
Output Feedback Formation Control of a School of Robotic Fish with
Artificial Lateral Line Sensing

Artur Wolek and Derek A. Paley

Abstract— This paper presents an estimation and control
framework to stabilize the parallel motion of a school of robotic
fish using sensory feedback. Each robot is modeled as a constant
speed, planar, self-propelled particle that produces a flowfield
according to a dipole potential flow model. An artificial lateral
line system senses pressure fluctuations at several locations
along each robot’s body. The equations of motion and mea-
surement model are formulated in a path frame that translates
and rotates with each robot’s position and velocity, respectively.
A particle filter estimates the relative position and heading of
other nearby robots. The resulting estimate drives a Lyapunov-
based formation controller to synchronize the headings of the
robots and achieve a parallel formation. Numerical simulations
illustrate the proposed approach.

I. INTRODUCTION

Bio-inspired underwater vehicles have been proposed as
efficient, maneuverable, and stealthy mobile sensor platforms
for numerous applications such as environmental monitoring,
infrastructure inspection, surveillance, and subsea search.
However, underwater vehicle coordination remains challeng-
ing due to limitations in underwater communication and
sensing. Acoustic modems commonly used by conventional-
propulsion underwater vehicles are too bulky and power-
intensive to be used by small and simply instrumented bio-
inspired designs. Instead, passive vision or hydrodynamic
sensing can offer more compact sensing capabilities that
mimic the sensory basis of real fish schools [1].

Hydrodynamic sensing is particularly useful in dark,
murky, and cluttered environments where vision-based sens-
ing is difficult. Many fish-inspired robots (referred to here as
fishbots) have been developed to employ hydrodynamic sens-
ing in the form of an artificial lateral line (ALL) system. An
ALL system emulates the lateral line system of a real fish—
an organ consisting of cell receptors called neuromasts that
are distributed around the body and sense pressure gradients
and flow velocities [2]. In an ALL system, the exterior of the
fishbot is instrumented (commonly with pressure sensors) to
extract information about the flow. Estimation and feedback
control techniques based on ALL measurements have been
demonstrated for a variety of single fishbot control objectives
including speed control [3], rheotaxis or station holding
[2], [4], wall following [5], trajectory tracking [6] [7],
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and Kármán gaiting [8]. ALL-based estimation and control
techniques have also enabled leader-follower arrangements
of two fishbots [9], [10], or identifying the center of mass
and population of a three or more fishbots [11].

State estimation approaches that assimilate ALL measure-
ments have been investigated using model-free and model-
based techniques. Model-free methods use experimental or
simulated training data and regression or neural networks
to estimate robot states from time-series of pressure mea-
surements [4], [9], [10], [12]. Model-based methods use an
analytical flowfield representation with a parameter or dy-
namic state estimator (e.g., recursive Bayesian estimation [2],
[3], [8]). Flow models based on potential flow theory have
been proposed, including self-propelled dipole models [13],
oscillating dipole models [9], [14], quasi-steady Joukowsky
transformations [3], and discrete circulation shedding [7].

In this paper, an output feedback formation controller is
developed to stabilize the parallel motion of a school of
fishbots using ALL measurements. The fishbots are constant-
speed self-propelled particles [15] that generate a flowfield
based on a dipole potential flow model [13]. The dynamics
and measurement equation are formulated in a path frame
that translates and rotates with each fishbot, and a particle
filter estimates the relative state of all agents. This approach
supports the integration of control laws that require precise
state feedback rather than those rely on aggregate or average
statistics such as the center of mass [11].

The contributions of this paper are (1) a state-space
model of the relative motion and spatially distributed pres-
sure measurements for a school of robotic fish modeled
as constant-speed self-propelled particles each generating a
dipole flowfield; (2) a particle filter estimation framework to
estimate the relative state of fishbots from onboard sensor
measurements; and (3) an output-feedback control design
that achieves parallel formations for the same system. The
proposed estimation and control algorithms are illustrated
through numerical simulations.

The remainder of the paper is organized as follows.
Section II reviews self-propelled particle formation control
and the dipole potential flow model. Section III develops
the dynamics and measurements of the fishbot school in a
path frame. Section IV presents the particle filter estimation
framework. Section V describes the output-feedback control
design for parallel formations and presents simulation results.
Section VI summarizes the paper and suggests future work.



II. PRELIMINARIES

This section reviews relevant background, including the
self-propelled particle model, the corresponding parallel for-
mation control law, and the dipole model of the flowfield
produced by a collection of self-propelled particles.

A. Self-Propelled Particle Parallel Formations

The self-propelled particle model [15] has often been
used to describe the collective motion of N planar vehicles
that move at a constant speed with steering controls inputs.
The planar position of the kth particle with respect to an
inertial frame I = {O, 1, i} with origin O is expressed
using complex coordinates as rk = xk + iyk ∈ C, where
k = 1, . . . , N . The dynamics of the kth particle are

ṙk = vke
iθk

θ̇k = uk,
(1)

where, for the kth particle, vk ,
√
ẋ2k + ẏ2k ∈ R is a

constant speed, θk , atan(ẏk/ẋk) ∈ S is the orientation
of the velocity (also called the phase of the particle), and
uk ∈ R is the steering control. The unit vector eiθk is called
the phasor of particle k and is aligned with its direction
of motion, whereas the phasor ieiθk is rotated 90◦ in the
counter-clockwise direction from eiθk .

When referring to the phase arrangement and control
inputs of the collective of N particles, we use bold letters,
i.e., θ , [θ1, . . . , θN ]T ∈ SN and u = [u1, . . . , uN ]T ∈ RN ,
respectively. Similarly, eiθ , [eiθ1 , . . . , eiθN ]T ∈ CN . For
complex numbers, z1, z2 ∈ C, the inner product is defined
as 〈z1, z2〉 = Re{z1z2}, where z1 is the complex conjugate
of z1; this inner product is equivalent to the standard inner
product on R2. For complex vectors, z,y ∈ CN , the inner
product is similarly defined as 〈z,y〉 =

∑N
i=1 Re{ziyi}. The

modulus of a complex number is denoted | · | =
√
〈·, ·〉.

Parallel formations can be achieved for the system (1)
using Lyapunov-based control design to maximize a poten-
tial function for a desired formation. Consider the parallel
formation potential [16]

U(θ) ,
N

2
|pθ|2 =

N

2
〈eiθ, eiθ〉 , (2)

where the phase order parameter pθ = 1
N

∑N
k=1 e

iθk mea-
sures the degree of synchrony in the formation. When
|pθ| reaches its maximum value of one the particles are
synchronized (θj = θk for all j, k = 1, . . . , N ). Under the
gradient control [16]

uk = −K ∂U

∂θk
= −K〈pθ, ieiθk〉 = −K

N

N∑
j=1

sin θjk , (3)

where θkj = θk − θj = −θjk, with K < 0, solutions of (1)
converge to the synchronized state, unless they start in an
unstable equilibrium condition [16].

B. Dipole Potential Flow Model

In a two-dimensional inviscid fluid, self-propelled bodies
produce (to leading order) a dipolar velocity field modeled

using potential flow theory [13]. The flow created by the
particle (1) is generated by a pair of point vortices in a T-
arrangement located to the left and right of the body [13] at
positions

r−k = rk +
lieiθk

2
and r+k = rk −

lieiθk

2
, (4)

respectively, where l is the distance between the vortices,
rk = (r−k + r+k )/2 is the center point between the vortices,
and θk is the orientation of the dipole. Assume the left
vortex has positive circulation Γk > 0 and the right vortex
has negative circulation −Γk. The conjugate velocity field
resulting from N dipoles is [13]

w(z) =

N∑
k=1

(
−iΓk

2π

)(
1

z − r−k
− 1

z − r+k

)
, (5)

where the horizontal and vertical velocity components in
frame I are Re{w(z)} and −Im{w(z)}, respectively. Inter-
action of dipoles that influence each other’s velocity has been
studied in [13]. Here, we assume that the fishbots’ dynamics
are decoupled (i.e., each fishbot’s speed is fixed) and the
circulation strength is Γk = 2πlvk.

III. RELATIVE MOTION AND MEASUREMENT MODEL

This section re-formulates the self-propelled particle dy-
namics (1) and the dipole flow-model (5) in a path frame
Bk = {rk, eiθk , ieiθk} with origin at the kth fishbot’s
position rk and orthonormal unit vectors eiθk and ieiθk ,
which are aligned and perpendicular to the kth fishbot’s
velocity, respectively (see Fig. 1). Since fishbots can perceive
hydrodynamic cues from nearby sources, the path frame is a
natural choice for formulating the estimation problem. It also
suitable for use with the parallel formation control law (3),
which uses relative heading for feedback. By avoiding the
need to track absolute positions, the path frame formulation
lends itself to the underwater environment where navigation
and perception are challenging.

A. Relative Motion Model

An arbitrary point z = x+ yi ∈ C in the inertial frame I
maps to a point z̃ = x̃+ ỹi ∈ C in the path frame Bk by

z̃ = Φ(z; rk, θk) = 〈z − rk, eiθk〉+ 〈z − rk, ieiθk〉i , (6)

where the ( ·̃ ) symbol is used to denote a point observed in
Bk. The mapping (6) projects the difference z− rk onto the
basis of Bk such that Re{z̃} and Im{z̃} are the components
along eiθk and ieiθk , respectively. The inverse mapping is

z = Φ−1(z̃; rk, θk) = rk + x̃eiθk + ỹieiθk .

Using (6), the position of the jth fishbot observed from Bk
is r̃jk = Φ(rj ; rk, θk) and the position of the kth fishbot
observed from j is r̃kj = −r̃jk = ajk + bjki, where the
forward and cross-track coordinates are

akj = 〈rk − rj , eiθk〉 and bkj = 〈rk − rj , ieiθk〉 , (7)

respectively. The relative position dynamics of fishbot j with
respect to fishbot k are obtained by differentiating (7) along



Fig. 1: Flow-field model with magnitude |w(z)| in the complex
plane induced by three dipoles. A hydrofoil shaped fishbot body
is shown with circular markers to indicate the location of pressure
sensors. The relative state of fishbot j with respect to fishbot k’s
path frame Bk = {rk, eiθk , ieiθk} is described by (akj , bkj , θkj).

trajectories of (1):

ȧkj = vk − vj cos θkj + bkjuk

ḃkj = vj sin θkj − akjuk
θ̇kj = uk − uj .

(8)

Consider a homogeneous school of fishbots with equal
speed, vk = vj = v for all j, k = 1, . . . , N and identical
circulation strength Γ. Estimation and control occurs peri-
odically every T = ts − ts−1 seconds, where s ∈ Z is an
integer index for the discrete time ts. While (8) represents
the actual dynamics of the system, for estimation purposes
a simpler model is adopted wherein the kth fishbot assumes
all of its neighbors have zero turn-rate, i.e., uj = 0 for all
j 6= k. Suppose that at time ts the state of the system is
given by akj , bkj , θkj for all j 6= k. If the kth fishbot is
turning with a constant input uk 6= 0, then (8) is integrated
from ts to ts+1 = ts + T to give the new states:

a′kj = akj cos(ukT ) + bkj sin(ukT ) + (v/uk) sin(ukT )

+ Tv sin θkj sin(ukT )− Tv cos θkj cos(ukT )

b′kj = − akj sin(ukT ) + bkj cos(ukT )

+ (v/uk)(cos(ukT )− 1) + Tv sin θkj cos(ukT )

+ Tv cos θkj sin(ukT )

θ′kj = θkj + ukT . (9)

If the fishbot is not turning, i.e., uk = 0, the integration is

a′kj = akj + vT (1− cos θkj)

b′kj = bkj + vT sin θkj

θ′kj = θkj .

(10)

B. Artificial Lateral Line Measurement Model

An artificial lateral line system (ALLS) assimilates mea-
surements from Np pressure ports on the perimeter of the kth
fishbot located at positions zq ∈ C, q = 1, . . . , Np in frame
I. Assuming a quasi-steady flow and applying Bernoulli’s
principle, the pressure measured at the qth sensor is [3]

pq = p(zq)−
1

2
ρ|w(zq)|2 , (11)

where the first term p(zq) is the ambient pressure, the second
term is the dynamic pressure, ρ is the fluid density, and
|w(zq)| is the speed of the flow at sensor position zq from
(5). Under the assumption of quasi-steady flow, the pressure
difference between sensors q, r ∈ {1, . . . , Np} is [3]

∆pqr = pq − pr =
1

2
ρ
(
|w(zq)|2 − |w(zr)|2

)
. (12)

Equation (12) forms the basis of the fishbot’s measurement
model. To express (12) in terms of the relative coordinates
(7), the left and right vortices of the jth fish (4) are mapped
by (6) to frame Bk:

r̃−j = (−akj − (l/2) sin θkj) + (−bkj + (l/2) cos θkj)i

r̃+j = (−akj + (l/2) sin θkj) + (−bkj − (l/2) cos θkj)i .

The kth fishbot’s own vortices map to fixed locations in
frame Bk with r̃−k = −il/2 and r̃+k = il/2. The pressure
sensor locations z̃q of the kth fishbot are also fixed in Bk.
Thus, the conjugate velocity at the qth pressure port of the
kth fishbot is a sum of a variable term dq (due to other
fishbots) and a constant self-induced differential pressure cq:
w(z̃q) = dq + cq , where

dq =

(
−iΓ
2π

)∑
j 6=k

(
1

z̃q − r̃−j
− 1

z̃q − r̃+j

)

cq =

(
−iΓ
2π

)(
1

z̃q + il/2
− 1

z̃q − il/2

)
. (13)

The ambient pressure is constant across all sensors and
the pressure differential (12) across two sensors q, r ∈
{1, . . . , Np} with (12) is

∆pqr =
1

2
ρ
[
(|dq|2 + 2〈dq, cq〉+ |cq|2)

− (|dr|2 + 2〈dr, cr〉+ |cr|2)
]
.

(14)

The total combinatorial number of sensor pairs (excluding
q = r) is Nm = (Np)!/2!/(Np − 2)! [3].

Let the state of the jth fishbot relative to fishbot k be
denoted by [akj bkj θkj ] ∈ X , where X = R2 × S and let
X ∈ XN−1 denote the state of all N − 1 fishbots excluding
the kth fishbot. The vectorX is formed from akj , bkj , θkj for
all j = 1, 2, . . . , N with j 6= k since akk = bkk = θkk = 0
is constant. The kth fishbot measures a Nm × 1 vector of
differential pressures from (14)

y = h(X) + η =

 ∆p12,k(X)
...

∆p(Np−1)Np,k(X)

+ η , (15)

where η ∼ N (0,Σy) is uncorrelated zero-mean Gaussian
sensor noise with covariance Σy = 1Nm×Nmσ

2
y .

IV. PARTICLE FILTER ESTIMATION

This section describes a particle filter that estimates the
relative state of neighboring fishbots from artificial lateral
line pressure measurements. Assume the total number of
fishbots N is known. The particle filter running onboard
the kth fishbot is described. The particle filter approximates



a recursive Bayesian estimator by using a collection of P
particles {X(p)

s|s }
P
p=1 to represent the posterior probability

density function p(X) at time ts. Each particle X(p)
s|s ∈

XN−1 is a hypothesis of the N −1 fishbot states and higher
particle densities indicate higher probability. The filter is
summarized in Algorithm 1 and detailed in the following.

A. Particle Initialization

When initializing a particle X(p)
0|0 (at time t0) the relative

position of all N − 1 neighbors is drawn randomly from the
uniform distribution over the disk

D = {(akj , bkj) ∈ R2 |
√
a2kj + b2kj ≤ Rmax} , (16)

where Rmax is the maximum relative range for estimation
and the heading θkj is drawn from the uniform distribution
over S. This initialization process is repeated for all P
particles. Once a measurement y1 is obtained, the particle
filter (Alg. 1) processes the initialized particles {X(p)

0|0}
P
p=1

to give a posterior particle set {X(p)
1|1}

P
p=1.

Algorithm 1 Particle filter onboard the kth fishbot

1: Input: Measurement ys and input us−1

2: Input: Prior particle set {X(p)
s−1|s−1

}Pp=1

3: for p = 1, . . . , P do
4: Sample process noise: w(p) ∼ N (0,Σw)

5: Motion update: X(p)
s|s−1

= F (X
(p)
s−1|s−1

, us−1) + w(p)

6: Calculate weight: w̃(p) = L(X
(p)
s|s−1

| ys)
7: end for
8: Normalize: w(p) = w̃(p)/

∑P
j=1 w̃

(j), ∀ p = 1, . . . , P
9: for p = 1, . . . , P do

10: Select an index j ∈ {1, . . . , P} with probability w(j)

11: Resample: X(p)
s|s ←X

(j)
s|s−1

12: Sample roughening noise: ∆X(p) ∼ N (0,D)

13: Roughen: X(p)
s|s ←X

(p)
s|s + ∆X(p)

14: end for
15: Output: Posterior particle set: {X(p)

s|s }
P
p=1

B. Motion Update

The posterior set of particles {X(p)
s−1|s−1}

P
p=1 from time

ts−1 is propagated through the discrete-time dynamics

X
(p)
s|s−1 = F (X

(p)
s−1|s−1, us−1) +w(p) (17)

for p = 1, . . . , P , to give the motion-updated particles
{X(p)

s|s−1}
P
p=1 at time ts (Alg. 1, lines 4–5). In (17), F (·, ·)

is a mapping that applies (9)–(10) N − 1 times to each
triplet (akj , bkj , θkj) contained in the particle X(p)

s−1|s−1,
us−1 is the kth fishbot’s constant control applied for time
t ∈ [ts−1, ts], and w(p) ∼ N (0,Σw) is a random zero-
mean vector with covariance Σw = diag([σ2

ab σ
2
ab σ

2
θ ]T),

where σ2
ab and σ2

θ are relative position and heading variances,
respectively. The process noise w(p) helps to account for the
idealized assumption in (9)–(10) that all neighboring fishbots
have zero turn rate, when in fact they may be turning.

C. Likelihood Function

The particle filter runs at regular intervals each time a
new measurement ys is received according to (15). After

the motion update, each particle X(p)
s|s−1 is assigned a weight

based on the relative likelihood of the state X(p)
s|s−1 given the

measurement ys (Alg.1, line 6) using the likelihood function

L(X
(p)
s|s−1 | ys) = ID(X

(p)
s|s−1)g(ys;h(X

(p)
s|s−1),Σy) ,

(18)
where ID : XN−1 → {0, 1} is an indicator function that
maps a particle X(p)

s|s−1 to 1 if X(p)
s|s−1 ∈ X

N−1
D and to zero

otherwise (where XD denotes the subset of X for which the
relative position pairs (akj , bkj) lie inside the disk (16)),

g(z;µ,Σ) =
exp(− 1

2 (z − µ)TΣ−1(z − µ))√
(2π)Nz |Σ|

is a multivariate Gaussian probability density function for
a random vector z with mean µ and covariance Σ, and
h(X

(p)
s|s−1) is the output in (15). The indicator function

prevents the filter from keeping particles that are a relative
distance Rmax away from the estimating fishbot; above a
certain distance the magnitude of the pressure signal induced
by other fishbots is smaller than the sensor noise. Smaller
choices of Rmax can benefit the filter by more densely
populating the state space.

D. Particle Resampling and Roughening

After the likelihood weights are computed with (18) the
particles are normalized, resampled, and roughened (Alg. 1,
lines 8–14). The particle set is resampled by selecting the
motion-updated particles with probability in proportion to
their likelihood weights [17, p. 467]. This strategy samples
particles in state-space regions with high likelihood more
frequently; however, it also leads to duplicate particles (espe-
cially if a few particles have the majority of the likelihood).
Duplicate particles take on distinct values during the next
iteration of the motion update due to the addition of random
process noise and a roughening approach that helps avoid
sample impoverishment. Roughening perturbs each particle
by ∆X(p) (Alg. 1, lines 12–13) sampled from a Gaussian
zero-mean distribution with a 3(N−1)×3(N−1) covariance
matrix D = βdiag(mk), where β is a fixed roughening-gain
parameter and mk is an adaptively determined vector that
characterizes the spread of the current particle population
as described in [18]. The sensor noise covariance matrix
Σy in (18) is also used to tune filter performance. A
likelihood function with a narrow peak in XN−1D can make it
challenging to identify high-likelihood particles. Artificially
inflating Σy widens the peak and can improve reliability.
Once the particles are resampled and roughened the posterior
set {X(p)

s|s }
P
p=1 becomes the prior for the next iteration.

E. Example

The particle filter’s output is illustrated in Fig. 2 for
N = 2 fishbots. The initialized set of particles with a
uniform distribution over XD is shown in Fig. 2a. After
25 measurements the relative position estimate is close to
the true value but there remains a bias in relative heading
histogram. After 100 measurements both the position and
relative heading converge tightly around the true values.
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Fig. 2: Snapshots of particle filter state at three measurement times
for simulation with N = 2 fishbots (see Fig. 3a). Left: histogram of
particles in the akj–bkj plane with white the circle indicating Rmax

boundary, magenta square indicating the true relative position, and
blue crosshairs indicating the estimated relative position. Right:
histogram of particles with magenta line indicating the true relative
heading and the blue line indicating the estimated relative heading.

V. PARALLEL FORMATION CONTROL

For the fishbots to synchronize their heading and achieve a
parallel formation, each fishbot runs an independent particle
filter of the form described in Sec. IV and extracts from the
posterior particle set an estimate of the relative heading θ̂kj
of the N − 1 other fishbots. The estimated relative heading
is used with the output-feedback control law

uk =
K

N

N∑
j=1

sin θ̂kj . (19)

If the estimates converge to their true values, θ̂kj → θkj ,
then (19) converges to (3) and the estimation onboard each
fishbot is equivalent to the exchange of heading information
in an undirected all-to-all communication topology.

To estimate θ̂kj for each fishbot, the relative heading an-
gles across all particles are collected in a set Θ. Since Θ con-
tains circular data it is decomposed into planar components
T = {(cos θ

(q)
kj , sin θ

(q)
kj )} for all q = 1, . . . , (N − 1)P . A

2D Gaussian mixture model (GMM) with N−1 components
is constructed to model the the two-dimensional data in T .
Let (µj,1, µj,2) correspond to the mean of the jth Gaussian
mixture component. The estimated heading is then

θ̂kj = atan(µj,2/µj,1) . (20)

A similar approach using a GMM estimates âkj , b̂kj . These
values can be used for circular and other formations [16].
The observer-based parallel formation control (19)–(20) is
demonstrated through simulations as described next.

A. Simulation Setup

Numerical simulations of the output feedback formation
controller use the parameters from Table I and assume
pressure sensors are distributed symmetrically around the
perimeter of each fishbot’s body (represented by a hydrofoil
shape) as shown in Fig. 1. Each simulation numerically
integrates the continuous dynamics (8) and, periodically at
fixed sampling intervals T , runs the filter Alg. 1 and evaluates
the control (19) with (20) independently for each fishbot
(refer to the video attachment accompanying this paper).
Interaction between the fishbots is purely hydrodynamic and
utilizes no other means of communicating state information.

TABLE I: Parameters used in numerical simulations. Dashed lines
separate parameters related to the fishbot dynamics and the dipole
flow and measurement models; the estimation strategy; and the
parallel formation control law.

Parameter Symbol Value
Sensing/control period T 0.1 s
Dipole length l 0.2 m
Nominal velocity v 0.2 m/s
Number of pressure sensors Ns 5
Water density ρ 1000 kg/m3

Process noise, position σ2
ab (0.1T )2 m2

Process noise, heading σ2
θ (5T )2 deg2

Max. range hypothesis Rmax 3 m
Filter roughening gain β 0.001
Parallel formation control gain K 1

B. Simulation Results with N = 2 Robots

For N = 2 fishbots, the particle filter uses P = 10, 000
particles and actual measurement noise variance σ2

y = 10
Pa2. Two representative scenarios are shown with the fishbots
in an inward-facing (Fig. 3a) and outward-facing (Fig. 3b)
initial configurations. In each case, the pair of fishbots
achieves a parallel formation within 150 measurements. The
pressure fluctuations are greatest during maneuvers where
the fishbots are in close proximity and then settle to constant
values once the formation is achieved. The filter works well
for a wide range of initial conditions and parameter values.

C. Simulation Result with N = 3 Robots

For N = 3 fishbots, the size of the state-space necessitated
more particles (P = 20, 000) to be used with the filter. Also,
a smaller likelihood variance σ2

y = 0.5 Pa2 is selected. When
simulating N = 3 fishbots in Fig. 3c, an informed prior is
used to initialize the particles by drawing the relative-position
of the particles from a multi-variate Gaussian distribution
around the correct mean position with variance of one dipole
length. The relative headings of the particles are initially
random. The informed prior is used so that the framework
may be demonstrated with a computational tractable number
of particles. In principle, a larger number of particles with an
un-informed prior should produce similar results. This mod-
ification highlights the computational challenges associated
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Fig. 3: Simulation results for three scenarios. Top left of each subfigure: track of fishbots in I frame with starting location adjacent to agent
number with the final orientation of fishbots indicated by an arrow. Top right: Track of fishbots as viewed in frame Bk from perspective
of first agent (k = 1) with the final orientation of fishbots indicated by an arrow. Blue dots are estimates of the relative position and the
blue circle indicates the estimates at the end of the simulation. Bottom left: True relative heading of fishbots with respect to agent 1 and
blue dots are estimates of the relative heading. Bottom right: differential pressure sensor measurements.

with estimating multiple fishbots on a single computer; the
performance of the filter with N = 3 fishbots is sensitive
to the choice of initial conditions/parameters. Although the
heading estimate is noisy compared to the N = 2 cases, the
fishbots align to within 5 deg. after 150 measurements.

VI. CONCLUSION

This paper described an output feedback control frame-
work that uses pressure feedback from a noisy artificial
lateral line sensor to achieve parallel formations for a school
of robotic fish. The fishbots are modeled as self-propelled
particles that produce a dipole potential flow. This flow
model serves as the basis for the likelihood function in a par-
ticle filter to infer the relative positions and heading of other
fishbots. The particle filter is formulated in the path frame
and runs independently onboard each fishbot. Numerical
simulations demonstrate that the proposed output feedback
framework achieves parallel formations with N = 2 and
N = 3 fishbots for a range of initial conditions. The approach
is limited to close-proximity fishrobot configurations that
allow detection of hydrodynamic cues in the presence of
sensor noise. Practical implementation of the particle filter
estimation approach would require substantial onboard com-
putational resources. Future work should consider alternative
filtering techniques that improve computational efficiency,
robustness for a larger number of fishbots, allow estimating
an unknown number of fishbots, and utilize more realistic
flow models that incorporate vortex shedding. The output
feedback control framework can also be modified to achieve
circular and other planar formations.
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