zk obeys the consensus dynamics (4.24) with respect to the augmented

Laplacian L̃(t). Since ż0 = 0, then z0(t) = z0(0), which implies zk → z0(0) for all k ∈ N as

t→∞. The limiting dynamics are

θ̇k − ω0 = −K〈iei(θk−ω0t), z0(0)〉 = −K sin(θ0 − θk), k ∈ N .

The remainder of the proof follows the proof of Theorem 4.10 with K < 0 and arg{z̄}

replaced by θ0.

Corollary 7.3 shows that all of the phases tend to synchronize with the reference phase

θ0. For ω0 = 0, this means that the particles join a parallel formation that moves in the

direction θ0(0). This result, which is independent of N , implies that a collective can exhibit

parallel motion in a reference direction when as few as one particle (a leader) is informed

of the reference, and that one particle has access to the reference only periodically.1 And,

as N increases, the percentage of informed individuals required to stabilize parallel motion

in the reference direction decreases. This phenomenon was originally described in [54],

and has been further explored in [179]. Leadership in this context is also studied in [284].

Note, if individuals in the collective are informed by more than one reference phase, that
1Time dependence of these interactions enters the proof through the assumption of uniform connectivity.
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is, if there is more than one virtual particle, then G̃(t) can not be uniformly connected and

Corollary 7.3 will not hold.

We turn now to the dynamic stabilization of a circular formation with reference center

c0 , r0 + iω−1
0 eiθ0 , where ω0 6= 0. In this setting, we use the consensus variables zk , wke

iθk

and yk , vke
iθk + rk for all k ∈ Ñ . The augmented dynamic circular formation algorithm

is
u0 = ω0

ẇ0 = −ω0iw0, w0(0) = 1

v̇0 = −1− ω0iv0, v0(0) = 0,

(7.13)

and

uk = ω0(1−K0〈vk, 1〉) +K0〈wk, i〉, K0 > 0

ẇk = −ukiwk −
∑N

j=0 l̃kj(t)wje
iθj,k , wk(0) = 1

v̇k = −1− ukivk −
∑N

j=0 l̃kj(t)(vje
iθj,k − rje

−iθk), vk(0) = 0, k ∈ N .

(7.14)

We have the following result [241, Section VI.A].

Corollary 7.4. Augmented dynamic circular formation control Let L̃(t) be the

Laplacian of an augmented graph G̃(t) = (Ñ , Ẽ(t)) that is uniformly connected. For the

control (7.14), all of the solutions of the closed-loop particle model (3.5) converge to the set

of circular formations with radius |ω0|−1, with direction of rotation determined by the sign

of ω0 6= 0, and center c0(0) = r0(0) + iω0e
iθ0(0).

Proof. For all k ∈ Ñ , the time-derivatives of zk and yk along solutions of the closed-loop

particle model (3.5) with control (7.14) are

żk = ẇke
iθk + ukwkie

iθk = −
N∑
j=0

lkj(t)zj

and

ẏk = v̇ke
iθk + ukvkie

iθk + eiθk = −
N∑
j=1

lkj(t)yj ,

which means that zk and yk obey the consensus dynamics (4.24) with respect to the aug-

mented Laplacian L̃(t). Since ż0 = 0, then z0(t) = z0(0), which implies zk → z0(0) for all
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k ∈ N as t → ∞. Similarly, ẏ0 = 0 and y0(t) = y0(0), which implies yk → y0(0) for all

k ∈ N . In the limit t→∞, the control (7.14) converges to

uk = ω0(1 +K0〈eiθk , rk − y0(0)) +K0〈ieiθk , z0(0)〉

= ω0(1 +K0〈eiθk , rk − (y0(0) + ω−1
0 iz0(0))︸ ︷︷ ︸

c(0)

〉).

The remainder of the proof follows the proof of Theorem 5.4 with c̄ replaced by c0(0).

7.2 Discrete Symmetry Breaking Using Network Design

In the previous section, we introduce the notion of a virtual particle in order to break the

continuous symmetries of the closed-loop particle model. Another symmetry of the particle

model is invariance to permutations of the particle indices. For example, under all-to-all

interaction, swapping the index of any particle with the index of any other particle has no

effect on the solution trajectories. In addition, for time-invariant and undirected interaction,

if particles j and k are neighbors and Nk−j = Nj−k, then swapping j and k has no effect on

the solution trajectories. Since the group of permutations is finite, permutation invariance

is a discrete symmetry. Although general interaction networks possess discrete symmetries

too, we consider only time-invariant and undirected interaction networks here.

We are motivated to break the permutation symmetry of the particle model by the desire

to stabilize amulti-level symmetric configuration, which is composed of multiple, symmetric

(circular) formations whose collective phase arrangement is also symmetric. The circular

formations in a multi-level symmetric configuration can be fixed in the plane by the presence

of a reference center. Although a multi-level symmetric configuration involves a high-level

of symmetry in the steady-state phase configuration, it is not invariant to all permutations.

For example, consider Figure 7.4(a), which depicts a configuration involving three pairs

of particles. Each pair of particles orbits a different circle that is fixed in the plane by a

reference center. The phases of particles on the same circular orbit are balanced, whereas

the phases of particles on different circular orbits are either synchronized or balanced.
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(a) Multi-level configuration
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Figure 7.4: Multi-level symmetric configuration and supporting interaction network. (a)
A multi-level symmetric configuration with three pairs of particles that collectively form a
(2, 6)-pattern where each pair of particles forms a (2, 2)-pattern circular formation with a
reference center; (b) block interaction with three blocks augmented by a virtual particle; (c)
three, hierarchical levels of interaction that support the multi-level symmetric configuration
shown in (a).

The configuration shown in Figure 7.4(a) contains three (2, 2)-pattern circular forma-

tions that collectively form a (2, 6)-pattern. In such a configuration, swapping indices of

particles on the same circle does not change the control laws, whereas swapping indices

between particles on different circles would require a change of control laws (namely each

individual in the swap would need to change their circle reference).

As a first step towards an algorithm to stabilize multi-level configurations with time-

invariant and undirected interaction, we introduce the notion of block interaction, which is

so named because of the block-diagonal structure of the corresponding graph Laplacian. A

block is a subset of particles that interact with one another; there is no interaction between

blocks. Let B denote the number of blocks. For b = 1, . . . ,B, graph Gb describes the

interaction between all of the particles in block b. Collectively, the set of all interaction is

described by the graph G ,
⋃B
b=1Gb. The Laplacian matrix L corresponding to graph G is

block-diagonal and each block is the Laplacian of the graph Gb. If there is a virtual particle

associated to each block, then the augmented interaction in that block is described by graph

G̃b and the collective set of block interactions is described by the graph G̃ =
⋃B
b=1 G̃b. In this
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case, the virtual particles may be assigned nonzero indices so that the augmented Laplacian

L̃ , [l̃kj ], which has dimensions (N + B) × (N + B), is block-diagonal. For example, the

block interaction depicted in Figure 7.4(b) has three blocks, each with one virtual particle;

the augmented Laplacian is

L̃ = diag{(1, 1, 1)T } ⊗


0 0 0

−1 2 −1

0 1 −1

 =



0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0

0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 1 −1


,

where ⊗ is the Kronecker product.

For L̃ the Laplacian of an augmented graph G̃ with block interaction, consider the

control

uk = ω0(1−K0〈eiθk ,
N+B−1∑
j=0

l̃kjck,j〉), K0 < 0. (7.15)

Since there is no interaction between blocks, (7.15) is equivalent to the augmented control

(7.10) within each block. Consequently, Corollary 7.2 shows that each block of particles

converges to a circular formation with reference center determined by the corresponding

virtual particle.

The second step towards a multi-level symmetric configuration algorithm is the notion

of interaction levels. The basic idea of an interaction level is to use multiple interaction

networks in a single control algorithm. Each interaction network occupies one level. Define

L so there are L + 1 levels in total. Consider, for instance, Lemma 6.4 and the composite

control (6.28), which contains two terms: ω0(1 +K0〈eiθk , Lkc〉), which drives the particles

to a circular formation, and ∂W ∗
L

∂θk
, which drives the phases to a critical point of a Laplacian

phase potentialW ∗
L(θ). Lemma 6.4 assumes the same interaction network is used to generate

both terms. In the following adaptation of Lemma 6.4, we remove this assumption in order

to use multiple interaction networks in the composite control. In particular, we assign level

0 to the circular formation term and levels 1, . . . ,L to the phase gradient term.
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Lemma 7.5. Multi-level Laplacian composite phase and formation control Let L̃(0)

be the Laplacian of an undirected and connected graph G̃(0). Let L(n) be the Laplacian of

graph G(n) = (N , E(n)) on level n ∈ {1, . . . ,L} and let W ∗
L(n)(θ) be a smooth and rotationally

symmetric Laplacian phase potential. For the shape control

uk = ω0(1 +K0〈eiθk , L
(0)
k c〉) +

L∑
n=1

∂W ∗
L(n)

∂θk
, K0 > 0, (7.16)

all of the solutions of the closed-loop particle model (3.5) converge to the set of circular

formations with radius |ω0|−1 and direction of rotation determined by the sign of ω0 6= 0.

All of the circular formations in the limiting set have phase arrangements in the critical set

of the phase potential W ∗∗
L (θ) ,

∑L
n=1W

∗
L(n)(θ). Every isolated local minimum of W ∗∗

L (θ)

defines an asymptotically stable set of circular formations; every circular formation where

W ∗∗
L (θ) does not reach a minimum and θ is isolated in shape space is unstable.

Proof. Since the control (7.16) is a shape control, then the closed-loop particle model evolves

on the reduced shape space. Furthermore, the potential

V ∗∗
L (r,θ) , ω2

0K0SL(0)(r,θ)−W ∗∗
L (θ), K0 > 0,

is positive definite and proper in the reduced shape space and V̇ ∗∗
L (r,θ) ≤ 0. Let Ω be the

set of all of the points in the reduced shape space where V̇ ∗∗
L = 0. In this set,

ω0K0〈eiθk , L
(0)
k c〉+

∂W ∗∗
L

∂θk
= 0, (7.17)

which implies θ̇ = ω01 and c is constant. Let Λ denote the largest invariant set in Ω. Also

let N (n)
k denote the neighbor set of node k in graph G(n). Taking the time-derivative of

(7.17) in Ω yields

〈ieiθk , L
(0)
k c〉ω

2
0 + 〈eiθk ,

N∑
j∈N (0)

k

ċk,j︸︷︷︸
0

〉ω0 +
d

dt

(
∂W ∗∗

L

∂θk

)∣∣∣∣
Ω

= 0,

where, using the rotational symmetry of W ∗
L(n) for all n = 1, . . . ,L, we have

d

dt

(
∂W ∗∗

L

∂θk

)∣∣∣∣
Ω

=
L∑
n=1

N∑
j=1

∂2W ∗
L(n)

∂θj∂θk
ω0 = 0.
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Thus, points in Λ satisfy

〈ieiθk , L
(0)
k c〉 = 0.

The remainder of the proof follows the proof of Lemma 6.1 with Lk replaced by L
(0)
k and

U∗(r,θ) replaced by W ∗∗
L (r,θ).

We use multiple interaction levels to generate multi-level symmetric configurations in the

following way. Level 0 is associated to the augmented block interaction that supports stabi-

lization of circular formations with prescribed reference centers. Each level n ∈ {1, . . . ,L},

for which there is also a dedicated interaction network, supports the generation of a par-

ticular phase pattern. For example, there is pairwise interaction on level 1 shown in Fig-

ure 7.4(c); this level supports the generation of three (2, 2)-patterns. In the same figure,

there is all-to-all interaction on level 2, which supports the generation of a (2, 6)-pattern.

Collectively, levels 0, . . . , 2 support the generation of the multi-level symmetric configura-

tion shown in Figure 7.4(a). Note that, since level 0 contains virtual particles, then levels 1

and 2 must also contain virtual particles (even though they have no outgoing edges) in order

for the particle indices to be consistent across all levels. The control law that generates this

configuration is

uk = ω0(1−K0〈eiθk ,

8∑
j=0

l̃kjck,j〉)+
∂W 2,2

L(1)

∂θk
+
∂W 2,6

L(2)

∂θk
, K0 > 0, k ∈ {0, . . . , N+B−1}. (7.18)

Figure 7.5 illustrates the cumulative effect of this multi-level interaction network.

In order to formalize the phase component of this algorithm, let M , (M1, . . . ,ML)T

and N , (N1, . . . , NL)T such that Mn is a divisor of Nn for all n = 1, . . . ,L. Let

WMn,Nn

L(n) (θ) be a (Mn, Nn)-pattern Laplacian phase potential. The potential WM ,N
L (θ) ,∑L

n=1W
Mn,Nn

L(n) (θ) is a multi-level Laplacian symmetric phase pattern potential. Each level

in WM ,N
L (θ) further refines the set of phase arrangements that minimize WM ,N

L (θ). In

fact, WM ,N
L (θ) is designed to isolate phase arrangements that minimize WMn,Nn

L(n) (θ) for all

n = 1, . . . ,L. The following proposition summarizes the multi-level symmetric configuration

algorithm.
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Figure 7.5: Multi-level Laplacian symmetric circular formation control. Simulations of the
closed-loop particle model with the control (7.18) with N = 6, K0 = 0.1, ω0 = 0.1, and
|Km| = K0/N . (a) Level 0, which has an augmented block interaction, drives the particles
to three circular formations with referenced centers; (b) level 0 and level 1, which has
pairwise interaction, drive the particles within each circular formation to a (2, 2)-pattern;
(c) levels 1, 2, and level 3, which has all-to-all interaction, drives all of the particles to a
(2, 6)-pattern.

Proposition 7.6. Multi-level, augmented Laplacian symmetric circular config-

uration control Let L̃(0) be the Laplacian of graph G̃(0) =
⋃B
b=1 G̃

(0)
b that describes an

augmented block interaction network with B blocks. Let L(n) be the Laplacian of graph

G(n) = (N , E(n)), where n ∈ {1, . . . ,L} is the interaction level. Let M , (M1, . . . ,ML)T

and N , (N1, . . . , NL)T such that Mn is a divisor of Nn for all n = 1, . . . ,L. Let

WMn,Nn

L(n) (θ) be a (Mn, Nn)-pattern Laplacian phase potential. For the control

uk = ω0(1 +K0〈eiθk ,

N+B−1∑
j=0

l̃
(0)
kj ck,j〉) +

L∑
n=1

∂WMn,Nn

L(n)

∂θk
, K0 > 0,

all of the trajectories of the closed-loop particle model (3.5) converge to circular orbits

with radius |ω0|−1 and direction of rotation determined by the sign of ω0 6= 0. All of

the particles in block b ∈ {1, . . . ,B} converge to a circular formation with reference center

determined by the corresponding virtual particle. Collectively, the circular formations in the

limiting set have phase arrangements in the critical set of the phase potential WM ,N
L (θ) ,∑L

n=1W
Mn,Nn

L(n) (θ). Every isolated local minimum of WM ,N
L (θ) defines an asymptotically

stable set of circular formations; every circular formation where WM ,N
L (θ) does not reach
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a minimum and θ is isolated in the reduced space of relative phases is unstable.

7.3 Symmetric Formations on Convex Loops

All of the results presented thus far stabilize either parallel or circular formations, which

are relative equilibria of the particle model. In this section, we describe algorithms using

curvature as feedback to stabilize formations on closed loops that are not necessarily circular.

These algorithms apply to a set of smooth, convex loops around which the curvature is either

positive or negative but never zero.2 In the absence of any virtual particles, formations on

closed loops are invariant to rigid translation in the plane and, consequently, possess a

translational symmetry. However, formations on closed loops are not invariant to rigid

rotation in the plane because the orientation of the loop breaks the rotational symmetry.

Nonetheless, the results in this section are based on, and, in many cases, mirror the results

for circular formations. A coupled-phase oscillator model is central to the development.

Consider a simple, smooth, closed curve C with non-zero curvature. If particle k orbits

C, then the velocity ṙk is necessarily tangent to C. Let ck—called the center of C—denote

a point in the interior of C. Let Ck , (ck, 1, i) denote a reference frame with origin ck

and unit vectors 1 and i. We parameterize C in Ck by ρ : [0, 2π) → C, φ 7→ ρ(φ), where

φ : T → [0, 2π), θk 7→ φ(θk), is a smooth map. In this notation, the tangent vector to C is

dρ
dφ , which implies

eiθk =
∣∣∣∣dρdφ

∣∣∣∣−1 dρ

dφ
. (7.19)

Equation (7.19) is a constraint on the velocity ṙk. Let σ denote the arc length measured

along C, given by,

σ(φ) ,
∫ φ

0

∣∣∣∣dρdφ̄
∣∣∣∣ dφ̄. (7.20)

Using Σ , σ(2π) > 0 to denote the loop perimeter, we obtain the angular displacement of

a point measured along C [301]

ψ(φ) ,
2π
Σ
σ(φ), (7.21)

2This limitation is not present in [301].
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Figure 7.6: Particle orbiting closed loop C. (a) Velocity eiθk is tangent to C, which has
center ck and perimeter Σ; (b) arc length σk is measured along loop from positive real axis
of frame Ck and is proportional to curve-phase ψk.

which we call the curve-phase. Figure 7.6 illustrates the center and curve-phase of an ellipse.

Under the constraint (7.19), the curvature κ of C is a smooth function of φ given by

κ(φ) , ±dθk
dσ

, (7.22)

where the positive (resp. negative) sign corresponds to counterclockwise (resp. clockwise)

rotation. By assumption, the curvature of C is bounded and definite, that is 0 < |κ(φ)| <∞,

which means it is invertible. For example, if C is a circle with radius |ω0|−1 then κ is constant

and is equal to ω0. Using the definition of arc length σ given by (7.20), we have

κ−1(φ) ,
1

κ(φ)
= ± dσ

dθk
= ±dσ

dφ

dφ

dθk
= ±

∣∣∣∣dρdφ
∣∣∣∣ dφdθk . (7.23)

Differentiating (7.21) with respect to time using (7.23), we obtain

dψ

dt
=

2π
Σ
dσ

dθk

dθk
dt

=
2π
Σ
|κ|−1(φ)θ̇k.

Let κk , κ(φ(θk)) and ψk , ψ(φ(θk)) for k ∈ {1, . . . , N}, so that ψ , (ψ1, . . . , ψN )T ∈ TN .

This leads to the following definition [197].

Definition 7.7. Curve-phase model Let C represent a convex loop with curvature κ(φ) 6=

0 and perimeter Σ. Let ψk ∈ T and uk ∈ R denote the curve-phase and steering control for

particle k ∈ N , respectively. The curve-phase model is

ψ̇k =
2π
Σ
|κk|−1uk, (7.24)
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where uk is a function of ψ only.

The curve-phase model (7.24), which is a system of coupled-phase oscillators, is analo-

gous to the phase model (3.6). This analogy enables us to extend the results for formations

on circles to formations on closed loops. Using ρk , ρ(φ(θk)), we define the center ck of C

ck , rk ∓ ρk, (7.25)

where the negative (resp. positive) sign corresponds to counterclockwise (resp. clockwise)

rotation. Note, if C is a circle with radius |ω0|−1, then ρk = −ω−1
0 ieiθk and ck = rk+ω−1

0 ieiθk

as before. Using (7.19) and (7.23), we observe that

∓ dρ

dθk
= ∓dρ

dφ

dφ

dθk
= −eiθkκ−1(φ). (7.26)

Consequently, the time-derivative of ck along solutions of (3.5) is

ċk = eiθk(1− κ−1
k uk). (7.27)

Equation (7.27) shows that, if the control uk = κk, then ċk = 0 and particle k travels around

C. If C is a circle with radius |ω0|−1, then uk = κk = ω0 as expected.

As a more general example of the type of loop to which this framework applies, we

consider a class of loops that includes circles, ellipses, and rounded parallelograms, known

as superellipses. Our parameterization of a superellipse is

ρ(φ) = a(cosφ)
1
p + (i+ µ)b(sinφ)

1
p , (7.28)

where µ ∈ R determines the skew angle. The semi-major axis length a and semi-minor axis

length b satisfy a ≥ b > 0. The parameter p = 1, 3, 5, . . . determines the corner sharpness.

For µ = 0 and a > b (resp. a = b), setting p = 1 yields an ellipse (resp. circle) and setting

p ≥ 3 yields a rounded rectangle (resp. rounded square). Setting µ 6= 0 and p > 1 yields

a rounded parallelogram. We solve for κk in (B.1) and ρk in (B.2) (see Appendix B). For

example, setting µ = 0 and p = 1 yields the ellipse curvature

κk = ± 1
a2b2

(
a2 sin2 θk + b2 cos2 θk

) 3
2 . (7.29)
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Figure 7.7: Curvature as feedback. (top) Setting uk = κk drives particle k around the
corresponding loop C. Points of equally-spaced phase θk are indicated with dots; points
of equally-spaced curve-phase ψk are indicated with squares. Circle radius a = 10; ellipse
parameters a = 10, b = 5, and p = 1; superellipse parameters a = 10, b = 5, p = 3.
(bottom) Curvature κk versus phase θk for the three trajectories plotted on top.

Setting b = a in (7.29) yields the constant curvature of a circle with radius a, κk = ±1/a.

The loops and curvatures for p = 1 and 3 are illustrated in Figure 7.7 for µ = 0 and

counterclockwise rotation. Note for p ≥ 3, the curvature κk is zero for {θk | θk =

(π/2)j, j = 0, 1, 2, 3}. Although κ−1
k is singular at these points, they represent a set of

measure zero. Simulations suggest that the results below apply to superellipses with p ≥ 3,

provided care is taken to avoid singularities when computing the control law.

Using curvature as feedback control does not require interaction between particles,

whereas stabilizing all of the particles to orbit loop C with the same center does require in-

teraction. We describe here such an algorithm for time-invariant and undirected interaction.

This algorithm, and the extension to general communication, follows the same methodology
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as circular formation algorithm. Let L be the Laplacian of a time-invariant and undirected

graph G = (N , E). Let c , (c1, . . . , cN )T ∈ CN , where ck is given by (7.25). In order to

drive the particles to loop C with a common center, we choose a stabilizing control that

minimizes the Laplacian quadratic form

SL(r,θ) , Q(c) =
1
2
〈c, Lc〉, (7.30)

which, if C is a circle of radius |ω0|−1, is identical to (5.13). The potential SL(r,θ), which is

positive-semidefinite, is zero if and only if ck = cj for all pairs k and j. The time-derivative

of SL(r,θ) along the solutions of (3.5) is

ṠL(r,θ) =
N∑
k=1

〈eiθk , Lkc〉(1− κ−1
k uk),

Choosing the Laplacian loop formation control

uk = κk(1 +K0〈eiθk , Lkc〉), K0 > 0 (7.31)

yields

Ṡ(r,θ) = −K0

N∑
k=1

〈eiθk , Lkc〉2 ≤ 0.

The closed-loop particle model with control (7.31) depends only on the particle (abso-

lute) phases and the relative position of the loop centers of neighboring particles. Therefore,

the closed-loop system is invariant to rigid translation of all loop centers. Lyapunov analysis

provides the following result [197, Theorem 1], illustrated by simulation in Figure 7.8(a).

Theorem 7.8. Laplacian loop formation control Let L be the Laplacian of an undi-

rected and connected graph G. Let C be a convex loop with curvature κ 6= 0. All solutions of

the closed-loop particle model (3.5) with the control (7.31) converge to the set of formations

on C with direction of rotation determined by the sign of κ.

Proof. The function SL(r,θ) is positive definite and proper in the co-dimension 2 reduced

space of the N particle phases θk and the N − 1 relative positions of the loop centers ck.

Since SL(r,θ) is nonincreasing, by the invariance principle [131, Theorem 4.4 and Corollary
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Figure 7.8: Laplacian loop formation control. Parameters N = 6, K0 = 0.1, a = 10, b = 5,
and p = 3. (a) Loop formation control (7.31) stabilizes particles to loop C; (b) symmetric
loop formation control (7.39) with M = N stabilizes particles to splay pattern on loop C.

4.2], solutions in the reduced space converge to the largest invariant set Ω where

〈eiθk , Lkc〉 = 0.

In Ω, θ̇k = κk and ck is constant, which implies the invariance condition holds only if Lc = 0,

that is, if ck = cj for all pairs k and j.

Note, Theorem 7.8 does not specify the steady-state location of the formation center,

which is arbitrarily determined by initial conditions. Likewise, the steady-state distribution

of particles on loop C is also arbitrary. Because of the similarity between the curve-phase

model (7.24) and the phase model (3.6), control of the curve-phase of particle k relative to

particle j for all pairs k and j is achieved using the gradient of the Laplacian curve-phase

potential

WL(ψ) ,
1
2
QL(eiψ) =

1
2
〈eiψ, Leiψ〉, (7.32)

where L is the Laplacian of an undirected and connected graph. PotentialWL(ψ) is identical

to WL(θ) defined in (4.13) with θ replaced by ψ, which means WL(ψ) possess many of the

same properties as WL(θ), including rotational symmetry. Rotational symmetry of WL(ψ)
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means that the vector 1 is orthogonal to the gradient ∇WL ,
(
∂WL
∂ψ1

, . . . , ∂WL
∂ψN

)T
and in the

kernel of the Hessian HL. The time-derivative of WL(ψ) along solutions of (7.24) is

ẆL =
N∑
j=1

∂WL

∂ψj
ψ̇j =

2π
Σ

N∑
j=1

〈ieiψj , Lje
iψ〉|κk|−1uk,

which evaluates to zero if uk = κk.

Let W ∗
L(ψ) denote an arbitrary Laplacian curve-phase potential or linear combination

of potentials. Consider the composite potential

V ∗
L (r,θ) , K0SL(r,θ)− Σ

2π
W ∗
L(ψ), K0 > 0, (7.33)

where the formation potential SL(r,θ) is defined in (7.30). The time derivative of V ∗
L (r,θ)

along solutions of the closed-loop particle model (3.5) is

V̇ ∗
L = K0

∑N
j=1(1− κ−1

k uj)〈eiθk , Ljc〉 −
∑N

j=1
∂W ∗

L
∂ψj

|κk|−1uj

=
∑N

j=1

(
K0〈eiθj , Ljc〉+ sgn(κk)

∂W ∗
L

∂ψj

)
(1− κ−1

k uj),

where we used the fact that
∑N

j=1
∂W ∗

L
∂ψj

= 1T∇W ∗
L = 0. Choosing the composite control

uk = κk(1 +K0〈eiθk , Lkc〉) + |κk|
∂W ∗

L

∂ψk
, K0 > 0, (7.34)

yields

V̇ ∗
L = −

N∑
j=1

(
K0〈eiθj , Ljc〉+ sgn(κk)

∂W ∗
L

∂ψk

)2

≤ 0,

which leads to the following result.

Lemma 7.9. Laplacian composite phase and loop formation control Let L be the

Laplacian of an undirected and connected graph G = (N , E), C be a convex loop with

curvature κ 6= 0, and W ∗
L(ψ) be a smooth and rotationally symmetric Laplacian curve-

phase potential. For the control (7.34), all of the solutions of the closed-loop particle model

(3.5) converge to the set of formations on loop C with direction of rotation determined

by the sign of κ; all of the formations in the limiting set have phase arrangements in the

critical set of the phase potential W ∗
L(ψ). Every isolated local minimum of W ∗

L(ψ) defines

an asymptotically stable set of formations; every formation where W ∗
L(ψ) does not reach a

minimum and ψ is isolated in the reduced space of relative curve-phases is unstable.
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Proof. For the control (7.34), the closed-loop particle model evolves on the co-dimension

2 reduced space of the N particle phases θk and the N − 1 relative positions of the loop

centers ck. Let Ω be the set of all of the points in the reduced shape space where V̇ ∗
L = 0.

In this set,

K0〈eiθk , Lkc〉+ sgn(κk)
∂W ∗

L

∂ψk
= 0, (7.35)

which implies θ̇k = κk, ψ̇k = 0, and ċk = 0 for all k ∈ N . Let Λ denote the largest invariant

set in Ω. Taking the time-derivative of (7.35) in Ω yields

K0〈ieiθk , Lkc〉κk + 〈eiθk ,

N∑
j=1

ċk,j︸︷︷︸
0

〉ω0 + sgn(κk)
d

dt

(
∂W ∗

L

∂ψk

)∣∣∣∣
Ω

= 0,

where
d

dt

(
∂W ∗

L

∂ψk

)∣∣∣∣
Ω

=
N∑
j=1

∂2W ∗
L

∂ψj∂ψk
ψ̇j = 0.

Thus, points in Λ satisfy

〈ieiθk , Lkc〉 = 0. (7.36)

Equation (7.36) holds only if Lc = 0, which implies ck = cj for all pairs k and j. Using

(7.35), we observe that points (r,θ) in Λ also satisfy

∂W ∗
L

∂ψk
= 0. (7.37)

Equation (7.37) holds only if ψ is a critical point ofW ∗
L(ψ). By the invariance principle [131,

Theorem 4.4 and Corollary 4.2], every solution of the closed-loop particle model approaches

Λ as t → ∞. Using Lemma A.2 with V1(x) replaced by K0S(r,θ) and V2(x) replaced by

− Σ
2πW

∗
L(ψ) completes the proof.

Lemma 7.9 shows that, if we can identify a suitable curve-phase potential, then we can

stabilize symmetric curve-phase patterns on convex loops. For this purpose, we adopt the

same terminology as for symmetric phase patterns. That is, if M is a divisor of N , then an

(M,N)-pattern ψ is a symmetric curve-phase arrangement of N curve-phases consisting of

M clusters with N/M synchronized curve-phases in each cluster. Likewise, as stated in the
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following corollary, the curve-phase potential

WM,N
L (ψ) , −

∑M
m=1

Km
m2 WL(mψ) = −1

2

∑M
m=1

Km
m2 〈eimψ, Leimψ〉,

Km > 0, m = 1, . . . ,M − 1, KM < −
∑M−1

m=1 Km.
(7.38)

has the same properties as the symmetric pattern potential WM,N
L (θ) given in (6.33) [197,

Lemma 4].

Corollary 7.10. Laplacian symmetric curve-phase pattern potential Let L denote

the Laplacian of an undirected and connected circulant graph G = (N , E), C be a convex

loop with curvature κ 6= 0, and M be a divisor of N . The potential WM,N
L (ψ) is smooth

and rotationally symmetric. If phase arrangement ψ ∈ TN is an (M,N)-pattern, then ψ is

a local minimum of WM,N
L (ψ) that is isolated in the curve-phase shape space.

Proof. The proof follows the proof of Theorem 6.7 with θ replaced by ψ.

This leads to the following result [197, Theorem 5], which mirrors Corollary 6.8. Con-

sider the control

uk = κk(1 +K0〈eiθk , Lkc〉)− |κk|
∂WM,N

L

∂ψk
, K0 > 0. (7.39)

A simulation of the closed-loop particle model with control (7.39) is shown in Figure 7.8(b).

Corollary 7.11. Laplacian symmetric loop formation control Let L denote the Lapla-

cian of an undirected and connected circulant graph G = (N , E), C be a convex loop with

curvature κ 6= 0, and M be a divisor of N . The results of Lemma 7.9 apply when control

(7.34) is replaced by (7.39), where the Laplacian symmetric phase potential WM,N
L (ψ) is

defined in (7.38). All of the formations in the limiting set have a phase arrangement in the

critical set of WM,N
L (ψ). All of the formations where the phase arrangement is an (M,N)-

pattern are asymptotically stable. All of the formations where WM,N
L (ψ) does not reach a

minimum and ψ is isolated in the reduced space of relative curve-phases are unstable.

Proof. Application of Lemma 7.9 and Theorem 7.10 yields the desired result.
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Corollary 7.11 leads naturally to the following extension of Proposition 7.6 to control

symmetric formations on multiple loops.

Proposition 7.12. Multi-level, augmented Laplacian symmetric loop configu-

ration control Let L̃(0) be the Laplacian of graph G̃(0) =
⋃B
b=1 G̃

(0)
b that describes an

augmented block interaction network with B blocks. Let L(n) be the Laplacian of graph

G(n) = (N , E(n)), where n ∈ {1, . . . ,L} is the interaction level. Let M , (M1, . . . ,ML)T

and N , (N1, . . . , NL)T such that Mn is a divisor of Nn for all n = 1, . . . ,L. Let

WMn,Nn

L(n) (ψ) be a (Mn, Nn)-pattern Laplacian curve-phase potential and C be a convex loop

with curvature κ 6= 0. For the control

uk = κk(1 +K0〈eiθk ,
N+B−1∑
j=0

l̃
(0)
kj ck,j〉) +

L∑
n=1

∂WMn,Nn

L(n)

∂ψk
, K0 > 0,

all of the trajectories of the closed-loop particle model (3.5) converge to the set of formations

on loop C with direction of rotation determined by the sign of κk. All of the particles in

block b ∈ {1, . . . ,B} converge to a formation on loop C with reference center determined by

the corresponding virtual particle. Collectively, the formations in the limiting set have phase

arrangements in the critical set of the phase potential WM ,N
L (ψ) ,

∑L
n=1W

Mn,Nn

L(n) (ψ). Ev-

ery isolated local minimum of WM ,N
L (ψ) defines an asymptotically stable set of formations;

every formation where WM ,N
L (θ) does not reach a minimum and ψ is isolated in the reduced

space of relative curve-phases is unstable.

Proposition 7.12 provides a decentralized control algorithm to steer self-propelled par-

ticles on symmetric patterns suitable for applications in sensing networks. In the next

chapter, we describe the software infrastructure generated to implement this and other

control algorithms on a fleet of underwater gliders.





Chapter 8

Glider Control Synthesis

The feedback control algorithms in the previous chapter are applied to coordinate a fleet of

underwater gliders using an automatic control system called the Glider Coordinated Control

System (GCCS). The GCCS, which we describe in this chapter, is designed to perform

automatic feedback control at the level of the fleet. The modular design of the GCCS

enables a glider control algorithm to “plug and play”. The GCCS uses both a detailed

glider model and a simple particle model to plan glider trajectories. Development of the

GCCS was assisted by previous experience with performing fleet-level feedback control of

underwater gliders [83].

The GCCS—currently 16, 000 lines of source code—is a modular, cross-platform software

suite written in MATLAB R©. The GCCS planning module runs on a single computer

onshore and communicates to gliders at sea via satellites. The GCCS also serves as a

simulation testbed for development of coordinated control algorithms. Simulated (virtual)

gliders operate in realistic ocean fields that are provided as input. Accordingly, it is possible

to use the GCCS to explore and test solutions to many of the challenges that come with

controlling a network of gliders in the ocean.

The three main GCCS modules are shown in Figure 8.1: (i) the GCCS planner, which

is the real-time controller, (ii) the GCCS simulator, which can serve as control testbed or

to predict glider motion in real time, and (iii) the GCCS remote input/output (IO) module,

161
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Figure 8.1: The Glider Coordinated Control System. The GCCS running on a computer
in Princeton, New Jersey. The three major components are the glider planner, the glider
simulator, and the remote input/output (IO). The glider data servers, which are located in
Woods Hole, Massachusetts and La Jolla, California, connect via Iridium satellite commu-
nication to the gliders as they periodically come to the surface (shown near Monterey Bay,
California). Figure after [201].

which interfaces to gliders indirectly through the glider data servers. The input to the

planner is a set of glider coordinated trajectories (GCT), described in the next section. To

plan trajectories for the gliders, which surface asynchronously, the GCCS uses two different

models: a simple glider model—such as the particle model described in Chapter 3—that

is integrated to compute desired trajectories (with or without coordinated control), and

a detailed glider model—described in Section 8.2.2—that is integrated to estimate three-

dimensional glider motions in the presence of flow. We refer to the software that integrates

these two models as the glider integrator and particle integrator, respectively.

8.1 Specifying Glider Trajectories

The input to the GCCS planner module is a description of the desired set of glider coor-

dinated trajectories (GCT). The GCCS is designed to facilitate incorporation of alternate
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feedback control algorithms. As a result, the specification of the GCT, described below,

is fairly general and not control-specific. Consequently, GCTs can be constructed that are

not feasibly stabilized by the algorithms in Chapter 7. Likewise, the GCT specification is

not yet adequate to generate all of the permutations of the control algorithms described in

Chapter 7.

A GCT has three main components, which are all contained in a self-describing XML1

file: (i) a description of the operating domain; (ii) a list of the closed loops—called tracks—

and their properties; and (iii) a structured glider list—called the glider tree—that specifies

the gliders and their properties, including track assignments. The glider tree determines

the interaction network to be used in the control design as well as the desired steady-state

configuration of the gliders.

To explain the contents of a GCT, we describe an example that is illustrated in Fig-

ure 8.2. This example contains six gliders deployed near Point Ãno Nuevo, California. It

corresponds to a multi-level, augmented symmetric formation such as the one shown in

Figure 7.4(a). In the illustration, the operating domain is a black rectangle that cir-

cumscribes three superelliptic tracks depicted by dashed gray lines. Each of three glider

pairs—we05/we08, we07/we09, and we10/we12—is assigned to travel clockwise around a

single track. Levels 1 and 2 of the interaction network in Figure 7.4(c), superimposed on

the illustration in Figure 8.2, are designed to support balancing of the curve-phases of the

pair of gliders on each track and synchronizing or balancing of the curve-phases of any two

gliders on different tracks.

The first component of the GCT, the operating domain, specifies the shape, location,

size, and orientation of the region inside of which the gliders operate. The rectangular

operating domain used in the example is described in Table 8.1. The domain location is

specified by the coordinates x and y of the center of the rectangle. The size of the domain

is specified by its width 2a and height 2b, and the orientation is specified by an angle ori.

The choice of units in which to specify the values of the domain properties is flexible since
1The XML format provides compatibility with an optimization tool—not described here—that generates

GCTs for maximum mapping performance [146].



164 Glider Control Synthesis

!!""#$ !!""#% !!""#& !!""#' !!""#"

'$#(

'$#(%

'$#)

'$#)%

'*

'*#+%

'*#!

'*#!%

,-./01234

,
5
6/
01
2
3
4

/

/

!+/78

//92!+

//92!"

//92+*

//92+)

//92+%

//92+(

Figure 8.2: Illustration of a GCT near Point Ãno Nuevo, California. Gray region in north-
east corner of plot is land; Point Ãno Nuevo is located at 122.35◦ W longitude and 37.12◦ N
latitude. Six gliders travel clockwise around three separate tracks such that the curve-phase
of gliders on each track are balanced and the curve-phase of any two gliders on different
tracks are synchronized or balanced.

a description of the units is embedded in the GCT file along with the property value.

The second component of a GCT, the track list, specifies the name, shape, location, size,

orientation, and other properties of the closed loops around which the gliders should travel.

In the example, the specification of the southernmost track—called track1—is given in

Table 8.2. The track location is determined by the coordinates x and y of the center of the

superellipse. The size of the superellipse is specified by the lengths of its semi-major a and

semi-minor b axes; the orientation is specified by an angle ori. The parametrization (7.28)

of a superellipse also requires a value for the parameter p, which determines the corner

sharpness (see Section 7.3).

The third component of a GCT, the glider tree, specifies the glider properties including

track assignment, the (particle) interaction network, and the desired steady-state pattern of

the gliders on their tracks. The glider properties, as shown in Table 8.3, are manufacturer
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<domain>

<rectangle>

<x> <units> deg </units> <value> -122.3817 </value> </x>

<y> <units> deg </units> <value> 36.9765 </value> </y>

<a> <units> met </units> <value> 20000 </value> </a>

<b> <units> met </units> <value> 10000 </value> </b>

<ori> <units> deg </units> <value> 137 </value> </ori>

</rectangle>

</domain>

Table 8.1: Specification of a GCT operating domain. The domain is a 10 km × 20 km
rectangle centered at 122.3817◦ W longitude and 36.9765◦ N latitude. The fifth line <ori>
specifies the rectangles’ orientation.

<tracks>

<superellipse>

<name> track1 </name>

<x> <units> deg </units> <value> -122.2713 </value> </x>

<y> <units> deg </units> <value> 36.8950 </value> </y>

<a> <units> met </units> <value> 10000 </value> </a>

<b> <units> met </units> <value> 6667 </value> </b>

<ori> <units> deg </units> <value> 47 </value> </ori>

<p> <value> 3 </value> </p>

</superellipse>

<superellipse> . . . </superellipse>
...

</tracks>

Table 8.2: Specification of a GCT track list. The first track, called track1, is a 6.7 km ×
10 km supellipse centered at 122.2713◦ W longitude and 36.8950◦ N latitude.

mnf, serial number sn, model, track assignment, direction of rotation on the track, curve-

phase phase (see Section 7.3), and control. The symbols group and group phase also appear

in Table 8.3 and are explained below.

Figure 8.3 illustrates the example GCT glider tree. This glider tree corresponds to levels

1 and 2 of the multi-level interaction network shown in Figure 7.4(c). The nodes in the

glider tree are depicted by circles: a white circle represents a glider, whereas a gray circle

represents a group of gliders. A (directed) edge from a group to a glider or from a group

to another group—a subgroup—means the group contains the glider or the subgroup. The

group that contains all of the groups and gliders is called the root. If a group contains
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<group>

<group>

<phase> <value> 0 </value> <units> pct </units> </phase>

<glider>

<mnf> w </mnf>

<sn> 7 </sn>

<model> e </model>

<track> track1 </track>

<direction> 1 </direction>

<phase> <value> 0 </value> <units> pct </units> </phase>

<control> sellipse control </control>

</glider>

<glider> . . . </glider>
...

</group>
...

</group>

Table 8.3: Specification of a GCT structured glider list. Each glider’s name is a concatena-
tion of the manufacturer mnf, model, and serial number sn property values. The first glider
in the list, we07, is assigned to travel clockwise around track1 using the sellipse control,
which is the multi-level, augmented Laplacian symmetric loop configuration control de-
scribed in Proposition 7.12.

a glider, then the particle representation of that glider interacts via a time-invariant and

undirected graph with all of the other gliders in the group. Likewise, each glider in a

subgroup interacts with all of the other gliders in other subgroups. In the glider tree shown

in Figure 8.3, the set of all subgroups and gliders represents interaction level 1 described by

graph G(1) in Figure 7.4(c). The set of all groups and gliders represents interaction level 2

described by graph G(2).

The glider tree also specifies the desired relative curve-phases of all of the interacting

gliders. Each node in the tree graph other than the root, whether it is a glider or a group, is

assigned a curve-phase phase. The curve-phase of each glider is the sum of the curve-phases

of the nodes reached by a directed path from the root of the tree to the glider node. The

value of the curve-phase of a glider relative to the curve-phase of another glider determines

the desired relative curve-phase between the gliders in steady-state motion. If there is a

path between two gliders in the interaction network generated by the glider tree, then their
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0 π

0 0 0

0 π 0 π

G(1)

G(2)

Figure 8.3: A GCT glider tree corresponding to levels 1 and 2 of the multi-level interaction
network example shown in Figure 7.4(c). Each gray node represents a group of gliders and
each white node represents a glider. In this example, all of the nodes other than the root
are assigned a curve-phase value of 0 or π.

relative curve-phase is feedback stabilized. In the glider tree shown in Figure 8.3, which

corresponds to the multi-level pattern in Figure 7.4(a), each subgroup has phase zero and

contains a pair of gliders whose relative curve phase is π. This means the control law should

seek to balance the curve-phases of the gliders in each pair and synchronize or balance the

curve-phases of gliders in different subgroups. From the set of glider curve-phases and their

interaction network, the GCCS planner determines the parameters used by the control law

to stabilize the desired pattern.

8.2 Modeling Glider Motion

In Section 8.2.1, we describe the simple model of glider motion used by the GCCS to plan

future trajectories. In Section 8.2.2, we describe the detailed model of glider motion used

by the GCCS to predict glider motion underwater.

8.2.1 Simple Glider Model

The GCCS planner integrates a simple glider model to generate the glider planned trajecto-

ries. In order to support ongoing control design efforts, there are currently several particle

models that can be used by the GCCS planner. In all of the models, gliders are represented
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by point masses (particles) traveling at constant speed s0 > 0 in a horizontal plane. The

position of particle k is rk ∈ C and the orientation of its velocity is θk (see Section 3.1). The

particle speed is the effective horizontal speed of the glider, that is, the glider’s horizontal

speed relative to the flow, scaled by the fraction of time spent underwater.

The default particle model in the GCCS is

ṙk = s0e
iθk ,

θ̇k = uk,
(8.1)

where k = 1, . . . , N is the glider index. The default model (8.1) is identical to the particle

model (3.5), except that instead of traveling at unit speed each particle travels at the glider

effective speed s0 (see Table D.1 in Appendix D). When s0 6= 1, feedback control algorithms

designed for use with the unit speed particle model (3.5) can be adapted for use with (8.1).

A limitation of (8.1) as a simple model of glider motion is that it assumes the control

input is continuous. A particle model with a discrete-control input at frequency 1/T is

ṙk = s0e
iθk ,

θ̇k = uk(t∗), k = 1, . . . , N,
(8.2)

where t∗ = bt/T cT is the time of the most recent control computation.

Because the control is constant over intervals of length T , model (8.2) generates piecewise-

circular trajectories. A discrete-control particle model that generates piecewise-linear tra-

jectories is

ṙk = s0e
iθk(t∗),

θk(t∗) = θk(t∗ − T ) + uk(t∗)T, k = 1, . . . , N.
(8.3)

In (8.3), the control

uk(t∗) =
θk(t∗)− θk(t∗ − T )

T

is the forward-Euler approximation of a continuous control. Euler-method error estimates

are proportional to the square of the step size T [33, pp. 424-427]. Therefore, feedback

control algorithms designed for (8.1) will work with (8.3) if T is sufficiently small.

The particle models (8.1)–(8.3) are all second-order models in which the control uk

determines the (rate of) change of the phase θk. In a first-order, or kinematic, particle
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model such as
ṙk = s0e

iθk ,

θk = uk, k = 1, . . . , N,
(8.4)

the control uk determines θk itself.

It may be advantageous to consider a variation of the kinematic model (8.4) in the

presence of (an unknown) flow fk ∈ C. For example, in the model

ṙk = fk + s0e
iθk ,

θk = uk, k = 1, . . . , N,
(8.5)

the flow fk is a drift vector field on the particle position. The model (8.5) does not, however,

account for the effect of the glider onboard control system. If the flow fk satisfies |fk| < s0,

one might assume that the glider onboard control will effectively cancel the component f ′k

of the flow orthogonal to the desired direction of motion. This assumption leads to the

following kinematic model

ṙk = (|fk − f ′k|+ s′0)e
iθk ,

θk = uk, k = 1, . . . , N,
(8.6)

where s′0 < s0 is the new glider effective speed, which is reduced by fighting the flow and

increased by “tailwinds”.

Another assumption implicit in the model (8.6) is that the glider onboard control system

has a perfect estimate of the flow. One might consider replacing f ′k with a decentralized

estimate of the cross-track flow. However, adding further complexity to the particle model

increases the difficulty of obtaining theoretical results for the closed-loop model. Nonethe-

less, a detailed model of glider motion is essential to practical implementation of the GCCS.

We describe such a model next.

8.2.2 Detailed Glider Model

The (detailed) glider model is a discrete-time, three-dimensional, kinematic model of glider

motion subject to the glider onboard pitch, heading and buoyancy control [201].2 The
2An even more detailed glider model is described in [97, pp. 147-180].
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Figure 8.4: Coordinates for the glider model. Axes are time t and depth z during a single
dive that progresses from left to right: tini

k is the dive initialization time, tsur
k is the surface

time, and ′tini
k is the time at which the next dive initializes. The curved solid line in the

lower right corner represents the ocean bottom. Figure after [201].

second-order transient effects of the onboard control are not modeled. Instead we assume

a fixed vertical speed and glide angle (pitch angle plus angle of attack) for both ascent

and descent. Gliders move at constant speed in the direction of their desired headings and

are advected by a three-dimensional flow field. We describe separately the equations of

motion for three phases of a single dive: on the surface before the dive (dive initialization);

underwater during the dive; and on the surface after the dive.

Figure 8.4 illustrates the coordinates used in the glider model. The gliders are labeled

by the integers k ∈ {1, . . . , N}, where N is the number of gliders. Let t ≥ 0 represent

absolute time in the glider integrator. We denote the time step and discrete-time step

index by 4t ∈ R+ and n ∈ Z, respectively. The superscript sur (resp. uw) stands for surface

(resp. underwater). For glider k, let zk denote depth, zmin
k denote minimum inflection

depth (the shallowest depth at which the glider switches from ascending to descending),

zmax
k denote maximum inflection depth, Zmin

k denote minimum altitude, and zuw denote

bathymetry (water depth). Also for glider k, let tini
k denote dive initialization time, tsur

k

denote dive surface time, T ini
k denote pre-dive surface duration, T gps

k denote the duration

of a GPS-position fix, and T com
k denote the duration of shore communication. Lastly, let
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τ ini
k , [tini

k , t
ini
k + T ini

k ) denote the time interval before glider k dives, τuw
k , [tini

k + T ini
k , tsur

k )

denote during the dive, and τ sur
k , [tsur

k , tsur
k + T gps

k + T com
k ) denote after the dive. For

convenience, we denote the end of interval τ by τ̄ . Parameter values used during a glider

experiment are provided in Table D.1 (see Appendix D).

We use the ellipsoid E to model the earth shape. The glider integrator uses geodetic

coordinates Rk , (λk, φk) ∈ E for the position of the kth glider, where λk and φk are lati-

tude and longitude, respectively. Let Γ : E ×E → R+ and η : E ×E → S1 be functions for

computing distance and azimuth on the earth given in (C.1) and (C.2), respectively, in Ap-

pendix C. Appendix C also describes a transformation between local (complex) coordinates

and geodetic coordinates.

Glider Position The kth glider position Rk at time t ≥ tini
k is the solution to the following

discrete-time model, which depends on the position Rk, depth zk, and waypoint index

pk ∈ N. We denote the pkth waypoint by ωpk
k ∈ E. Let fk ∈ R2 be the horizontal

component of the kth glider velocity with respect to an earth-fixed frame.

1. Before the dive, t ∈ τ ini
k = [tini

k , t
ini
k + T ini

k ), and

Rk(n+ 1) = Rk(n) + f sur
k (Rk(n))4t, n = 1, . . . ,

⌊
t− tini

k

4t

⌋
,

where Rk(1) is the position of the glider at tini and f sur is its velocity when passively

drifting on the surface.

2. During the dive, t ∈ τuw
k = [tini

k + T ini
k , tsur

k ), and

Rk(n+ 1) = Rk(n) + fuw
k (Rk(n), zk(n), pk(n))4t, n =

⌊
τ̄ ini
k

4t

⌋
, . . . ,

⌊
t− tini

k

4t

⌋
,

where fuw is the total velocity underwater.

3. After the dive, t ∈ τ sur
k = [tsur

k , tsur
k + T gps

k + T com
k ), and

Rk(n+ 1) = Rk(n) + f sur
k (Rk(n))4t, n =

⌊
τ̄uw
k

4t

⌋
, . . . ,

⌊
t− tini

k

4t

⌋
.
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Figure 8.5: Waypoint geometry and completion conditions. The glider position Rk, previous
waypoint ωpk−1

k , and current waypoint ωpk
k in geodetic coordinates, where λ and φ represent

longitude and latitude, respectively. The glider, which reaches ωpk
k in the presence of the

flow f̃uw
k by steering towards R̃k, satisfies the radius waypoint condition by entering the

dashed circle of radius Γ0 centered at the current waypoint wpk
k . The finish line condition

is satisfied when the glider crosses the dashed line through wpk
k . Figure after [201].

Since the gliders have no propulsion on the surface, the glider surface velocity f sur is

equal to the flow velocity. Flow velocity on the surface is estimated by displacement of the

glider between sequential GPS fixes. Let sk denote glider horizontal speed relative to the

flow and ηk denote its absolute direction of motion. The horizontal component fuw of the

glider’s total velocity underwater, which is the sum of the horizontal glider velocity skeiηk

relative to the flow and the estimated horizontal flow velocity f̃uw
k , depends on the ocean

currents and the glider’s onboard control system. We compute sk from the desired vertical

speed and glide angle. We assume that ηk, which is the orientation of the horizontal glider

velocity, equals the desired heading of the glider, determined by the onboard control system

depending on the glider estimate of the flow.

The onboard heading control algorithms are proprietary and not described here. Instead,

we summarize a sample algorithm to compute the desired heading ηk given that the glider

seeks to travel along a direct path from Rk to ωpk
k in the presence of flow. Let R̃k denote the

hypothetical location of the glider if it travels from Rk along heading ηk , arg{R̃k−Rk} for

time Tk in the absence of flow (see Figure 8.5). Heading ηk is correct if the glider reaches

ωpk
k after time Tk in the presence of flow f̃uw

k . Note, skTk = |R̃k−Rk| is the distance relative
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to the flow traveled by the glider over Tk. We have

ωpk
k − R̃k = Tkf̃

uw
k =

|R̃k −Rk|
sk

f̃uw
k

and, using the geometry illustrated in Figure 8.5,

ηk , arg{R̃k −Rk} = arg{ωpk
k −Rk −

|R̃k −Rk|
sk

f̃uw
k }. (8.7)

Equation (8.7), which is a transcendental equation in the unknown R̃k, can be solved under

certain conditions on f̃uw
k . A conservative condition sufficient to solve (8.7) is |f̃uw

k | < sk.

To determine the glider waypoint number pk(n), we integrate from the starting waypoint

number pk(n) using

pk(n+ 1) =

pk(n) + 1 if Ψ(Rk(n), pk(n))

pk(n) otherwise,

where Ψ(Rk(n), pk(n)) is a boolean waypoint completion condition. For example, the radius

waypoint condition illustrated in Figure 8.5 is Ψcir(Rk(n), pk(n)) , Γ(Rk(n), ωpk(n)
k ) < Γ0,

where Γ0 ∈ R+ is the radius of a vertical cylinder centered at the waypoint. In the presence

of strong flow, the radius waypoint condition—combined with a heading algorithm that

steers the glider directly toward the waypoint—can result in the glider turning into the

flow. Traveling into the flow can severely impede the forward progress of a glider. An

alternate waypoint completion condition—called the finish line condition—is satisfied if the

glider crosses the line that passes through the current waypoint and is perpendicular to the

line connecting the previous and current waypoints. This algorithm is used by some gliders

in the presence of strong flow [64].

Glider Depth While underwater, a glider makes either a single descent and ascent or

continuously descends and ascends until the maximum dive duration Tmax
k elapses. In

shallow water, the roller-coaster motion minimizes time spent on the surface where the

glider is vulnerable to surface currents and boats. Let guw be the vertical component of the

glider total velocity. We denote the dive direction by ζk ∈ {−1,+1}, where +1 represents
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descent and −1 represents ascent (depth is positive down). The kth glider depth at time

t is the solution to the following discrete-time model, which depends on the position Rk,

depth zk, and dive direction ζk.

1. Before the dive, t ∈ τ ini
k , and

zk(n) = 0, n = 1, . . . ,
⌊
t− tini

k

4t

⌋
.

2. During the dive, t ∈ τuw
k , and

zk(n+ 1) = zk(n) + guw
k (Rk(n), zk(n), ζk(n))4t, n =

⌊
τ̄ ini
k

4t

⌋
, . . . ,

⌊
t− tini

k

4t

⌋
,

where guw is the vertical component of the glider velocity.

3. After the dive, t ∈ τ sur
k , and

zk(n) = 0, n =
⌊
τ̄uw
k

4t

⌋
, . . . ,

⌊
t− tini

k

4t

⌋
.

The vertical component guw of the glider velocity is the sum of the glider vertical velocity

relative to the flow and the estimated vertical flow velocity (if available). We compute the

dive direction ζk ∈ {−1, 1} by integrating from the initial condition ζk(1) = 1 using

ζk(n+ 1) =


−1 if (zk(n) > zmax

k ) ∪ (t > Tmax
k ) ∪

(
zk(n) > zuw(Rk(n))− Zmin

k

)
1 if (zk(n) < −ζk(n)zmin

k ) ∪ (t < Tmax
k )

ζk(n) otherwise.

In words, the glider ascends if it exceeds its maximum inflection depth, it exceeds the

maximum dive duration, or its altitude is less than the minimum allowable altitude. If the

glider is ascending before the end of the maximum dive duration, the dive direction reverses

when the glider is shallower than the minimum inflection depth.



8.3 The Glider Coordinated Control System: Architecture and Operation 175

Glider Data Server

Coordinated 
Control

Environ-
mental

model/data

Remote Input/Output

Waypoint 
Generator
and QC

Particle Model

u r,θ

Glider Onboard 
Control

Glider Model

 η R,z,ζ,p R

r

latest positions,
flow measurements,

active waypoints

waypoints

waypoints

flow
predictions,
bathymetry

Glider configuration
parameters

Glider
Coordinated
Trajectories

flow
predictions

GCT 
Parser

Glider Integrator

Particle Integrator

control parameters

latest positions,
active waypoints

latest positions,
flow measurements

active waypoints

Glider Planner

Figure 8.6: Glider planner block diagram. The planner creates waypoints to steer the fleet
to a GCT by integrating the glider model for prediction and the particle model for planning.
The glider planner interfaces to the glider data server via the remote IO. Figure after [201].

8.3 The Glider Coordinated Control System: Architecture

and Operation

8.3.1 Glider Planner

The glider planner encapsulates the multi-vehicle control algorithm shown in Figure 8.6.

The interplay between the glider model and the particle model is fundamental to the design

of the planner. The planner uses the glider model to predict glider motion underwater and

the particle model to plan future glider trajectories. The planned trajectories originate from
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Figure 8.7: Output of a GCCS planning cycle. Each glider’s planned trajectory (thin gray
line) originates at the last surface position (black square) and terminates at the planned
position (gray circle). Waypoints (gray triangles) are shown for the first twelve hours of
the planned trajectories. Note that the planned trajectories converge to the desired GCT
shown in Figure 8.2.

the position and time of the next expected surfacing of each glider as shown in Figure 8.7.

Planning new trajectories for all gliders occurs simultaneously; we call the sequence

of steps that produces new glider trajectories a planning cycle. A planning cycle starts

whenever a glider surfaces and ends when the planner generates new waypoints for all

gliders. Due to operational concerns like reduced effective speed and hazardous boat traffic,

the gliders do not wait on the surface for their new waypoints. Instead, gliders use the

most recent set of waypoints that were computed before they surfaced. The planning cycle

executes immediately after a glider surfaces, since new waypoints for all gliders are computed

whenever a single glider surfaces. The planning-cycle frequency depends on the number of

gliders in the water and the surfacing frequency of each glider.
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The planner uses the detailed glider model to predict each glider’s underwater trajectory

and next surfacing location and time. This prediction uses the surface and underwater flow

OA forecast obtained from all recent glider flow measurements. For each glider that has

surfaced since the last planning cycle, the planner calculates inaccuracies in the predictions

of effective speed, expected surface position, and expected surface time. Prediction errors

are useful for gauging glider and planner performance. The main step in the planning cycle,

described in more detail below, is to integrate the particle model to generate planned tra-

jectories. The planner converts the planned trajectory of each glider to a list of waypoints.

Waypoints must pass a quality control filter (QC) before transmission to the glider data

server. Surfacing when expected is one requirement to pass QC and failure to do so serves

as an indication of potential problems with the glider or the glider data server.

Particle Integrator At the core of the glider planner is the particle integrator, which gen-

erates the glider planned trajectories using closed-loop (coordinated) control of the particle

model. The particle-integration algorithm is complicated by the fact that gliders surface

asynchronously and do not wait on the surface for new waypoints. When the particle inte-

gration initializes, one or more gliders has recently surfaced and all gliders are underway.

During each planning cycle, the particle integrator coordinates particles that represent

gliders on the surface with particles that represent gliders underwater. The particle integra-

tor takes as input the trajectory predicted for each glider by the glider integrator as well as

the desired tracks and coordination specified in the GCT. The output of the particle inte-

grator is a new set of waypoints for each glider. The particle integrator uses a MATLAB R©

ODE solver to integrate trajectories from the time t0 of the most recent glider surfacing to

the planning horizon t0 +T . The initial position of each particle is the position of the glider

at the next expected surfacing location and time ′tsur
k . One can choose the initial phase to

maximize the convergence rate of the control. For example, during the GCCS experiments

described in Chapter 9, the GCCS initialized the particle phases to maximize convergence

rate to the desired track.

For each glider k that is predicted to have not yet surfaced by time t, we set the
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Goal: Integrate feedback control algorithm using asynchronous
initial conditions.

Inputs: Predicted trajectories up to next expected surfacing, desired
tracks and coordination (GCT)

Outputs: New waypoints for all gliders

During every planning cycle, the particle integrator performs:

1: Set the integration start time t0 to most recent glider actual surface time, t0 =
maxk=1,...,N tsur

k

2: for each particle k = 1, . . . , N , Set initial positions rk(t0) to glider (surface) position at
time ′tsur

k , end for

3: for each particle k = 1, . . . , N , Set initial headings θk(t0) according to control-specific
algorithm, end for

4: Call ODE solver with initial conditions r(t0) and θ(t0) and time span t ∈ [t0, t0 + T ]

During every iteration, the ODE solver performs:

i: for each particle k = 1, . . . , N ,

if t < ′tsur
k , Set position rk(t) and heading θk(t) to glider predicted underwater

position and heading, end if

end for

ii: Compute steering control θ̇(t) = u(t) and particle velocity ṙ(t) using r(t) and θ(t)

iii: for each particle k = 1, . . . , N ,

if t < ′tsur
k , Set steering control θ̇k(t) and particle velocity ṙ(t) to zero, end if

end for

iv: for each particle, Overwrite start of planned trajectory with predicted trajectory
up to expected surface time, end for

v: for each particle, Generate waypoints for rk(t), t > ′tsur
k , and run quality control,

end for

Table 8.4: Particle integrator algorithm. This algorithm is executed by the GCCS planner
to plan glider trajectories that converge to the configuration specified in the GCT.

corresponding particle position rk(t) and heading θk(t) to the predicted underwater position

and heading. Then, the coordinated control algorithm computes the steering controls u(t)

and velocities ṙ(t) for all particles using r(t) and θ(t). For each glider k that is predicted

to have not yet surfaced by t, we set the steering control uk(t) and velocity ṙk(t) to zero.

After the ODE solver computes the planned trajectories, we replace the portion of each

trajectory that occurs before the next expected surface time with the predicted underwater

trajectory. A pseudo-code description of this algorithm is provided in Table 8.4.
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Waypoint Generation and Quality Control Filter We convert the glider planned

trajectories to waypoints and verify the waypoints using QC. There are two alternate way-

point generation methods. In the first method, the waypoints are spaced uniformly in time

(assuming constant glider effective speed). In the second method, we convert portions of

the planned trajectory with lower (resp. higher) curvature to fewer (resp. more) waypoints

subject to a maximum (resp. minimum) spacing constraint. The latter method clusters way-

points near tight turns and spreads out waypoints along straight portions of the planned

glider trajectories. To provide robustness to delays and errors incurred in satellite commu-

nication between the glider data server and the glider, each waypoint file that passes QC

has a unique message number and an expiration date.

Waypoint quality control is required for safe, automated operation of gliders. To pass

QC, the following criteria must be met: (1) the last glider position update must not be too

old; (2) all waypoints other than those at the start of the list must be inside a prescribed

bounding box; (3) waypoints must not be shallower than the glider minimum operating

depth; and (4) waypoints must be spaced by no more (resp. less) than the maximum (resp.

minimum) allowable spacing. We remove waypoints that are too shallow. Failure to meet

any requirement other than (3) results in rejection of the entire waypoint list.

8.3.2 Glider Simulator

In addition to providing a real-time controller, the GCCS serves as a simulation testbed

for glider coordinated control algorithms. One can also use the glider simulator during a

glider deployment to predict glider motion in ocean flow forecasts. A central advantage is

the ability to test strategies in the presence of strong flow and communication and feedback

constraints and uncertainties, challenges that are not yet fully addressed by theoretical

methods. The glider simulator uses the glider model to predict glider motion. To predict

the motion of a coordinated fleet of gliders, we run the glider simulator in tandem with the

glider planner. The software interface between the glider planner and simulator is identical

to the interface between the glider planner and the real gliders; the simulated gliders produce
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the same data files as the real gliders. This feature enables use of the GCCS, in conjunction

with a virtual ocean model, to conduct virtual experiments.

Glider Integrator A central component of both the glider planner and simulator is the

glider integrator, which integrates the detailed glider model to predict glider trajectories in

the ocean. Predicting glider trajectories is critical to glider planning since new trajectories

are generated while gliders are underwater. We model the motion of each glider and its

onboard control system under the influence of the bathymetry (water depth) and currents

(water velocity). The bathymetry is important because gliders maintain a minimum altitude

above the bottom. Ocean currents are important because they advect gliders and also

because gliders respond to their onboard current estimates.

The glider onboard control system integrates its position, which is called the “dead-

reckoned position”, from estimates of its horizontal speed and heading. The GCCS predicts

both glider position and glider dead-reckoned position. These predictions differ if, for

example, the planner uses a more accurate flow estimate than the glider.

8.3.3 Remote Input/Output

Robust networking enables the GCCS to run automatically. The remote IO module supports

communication over the Internet between the glider planner and glider simulator as well as

between the glider planner and the glider data servers. In addition, the remote IO module

publishes real-time glider planner status for monitoring and supervision of the GCCS as

shown in Figure 8.7. To support timely operator intervention, the remote IO module sends

email notification of software or operational errors.



Chapter 9

GCCS Experimental Results

The Glider Coordinated Control System (GCCS) is the software infrastructure described

in the previous chapter that implements our cooperative control framework on a fleet of

underwater gliders. In this chapter we describe a field experiment during which the GCCS

controlled six gliders in Monterey Bay in August 2006. In preparation for this field exper-

iment, we tested the GCCS during two glider deployments not described here: a sea-trial

with two gliders in Buzzard’s Bay, Massachusetts in March 2006 [299] and a three glider

whale-tracking excursion in the Great South Channel off of Cape Cod, Massachusetts in

May 2006.1 During the Monterey Bay experiment, the GCCS operated continuously for

nearly 24 days with minimal human intervention. In addition to experiments with real

gliders, we have conducted multiple virtual experiments in which the GCCS has served as

both glider planner and glider simulator.

In this chapter, we focus on GCCS experimental results from the Adaptive Sampling and

Prediction (ASAP) research initiative. We describe ASAP in Section 9.1. In Section 9.2

we summarize results from an ASAP virtual pilot experiment. In Section 9.3, we present

results from the ASAP 2006 field experiment in Monterey Bay.
1For a description of a previous whale-tracking excursion in the Great South Channel, see [182].

181
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9.1 Adaptive Sampling and Prediction Research Initiative

ASAP is a five year Multidisciplinary University Research Initiative (MURI) funded in 2004

by the Office of Naval Research on the topic of “Coupled Observation, Adaptive Sampling,

and Forecast in the Real Environment” [144]. ASAP involves collaboration between physical

oceanographers, ocean modelers, and control engineers from many universities, including

Princeton, the Scripps Institution of Oceanography (SIO), the Woods Hole Oceanographic

Institution (WHOI), Harvard, the California Institute of Technology, the Naval Postgrad-

uate School, and the Massachusetts Institute of Technology. A central focus of ASAP

is to design and demonstrate optimal ocean sampling strategies for multiple, mobile sen-

sor platforms—particularly gliders and propellor-driven AUVs. These strategies may have

broader applicability. According to the research topic announcement, ASAP has the poten-

tial to make contributions to Department of Defense needs in “battlefield awareness, mine

countermeasures, and combating terrorism including methods for monitoring weapons of

mass destruction and tools for chem/bio defense, decision making, adaptive command and

control of groups of autonomous vehicles, and more capable networked, interoperable, mo-

bile, dynamic systems” [265].

The ASAP ocean-science objective is to study the three-dimensional dynamics of the

coastal upwelling center that appears annually in Monterey Bay. To achieve this objective,

MURI participants seek to integrate advanced ocean models with novel, adaptive sampling

strategies. The ASAP proposal identifies three adaptive sampling tasks [144]. The first

adaptive sampling task is to minimize mapping error (see Section 2.2) in a mapping domain

containing an upwelling center. This task motivated the adaptive sampling strategy in

Section 2.3.3. The second task is to identify and track localized dynamic features within

the mapping domain. For strategies motivated by the second task, see, for example [84].

The third task is to minimize uncertainty in the dynamic model predictions of the ocean

processes in the mapping domain. Strategies developed to address this objective are based

on advanced ocean modeling techniques; see, for example, [150, 147, 27, 159, 247].

The dynamics of ocean processes influence the design and adaptation of sampling tra-
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Figure 9.1: AOSN-II and ASAP mapping domains and ocean circulation. (a) The AOSN-
II mapping domain from a 2003 field experiment contains Monterey Bay and is bounded
by a 123 km by 143 km box in which the prevailing flow year-round is the deep, poleward
California undercurrent; (b) for the 2006 field experiment, the ASAP domain, whose shallow
side is bounded by the 50 m depth contour just off of Point Año Nuevo, is designed to densely
sample the annual upwelling of cold, deep seawater that travels offshore or equatorward
across the mouth of the bay. Upwelling activity is intermittently replaced with warm,
poleward flow during relaxation.

jectories. As such, adaptive sampling strategies in Monterey Bay should be informed by the

ocean science of the upwelling processes. We summarize below some basic oceanography on

upwelling events in Monterey Bay and discuss the adaptive sampling plan in this context,

following [248, 218, 217]. For a general reference on ocean circulation in Monterey Bay, see,

for example, [35].

9.1.1 Upwelling in Monterey Bay

During an upwelling event in Monterey Bay, cold water from deep below the ocean surface

rises and mixes with the warm water on the ocean surface. The cold water often emerges just

north of the bay, near Point Año Nuevo (see Figure 9.1). Partly due to the Coriolis force

from the earth’s rotation and partly due to equatorward winds, upwelled water near Point

Año Nuevo tends to flow offshore or south across the mouth of the bay [227]. During periods
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of active upwelling, the water temperature inside the bay can be elevated, a phenomenon

known as “shadowing” [96].

Although upwelling occurs in the summer, it is supported by several year-round com-

ponents of the California Current System (CCS) [217]. One component of the CCS—

the California undercurrent—is a deep, poleward flow (that is, it flows toward the North

pole) [218]. Because deep water is nutrient-rich, upwelling can spur plankton activity in

the bay [194, 264]. This activity, combined with the ocean circulation, results in complex

dynamics of carbon production and advection [208].

The summertime ocean circulation in Monterey Bay oscillates between upwelling and

relaxation. During relaxation, poleward flow crosses the mouth of the bay past Point

Año Nuevo, as shown in Figure 9.1(b). Relaxation-favorable wind conditions are weak

winds from any direction or strong winds from the south. Transitions from upwelling to

relaxation or from relaxation to upwelling can produce a scenario in which both poleward

and equatorward flow are observed simultaneously. In this scenario, onshore flow bifurcates

(divides into two branches) near Point Año Nuevo. Water to the north flows poleward and

water to the south flows equatorward.

The three-dimensional dynamics of upwelling in the vicinity of Point Año Nuevo was

a focus of one ASAP pilot study and the major ASAP field experiment. The pilot study,

carried out in 2006 in advance of the August 2006 field experiment, consisted of a series of

“virtual” pilot experiments conducted in simulation. During the ASAP 2006 virtual pilot

study and field experiment, the mapping domain was contained in a 22 km by 40 km box

(see Figure 9.1(b)). The shallow side of the mapping domain is the 50 m depth contour.2 For

the purposes of evaluating glider mapping performance, we refer to the offshore, northern

and southern edges as the boundary of the mapping domain. In situ data collected along

the boundary of the mapping domain can be combined with remote sensing of the surface

of the mapping domain to estimate the flux of mass, heat, and salt [228].3

2Gliders stayed outside the 50 m depth contour in order to avoid getting tangled in the kelp that grows
along the California coastline.

3Zero-flux boundary conditions are assumed on the shallow side and bottom of the mapping domain.
However, water can “leak” into the southwest corner, which exceeds the gliders’ maximum dive depth.
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Figure 9.2: Default ASAP glider sampling plans. (a) Four Spray gliders patrol four linear
tracks along the offshore boundaries of the ASAP mapping domain; (b) three pairs of
Slocum gliders orbit in unison three superelliptic tracks contained in the mapping domain.

9.1.2 ASAP Glider Experimental Methods

In order to better understand the dynamics of upwelling and relaxation events, a com-

bination of autonomous and manned sensor platforms, both stationary and mobile, was

deployed to sample with high resolution both the interior and the boundary of the ASAP

mapping domain. A group of four Spray gliders, equipped with upward-looking acoustic

sensors to measure water velocity, were initially dedicated to patrolling the boundary of

the mapping domain on three to four linear tracks shown in Figure 9.2(a). A group of

six Slocum gliders, which were not equipped with velocity sensors, were assigned to sample

both the interior and boundary of the domain on three 13.3 km by 20 km superelliptical

tracks, as shown in Figure 9.2(b). The counterclockwise direction of rotation of the Slocum

gliders around each track was initially chosen in expectation of the equatorward upwelled

flow to be weaker near shore. When this assumption holds, then the fastest circuit around

the tracks is obtained by traveling counterclockwise. The long sides of the default Slocum

tracks are touching so that gliders on these tracks would repeatedly sample two interior,

cross-shelf lines.
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The number of Slocum gliders on each default track can be justified using our analysis of

mapping error in space and time in Section 2.2.2. Each default track shown in Figure 9.2(b)

has a perimeter of 61.2 km. The Slocum glider effective speed used in the GCCS for

planning is s0 = 0.32 m/s or s0 = 27.8 km/day (see Table D.1). Using decorrelation lengths

estimated from the AOSN-II experiment (σ = 22 km and τ = 2.2 days, respectively [229])

we can compute the glider non-dimensionalized speed s0 , (s0τ)/σ = 2.8. When the non-

dimensionalized speed is greater than one, a Slocum glider is temporally-constrained (see

Section 2.2.2). Temporally-constrained sensor platforms have an along-track swath width of

s0τ . To cover a one-dimensional periodic track of length |B|, we need d|B|/(s0τ)e gliders.

In this case, we need exactly one glider per track, since |B| = s0τ = 61.2 km. Assigning

two gliders to each track provides insurance for glider failure or reduction in glider effective

speed. It also allows gliders to effectively sample processes at shorter temporal scales.

During the ASAP experiments, gliders were steered by a combination of automatic and

assisted-manual control. During the pilot experiments, the GCCS controlled (and simu-

lated) all of the Spray and Slocum gliders. During the ASAP field experiment, operators at

SIO designed and monitored the Spray glider trajectories. The GCCS—running on a com-

puter at Princeton—controlled the Slocum gliders. The desired glider tracks were designed

and adapted by the ASAP team. Operational conditions leading to adaptation of glider

tracks included glider deployment/recovery and changing ocean currents. Glider tracks were

also adapted based on observations of new features such as an eddy moving offshore, and

insights gleaned from interpretation of data and real-time ocean models.

The GCCS steered gliders during the ASAP experiments using the multi-level, aug-

mented Laplacian symmetric loop configuration control described in Proposition 7.12 (see

Section 7.3). This control law steers a group of gliders to a set of GCTs, described in Sec-

tion 8.1. The ASAP GCT tracks were superelliptical with parameter p = 3 (see Section 7.3).

For this parameter value, the glider tracks have nearly straight edges and smooth, rounded

corners. Other parameters used for the GCCS control law and the GCCS glider model are

provided in Table D.1 (see Appendix D).
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The GCCS used an uncoordinated control law to steer gliders from their initial deploy-

ment locations to the vicinity of their desired track. The uncoordinated control law, based

on [301], steers a glider orthogonal to the level curves of an energy function minimized by

points along the desired track. The GCCS used the uncoordinated control law to steer a

glider whenever it was outside a rectangular box containing the desired track. The box

dimensions were 50% larger than the dimensions of the track.

Next we describe results and preliminary analysis for ASAP gliders under GCCS auto-

matic control. A more thorough analysis of the joint operation of gliders under automatic

control with gliders under semi-autonomous and assisted-manual control is in preparation.

9.2 Summary of an ASAP Virtual Pilot Experiment

In preparation for the ASAP field experiment in Monterey Bay in August 2006, a series of

a dozen virtual pilot experiments (VPEs) were conducted during the period from January

2006 to July 2006. The whole ASAP team participated in five official VPEs, during which

the GCCS generated glider measurement data that were assimilated into one or more ocean

models. We conducted seven unofficial VPEs to further refine the glider experimental plan

and to test the GCCS planner. The VPEs and subsequent analysis were instrumental in

selecting the default glider experimental plan shown in Figure 9.2.

We summarize here a portion of one official VPE conducted with the entire ASAP

team in March 2006. This was the second VPE overall and the first VPE in which we

demonstrated adaptation of the glider sampling plan [201]. During this experiment, the

GCCS planner controlled a glider fleet of four Sprays and six Slocums generated by the

GCCS simulator. The GCCS remote input/output module transferred simulated glider

data and waypoints between the GCCS planner and GCCS simulator via the WHOI and

SIO glider data servers. Ocean modelers assimilated the virtual glider data in real-time.

During the March 2006 VPE, the gliders sampled and were advected by a model ocean

generated by the Harvard Ocean Prediction System. The model ocean is based on data

collected during the AOSN-II field experiment in August 2003 [3]. It contains temperature,
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(a) VPE model ocean at 15:00 GMT on August 13
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(b) VPE model ocean at 15:00 GMT on August 18

Figure 9.3: Snapshots of model-ocean flow conditions during ASAP VPE. The March 2006
experiment used a model ocean based on data collected during the AOSN-II field experiment
in August 2003. The flow vector fields were computed from glider depth-averaged flow
estimates using OA with σ = 22 km and τ = 2.2 days and noise variance equal to 10%
of the process variance σ0. The flow is assumed to have zero mean and unit variance. (a)
Circulating flow, depth-averaged over top 200 m, indicative of transition from relaxation to
upwelling; (b) strong equatorward flow indicative of upwelling activity.

salinity, and three-dimensional flow velocity at 500 meter horizontal resolution with 22

vertical levels over a 35 day period starting August 6, 2003. The virtual gliders sampled

the model ocean for a two week period starting at 15:00 GMT on August 11, 2003.

The model ocean exhibited flow circulation representative of an upwelling event. We

used the glider depth-averaged flow measurements to make an OA map of the flow conditions

at 15:00 GMT on August 13. This snapshot shows circulating flow indicative of a transition

from relaxation to upwelling (see Figure 9.3(a)). We made another OA map of depth-

averaged flow velocity at 15:00 GMT on August 18. Equatorward flow in this snapshot

indicates upwelling activity (see Figure 9.3(b)). The magnitude of equatorward flow in this

snapshot exceeds the glider effective speed. Another model ocean with even greater flow

speeds was used in subsequent VPEs.

All of the gliders, both Spray and Slocum alike, were controlled during this VPE by
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the GCCS. However, since a Spray glider travels at a different speed than a Slocum glider,

the Spray gliders were coordinated separately from the Slocum gliders. The algorithmic

framework has not yet been implemented within the GCCS to automatically coordinate

gliders traveling at different speeds. We evaluate coordination performance by the degree

to which glider trajectories converge to the desired GCT, as measured qualitatively by

distance from the assigned track and relative spacing along the track. Quantitative analysis

of glider performance, other than mapping performance, is deferred to the discussion of the

ASAP field experiment in Section 9.3.

At the start of the deployment, four virtual Spray gliders—SIO13, SIO14, SIO15, and

SIO16—were assigned to travel clockwise with uniform spacing around a 10 km by 20 km

superellipse track encompassing the northern boundary of the ASAP domain as shown in

Figure 9.4(a). The thin gray lines connecting all four of the gliders in Figure 9.4(a)

reflect the glider interaction network specified in the GCT (see Section 8.1). Although the

gliders appear in numerical order around the track in Figure 9.4(a), the actual sequence of

gliders around the track is not specified by the GCT.4 The Spray gliders were configured

to dive to a maximum dive depth of 400 m or to within 5 m of the bottom. (In the GCCS

detailed glider model, a Spray glider descends and ascends only once per dive, so there is

no minimum dive depth or maximum dive time.) All of the gliders were deployed in the

vicinity of their assigned tracks and with approximately the desired spacing. Subsequent

VPEs used more realistic initial conditions.

The Spray glider initial communication strategy degraded their coordination perfor-

mance. For the first three days of the deployment, the virtual Spray gliders performed

simulated Iridium communication after every dive, spending a total of seven minutes on the

surface between dives. In shallow water with surface currents of 0.15 m/s to 0.35 m/s, the

Spray gliders surfaced frequently and made poor progress around the track. Their median

effective speed dipped to 0.2 m/s. Note glider effective speed is measured by the ratio of

the distance between sequential profile positions to the interval between the profile times.
4Because the ASAP glider experimental plan was finalized subsequent to this VPE, the Spray gliders were

assigned to be coordinated on a loop inside the mapping domain and did not simply patrol the boundary.
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(a) VPE Spray GCT
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(b) VPE Spray glider trajectories

Figure 9.4: Spray GCT and snapshots of glider trajectories during an ASAP VPE. (a) Four
virtual Spray gliders—SIO13, SIO14, SIO15, SIO16—were assigned to travel clockwise with
uniform spacing around a 10 km by 20 km superelliptical track encompassing the northern
boundary of the ASAP domain; (b, top) frequent and lengthy surfacings combined with
strong surface currents degraded coordination performance over the twelve hours preceding
9:00 GMT on August 15; (b, bottom) reducing the frequency with which gliders surfaced to
communicate improved coordination performance, as evidenced by their trajectories from
3:00 to 15:00 GMT on August 18.

The glider positions after four days in the water are shown in the top panel of Figure 9.4(b).

On the fourth day of the deployment, we reconfigured the Spray gliders to communicate

on surfacing only if two or more hours had elapsed since the last communication. In this

configuration, the glider effective speed recovered by 25% to 0.25 m/s. The coordination

performance also recovered, as shown in the bottom panel of Figure 9.4(b).

Figure 9.4(b) also illustrates how the GCCS automatically regulates glider progress

around the track to achieve the desired along-track spacing between the gliders. To “slow

down” a glider as it moves around a track, the control algorithm used during the ASAP

experiments steers a glider to an outside “lane”. To “speed up” a glider, the algorithm

steers it to an inner lane. In the bottom panel of Figure 9.4(b), SIO15 travels along an

outside lane so as to increase separation from SIO16, which is traveling around the track
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(a) VPE Slocum GCT #1
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(b) VPE Slocum glider trajectories

Figure 9.5: Slocum GCT and snapshots of glider trajectories during an ASAP VPE. (a) Six
virtual Slocum gliders are assigned to form two synchronized subgroups of three gliders each
on two 10 km by 20 km superelliptical tracks; (b) Slocum glider coordination performance
is very good at 9:00 on August 15, as evidenced by twelve hours of glider trajectories.

ahead of SIO15.

At the start of the deployment, the group of six virtual Slocum gliders—we21, we22,

we23, we24, we25, and we26—formed two equal and synchronized subgroups on two 10 km

by 20 km superelliptical tracks. The three gliders in each subgroup were equally spaced

around their assigned track, as shown in Figure 9.5(a). Each Slocum glider was configured

to dive to 200 m or to within 5 m of the bottom. Gliders inflected at a minimum dive depth

of 5 m. Recall that the glider begins its final ascent after Tmax has elapsed since its initial

descent (see Section 8.2.2). The maximum dive time Tmax for Slocum gliders during this

VPE was two hours.

The maximum dive time is determined by trading-off different priorities. Increasing the

maximum dive time decreases the amount of time a glider spends on the surface. When

a glider is on the surface, it drifts passively and is at risk of getting damaged by surface

traffic. Short dives also reduce effective speed, which reduces mapping performance. How-

ever, longer dives decrease the frequency of GCCS feedback, which decreases coordination
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(a) VPE Slocum GCT #2
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(b) VPE Slocum glider trajectories

Figure 9.6: Slocum GCT and snapshots of glider trajectories after adaptation of sampling
plan during ASAP VPE. (a) Adaptation of VPE GCT shown in Figure 9.5(a) entailed the
creation of a new track extending outside ASAP mapping domain; a scout glider, we23,
was assigned to the new track with the original inter-glider coordination. (b) Slocum glider
coordination performance on the adapted GCT is very good as evidenced by twelve hours
of glider trajectories preceding 9:00 GMT on August 18.

performance. Simulations show that setting Tmax as large as three hours does not appear

to impair coordination performance in the ASAP domain. However, this value might not

produce acceptable track-following accuracy on smaller tracks.

During the first four days of the VPE the GCCS achieved good spacing of the Slocum

subgroups around each track and good synchronization of the two subgroups (see Fig-

ure 9.5(b)). At 9:00 GMT on August 15, we created an additional, 10 km by 20 km

superelliptical track that extends 5 km outside the ASAP mapping domain to the south

and overlaps the original southern-most track. A so-called “scout” Slocum glider was as-

signed to orbit the new track while remaining coordinated with the other Slocums as shown

in Figure 9.6(a). Three days after the adaptation of the GCT, the Slocum glider collective

coordination performance was very good (see Figure 9.6(b)). That is, if one superimposes

the original southern track on top of the new southern track, the three Slocums assigned to

these two tracks are uniformly spaced. Similarly, if one superimposes all three tracks, all
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(a) Slocum VPE mapping error, August 15 (b) Slocum VPE mapping error, August 18

Figure 9.7: Slocum glider normalized mapping error during ASAP VPE. The mapping error
was computed using decorrelation lengths σ = 22 km and τ = 2.2 days and noise covariance
equal to 10% of σ0. (a) Snapshot from 9:00 GMT on August 15 shows that mapping error
is suppressed along Slocum tracks and elevated between and inside tracks; (b) snapshot
from 9:00 GMT on August 18 (after adaptation of GCT), shows that mapping error is more
uniformly suppressed in the region covered by the overlapping tracks.

six Slocums form two nearly-synchronized subgroups.

The scout-glider adaptation demonstrates how a glider can be used to sample outside

the mapping domain without compromising mapping performance either inside or on the

boundary of the mapping domain [201]. We computed mapping error of the Slocum glider

profiles, with decorrelation lengths σ = 22 km and τ = 2.2 days and noise covariance equal

to 10% of σ0. The flow is assumed to have zero mean and unit variance. The mapping

error at 9:00 GMT on August 15 is shown in Figure 9.7(a) and again, three days later, in

Figure 9.7(b). A time series of the mapping performance is plotted in Figure 9.8. The time

series shows no degradation of performance after the GCT was adapted.

The scout-glider adaptation also reveals an interesting feature of the mapping error

generated by gliders assigned to overlapping tracks. Before adaptation, the mapping error

was suppressed along both Slocum tracks and elevated between and inside the tracks as

shown in Figure 9.7(a). After the adaptation, the mapping error was suppressed along all



194 GCCS Experimental Results

Month/Day 2003

M
ap

pi
ng

Pe
rfo

rm
an

ce

 

 

08/13 08/15 08/17 08/19 08/21 08/23 08/25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Domain interior
Domain boundary

Figure 9.8: Slocum mapping performance I (t) during ASAP VPE. The black dots cor-
respond to the snapshots of the mapping error illustrated in Figures 9.7(a) and 9.7(b).
Mapping performance is elevated with low variation throughout the VPE, suggesting good
coordination performance. Adaptation of the GCT, which occurred at 9:00 GMT on August
15, had no observable effect on the mapping performance either inside the domain or on its
boundary.

three tracks in proportion to the number of gliders on the track and partially suppressed

inside the two overlapping tracks, shown in Figure 9.7(b). This phenomenon suggests over-

lapping tracks as a track-placement strategy that more uniformly suppresses mapping error

throughout the domain. This strategy requires neither faster gliders nor more of them.

VPEs conducted in light and moderate flow yielded glider trajectories close to the desired

tracks. The results from subsequent VPEs conducted in more severe flow conditions, imply

that the main challenge to coordination performance of suitably configured gliders is from

ocean currents. This observation is supported by the results from the ASAP 2006 field

experiment, described next.

9.3 ASAP 2006 Field Experiment

The ASAP 2006 field experiment (FE), conducted during the month of August, incorpo-

rated a heterogeneous group of autonomous and manned sensor platforms, including gliders,
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AUVs, aircraft, ships, satellites, and moorings. During the FE a fleet of four Sprays—SIO05,

SIO11, SIO12, and SIO13—were operated under semi-autonomous control with manual as-

sistance by R. Davis at SIO for 44 days from July 21 to September 2. The Spray gliders,

deployed from Moss Landing inside Monterey Bay, mostly adhered to tracks along the

boundary of the mapping domain in accordance with the default sampling plan shown in

Figure 9.2(a).5

A fleet of six Slocum gliders—we05, we07, we08, we09, we11, and we12—operated under

GCCS automatic control for nearly 24 days from July 27 to August 23. On three occasions

during this time period, a Slocum glider was removed from the water due to operational

problems. At the end of the time period, only four Slocums gliders remained in the water.

The Slocum gliders, deployed from Santa Cruz just outside the eastern corner of the ASAP

mapping domain, were steered by the GCCS to a series of fourteen GCTs based on the

default Slocum glider plan shown in Figure 9.2(b). Selected GCCS glider and control

parameters are provided in Appendix D. The GCCS simulator was also used to predict

glider motion in real-time ocean forecasts, although these results are not described here.

When in the water, both Spray and Slocum gliders collected profiles as described in

Section 2.1, except for intermittent lapses. The profile times for all gliders are plotted in

Figure 9.9. Profiles contained in the gray box were collected by gliders under GCCS

automatic control. The collection of profiles by glider we08 stopped for several days during

the first week of August. This lapse was caused when the glider detected a water leak and

was pulled out of the water. Slocum glider we12 stopped collecting profiles when it was

recovered on August 12 after a rudder-fin failure. A water leak was detected by glider we07

on August 19 and, due to concerns that all of the Slocum gliders were susceptible to leaks,

all of the active Slocum gliders were recovered.

Although no Spray glider sustained a reduction of profile collection during the exper-

iment, on occasion a Spray glider had trouble steering in shallow water with high flow

speeds. On several occasions, a Spray glider deviated substantially from its desired track,
5For a description of the Spray steering algorithm, see [66].
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Figure 9.9: Times of glider profiles collected during ASAP 2006 FE. Profiles contained in
gray box were collected by a glider under automatic control of the GCCS. Glider we08
temporarily stopped collecting profiles for a several days starting August 2 due a water
leak; we12 stopped collecting profiles and was recovered on August 12 due to a rudder-fin
failure. All of the active Slocum gliders were recovered on August 21. Spray gliders suffered
no reduction of profile collection during nearly six weeks in the water.

or was not able to make progress along its track, in moderate to strong flow conditions. The

profile locations for both Spray and Slocum gliders are shown in Figure 9.10. Spray gliders

travelled primarily on the boundary of the mapping domain. Profiles collected outside of

the mapping domain are evidence of large deviations from the desired track (some profiles

south of the domain were collected during deployment and recovery).

The number of Spray glider profiles shown in Figure 9.10(a) exceeds the number of

Slocum glider profiles in Figure 9.10(b) for two reasons: (i) the Spray gliders were in the

water longer overall; and (ii) a Spray glider makes only one inflection per dive, whereas a

Slocum glider makes multiple inflections per dive. Only one profile per dive was uploaded

to a glider data server during the experiment by a glider of either type.

Two major adaptations of the default glider sampling plan are visible in Figure 9.10.

First, a line of Spray profiles cuts diagonally across the northwestern corner of the mapping

domain (see Figure 9.10(a)). Starting early in August, this line was patrolled by Spray

gliders in lieu of the original boundary. The second major adaptation is a line of Slocum
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(a) ASAP FE Spray glider profile locations
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(b) ASAP FE Slocum glider profile locations

Figure 9.10: Locations of glider profiles collected during ASAP 2006 FE. (a) Spray gliders
collected profiles primarily on the boundary of the ASAP box. Profiles north or west of the
mapping domain were collected during large, current-induced deviations from the desired
track. Profiles collected along the modified domain boundary are contained in a gray ellipse
marked with an arrow. (b) Slocum gliders collected profiles inside the mapping domain and
on its boundary. Slocum gliders reported fewer profiles during the experiment than Spray
gliders. Profiles collected over the canyon head are contained in a gray ellipse marked with
an arrow.

profiles bisecting the original two, southern tracks (see Figure 9.10(b)). Profiles on this line

were collected by Slocum gliders on four smaller tracks, each half as large as an original

track. The tracks were created so gliders might be able to detect cold water upwelling over

the top of the canyon head in the south-central portion of the mapping domain. Slocum

gliders were assigned to the four new tracks during the period August 11–16.

The ocean circulation during the FE consisted of the following two transitions: from

upwelling to relaxation and, then, from relaxation to upwelling [216]. A snapshot of the

depth-averaged flow in the mapping domain during the relaxation-to-upwelling transition

is shown in Figure 9.11(a). A snapshot of upwelling flow is shown in Figure 9.11(b). Both

snapshots were generated from Spray and Slocum depth-averaged flow estimates using OA

with decorrelation lengths σ = 22 km and τ = 2.2 days and noise variance equal to 10% of

the process variance σ0. The flow is assumed to have zero mean and unit variance. During
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(a) ASAP FE OA flow, 17:00 GMT August 8
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(b) ASAP FE OA flow, 00:00 GMT August 11

Figure 9.11: Two snapshots of the ocean circulation during the ASAP FE. The flow vector
field was computed from glider depth-averaged flow estimates using OA with σ = 22 km
and τ = 2.2 days and noise variance equal to 10% of the process variance σ0. The flow
is assumed to have zero mean and unit variance. (a) Flow transition from relaxation to
upwelling advected gliders out of the mapping domain; (c) equatorward flow indicative of
an upwelling.

the bifurcating flow condition shown in Figure 9.11(a), it was particularly challenging to

keep gliders in the domain. Gliders in the northern-half of the domain were advected north

and west and gliders in the southern-half of the domain were advected south and east. The

flow snapshot in Figure 9.11(b) shows equatorward flow indicative of upwelling activity.

Strong and highly variable flow conditions such as the ones shown in Figure 9.11 pre-

sented a major challenge to steering the gliders along their assigned tracks with the desired

spacing. We plot in the top two panels of Figure 9.12(a) the frequency distribution of

flow speed and direction, respectively, measured by the Slocum gliders during the period of

GCCS activity from July 27 to August 23. Approximately 80% of the measured flow speeds

were less than 0.27 m/s. However, 10% of the measured flow speeds exceeded 0.32 m/s,

which is the Slocum glider effective speed predicted by the GCCS. Note that the frequency

distribution of flow direction is bimodal: the most common flow direction was poleward

(along the shore) and the second-most common flow direction was onshore. This suggests
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(b) Error in GCCS (real-time) prediction

Figure 9.12: ASAP FE flow velocity and GCCS prediction accuracy. Each frequency dis-
tribution is scaled by its mode frequency. (a, top) Depth-averaged flow speed estimated by
Slocum gliders during period of GCCS activity; (a, middle) distribution of depth-averaged
flow directions is bimodal: flow was predominantly poleward with less frequent onshore
component; (a, bottom) Slocum glider effective speed ranged from zero to more than 0.6
m/s. (b, top) GCCS errors in predicting Slocum glider surface position; (b, middle) Dis-
tribution of GCCS errors in predicting Slocum glider surface time shows a negative bias
of 5 minutes; (b, bottom) Distribution of errors between Slocum glider effective speed and
GCCS prediction (0.32 m/s).

that upwelling activity—characterized by equatorward flow—was relatively weak.

The frequency distribution of Slocum glider effective speed during the ASAP FE is

shown in the bottom panel of Figure 9.12(a). The mode of this distribution is 0.3 m/s.

Effective speeds less than 0.3 m/s occurred more frequently than effectives speeds greater

than 0.3 m/s. This implies that Slocum gliders spent more time traveling against the flow

than they spent traveling with it. Effective speed decreases when a glider travels in the

opposite direction of the prevailing ocean currents; it increases when a glider travels in the

same direction as the current.

Strong and highly variable flow generates large errors in the GCCS prediction of where

and when a glider will surface. We plot in the top two panels of Figure 9.12(b) the fre-

quency distributions of errors in the GCCS prediction of glider surface position and time.

Approximately 80% of the surface position errors were less than 1.6 km. However, 10% of
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the surface position error exceeded 2 km. The frequency distribution of errors in surface

time shows a negative bias of 5 minutes. That is, the most frequent error in the GCCS

prediction of when a glider would surface was 5 minutes later than the actual surface time.

Despite this bias, 80% of the surface time errors were less than 10.7 minutes. In the bottom

panel of Figure 9.12(b), we show the frequency distribution of errors in predicting effective

speed, which is the difference between glider effective speed and the GCCS prediction of

0.32 m/s (see Table D.1).

We examine the impact of strong flow and GCCS prediction errors on the coordina-

tion performance of the Slocum gliders in the next section. Coordination performance

measures the degree to which the gliders achieved the configuration specified in the GCT.

Since the GCTs were designed to collect measurements with sufficient spatial and temporal

separation, good coordination performance results in good mapping performance. And,

conversely, poor coordination performance leads to poor mapping performance. We discuss

ASAP FE glider mapping performance and its relation to glider coordination performance

in Section 9.3.2.

9.3.1 Evaluation of Coordination Performance

During the ASAP 2006 FE, the GCCS controlled up to six Slocum gliders continuously for

nearly 24 days using fourteen GCTs. A timeline of the GCTs used during the ASAP FE is

shown in Figure 9.13. Some GCTs lasted less than a day; the longest GCT lasted 4.1 days

(GCT #11). During each GCT, the GCCS automatically coordinated three to six Slocum

gliders to converge to their assigned tracks with the desired spacing. In this section, we

focus on evaluating the performance of the GCCS during three GCTs: #6, #9, and #11.

We also summarize selected GCT adaptations before or after each of these three GCTs.

Operational reasons often motivated GCT adaptation to improve mapping performance,

such as when a glider was deployed, recovered, or not functioning properly. GCTs #1–3

were used to transition the Slocum gliders from their initial deployment location into the

default Slocum sampling pattern shown in Figure 9.2(b). During this time, we08 detected
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Figure 9.13: Timeline of GCTs used by the GCCS to control Slocum gliders during ASAP
2006 FE. The GCT was adapted to improve mapping performance in response to changes
in the ocean features, such as the onset of upwelling, and for operational reasons, such as
when a glider was deployed, recovered, or not functioning properly. GCTs lasting less than
one day are shaded light gray and not labeled.

a water leak and went under manual control, which is why GCT #3 shows a reduction in

number of gliders from five to four. All six Slocum gliders were under GCCS control GCTs

#4 and #5, although we08 was subsequently recovered to repair the water leak. Glider

we08 returned to the water starting with GCT #9. At the start of GCT #11, we12 was

placed under manual control due to a rudder-fin failure; it was immediately recovered and

taken out of the water for the rest of the experiment. Glider we07 was placed under manual

control during GCT #14 and #15 due to leak indications.

Each GCT can be viewed as a mini-experiment, during which the GCCS steered the

gliders around a set of tracks with prescribed spacing measured along the tracks. We can

quantitatively evaluate the coordination performance of the GCCS during each GCT using

the following metrics, illustrated in Figure 9.14.
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(a) Tracking error
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(b) Intra-track relative spacing
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ψkj
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(c) Inter-track relative spacing

Figure 9.14: Metrics of coordination performance. (a) The tracking error is the shortest
distance between a glider and its assigned track. (b) The spacing error between two gliders
on the same track is proportional to the difference between the desired and actual curve-
phase measured between the gliders along the track (in this case the desired relative curve-
phase is π). Spacing error is illustrated here by the relative spacing (ψkj/2π)Ω of points
Rk and Rj , where Ω is the track perimeter. (c) The spacing error between two gliders on
different tracks is proportional to the difference between the desired and actual curve-phase
of point Rk relative to Rj (in this case the desired relative curve-phase is 0).

Definition 9.1. Tracking error The tracking error of a glider at time t is the shortest

distance between the glider and its assigned track at time t.

The tracking error of a glider, which has units of distance, is a measure of its track-

following accuracy only if the closest point on the track is where the glider is trying to go.

For example, the tracking error may not be a good metric for a glider in the interior of a

very skinny track, when the closest point on the track is actually on the opposite side of

where it is trying to go. Such a situation did not occur during the ASAP FE.

Definition 9.2. Spacing error Consider two gliders labeled k and j. Suppose the gliders

are assigned to tracks 1 and 2, respectively, with a desired relative curve-phase ψ̄kj (see

Sections 7.3 and 8.1); tracks 1 and 2 must have the same perimeter, but they may have

different shapes, locations, or orientations. Let Rk denote the point on track 1 closest to

glider k at time t and Rj denote the point on track 2 closest to glider j at time t. The
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spacing error between gliders k and j at time t is

|(ψkj − ψ̄kj + π) mod (2π)− π|/π,

where ψkj , ψk − ψj is the curve-phase ψk of Rk relative to the curve-phase ψj of Rj.

Although Definitions 9.1 and 9.2 are, by design, independent of the control algorithm

used during the ASAP FE, they do depend on some of the notations and assumptions

introduced in Section 7.3. For example, Definition 9.2 is subject to the assumption that

each track is a smooth, closed loop. To evaluate the spacing error, which is a number in the

interval [0, 1], each point on C is mapped from local rk to geodetic Rk coordinates using

the transformations in Appendix C. The curve-phase ψk of Rk equals the curve-phase of rk.

We start our analysis of coordination performance with GCT #6, which was active for

3.7 days from 23:15 GMT August 2 to 16:05 GMT August 6. During this time, the GCCS

steered five gliders around three tracks as shown in Figure 9.15(a). Gliders we10 and

we12 were assigned to travel clockwise around the northern track with relative curve-phase

π, we07 and we09 were assigned to travel clockwise around the middle track with relative

curve-phase π, and we05 was assigned to travel clockwise around the southern track. In

addition, the curve-phase of each glider on the northern track relative to the curve-phase

of either glider on the middle track was specified to be zero. A snapshot of the glider

trajectories and depth-averaged flow measurements for the 24 hours preceding 6:00 GMT

August 4 is shown in Figure 9.15(b). Gliders we07 and we09 have good spacing. The spacing

error between we10 and we12 increased when we12 was pushed by a poleward current across

the deep end of the northern track in just two dives and, simultaneously, the progress of

we10 across the shallow end of the track was impeded by poleward flow near the shore.

The poleward flow in the mapping domain became increasingly strong during GCT #6.

This process, indicative of relaxation, ultimately led to adaptation of the GCT. Each glider’s

effective speed is shown in Figure 9.16, along with its depth-averaged flow measurements.

The glider effective speed fluctuates around its predicted value of 0.32 m/s, ranging from

over 0.5 m/s when traveling with the flow, to nearly zero when traveling against the flow. We
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(b) Glider trajectories, 6:00 GMT August 4

Figure 9.15: Slocum glider trajectories and depth-averaged flow measurements during ASAP
2006 FE GCT #6. (a) All of the gliders were steered clockwise around three different tracks;
the relative curve-phase of gliders we07, we09, we10, we12 was also controlled by the GCCS
to achieve the desired pattern. (b) Trajectories (gray lines) and flow measurements (thin
black arrows) shown for 24 hour period prior to 6:00 GMT August 4; each glider’s effective
speed is indicated by a thick black arrow. Glider coordination performance, while initially
good, was eventually degraded by strong poleward flow.

observe that the effective speed is nearly zero for four out of five gliders at the conclusion of

GCT #6 (identified in Figure 9.16 by a vertical line on day 3.7). All of the gliders got stuck

on the shallow end of their tracks when they tried to head equatorward against the flow.

We reversed the direction of rotation of all of the gliders from clockwise to counterclockwise

in GCT #7. The idea was to take advantage of the strong poleward flow near shore and

have the gliders combat the poleward flow in deep water, where it appeared weaker.

When glider forward progress was impeded by the flow, coordination performance dete-

riorated. We plot for GCT #6 the tracking error in Figure 9.17(a) and the spacing error in

Figure 9.17(b). For the first three days of GCT #6, tracking error for all of the gliders was

less than two kilometers, except for short periods. Likewise, during this time, the intra-track

spacing error of glider pairs we10/we12 and we07/we09, shown in the top of Figure 9.17(b),

remained under 40%, and, on three occasions, dropped nearly to zero. Other than one
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Figure 9.16: Slocum glider speed and depth-averaged flow velocity during GCT #6. Glider
effective speed at time t is denoted by the radius of the circle centered at time t and speed
0. The depth-averaged flow velocity at time t is depicted by a black line with one end at
time t and speed 0; the length of the line is the speed and its orientation corresponds to
the orientation of the flow velocity (that is, up is north and right is east). By day 3, the
forward progress of all of the gliders had been substantially impeded by strong poleward
flow, which prompted adaptation of the GCT at time t = 3.7 days (vertical black line). In
GCT #7, gliders reversed direction and experienced an initial burst of speed when they
were advected by the flow.

brief spike on day 1, the inter-track spacing error of glider pairs we10/we09 and we07/we12

during the first three days also remained under 40%. Large tracking and spacing errors on

the third day prompted us to switch the GCT.

When the gliders reversed direction of rotation under GCT #7 (see Figure D.1(b)),

coordination performance partially recovered. We see in Figure 9.17(a) that, after day 3.7,

the tracking error of we07 remains low and the tracking error of we09 shrinks. After day

5, the spacing error of this glider pair also recovers. However, the tracking and spacing

errors for the gliders we10 and we12 did not recover under GCT #7, prompting the switch

to GCT #8. Under GCT #8 (see Figure D.1(c)) gliders we10 and we12 were briefly sent in

opposite directions around the northern track to quickly recover proper separation.
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Figure 9.17: Coordination performance of Slocum gliders during GCT #6. The start of
GCT #7 is shown by a dotted vertical line at t = 3.7 days. (a) Until t = 3 days, tracking
error of all gliders remained less than two kilometers, except for short periods; (b, top) until
t = 3 days, intra-track spacing error remained under 40%; (b, bottom) except for one spike
on day 1, inter-track spacing error from t = 0 days to t = 3 days also remained under 40%.
Gliders reversed direction under GCT #7, which started at t = 3.7 days; we07 and we09
recovered good coordination performance, but we10 and we12 did not.

The GCCS achieved good glider coordination performance during GCT #9, which ran

for 2.2 days from 16:00 GMT August 9 to 21:09 GMT August 11. GCT #9 marked the

return of glider we08 to GCCS control, its leak repaired. Under GCT #9, the GCCS steered

all six Slocum gliders to three tracks as shown in Figure 9.18(a). The GCT specified three

glider pairs—we10/we12, we07/we09, and we05/we08—to have relative curve-phase of π.

Each glider pair was assigned to a different track and there was no inter-track coordination.

During GCT #9, there was moderate onshore and weak poleward flow in the western

and north portions of the mapping domain, respectively. Strong equatorward flow in the

southeastern corner was indicative of a transition to upwelling. The glider trajectories and

depth-averaged flow measurements for the 24 hour period prior to 12:00 GMT August 11

are shown in Figure 9.18(b). Glider we08, initially located near the southern corner of

the mapping domain, is not visible in this figure, having been advected by the flow to a

location southeast of the mapping domain. We observe in Figure 9.19 that the effective
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Figure 9.18: Slocum glider trajectories and depth-averaged flow measurements during ASAP
2006 FE GCT #9. (a) Three glider pairs were assigned to have intra-track relative curve-
phase of π with no inter-track coordination; (b) other than for we08, which was advected
by strong equatorward flow out of view to the southeast, tracking error is low and spacing
error on the middle and northern tracks is low.

speed of we08 was reduced to nearly zero for over 12 hours. When we08 slowed down,

we05 actually cut across the southern corner of the southern track and “passed” we08,

meaning the curve-phase of we05 relative to we08 changed sign. No glider other than we08

experienced prolonged interruptions of forward progress during GCT #9.

Coordination performance, depicted in Figure 9.20, recovered during GCT #8 and re-

mained good during GCT #9, except for gliders we05 and we08. Tracking error for the

four gliders on the middle and northern tracks was less than two kilometers. We observe in

Figure 9.20(b) that spacing error was below 10% for we10 and we12, orbiting the northern

track in the weakest flow, whereas spacing error was between 10% and 40% for we07 and

we09, orbiting the middle track in moderate, bifurcating flow. Spacing error was the worst

for we05 and we08, situated on the southern track in the strongest flow. Spacing error for

these two gliders did recover by the end of GCT #9, after we05 passed we08 and we08

returned to the track.
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Figure 9.19: Slocum glider speed and depth-averaged flow velocity during GCT #9. This
period of the FE was characterized by strong equatorward flow in the southern portion of
the mapping domain, which reduced nearly to zero the effective speed of we08. Moderate
onshore and weak poleward flow in the middle and northern portions of the domain did not
substantially impair the forward progress of gliders deployed there.

The adaptation from GCT #9 to GCT #10, shown in Figure D.2(a), was initiated

by an ocean science objective and affected only the two gliders on the middle track. The

ASAP team proposed to split the middle track into two smaller tracks, so that gliders

would sample the along-shore line bisecting the original middle track. This bisecting line

follows the canyon head, the region where cold water was presumed to be emerging. The

hypothesis that this is where cold water was emerging would be tested by gliders we07 and

we09 collecting profiles along each of the new tracks. Later, during GCT #12, the southern

track would be similarly split into two more new tracks orbited by we05 and we08 (see

Figure D.2(b)).

GCT #10, which ran for less than a day, was adapted to GCT #11 shown in Fig-

ure 9.21(a), when we12 sustained a terminal failure of its rudder-fin. During GCT #11,

which ran for 4.1 days from 18:26 GMT August 12 to 20:47 GMT August 16, we10 orbits
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Figure 9.20: Coordination performance of Slocum gliders during GCT #9. The start of
GCT #9 is depicted by the vertical line at t = 0 days. (a) The tracking error of the
four gliders on the middle and northern tracks declined during GCT #8 to less than two
kilometers during GCT #9, whereas the tracking error of we05 and we08 exceeded five
kilometers; (b) intra-track spacing error between glider pairs was best on the northern
track, where there was weak flow, and worst on the southern track, where the flow was
strong. There was no inter-track coordination during GCTs #8 or #9.

the northern track alone. All of the other track assignments and coordination are the same

in GCT #11 as in GCT #10: we07 and we09 were assigned to orbit with relative curve-

phase 0 the two small tracks circumscribed by the original middle track; we05 and we08

were assigned to orbit the large, southern track with relative curve-phase π.

The GCCS achieved high coordination performance during GCTs #10 and #11 in the

presence of moderate, onshore flow. Figure 9.22, which shows glider effective speed and

depth-averaged flow measurements, indicates only one moment of halted progress, sustained

by we05 in onshore flow on the first day. Other gliders experienced only mild fluctuations

of effective speed. Glider we05 halted, not because of flow conditions, but because of an

interruption in satellite communication.6 Nonetheless, tracking error for all gliders, shown
6When we05 recovered communication, it downloaded GCCS waypoints based on we05’s last reported

surface position. Since we05’s last reported surface position was several dives old, these waypoints caused
we05 to backtrack for one dive. This sequence of events led to the following addition to the GCCS waypoint
quality control (QC): waypoints fail QC if the last known surface position of the glider is outdated.
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(b) Glider trajectories, 4:00 GMT August 16

Figure 9.21: Slocum glider trajectories and depth-averaged flow measurements during ASAP
2006 FE GCT #11. (a) Gliders we07 and we09 are assigned to orbit with synchronized
curve-phases two new tracks designed to collect profiles across the canyon head; (b) good
coordination performance in the presence of moderate, onshore flow.

in Figure 9.23(a), was consistently less than two kilometers. The intra-track spacing

error of we05 and we08, plotted in the top of Figure 9.23(b), experienced a temporary surge

when the forward progress of we05 was impaired; it subsequently recovered to less than 30%.

The inter-track spacing error of we07 and we09, shown in the bottom of Figure 9.23(b),

decreases sharply during GCT #8 and remains below 40% during GCT #11. This figure

nicely illustrates the GCCS “step” response to adaptation of the GCT from #9 to #10.

Subsequent GCT adaptation after GCT #11 occurred with the intent to first split and

then widen the southern track. GCT #12, shown in Figure D.2(b), split the southern

track into two, smaller tracks, that, like the smaller tracks in GCT #11, were designed to

allow gliders to sample along the canyon head in the along-shore direction. In this GCT,

four gliders were assigned to orbit with synchronized curve-phases the four small tracks,

that is, the desired inter-track curve-phase of any one of these gliders relative to any other

glider was zero. Execution of GCT #12 ended after 2.7 days when we07 broadcast a leak

warning and was recovered. GCT #13 was created but never used. In GCT #14, shown
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Figure 9.22: Slocum glider speed and depth-averaged flow velocity during GCT #11. Only
we05 sustained an interruption of forward progress, due to communication problems, which
occurred between t = 0.5 day and t = 1 day.

in Figure D.2(c), we09 returned to the large, middle track for just over a day. GCT #15,

which lasted less than a day, was the final GCT. It addressed the ASAP team proposition

to collect profiles outside the mapping domain by moving 10 km to the southwest the small,

southernmost track (see Figure D.2(d)).

9.3.2 Evaluation of Mapping Performance

We evaluate the glider mapping domain during the ASAP FE both inside the domain and on

its boundary by plotting separately the mapping performance of Slocum gliders and Spray

gliders in Figures 9.24(a) and 9.24(b), respectively. The mapping performance of all of the

gliders is plotted in 9.24(c). In all three figures, the period when the GCCS was active,

which corresponds to the period when the Slocum gliders were in the water, is colored gray.

The Slocum glider mapping performance dipped when the Slocum glider coordination was

poor and it recovered when coordination performance improved.

Figure 9.24(a) shows that the Slocum gliders achieved a relatively high mapping perfor-



212 GCCS Experimental Results

0

5 we10

0

5 we07

Tr
ac

ki
ng

er
ro

r
(k

m
)

0

5 we09

0

5 we05

Time from start of GCT #11 (days)
0 0.5 1 1.5 2 2.5 3 3.5 4-0.50

5 we08

(a) Tracking error GCT #11

Sp
ac

in
g

er
ro

r
(%

)

0
20
40
60
80
100 we05/we08

Time from start of GCT #11 (days)
0 0.5 1 1.5 2 2.5 3 3.5 4-0.5

Sp
ac

in
g

er
ro

r
(%

)

0
20
40
60
80
100 we07/we09

(b) Spacing error GCT #11

Figure 9.23: Coordination performance of Slocum gliders during GCT #11. (a) Except for
short periods, tracking error was less than two kilometers for all of the gliders; (b, top)
intra-track spacing error between we05 and we08 experienced a surge, then recovered, when
we05 was temporarily slowed; (b, bottom) inter-track spacing error between we07 and we09
decreased rapidly and remained below 40%, illustrating the “step” response to adapting
GCT #9 to GCT #10.

mance inside the mapping domain and on its boundary. In fact, the mapping performance

inside and on the domain is nearly the same. As expected, the mapping performance ramps

up when the gliders first enter the water at the end of July and ramps down when they were

recovered around August 21. During the period of time when they were in the water, the

Slocum glider mapping performance is generally level, with some fluctuations. The largest

downward fluctuation occurs on August 6, during GCT #6, when coordination performance

suffered due to adverse flow conditions (see discussion in previous section). The fact that

mapping performance recovered subsequent to adaptation of the GCT shows how coordi-

nated motion control can impact mapping performance. Additional connections between

the Slocum glider coordination performance and Slocum glider mapping performance is the

subject of ongoing analysis.

For much of the experiment, Spray glider mapping performance, plotted in Figure 9.24(b),

is distinctly higher on the boundary of the mapping domain than in its interior. This result
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Figure 9.24: Glider mapping performance during ASAP 2006 FE. The mapping performance
ramps up when the gliders enter the water and ramps down when the gliders come out of
the water. The portion of all three plots that is shaded gray corresponds to the period of
time during which the GCCS was actively steering the Slocum gliders. Note mapping error
is normalized to a scale from 0 to 1, but mapping performance is not (see Section 2.2).
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is, of course, consistent with the Spray glider sampling plan shown in Figure 9.2(a), which

dedicated the Spray gliders to patrolling tracks along the sides of the domain. The only

period of time during which the mapping performance was not higher on the boundary

occurred after the Slocum gliders were recovered. At this point, the Spray gliders were

reassigned to tracks that sampled both the domain boundary and its interior. As a whole,

the Spray glider mapping performance was much higher during the ASAP 2006 FE than

during the AOSN-II experiment in 2003 (see Figure 2.12), which is due in large part to the

higher profile density in 2006. There were five Spray gliders deployed during the AOSN-II

experiment, versus four Spray gliders in the ASAP FE, but the AOSN-II mapping domain

was nearly ten times larger than the ASAP mapping domain.

The combined mapping performance of the Spray and Slocum gliders is shown in Fig-

ure 9.24(c). During the periods of time before and after the Slocum gliders were in the

water, the combined performance is equal to the Spray glider mapping performance. When

both Spray gliders and Slocum gliders were in the water, the combined mapping perfor-

mance is higher than the mapping performance of either the Spray gliders or Slocum gliders

separately, although mapping performance does not add linearly. During this period of time,

the combined mapping performance is higher on the boundary of the mapping domain than

inside it. Some of the fluctuations in the Spray and Slocum mapping performance are visible

in the combined mapping performance, although other fluctuations are visible too.

The degree to which the mapping performance of the Spray gliders reinforces and extends

the mapping performance of the Slocum gliders depends on the positions and times of the

Spray glider profiles relative to the positions and times of the Slocum glider profiles. The

combined mapping performance experiences the greatest boost over the separate mapping

performances when profiles in the combined set of profiles are not bunched together. The

coordination of the Spray gliders, which were steered with manual intervention, and the

Slocum gliders, which were steered automatically by the GCCS, is the subject of ongoing

analysis. Here, we make the following simple observation: we might have been better able

to match the combined mapping performance on the boundary and interior of the mapping
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domain by reducing the size of the Slocum glider tracks so as to overlap less with the

domain boundary. This would have tipped the balance of the Slocum mapping performance

in favor of the interior so that the combined mapping performance on the boundary was

better balanced with the combined mapping performance in the interior.





Chapter 10

Conclusion

10.1 Summary of Contributions

This thesis describes a cooperative control framework for stabilization of collective mo-

tion of self-propelled particles. We present and analyze a systematic and versatile design

methodology to generate decentralized control algorithms that stabilize moving formations

of particles with possibly limited interaction. A large family of patterns can be generated

including parallel formations, circular formations, and symmetric formations on multiple,

convex loops. Formation design is motivated by applications in environmental monitoring

with mobile sensor platforms.

The thesis also describes a software infrastructure—the Glider Coordinated Control Sys-

tem (GCCS)—that uses feedback control at the level of the fleet to steer gliding underwater

vehicles to a set of coordinated trajectories. We describe experimental results from an at-sea

demonstration in August 2006, when the GCCS controlled six underwater vehicles continu-

ously for nearly twenty-four days in support of an oceanographic field experiment studying

coastal upwelling. This practical implementation of a theoretical methodology supports col-

laborative and adaptive data collection by a large fleet with minimal operator intervention.

Collecting data along coordinated trajectories improves the information content of the en-

tire data set: this information may help oceanographers develop new insights into physical
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or biological processes pertinent to improving our understanding of the environment and

climate change.

10.1.1 Control of Collective Motion

Feedback control to coordinated glider trajectories is developed using a simple model of

vehicle motion, described in Chapter 3. In this model, which was studied by Justh and

Krishnaprasad in the context of controlling autonomous air vehicles [126, 127], each vehicle

is represented by a particle moving at a constant speed in a plane subject to steering control.

A feature of the particle model emphasized in this thesis is that the orientation of a particle’s

velocity is described by an angle called the phase. The collection of all N phases evolves

on the N -torus, a nonlinear manifold central to the study of coupled-phase oscillators.

Accordingly, the particles can be viewed as having coupled-oscillator dynamics, a paradigm

used throughout the thesis. Another fundamental paradigm described in Chapter 3 is the

use of a graph to describe the (time-varying and directed) network of particle interactions.

Each node in the graph represents a particle and each edge represents (directed) flow of

information between particles. Since our cooperative control algorithms use state feedback,

particles steer using information pertaining to the current state of other particles. We

describe particle interaction in the theoretical framework using the matrix representation

of the interaction network, called the graph Laplacian.

We use level of interaction between particles—all-to-all, undirected and time-invariant,

and time-varying and directed—to classify the results for stabilization of relative equilibria

of the particle model, including parallel and circular formations. In Chapter 4, we introduce

and analyze control-Lypaunov algorithms for phase synchronization and balancing, which

in the particle model correspond to parallel motion of all particles and motion of all particles

about a fixed position centroid, respectively. The case in which each particle interacts with

all other particles is addressed in Section 4.1. In this case, we show that a commonly studied

model of synchronization of coupled-phase oscillators—the Kuramoto model—is a gradient

system with respect to a quadratic potential, called the all-to-all phase potential. Using the
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sign of the coupling gain, we can drive the phase arrangement to either the global minimum

of the phase potential (phase balancing) or the global maximum (phase synchronization).

The all-to-all phase potential and corresponding gradient control are extended in Section 4.2

to particles with limited, time-invariant, and undirected interaction and, in Section 4.3,

to particles with time-varying and/or directed interaction. The latter section describes a

dynamic algorithm to achieve synchronization and balancing on the N -torus adapted by

Scardovi et al. from the literature on Euclidean consensus [233].

The notion of consensus on a Euclidean space applies directly to stabilization of circular

formations, described in Chapter 5. In a circular formation, which is a relative equilibrium

of the particle model, the particles converge to circular motion about a common point (the

consensus). In Section 5.1 we describe a decentralized circular formation algorithm for all-

to-all interaction. As with the phase synchronization and balancing algorithms in Chapter 4,

the circular formation algorithm is extended in Section 4.2 to particles with limited, time-

invariant, and undirected interaction and, in Section 4.3, to particles with time-varying

and/or directed interaction. The latter section follows the development of the dynamic

phase synchronization and balancing algorithm in Section 4.3, where particles incorporate

into their steering control not only the relative state information of interacting particles but

also shared estimates of the collective phase centroids. In the dynamic circular formation

algorithm, particles compute and share estimates of the collective position centroid.

Chapter 6, which has the same structure as Chapters 4 and 5, describes cooperative

control algorithms to stabilize symmetric phase patterns. Symmetric phase arrangements

contain clusters of phases uniformly distributed around the unit circle. We show that, for

any level of particle interaction, combining the symmetric-pattern phase control with the

corresponding circular formation algorithm from Chapter 5 yields an algorithm to locally

stabilize symmetric patterns of particles moving around a circle. We provide guidelines for

choosing control gains that expand the basin of attraction of the desired pattern.
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10.1.2 Sampling with Autonomous Vehicles

In order to design ocean sampling trajectories, we develop a quantitative measure of sam-

pling performance, described in Chapter 2. This metric, based on a classical linear es-

timation technique called objective analysis (OA), evaluates the quantity of information

concerning a multi-dimensional stochastic process contained in a set of irregularly-spaced

and timed measurements. To increase the information content of a measurement set, a

glider fleet should collect data at points that are distributed in space and time according to

the spatial and temporal decorrelation scales of the process of interest. Basically, measure-

ments should not be too close or too far apart. To justify this heuristic, in the introduction

to Chapter 2 we describe an extended analogy between ocean sampling and lawn-mowing.

In Section 2.1, we review the operational configuration of underwater gliders and provide

a new comparison of the sampling capabilities of gliders and their faster-moving cousin,

the propellor-driven AUV. The OA-based metric is quantitatively defined in Section 2.2,

and a distinction between temporally- and spatially-constrained sensor platforms is intro-

duced. In Section 2.3 we summarize the sampling performance of a glider fleet during a 2003

deployment, prior to the development of the GCCS. Using several numerical examples as

additional motivation, we formulate a coherent strategy for adaptive sampling with a fleet

of underwater gliders. This strategy prescribes automatic control of a glider fleet to coor-

dinated motion about closed paths using a decentralized cooperative algorithm. The glider

paths and coordination on those paths are selected to maximize sampling performance and

can be adapted by an operator.

Algorithms yielding symmetric formations of moving particles are adapted in Chapter 7

to the application of mobile sensor networks. In Section 7.1, we introduce a virtual particle

into the collective to serve as a reference. Since the dynamics of the virtual particle are

unaffected by the motion of the real particles, the particle’s presence breaks the rotational

and translational symmetries thus far preserved by the closed-loop particle model. We show

how this approach can be used to track a piecewise-linear reference trajectory, or to stabilize

circular motion about a reference beacon even when particles are advected by a drift vector
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field. Another symmetry of the closed-loop particle model with all-to-all interaction is

invariance to permutation of particle labels. We show in Section 7.2 how the design of

particle networks can be combined with multiple, virtual particles to generate algorithms

that stabilize symmetric formations spanning multiple circles. The applicability of these

algorithms to ocean sampling with autonomous vehicles is enhanced in Section 7.3, where

we use a coupled-phase oscillator framework to describe and coordinate particle positions

on convex loops other than circles. Special attention is given to a class of curves known as

the superellipse, which includes circles, ellipses, and rounded rectangles.

Feedback control of a glider fleet using cooperative algorithms is synthesized by the

software suite called the Glider Coordinated Control System (GCCS), described in Chap-

ter 8. As summarized in Section 8.1, the GCCS takes as input a specification of a desired

sampling pattern defined in terms of a set of glider coordinated trajectories (GCT). The

glider sampling pattern is adapted when an operator changes the GCT input. To steer

gliders to the GCT, the GCCS utilizes the simple model of glider motion to plan future

trajectories and a detailed model to predict glider motion underwater. These models are

described in Sections 8.2.1 and 8.2.2, respectively. The detailed model is a three-dimensinal

kinematic representation of glider motion including emulation of the glider onboard steer-

ing rules in the presence of flow. The active components of the GCCS during real-time

operation are the planning and remote input/output modules. The GCCS also contains

a simulation module that facilitates development and testing of glider coordinated control

strategies through virtual experiments. The GCCS simulator enables software-in-the-loop

and hardware-in-the-loop testing, which are both integral to the development of a control

infrastructure for ocean-going systems.

Experimental results from an at-sea demonstration of the GCCS are included in Chap-

ter 9. This demonstration was conducted in support of a multi-disciplinary research ini-

tiative called Adaptive Sampling and Prediction (ASAP). An overview of ASAP, which

represents a collaborative effort of researchers from multiple universities and institutions,

is presented in Section 9.1. ASAP researchers seek to develop strategies for optimal asset
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distribution for environmental monitoring and prediction, such as the one formulated in

Section 2.3. This strategy was tested in March 2006 during a virtual pilot experiment with

the GCCS acting as both glider planner and glider simulator, as described in Section 9.2.

Because this pilot experiment was conducted virtually, it helped prepare participants for

the subsequent field experiment without the additional cost or complexity of running a

pilot experiment in the field. During the August 2006 ASAP field experiment, the GCCS

operated with minimal operator intervention and no major errors or failures. We describe

this experiment in Section 9.3, focusing on quantifying the performance of the glider fleet

using both the OA-based metric and novel coordination metrics. This analysis illustrates

the role of GCT adaptation in responding to flow conditions and oceanographic objectives.

10.2 Ongoing and Proposed Work

This thesis is structured to follow a smooth arc from theory to application: principles

from cooperative control are developed and put into practice in an underwater mobile

sensor network. The pairing of theory and application is not, however, a perfect fit. There

are a number of practical challenges to increasing the autonomy of underwater vehicles

not yet addressed in our theoretical framework. Some of these challenges are described in

Section 10.2.1. Although the framework is deficient in some ways, in other ways it surpasses

the demands of this application. We summarize in Section 10.2.2 ongoing and proposed work

on the application of our cooperative control framework to the study of interaction networks

in biological collectives.

10.2.1 Increasing Autonomy of Underwater Gliders

Autonomy enables gliders to operate collaboratively with high sampling performance and

without operator intervention. One contribution of this thesis is to increase glider autonomy

by designing and demonstrating a prototype system—the GCCS—for automating fleet-level

coordination (see Figure 10.1). The GCCS, which runs on a computer on shore, steers

gliders to a set of operator-specfied trajectories by generating waypoints, which are the
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Figure 10.1: Increasing autonomy of underwater gliders. The control system onboard each
glider automatically steers it along a list of waypoints, which are traditionally planned
manually by an operator. As described in this thesis, automating fleet-level waypoint plan-
ning reduces the demand for operator intervention and may improve sampling performance.
Glider autonomy can be further increased by migrating waypoint planning onboard, and
developing automated algorithms for mission-level design and adaptation.

latitude and longitude coordinates of a destination point. We propose to further increase

glider autonomy in two ways, illustrated in Figure 10.1: (i) migrate the fleet-level control

algorithms onboard each glider, so that gliders plan their own waypoints; and (ii) automate

the design and adaptation of the glider coordinated trajectories to better achieve mission-

level objectives. Increased autonomy will enable gliders to accomplish new missions in

the areas of national defense and environmental monitoring. In turn, these new missions

engender a wide variety of exciting theoretical challenges.

Decentralized, onboard waypoint-planning in a collaborating glider fleet scales better

with the number of gliders than centralized on-shore waypoint planning, since decentralized

planning potentially eliminates a communication and computation bottleneck at the plan-

ning hub. However, increasing glider autonomy through decentralized, onboard waypoint-

planning requires addressing the inter-glider communication challenge, which is required

for coordinated planning. Because gliders surface asynchronously to use radio frequency or
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satellite communication devices, they often have no reliable means for direct peer-to-peer

communication. One might emulate peer-to-peer communication using a central hub that

relays pertinent information to each glider about other gliders, but this would not elimi-

nate the communications bottleneck. Another solution is to install onboard each glider an

acoustic modem, which enables information transmission and reception underwater using

sound waves [254]. Although acoustic modems are not typically present onboard gliders

partly due to space or power constraints, they enable gliders to broadcast state and mea-

surement information to other gliders within acoustic range. Gliders operate essentially

silently, so they offer good platforms for acoustic wave reception.1 Algorithms for ampli-

tude, frequency, and content of data transmission could be developed to minimize power

consumption while maintaining a network connectivity. Our results for dynamic algorithms

on uniformly connected networks suggest that short-range glider communication may be

sufficient to achieve fleet-level coordination.

Automating the design and adaption of mission-level planning would further increase

glider autonomy, even if not performed onboard. Mission-level planning generates the de-

sired (coordinated) paths for gliders to follow. For example, in our framework, the output

of mission-level planning is encapsulated in a set of glider coordinated trajectories (GCT),

which the GCCS uses as input to plan glider waypoints. Adaptation of the GCT cur-

rently requires operator intervention approximately once every day or two, although this

frequency would likely increase with the number of gliders deployed. In some scenarios—

during glider deployment or recovery, in response to severe flow conditions, or when the

mission objectives change—the GCT could be changed automatically using existing tech-

niques. To adapt the GCT, the GCCS could determine candidate GCTs using numerical

optimization of a suitable metric, as described in [146, 108]. Then, by simulating glider

trajectories with GCCS simulator using ocean model forecasts, the GCCS could automat-

ically evaluate the candidates. The merits of this approach would be improved by de-

veloping cooperative control algorithms to expand the suite of glider sampling strategies.
1As opposed to propeller-driven AUVs, whose propellor noise can mask weak incoming transmissions.
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We suspect that algorithms to generate quasi-periodic and non-periodic coordinated tra-

jectories may be desirable, especially in dynamic flow conditions. Automated trajectory

adaptation driven by decentralized estimation or classification approaches are considered

in [101, 82, 186, 215, 210, 43, 211, 295, 158]. Adaptive sampling strategies driven by dis-

tributed parameter estimation are described in [137, 276] and [277, pp. 103-149].

Increased autonomy will enable underwater gliders to tackle new missions in support

of national security. The number one priority mission identified in the Navy unmanned,

underwater vehicle master plan is intelligence, surveillance, and reconnaissance (ISR) [85]

(for an updated, extended version, see [71]). For this mission, which supports activities

like harbor and port monitoring, vehicles must covertly collect data above and/or below

the surface while remaining undetected. We hypothesize that gliders would make good ISR

nodes for several reasons: (i) as mentioned before, they have an extremely quiet acoustic

signature; (ii) like AUVs, they can carry a variety of payloads, albeit low-power ones; (iii)

their high endurance would enable a persistent presence not achievable with AUVs. As with

oceanographic missions, overall ISR mission performance might be boosted by feedback at

the level of the fleet. For example, we envision gliders deployed to collaboratively enforce

a virtual “tripwire” that dynamically reshapes to interrogate possible surface or undersea

intruders. The theoretical challenges that would enable collaborative ISR missions with

gliders are very rich: for example, one topic is decentralized, dynamic target allocation for

mobile sensors with kinematic constraints [14].

Another mission enabled by increased glider autonomy is environmental monitoring at

a planetary-scale, after the vision of Stommel [258]. In this scenario, a large fleet of gliders

are deployed across an ocean basin, forming a sustained, adaptive observational system that

can lead to improved understanding of global climate processes and climate change. Such

a system would complement the existing Argo network, composed of nearly 3000 drifting

ocean profilers [2]. Drifters are an abundant source of oceanographic data [61, 62]. A

network of glider profiles could not only drift with the prevailing currents, but also steer

to maintain uniform coverage or focus measurements in regions of interest. Controlling
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such a network would require the development of new feedback algorithms, with particular

attention to mitigating or harnessing drift vector fields generated by ocean currents. In

order to model motion at the planetary-scale, gliders might be represented by self-propelled

particles moving on the surface of a sphere or an ellipsoid, rather than a plane. Control

of vertical motion might prove useful too, for example, to capitalize on variations of flow

with ocean depth. The recent successful crossing of the Gulf Stream by a Spray underwater

glider (see, for example, [181]) suggests that a glider ocean observing network may soon

be feasible. Techniques developed for steering sensor platforms in an ocean observation

system may be applicable to steering under-actuated platforms such as balloons to sample

the atmosphere [114, 4].

10.2.2 Interaction Networks in Biological Collectives

Application of the theoretical framework described in this thesis to studying biological col-

lectives is the subject of ongoing and proposed work encompassing empirical and theoretical

research. Quantitatively assessing the properties of interaction networks in biological col-

lectives using existing and new tools from a cooperative control framework may yield new

insights into grouping behavior. The interaction network can be induced from organism

trajectory data based on assumptions about the organisms’ perceptual geometry. When

represented by a time-varying and possibly directed graph, the interaction network is de-

coupled from species-specific sensing modes or actuation mechanics. Central objectives

of this research include the following: (i) to find evidence for the coexistence of different

grouping behavior within an animal group; and (ii) to seek underlying principles for col-

lective motion across different species, sensing modalities, and grouping mechanisms. The

coexistence of strategies within the group might be detected by examining local connectiv-

ity properties of the network. Principles underlying collective motion may be apparent by

comparing and contrasting global connectivity properties of different biological systems.

One method to construct an interaction network from a set of organism trajectories

is illustrated in Figure 10.2. This type of network, called a proximity-based interaction
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Figure 10.2: Illustration of dynamic interaction network for three organisms. The interac-
tion network, which varies with time, is constructed from the individual trajectories shown
in (a) using the geometry of the perceptual zones, depicted by dashed wedges in (b). Only
the gray wedge contains a neighbor. Panel (c) shows the interaction network at time t1 and
again at a later time t2.

network, is defined in Section 3.3. Each individual in the group is represented by a node

in a graph G(t); the number of nodes may vary if individuals join or leave the group. A

perceptual zone is attached to each individual as depicted in Figure 10.2(b). For every

organism contained in a perceptual zone at time t, there is a directed edge from its node

to the node representing the focal individual. Note that all of the edges in the graph will

be undirected if the perceptual zone is radially symmetric and centered on the sensing

organism (that is, there is no “blind spot”), whereas some of the edges in the graph will be

directed if the perceptual zone is asymmetric or not centered on the sensing organism. As

the organisms move, the set of neighbors perceived by each individual may change, leading

to time-variation of G(t). Generating a proximity-based interaction network depends on

assumptions about the size and shape of perceptual zones, whereas generating a nearest-

neighbor interaction does not (see Section 3.3). Accordingly, nearest-neighbor interactions

generate an interaction network independent of the organisms’ perceptual geometry.

New insights have been attained by analyzing interaction networks of biological collec-

tives with tools from our current theoretical framework. Using a set of fish trajectories

generated by Parrish and Grünbaum [104], we have begun studying synchronization of the

orientation of a two-dimensional projection of fish velocity [200]. By representing velocity

orientation by a phase angle, we can compute the Laplacian phase potential defined in Sec-



228 Conclusion

tion 4.2 for both proximity-based and nearest-neighbor interaction networks. A histogram

of the time trace of the Laplacian phase potential reveals a bimodal distribution of fish ac-

tivity in a four-fish school: the first mode represents parallel motion in the same direction;

the second mode represents mixed parallel and antiparallel motion, such as when three fish

move in parallel and the fourth moves in the opposite direction. This analysis may help

biologists model the mechanisms that link individual fish behavior to the motion of a school.

There are open questions on this topic that have important consequences in ecology and

evolutionary biology [135, pp. 137-150].

More realistic modeling of animal aggregations may be attained by extending the par-

ticle framework to three-dimensions [235, 230]; see also [252, 25, 128, 176]. A three di-

mensional framework for cooperative control may also have applications in coordination

of micro-AUVs [282, 267] and autonomous aerial vehicles [20, 165]. Our experience with

ocean sampling suggests that feedback control at the level of the fleet potentially enables

coordinated information gathering with autonomous vehicles in air and space.
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Supplemental Theoretical Results

The first supplemental result is a consequence of Barbalat’s lemma [131, Lemma 8.2] and

is based on the proof of [241, Theorem 4]. It is used in the proofs of Theorem 4.10,

Corollary 4.11, Corollary 5.5, and Theorem 6.9.

Lemma A.1. Application of Barbalat’s lemma Let φ1(t) ≥ 0 and φ2(t) ≥ 0. If

there is a function V (t) ≥ 0 such that V (0) is finite and V̇ = −φ1(t) − φ2(t) ≤ 0, then

φ2(t) : [0,∞) → R is bounded; if φ2(t) has a bounded derivative, then φ2(t) → 0 as t→∞.

Proof. If
√∫ t

0 φ2(τ)dτ has a finite limit as t → ∞, then φ2(t) : [0,∞) → R is bounded. If√∫ t
0 φ2(τ)dτ has a finite limit as t→∞ and φ2(t) is uniformly continuous, then Barbalat’s

lemma [131, Lemma 8.2] states that φ2(t) → 0 as t→∞.

Consider the integral∫ t

0
φ2(τ)dτ = V (0)−

(
V (t) +

∫ t

0
φ1(τ)dτ

)
︸ ︷︷ ︸

≥0

,

which implies limt→∞

√∫ t
0 φ2(τ)dτ exists and is finite. This completes the first part of the

proof. Assume φ̇2(t) is bounded, which implies φ2(t) is Lipschitz continuous. Since Lipschitz

continuity implies uniform continuity, this completes the second part of the proof.

The following lemma is based on [243, Theorem 3]. It is used to prove Corollary 5.2,

Theorem 5.3, Corollary 5.5, Lemma 6.1, Theorem 6.9, and Lemma 7.9.
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Figure A.1: Geometric representation of sets in the proof of Lemma A.2.

Lemma A.2. Interconnected system with a nondegenerate, gradient subsystem

Consider the interconnected system

ẋ = f1(x) + f2(x), (A.1)

which evolves on a smooth manifold. Suppose there exists continuously differentiable func-

tions V1(x) and V2(x) that satisfy the following conditions: V1(x) is positive semidefinite

and nonincreasing along solutions of the subsystem ẋ = f1(x); the subsystem ẋ = f2(x) is

a gradient system with respect to the potential V2(x) and a subset of the critical points of

V2(x) are nondegenerate. Assume V (x) , V1(x) + V2(x) is nonincreasing along solutions

of (A.1). Let Ω be the set of all points where V̇ = 0 and let Λ be the largest invariant set in

Ω. If V1(x) = 0 and ∇V2 = 0 in Λ, then: (i) every isolated local minimum of V2(x) defines

an asymptotically stable set of equilibria of (A.1); and (ii) every isolated critical point of

V2(x) that is not a minimum is unstable.

Proof. Assume V1(x) = 0 and ∇V2 = 0 in Λ.

(i) Because V (x) = V2(x) in Λ, local minima of V2(x) correspond to local minima of

V (x). Any connected subset of Λ on which V2(x) reaches a strict minimum is therefore

asymptotically stable.

(ii) Let F be the set of all points where V1(x) = 0, which implies F contains Λ (see

Figure A.1). Note that because Λ is a set of equilibria, V (x) = V2(x) is constant on

any connected subset of Λ. Consider an isolated critical point x̄ ∈ Λ such that V2(x̄)
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is not a minimum and denote by Λx̄ the connected component of Λ containing x̄. To

show instability of x̄, consider a compact neighborhood Bx̄ ∈ F such that Bx̄ contains no

other critical point of V2(x). Let x0 ∈ Bx̄/Λx̄ such that V2(x0) < V2(x̄), which implies

V (x0) < V (x̄). Since V̇ ≤ 0, then a solution with initial condition x0 cannot converge to

Λx̄ and therefore leaves Bx̄ after finite time. Since V2(x̄) = V (x̄) is not a minimum, then

x0 can be chosen arbitrarily close to x̄, which proves instability of x̄.

The following lemma is from [243, Lemma 1]. It is used in the proof of Lemma 3.5 (see

Section 6.1).

Lemma A.3. Summation of the roots of unity Let m,M ∈ N , {1, 2, 3, . . .} and

P (M)
m ,

M∑
l=1

ei
2πm
M

l. (A.2)

If m
M ∈ N, then P

(M)
m = M , otherwise P (M)

m = 0.

Proof. If m
M ∈ N then ei

2πm
M

l = 1 for all l ∈ N which proves the first part of the lemma. To

prove the second part, we treat (A.2) as the sum of a geometric series and evaluate it for

all m ∈ N that satisfy m
M /∈ N. Multiplying both sides of equation (A.2) by ei

2πm
M gives,

P (M)
m ei

2πm
M =

M∑
l=1

ei
2πm
M

(l+1) = P (M)
m − ei

2πm
M + ei

2πm
M

(M+1).

Rearranging terms and solving for P (M)
m yields,

P (M)
m = ei

2πm
M
ei2πm − 1

ei
2πm
M − 1

, (A.3)

which shows that P (M)
m = 0 since the numerator of (A.3) vanishes for all m and the denom-

inator is nonzero for all m that satisfy m
M /∈ N.

The following result is an application of [93, Lemma 13.9.1] and the Gershgorin circle

theorem [116, Theorem 6.1.1] (see also [48]). It is used to prove Theorems 6.6 and 6.7.

Proposition A.4. Weighted graph Laplacian Let L = BBT be the Laplacian matrix

of a time-invariant, undirected and connected graph G = (N , E), where B ∈ RN×|E| is the
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incidence matrix. Let φf ∈ R denote the weight associated to edge f ∈ E , {1, . . . , |E|} and

let φ , (φ1, . . . , φ|E|). The matrix L̃ , BΦBT ∈ RN×N , where Φ = diag{φ} ∈ R|E|×|E|, is

a weighted Laplacian. If all of the edge weights are positive or all of the edge weights are

negative, then zero as an eigenvalue of L̃ has multiplicity one and the nonzero eigenvalues

of L̃ have the same sign as the edge weights.



Appendix B

Curvature and Parameterization of

a Superellipse

This appendix supplements material in Section 7.3 describing stabilization of a formation

on a superellipse. Using the parameterization (7.28), we have

dρ

dφ
= −a

p
(cosφ)

1−p
p sinφ+ (i+ µ)

b

p
(sinφ)

1−p
p cosφ

and, using the velocity constraint (7.19), we find

tan θk =
b
p
(sinφ)

1−p
p cosφ

−a
p
(cosφ)

1−p
p sinφ+µ b

p
(sinφ)

1−p
p cosφ

.

From these we compute

cot θk = −a
b
(cotφ)

1−p
p tanφ+ µ

and

cotφ =
(
b

a
(µ− cot θk)

) p
1−2p

.

Consequently,

dφ
dθk

= 1+cot2 θk

a
b

“
2p−1

p

”
(cotφ)

1−3p
p (1+cot2 φ)

= 1+cot2 θk

a
b

“
2p−1

p

”
( b

a
(µ−cot θk))

1−3p
1−2p

„
1+( b

a
(µ−cot θk))

2p
1−2p

«
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and
dρ
dφ = −a

p (cosφ)
1
p tanφ+ (i+ µ) bp(sinφ)

1
p cotφ

=
a
p

tanφ

„
−1+(i+µ) b

a
(tanφ)

1−2p
p

«
(1+tan2 φ)

1
2p

=
a
p ( b

a
(µ−cot θk))

p
2p−1 (−1+(i+µ)(µ−cot θk)−1)„

1+( b
a
(µ−cot θk))

2p
2p−1

« 1
2p

.

Using
dρ

dθk
=
dρ

dφ

dφ

dθk
,

we obtain

dρ
dθk

=
a
p ( b

a
(µ−cot θk))

p
2p−1 (−1+(i+µ)(µ−cot θk)−1)„

1+( b
a
(µ−cot θk))

2p
2p−1

« 1
2p

×

1+cot2 θk

a
b

“
2p−1

p

”
( b

a
(µ−cot θk))

1−3p
1−2p

„
1+( b

a
(µ−cot θk))

2p
1−2p

«

= aeiθk

2p−1

[
sin θk(µ sin θk − cos θk)2

(
1 +

(
b
a(µ− cot θk)

) 2p
2p−1

) 1
2p

×(
1 +

(
b
a(µ− cot θk)

) 2p
1−2p

)]−1

.

Using
dρ

dθk
= eiθkκ−1

k ,

we obtain

κk = ±2p−1
a sin θk(µ sin θk − cos θk)2

(
1 +

(
b
a(µ− cot θk)

) 2p
2p−1

) 1
2p

×(
1 +

(
b
a(µ− cot θk)

) 2p
1−2p

)
.

(B.1)

We also find
ρk = a(cosφ)

1
p

(
1 + (i+ µ) ba(tanφ)

1
p

)
=

a

„
1+(i+µ) b

a( b
a
(µ−cot θk))

1
2p−1

«
„

1+( b
a
(µ−cot θk))

2p
2p−1

« 1
2p

=
a(sin θ)

1
2p−1 +(i+µ)b( b

a
(µ sin θ−cos θ))

1
2p−1„

(sin θ)
2p

2p−1 +( b
a
(µ sin θ−cos θ))

2p
2p−1

« 1
2p
.

(B.2)



Appendix C

Geodetic Utilities

This appendix describes geodetic utilities used by the GCCS (see Chapter 8) for calculating

distance and azimuth (heading) on the earth. They are also used to compute the OA metric

(see Section 2.2).

Let λ and φ denote longitude and latitude, respectively. We use the following radii

of curvature for approximating distance, azimuth, and velocity on the earth geoid: Γφ :

[−π
2 ,

π
2 ] → R+ and Γλ : [−π

2 ,
π
2 ] → R+ given by

Γφ(φ) =
a(1− e2)

(1− e2 sin2 φ)
3
2

and

Γλ(φ) =
a

(1− e2 sin2 φ)
1
2

,

where a and e are the semi-major axis and eccentricity of the earth geoid, respectively,

given in Table C.1.

Using Rk = (λk, φk) ∈ [0, 2π) × [−π
2 ,

π
2 ] = S2, we define the distance function Γ :

S2 × S2 → R+, where

Γ2(R1, R2) =
[
(λ1 − λ2)Γλ

(
φ1 + φ2

2

)
cos
(
φ1 + φ2

2

)]2

+
[
(φ1 − φ2)Γφ

(
φ1 + φ2

2

)]2

.

(C.1)

The onboard distance functions are glider-specific and not reproduced here.
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Parameter Value Definition
a 6378137 m Semi-major axis
F 1/298.257223563 Flattening
e 0.0818 Eccentricity: e ,

√
2F − F 2

Table C.1: WGS84 geoid parameters. Geodetic parameters describing the earth ellipsoid
based on a 1984 geographic survey [70]. WGS84 is the reference system used by GPS.

The azimuth function η : S2 × S2 → S1 is given by

η(R1, R2) = tan−1

[
(λ2 − λ1)Γλ(

φ1+φ2

2 ) cos(φ1+φ2

2 )

(φ2 − φ1)Γφ(
φ1+φ2

2 )

]
, (C.2)

where we use the four quadrant inverse tangent and azimuth is measured clockwise from

north. The onboard azimuth functions are glider-specific and not reproduced here.

The distance and azimuth functions provide a means to convert between local (flat)

and geodetic coordinates. We convert the point r ∈ C from local (complex) to geodetic

coordinates R , (λ, φ) ∈ S2 using the transformation µ : C× S2 × S1 → S2 given by

R = µ(r,R0, ϕ0) , R0 +
(

Re(reiϕ0))
ρλ(φ0) cosφ0

,
Im(reiϕ0)
ρφ(φ0)

)
, (C.3)

where R0 = (λ0, φ0) is the origin of the local coordinate frame, which is rotated with respect

to the geodetic coordinate frame by ϕ0. The inverse transformation χ : S2 × S2 × S1 → C

from the geodetic coordinate R to the local coordinate r is given by

r = χ(R,R0, ϕ0) , ρ(R0, R)ei(
π
2
−η(R0,R)−ϕ0) = ρ(R0, R)ie−i(η(R0,R)+ϕ0). (C.4)



Appendix D

Supplemental Experimental

Materials

This appendix contains material related to the GCCS experimental results described in

Sections 9.2 and 9.3. Table D.1 contains a list of parameter values used during the ASAP

experiments. Figures D.1 and D.2 illustrate the sequence of GCTs used during the ASAP

2006 field experiment.
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Parameter Value Definition
K0 2/(a+ b) Track-following gain (2a is track width, 2b is track height)
Km 0.05 Coordination gain for all m = 1, . . . ,M
4t 30 s Glider-integrator time step
α 2.5◦ Angle of attack
β 25◦ Pitch angle
g0 0.18 m/s Vertical speed
sk 0.35 m/s Through-water speed (horizontal): sk , g0/ tan(α+ β)
Zmin 10 m Minimum altitude
zmax 200 m Deep inflection depth
zmin 5 m Shallow inflection depth
Γ0 250 m Radius waypoint condition distance
T gps 60 s GPS fix duration
T com 420 s Shore-communication duration
T ini 210 s Pre-dive surface duration
Tmax 3 hr Maximum dive duration
T sur 810 s Total surface duration per dive: T sur , T ini + T gps + T com

s0 0.32 m/s Effective speed (horizontal), s0 , (skTmax)/(Tmax + T sur)

Table D.1: GCCS parameters used during ASAP August 2006 FE. The gains K0 and
Km appear in the multi-level, augmented Laplacian symmetric loop configuration control
described in Proposition 7.12 (see Section 7.3). The remaining parameters are described in
the detailed glider model in Section 8.2.2.
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(c) ASAP GCT #8

!!""#$ !!""#% !!""#& !!""#' !!""#"

'$#(

'$#(%

'$#)

'$#)%

'*

'*#+%

'*#!

'*#!%

,-./01234

,
5
6/
01
2
3
4

/

/

//72!+

//72!"

//72+*

//72+)

//72+%

//72+(

(d) ASAP GCT #9

Figure D.1: GCTs used during ASAP 2006 field experiment from 23:15 GMT August 2 to
21:09 GMT August 11. A total of fourteen GCTs were used by the GCCS during the field
experiment.
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(d) ASAP GCT #15

Figure D.2: GCTs used during ASAP 2006 field experiment from 21:09 GMT August 11
to 11:10 GMT August 21. A total of fourteen GCTs were used by the GCCS during the
field experiment. Not shown here are GCT #11, which appears in Figure 9.21(a), and GCT
#13, which was created but not used.
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