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Abstract— This paper describes a dynamic controller for ro-
torcraft landing and hovering in ground effect using feedback
control based on flowfield estimation. The rotor downwash in
ground effect is represented using a potential flow model selected
for real-time use. A nonlinear dynamic model of the rotorcraft
in ground effect is presented with open-loop analysis and closed-
loop control simulation. Flowfield velocity measurements are
assimilated into a grid-based recursive Bayesian filter to esti-
mate height above ground. Height tracking in ground effect
and landing are implemented with a dynamic linear controller.
The overall framework is applicable for rotorcraft operation in
ground effect and landing.
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1. INTRODUCTION
Rotorcraft operation in ground effect (IGE) presents substan-
tial challenges for vehicle control, including landing with
low-impact velocity and maintaining near-ground hover in
low-visibility conditions such as brownout [1], fog [2], snow
or darkness. Safe operation IGE requires a controller capable
of handling uncertainty. Previous authors have developed
landing controllers based on robust or adaptive control tech-
niques. For example, Serra and Cunha [3] adopt an affine
parameter-dependent model that describes the helicopter lin-
earized error dynamics for a predefined landing region and
implements H2 feedback control. Mahony and Hamel [4]
develop a parametric adaptive controller that estimates the
helicopter aerodynamics onboard and modulates the motor
torque, rather than the collective pitch, during takeoff and
landing and takes advantage of the reduced sensitivity of the
control input to aerodynamics effects. Nonaka and Sugizaki
[5] implement ground-effect compensation and integral slid-
ing mode control to suppress the modeling error of the vehicle
dynamics in ground effect. These control techniques often
require a system model with empirically fit aerodynamic
coefficients that are unique to each vehicle.

Safe operation IGE also requires accurate estimation of
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the proximity and relative orientation of the ground plane.
Height-estimation methods currently exist for micro aerial
vehicles (MAVs) based on ultrasonic, barometric pressure
or optical sensors. However, ultrasonic sensors work only
for proximity sensing and do not work well for an angled
or irregular ground plane [6]. Barometric pressure sensors
typically work well for large height differentials [7], but
are sensitive to fluctuations in atmospheric pressure, which
results in sensor drift. Likewise, the effectiveness of vision-
based sensors is limited in degraded visual environments.
This paper develops a hover and landing controller that uses
rotor downwash flow velocity measurements and an aerody-
namic model to estimate the height above ground, thereby
providing an additional sensing modality for hovering and
landing IGE.

Previous authors have quantified ground effect empirically
or through the use of an underlying aerodynamic model.
Nonaka and Sugizaki [5] take an empirical approach to
measuring the ground effect on rotor thrust as a function of
motor voltage. Mahony and Hamel [4] use an approximation
of the down-flow velocity ratio based on a piecewise linear
approximation of Prouty [8] to estimate rotor-thrust variation
IGE. Higher fidelity analytical models include prescribed
wake vortex modeling [9] and free vortex modeling [10],
which seek to accurately predict the nature of the rotor wake
vortices. Cheeseman and Bennett [11] provide a classic
analytical model for ground effect, which we adopt for this
work, based on aerodynamic modeling using the method of
images. The use of an aerodynamic model permits compari-
son to measurements from sensors such as multi-component
differential pressure airspeed sensors [12]. Lagor et al. [13]
and DeVries et al. [14] have previously shown that a reduced-
order flow model can be rapidly evaluated within a Bayesian
filter to perform similar estimation and control tasks in an
uncertain flow environment.

This paper develops a dynamic controller for hover and land-
ing IGE based on a flow model for vehicle height estimation.
Rotorcraft downwash IGE is modeled using potential flow
theory. We extend the model of Cheeseman and Bennett
[11] using multiple ring sources; their mirror images create a
ground plane. The reduced-order model relates the flowfield
velocities to height IGE; it is capable of relatively fast eval-
uation for control purposes. A nonlinear dynamic model of
rotorcraft landing IGE is presented, assuming a rigid rotor of
the sort commonly found in MAV rotorcraft [15]. Height es-
timation of rotorcraft IGE using spatially distributed airspeed
measurements is accomplished with a grid-based recursive
Bayesian filter. The Bayesian framework is capable of fusing
data from additional sensing modalities and for estimation
of additional states, such as roll and pitch relative to the
landing platform. The feedback controller is implemented in
simulation to illustrate the theoretical results.
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The contributions of this paper are (1) a potential-flow model
of rotor downwash IGE that more accurately represents the
flowfield than previous models; (2) height estimation IGE
using multi-component airspeed measurements and a grid-
based recursive Bayesian filter; and (3) a flow-estimation-
based feedback-control framework for rotorcraft hovering
and landing IGE.

The control and estimation architecture developed and sim-
ulated in this paper is shown in Fig. 1. The flow velocities
v and w, in the radial and vertical axes, respectively, are
simulated using the potential flow model in Section 2. The ro-
torcraft dynamics in Section 3 are simulated using a nonlinear
state-space model. Flow measurements ṽ and w̃ are presumed
to be corrupted with additive sensor noise. Section 4 presents
the grid-based recursive Bayesian filter used to estimate the
rotorcraft height and a feedback controller that seeks to drive
the vehicle to the commanded height.

Figure 1. Block diagram for closed-loop flow sensing and
control.

2. FLOW MODEL
Cheeseman and Bennett Flow Model IGE

LetR be the rotor radius, vi denote the rotor induced velocity
(assume known) and h be the rotor height. Cheeseman and
Bennett [11] model the rotor downwash impinging on the
ground plane by representing the rotor as a three-dimensional
source with strength s = R2vi/4 and the ground plane as a
mirror-image source to enforce no flow through the ground
plane, as shown in Fig. 2. The sources are separated by a
distance 2h. The velocity potential for the location (x, y, z)
in the flowfield is

φ = − s√
x2 + y2 + (z − h)2

− s√
x2 + y2 + (z + h)2

. (1)

Taking the gradient of the velocity potential with respect to
position yields the flow velocity components.

Although the Cheeseman and Bennett flow model has been
experimentally shown to accurately capture the relationship
between rotor thrust IGE and rotor height[11], it does not
accurately represent the physical flowfield of a rotor IGE. As
shown in Fig. 2, the flow vectors just below the rotor plane
extend radially outward as opposed to downward. Since the
rotor is modeled as a point source, the strongest vectors are at
the hub and diffuse in strength radially outward.

Ring-Source Potential-Flow Model

Similar to the Cheeseman and Bennett model, we model the
physical flowfield using potential flow theory. However, we
expand the single source of Cheeseman and Bennett radially

Figure 2. Cheeseman and Bennett [11] potential flow model
of rotor downwash in ground effect.

Figure 3. Schematic of ring-source potential-flow model
nomenclature.

outward into ring sources to create a more uniform spatial
distribution of the flowfield sources.

As shown in Fig. 3, the rotor is modeled by k = 1, 2, ..., N
ring sources and the ground plane as their mirror-image ring
sources to enforce no flow through the ground plane. Note
that ring k = 1 is at the rotor tip and the ring indices move
radially inward with equal radial spacing of R/N . The radial
location of each ring is

rk = R− (k − 1)
R

N
. (2)

Similar to the inflow ratio distribution of a rotor [16], the
strength sk of ring k varies with radial location according to

sk =
smax
R

rk, (3)

where the maximum source strength smax is located at the
rotor tip r1 = R. We choose the source strengths according
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Figure 4. Flowfield of ring-source potential-flow model evaluated at various heights, depicting streamlines and speed
distributions, where speed ‖V ‖ =

√
v2 + w2.

to the total volumetric flow through the rotor disk, similar
to Cheeseman and Bennett. Let A = πR2 denote the rotor
disk area. The strength of each ring source represents the
volumetric flow rate per unit length and the total flow rate
satisfies

N∑
k=1

2πrksk = Avi. (4)

Substituting (2) and (3) into (4) and using arithmetic series
along with the sum of a sequence of squares yields

smax =
3NAvi

πR(2N2 + 3N + 1)
=

3NRvi
(2N2 + 3N + 1)

. (5)

Note that, for N =1,

smax =
Avi
2πR

=
Rvi
2

. (6)

The velocity potential of ring source k is [17]

φk(r, z; rkzk) =
−skrkK(M)

π
√
ρ1(r, z; rkzk)

, (7)

(8)

where ρ1 = (r + rk)2 + (z − h)2, r and z are the radial
location and elevation of the query point, respectively, and
M = 4rrk/ρ1. The radial vk(ρ1, ρ2) and vertical wk(ρ1, ρ2)
velocity components of ring source k are [17]

vk =
rksk

2πr
√
ρ1

[
K(M) +

r2 − r2k − (z − h)2

ρ2
E(M)

]
(9)

and wk =
skrk(z − h)E(M)

πρ2
√
ρ1

, (10)

where ρ2 = (r − rk)2 + (z − h)2 and K(M) and E(M)
are the first and second complete elliptic integrals respec-
tively. (K(M) and E(M) are evaluated using the ellipke
function in MATLABr.) The velocity components of the
flowfield are the sum of each ring source and their image ring
source contributions,

v(r, z) =

N∑
k=1

vk(ρ1, ρ2) +

N∑
k=1

vk(ρ̄1, ρ̄2), (11)

w(r, z) =

N∑
k=1

wk(ρ1, ρ2) +

N∑
k=1

wk(ρ̄1, ρ̄2), (12)

where ρ̄1 = (r+rk)2+(z+h)2 and ρ̄2 = (r−rk)2+(z+h)2.
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Fig. 4 shows the flowfield simulation of the ring-source
potential-flow model, with streamlines and speed distribution
shown for different heights, where speed ‖V ‖ =

√
v2 + w2.

These variations in speed distribution with height serve as an
informative tool for sensor placement to measure the physical
flowfield. This potential flow model is qualitatively similar to
the flow visualization model of the flow below a rotor IGE by
Lee et al. [18].

Moving from the rotor plane to the ground close to the rotor
hub, the flow decelerates and forms a stagnation region close
to the ground. The flow deceleration region is easiest to
distinguish for h=1.00R in Fig. 4. In contrast, the flow
acceleration region is where the streamlines change direction
from pointing downward to radially outward. As the rotor ap-
proaches the ground, the streamlines are compressed, which
is best illustrated for h=0.50R in Fig. 4. Evidently, the flow
speed is the highest in the flow acceleration region for the
h=0.50R case as opposed to the h=2.00R case, since the flow
is being compressed more with less space between the rotor
plane and the ground. This effect is analogous to moving a
water jet (the rotor) closer to a wall (the ground plane), where
the jet speed in the flow acceleration region is highest when
it is closest to the wall.

Although the rotor downwash IGE is by no means laminar,
as visualized in the work of Lee et al. [18], we can model it
using potential flow theory and account for turbulence with
process noise (to be introduced in Section 4). Effectively,
we model the mean velocity of the dominant flow and treat
the turbulence and other secondary effects such as blade tip
vortices as fluctuations away from this mean.

Suppose differential pressure airspeed sensor measurements,
Ṽ = [ṽ, w̃]T are collected below the rotor in the experi-
mental setup. Airspeed measurements of the sort described
in [12] contain two components of the flow velocity at each
sensor location and are collected in an array configuration to
probe the flowfield at multiple spatial locations. We assume
measurements Ṽ of the flow velocities are corrupted by zero-
mean Gaussian white noise η with standard deviation ση and
zero mean, resulting in the measurement model

Ṽ = V + η. (13)

Figure 5. Free-body diagram of rotorcraft in ground effect.

3. DYNAMICS AND CONTROL
Dynamics of Rotorcraft Operation in Ground Effect

Fig. 5 shows the free-body diagram of a rotorcraft in which
the tailrotor counter torque is not shown. Applying Newton’s
second law in the z-direction yields

mḧ = T −mg, (14)

where ḧ is the vertical acceleration. Modeling the rotor thrust
T as a function of rotor rotational speed ω yields [15]

T = kω2. (15)

The rotor thrust is augmented for ground effect using the
Cheeseman and Bennett model, which captures the essential
characteristic of the relationship between thrust and height
IGE,

TIGE =
1

1− R2

16h2

T =
16h2

16h2 −R2
T . (16)

Based on experimental data, Leishman [16] suggests that
model (16) is valid for h/R ≥0.5. It is assumed henceforth
that the rotorcraft has landed at the boundary condition of
h/R =0.5, which is reasonable since the rotor distance above
the landing gear is generally greater than 0.5R. Thrust IGE is
substituted into the dynamics in (14) to obtain

ḧ =
16h2kω2

(16h2 −R2)m
− g. (17)

The state vector Z ∈ R2 is defined as

Z =

[
h
ḣ

]
=

[
z1
z2

]
, (18)

where ḣ is the landing speed. Since the rotor rotational speed
is regulated, we define ν = kω2/m as the control input. The
nonlinear state space form is

Ż =

[
ḣ
ḧ

]
=

[
z2

16z21
16z21−R2 ν − g

]
. (19)

An equilibrium control input ν∗ is necessary to keep the
rotorcraft hovering at a corresponding equilibrium height z∗1
(or to land safely). Solving (19) for the equilibrium condition,
Ż∗ = 0, the equilibrium control input is

ν∗ = g
16z∗21 −R2

16z∗21
. (20)

Fig. 6 depicts the simulation results of the open-loop nonlin-
ear dynamics for initial height and speed (1.5m and 0.25m/s)
and constant input ν = ν∗.

In order to implement a linear controller for the nonlinear dy-
namics (19), the Jacobian matrices are needed. The Jacobians

A =

[
0 1

−2gR2

z∗1 (16z
∗2
1 −R2)

0

]
and B =

[
0

16z∗21

16z∗21 −R2

]
(21)

are the partial derivatives of the right-hand side of (19) with
respect to Z and ν, respectively. The linear system dynamics
are

Ż = AZ +Bν. (22)
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Figure 6. Open-loop dynamics of rotorcraft in ground effect
with constant input ν = ν∗. Initial conditions for height and
speed are (1.5m, 0.25m/s).

Nonlinear Dynamics with Linear Observer-based Feedback
Control

The state space system (19) in control affine form is

Ż = f(Z) + g(Z)ν, (23)

where

f(Z) =

[
z2
−g

]
and g(Z) =

[
0

16z21
16z21−R2

]
. (24)

Fig. 6 shows that the constant-input open-loop nonlinear
system with ν = ν∗ oscillates about the equilibirum point,
which implies that feedback control is needed to asymptot-
ically stabilize z1 to the desired height. We design a linear
controller to be used with the nonlinear system dynamics,

ν = ν∗ + ∆ν, (25)

where ∆ν = −K(Ẑ − Z∗), K = [K1 K2] and
Ẑ = [ẑ1 ẑ2]T denotes the estimated states. The closed-loop
dynamics with the linear output-feedback controller (25) are

Ż =

[
z2
−g

]
+

[
0

16z21
16z21−R2

]
(ν∗ + ∆ν), (26)

i.e.,

Ż=

[
z2

−g +
16z21

16z21−R2

(
g
16z∗21 −R2

16z∗21
−K1(ẑ1 − z∗1)−K2ẑ2

)]
. (27)

Figure 7 shows the nonlinear closed-loop dynamics (27) and
the linear dynamics (22) with the linear controller (25). The
simulation is implemented using full-state feedback, Ẑ = Z.
The optimal gains K are provided by a Linear Quadratic
Regulator (LQR) and the Jacobian matrices in (21) evaluated
at the equlibrium height. Initial conditions for the height and
speed are (1.8m, 0.9m/s) and desired steady-state conditions
are (0.75m, 0m/s).

4. HEIGHT AND SPEED ESTIMATION
The Bayesian filter [14] [19] is a probabilistic approach for
estimation that assimilates noisy measurements into a proba-
bility density function (PDF) and also allows the incorpora-
tion of nonlinear system dynamics and nonlinear observation

Figure 7. Closed-loop dynamics of rotorcraft in ground
effect with full-state feedback, Ẑ = Z using the linear
controller (25).

operators. (The optimal Bayesian filter for linear systems
with linear measurements and Gaussian noise is the Kalman
filter [20], while a common Bayesian filter for nonlinear
systems with nonlinear observation and noise model is the
particle filter [21].) We chose a grid-based recursive Bayesian
filter as it can be rapidly implemented for a low-dimensional
state-space representation of the rotorcraft downwash with
linear parameter estimates and nonlinear measurement mod-
els.2 It is of note that even though linear paramater estimates
and Gaussian white noise is assumed for our measurement
and process noise, these are not required assumptions for the
Bayesian filter.

Estimation Step

The Bayesian framework consists of estimation and predic-
tion steps. In the estimation step, the Bayesian filter in the
form of [14] is used to estimate the vehicle height based on
the flow velocity measurements from an array of differential
pressure airspeed sensors. Grid-based Bayesian estimation
is performed recursively, in which the finite parameter space
over height h is discretized and the PDFs are evaluated on
this grid for each new measurement. Let h be the single state
of a one-dimensional Bayesian filter. Recall that the noisy
flow measurement Ṽ is corrupted with zero mean Gaussian
noise as in (13). Let L = {Ṽ1, ..., Ṽm} denote the set of
observations from m sensors. The posterior probability of
the state h given the measurements L is [14]

P (h|L) = cP (L|h)P (h|L0), (28)

where c is the scaling factor chosen so that P (ĥ|L) has unit
integral over the state space. The likelihood function P (L|h)
is the conditional probability of the observations L given the
state h and P (h|L0) represents the prior probability distribu-
tion. During initialization or in the absence of measurements,
the prior probability P (h|L0) is uniform.

We choose a Gaussian likelihood function for the measure-
ments Ṽl, l = 1, ...,m, i.e.

P (Ṽl|ĥ) =
1√
2πσ

exp
[
− 1

2σ2
||Ṽl − Vl||2

]
, (29)

2The Unscented Kalman filter [22] is an approximate nonlinear estimator
that differs the inevitable divergence with highly nonlinear systems or mea-
surements [20]. The particle filter [21] provides high performance estimation
but it requires careful selection of its estimation state vector because it is
prone to sample impoverishment and requires careful tuning
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Figure 8. Closed-loop control with estimated height using Bayesian filter framework shows the marginal probability density
of normalized height h/R and normalized speed plotted versus time. (a) Ascent maneuver from initial height and speed of (0.7,
0/s), commanded height of 1.8 and process and measurement noise standard deviation of (0.1, 0.15/s). (b) Descent maneuver
from initial height and speed of (1.8, 0.2/s), commanded height of 0.6 and process measurement noise standard deviation of
(0.08,0.1/s). (c) Estimated speed using low-pass-filtered (LPF) finite differencing for ascent maneuver in (a). (d) Estimated
speed using low-pass-filtered (LPF) finite differencing for descent maneuver in (b).

where Vl is generated from the flow models (11) and (12)
at sensor location l embedded within the Bayesian filter and
σ2 is the measurement variance. Even though (29) is of
the Gaussian form, it is not strictly required. The posterior
probability density of the state h is obtained using the joint
measurement likelihood combining the measurements taken
from m sensors [14]

P (h|L) = c

(
m∏
l=1

P (Ṽl|h)

)
P (h|L0). (30)

The estimated height ĥ corresponding to the mode (maxi-
mum) of the posterior probability P (h|L) provides the maxi-
mum likelihood estimate of the flowfield parameters.

Spatial integration over the sensor array is accomplished
by (30), whereas temporal integration is accomplished by
assigning the posterior of the current time step to be the prior
for the next time step.

Prediction Step

The prediction step consists of shifting and diffusing the
probability mass to account for the vehicle dynamics. This
is accomplished using the Chapman-Kolmogorov equation
[21],

P (h(t+ ∆t)|L(t))

=

∫
P (h(t+ ∆t)|h(t))P (h(t)|L(t))dh(t), (31)

where t is the current time step and ∆t is the time step
interval.

Numerically, the probability density is shifted along the grid
according to the estimated speed ẑ2. If the estimated speed
ẑ2 is positive, we shift the PDF to the right and vice-versa.
The number of grid points to shift is determined by the
multiplication of the estimated speed ẑ2 and simulation time
interval. After shifting, the probability density is normalized
to ensure the sum of the area under the PDF equals to one.

The probability density is diffused with process noise γ
by convolution with a grid-sized Gaussian window whose
width is inversely proportional to the standard deviation of
the process noise σγ . (This is done with the MATLABr

functions gausswin and convn.)

Simulation Examples

Fig. 8 shows the evolution of the estimated height marginal
probability density for closed-loop ascent in Fig. 8(a) and
descent in Fig. 8(b). Fig. 8(a) shows an ascent maneuver
from initial normalized height and speed of (0.7, 0/s) to a
commanded height of 1.8 and process and measurement noise
standard deviation of (0.1, 0.15/s). Fig. 8(b) shows a descent
maneuver from initial height and speed of (1.8, 0.2/s) to
a commanded height of 0.6 and process and measurement
noise standard deviation of (0.08, 0.1/s). Fig 8(c) and (d)
show the estimated speeds using the low-pass-filtered finite-
differencing method (32) for ascent in (a) and descent in (b),
respectively.
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These manuevers are simulated using the closed-loop dynam-
ics (27). The estimated height ẑ1 is evaluated recursively by
the one-dimensional Bayesian filter. The estimated height ẑ2
is evaluated by finite differencing, i.e.,

ẑ2,p = αẑ2,p−1 + (1− α)
ẑ1,p − ẑ1,p−1

∆t
, (32)

where 0 < α < 1, the index p indicates the current time
step and ∆t is the time interval between each simulation step.
Eq. (32) is a low-pass-filter that removes the effects of noise.
Process noise γ, which is Gaussian white noise with standard
deviation σγ and zero mean, is added to (27) in the filter.

Initially, Fig. 8(a) and (b) show that the estimated height
error is large because the initial prior PDF is uniformly
distributed. As time progresses and the Bayesian filter assim-
ilates measurements, the marginal probability density begins
to peak and the estimated height converges to the actual
height. As more measurements are taken, the filter becomes
more confident of its estimates as shown by the narrowing
probability density. It is also of note that Fig. 8(a) has a
bigger spread throughout its probability density distribution
than that of Fig. 8(b) due to the higher noise variances.

Fig. 8(c) and (d) show that the initial speed estimates are
relatively large as the difference between succesive height
estimations is also relatively large. This is influenced by the
Bayesian filter initiation and also the controller which is driv-
ing the system to the comanded height. As the system reaches
steady-state at about 4s, the speed estimates begin to closely
track the actual speed. The first-order speed estimation could
be improved by using a higher-order estimation method.

5. CONCLUSION
This paper describes a dynamic controller for rotorcraft land-
ing and hovering in ground effect. A ring-source flow model
for the rotor downwash IGE is developed using potential
flow theory that captures the essential characteristics of the
relationship between flow velocities and height. The reduced-
order flow model is used for fast evaluation of the flowfield
in a recursive control loop and still resembles the physical
flowfield. A nonlinear dynamic model of rotorcraft landing
IGE is also developed using potential flow theory, which
allows for the study of the open-loop dynamics and facilitates
the design of a closed-loop controller. The height of the
rotorcraft IGE can be estimated with a grid-based recursive
Bayesian filter using the three-dimensional flow model, non-
linear dynamic model and velocity measurements. Finally,
flow-estimation-based closed-loop control is implemented in
simulation, which does not require any sensor measurements
other than the flow sensors. Experimental validation of the
flow estimation and feedback control is ongoing. Additional
theoretical and modeling work includes sensor fusion of
multiple sensing modalities, such as ultrasonic sensors. The
potential flow model and dynamics are being improved to in-
corporate changes in rotorcraft pitch angle, a moving landing
platform, and external disturbances such as wind gusts during
landing.
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