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Abstract— A cooperative search and track algorithm for
surveilling multiple road vehicles is presented for fixed-wing
Unmanned Air Vehicles (UAVs) with a finite field of view. The
road network is formed into a graph with nodes that indicate the
target likelihood ratio (before detection) and position probabil-
ity (after detection). Target measurement data is associated to
either the likelihood ratio tracker or a Bayesian target tracker.
Data association uses a similarity score generated by finding
the earth mover’s distance between the measurement and track
probabilities. Two strategies for motion-planning of UAVs bal-
ance searching for new targets and tracking known targets. The
first strategy is to loiter over the peak track probability to max-
imize information about a known target. The second strategy
is to continue searching for new targets, returning to known
targets only when the peak track probability becomes low.
Results from numerical simulations are included to illustrate
the performance of the algorithm and to quantify algorithm
performance under the influence of added uncertainty in the
detection and measurement of targets.
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1. INTRODUCTION
Having accurate and up-to-date data from intelligence,
surveillance, and reconnaissance missions has become an
essential part of how the modern tactician develops strategy.
As a result, the US government has released the Unmanned
Systems Roadmap 2007–2032 [1] citing the specific need
for target identification and designation in the realm of UAV
reconnaissance. This paper’s goal is to extend work on
target detection on road networks using a Bayesian likelihood
tracker [2], [3] to the dual problem of searching for and
tracking targets after detection. Target location on a road
network is represented as a probability density. Measurement
data is associated using an earth mover’s distance [4] similar-
ity metric to determine whether measurements correspond to
previously detected targets or new undetected targets. The
UAVs search the road network using one of two control
algorithms that balance tracker accuracy and target detection.
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Holding such an important role in modern surveillance oper-
ations, the problem of multi-target tracking is a deep field. If
no constraints are placed on the targets, tracking algorithms
occupy the realm of interacting multiple model (IMM) fil-
ters described in [5], [6], [7] with Kalman filters, extended
Kalman filters, and even particle filters used for linear and
nonlinear target dynamics models. By applying the constraint
that targets remain on a road network, simplified and less
computationally costly IMM estimators can be applied to
predict target motion, such as the Variable Structure IMM (V-
S IMM) [8], [9], which keeps modes in use only as needed.
IMM estimators based on particle filters have had success in
estimating target dynamics, as in [10], [11], [12], but they run
into the issue of sharp mode transitions, leading to varying
levels of tracking failure [13]. By fixing the number of
particles per mode, as in [6], [14] some of the errors induced
by sharp mode transitions can be avoided and quicker model
adaptation can be achieved. However, the robustness and
tradeoff in errors and adaptation still need to be investigated
further [13].

For the problem of data association among multiple mea-
surements and trackers, a number of solutions have been
developed with varying levels of success, including particle
filtering [15], dynamic programming [16], [17], and max-
imum likelihood [18], [19] methods. However, due to the
process by which they determine associations, these methods
admit a high proportion of false alarms in their measurements,
typically are computationally expensive, and do not pair
tracking with path planning for UAVs [20].

This paper focuses on a Bayesian filtering framework to
enable cooperative search and track of detected mobile targets
on a road network using UAVs with a finite field of view.
UAV sensor platforms cooperatively search along the road
network and update the likelihood surface that represents
likely target locations based on a recursive Bayesian likeli-
hood ratio tracker [3]. Once the likelihood on the network
surpasses a critical threshold, a target detection is called and
a tracker is initialized. Measurement updates are provided by
data association; the existing trackers and new measurements
are compared using the earth mover’s distance similarity
metric [4].

Simulated targets are constrained to remain on the road
network at all times and stop and start randomly to mimic
courier behavior. The UAV sensors are characterized by
probability of detection and probability of false alarm, and by
the standard deviation of target location measurements. Each
UAV is modeled as a Dubins car with constrained turning
rate and speed. The standard deviation and probability of
detection and false alarm of the onboard sensors are linked
to the ground sampling distance (GSD) of the UAVs [21]. As
altitude increases, GSD increases and measurement resolu-
tion decreases, leading to decreased probability of detection,
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increased false alarms, and higher standard deviation in the
measurement uncertainty.

For each target detected, a new Bayesian target tracker is
instantiated on the road network. The Bayesian filtering
methodology recursively updates the tracker with prediction
and update steps. The prediction step updates the probability
surface using random walk motion at the nominal speed
of the targets on the road network. The update step uses
planar measurements of the target to update the probability
distribution. New measurements are associated by compar-
ison to the prior distribution in the tracker using the earth
mover’s distance. When the distance is sufficiently low, the
measurement and distribution are paired and the distribution
is updated; otherwise the measurement is used to update the
likelihood network.

Each UAV is guided to network nodes of higher likelihood
using a set of artificial potentials. These artificial potentials
cause each UAV to ascend the likelihood gradient and avoid
collisions with other UAVs. Reflecting the constraint on
target motion, the gradient ascension force is parallel to
the edge of maximum likelihood change. A second force,
known as Pauli repulsion, is applied between UAVs to prevent
collisions and redundant searching. The third force is a arti-
ficial spring connecting each UAV to the edge of maximum
likelihood change in field of view, which prevents excessive
drift off of the network as the UAV ascends the gradient.

Two motion-planning algorithms guide UAVs to balance their
search and track functions. The first strategy is to loiter on
the peak probability in the nearest distribution and keep the
target location estimate as accurate as possible. The second
strategy is to have each UAV search for new targets and only
revisit a tracker probability distribution when its peak drops
below a threshold. Both strategies were tested in Monte
Carlo simulations. Comparing the two algorithms, the loiter
algorithm is better at tracking targets on the road network,
but the difference in tracking performance between the two
algorithms decreases as the search radius of UAVs increases.

The first contribution of this paper is using the structure of
the road network to encode tracker probability and perform
data association. By utilizing graph theory and the graph
Laplacian, motion updates are modeled as a random walk
on the road network. Secondly, Djikstra’s algorithm is used
to provide pairwise distance costs between all of the nodes
that comprise the road network. This concept combined with
a similarity threshold and the usage of probability networks
on the road for both the target measurements and target
trackers provides a simple way to determine how closely the
two distributions align and whether the measurement is an
appropriate match for the tracker. The third contribution is the
cooperative search and track algorithms that balance finding
new targets and keeping trackers active and accurate.

The paper is organized into the following sections. Section II
summarizes the fundamentals of graph theory and the track-
before-detect algorithm. Section III explains how the target
tracking probability networks are constructed, as well as how
measurement data is associated using a similarity metric.
Section IV presents motion-planning strategies for balancing
search and track, as well as simulations of both algorithms to
compare performance. Section V summarizes the paper and
provides an overview of ongoing work.

2. BAYESIAN TARGET DETECTION ON A
GRAPH

Graph Theory and the Graph Laplacian

A graph is a structure in mathematics that is used to describe
the relation between pairs of objects. A road graph is com-
posed of two elements [22]: a set V of N vertices and a set E
of M edges. Let ψ : V → R2 return the planar coordinates
of a vertex. A directed graph is described by the adjacency,
A ∈ RN×N , and degree, D ∈ RN×N , matrices. The ij entry
of the adjacency matrix represents the connectivity of nodes
i and j, i.e.,

aij =

{
0, if j = i
1, if there is a directed edge from j to i
0, otherwise.

(1)

For an undirected graph, the adjacency matrix is symmetric
about the diagonal [22]. The diagonal entries of the degree
matrix D give the number of incoming connections to the
corresponding node, whereas the off-diagonal entries are
zero:

dij =


N∑
j=1

aij , if i = j

0, if i 6= j.
(2)

Another convenient construct in graph theory is the incidence
matrix, B ∈ RN×M , whose row indices represent nodes
and column indices represent edges [22]. For each column,
there are precisely two non-zero entries that sum to zero,
indicating that exactly two nodes are connected by a single
edge. (Assume no self loops.) Finally, the Laplacian matrix,
L ∈ RN×N , of a graph is

L = D −A. (3)

The graph Laplacian matrix of a connected, undirected, graph
is positive semi-definite [23].

The graph Laplacian is used throughout as an operator that
describes a random walk (diffusion) between neighboring
nodes. The rate of diffusion is determined by the target
speed to provide a realistic spreading of target likelihood (or
probability) along the network in time. Since targets may
travel only along defined edges, as governed by the connec-
tivity of the adjacency matrix, the spatial rate of change of
likelihood for a vertex in the likelihood network is produced
using partial derivatives along each connected edge [24]. Let
φ ∈ RN be the likelihood over all N nodes. One way to
model this exchange is with the heat equation. Assuming that
the likelihood exchange rate is a constant α, the time rate of
change of likelihood can be modeled in matrix vector notation
as

dφ

dt
+ αLφ = 0, (4)

which is the heat equation with spatial discretization [23].
Diffusion of likelihood throughout the road network is found
for discrete time steps k = 1, 2, 3, ... of size ∆t by solving
the first-order matrix differential equation in (4) to obtain

φk = e−αL∆tφk−1. (5)
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Bayesian Filtering for Target Detection and Tracking

A Bayes filter is a discrete probabilistic process that re-
cursively takes noisy measurements of a target’s true state
and converts them into a probability density function using
a mathematical model of the target dynamics [25]. These
results are used to predict and update the state space of the
target. Let ξk = (xk, yk) denote the target state at time step
k and ζk denote an observation of the target at k. The predict
step involves computing the conditional probability [25]

p(ξk|ζk−1) =

∫
Ω

p(ξk|ξk−1)p(ξk−1|ζk−1)dξk−1. (6)

The measurement update is proportional to the product of
the measurement likelihood p(ζk|ξk) and the prior probability
(6), i.e.,

p(ξk|ζk) =
p(ζk|ξk)p(ξk|ζk−1)

p(ζk|ζk−1)
. (7)

In a Bayesian framework, simultaneous observations from
multiple sensors are assimilated by executing consecutive
measurement updates [25].

Similar to the standard Bayes filter, a log-likelihood ratio is
used for detecting targets. This strategy is often called track-
before-detect, because sensor data is acquired for possible
targets before they are detected. In previous work [3], a log-
likelihood ratio tracker was used to record instantaneous posi-
tions of undetected targets and to spawn target-tracking filters
to track targets after detection. In a likelihood ratio tracker,
the measurement probability in equation (7) is replaced with
the measurement likelihood ratio [2]. The log-likelihood ratio
is

logL(ζk|ξk) = log
p(ζk|ξ+

k )

p(ζk|ξ−k )
. (8)

Let p = log(p). The update step in the log-likelihood ratio
tracker becomes

p(ξk|ζk) = log
L(ζk|ξk)p(ξk|ζk−1)

p(ζk|ζk−1)
=

p(ζk|ξ+
k )− p(ζk|ξ−k ) + p(ξk|ζk−1)− p(ζk|ζk−1).

(9)

The first and second terms in (9) represent the newly mea-
sured positive and negative information that a target is
present, respectively. The third term represents the prior
information about the target, and the fourth term is a normal-
ization constant that may be ignored if unknown.

The predict step involves updating the target probability
density (or likelihood ratio) in the absence of measurement
information. The graph representing the road network allows
us to impose restrictions on target motion. A random-walk
model describes the target motion according to the diffusivity
α = ∆t

∆xVmax, where the time step of the simulation is
∆t, the average node spacing is ∆x, and maximum speed
is Vmax.

UAV Dynamics

The UAV dynamics are modeled using a Dubins car frame-
work [26]. Let Sjk be the (constant) speed at which UAV j

is moving, θjk be its heading, and ujk be the control input to
the turn rate at time k. Also Θj

k = [f jk , g
j
k], j = 1, ..., O

represents the planar location of UAV j at time k. The
unconstrained kinematics of UAV j are

ḟ jk = Sjk cos θjk

ġjk = Sjk sin θjk

θ̇jk = ujk.

(10)

The constraints on turn rate and speed are enforced using the
saturation function. By taking derivatives of the ḟ jk and ġjk
terms, using Euler’s method [27], and applying saturation,
the dynamics of the UAVs are determined by the forces, Xj

k

and Y jk , along the f and g planar directions as follows:

θjk = θjk−1 + sat

(
Y jk cos θjk −X

j
k sin θjk

Sjk
, θ̇max

)
∆t

Sjk = sat
(
Sjk−1 + (Xj

k cos θjk + Y jk sin θjk)∆t, Smax

)
,

(11)

where θ̇max and Smax are the maximum turn rate and speed
of the UAV, respectively.

LRT Gradient-Search Algorithm

Each UAV’s motion plan is prescribed by a combination of
three artificial potentials to guide it up the gradient in likeli-
hood ratio while simultaneously avoiding collisions. Assume
the likelihood surface and geometry of the road network itself
are known to all UAVs, as well as the location of every other
UAV. (Distributed data fusion is outside the scope of this
paper.)

The first force is derived from the maximum gradient of the
log-likelihood graph in the UAV’s field of view. Let µjk
represent the index of the edge with maximum likelihood
change in search range of UAV j and ∆φk describe the edge-
wise likelihood differences at time k, i.e., [3]

∆φk = BTφk. (12)

Let the maximum difference in likelihood along an edge
in search range of UAV j be ∆φk(µjk). If the maximum
likelihood change is contained in multiple edges, a single
edge is chosen randomly. Since µjk represents only the edge
index of the largest difference in likelihood, the direction of
the gradient along the edge is also needed. Recall that ψ
returns the position of a node in the network; let n1 and n2 be
the head and tail, respectively, of the edge in row µjk of BT .
The likelihood gradient∇Rjk is thus

∇Rjk = ∆φk(µjk)
ψ(n1)− ψ(n2)∥∥ψ(n1)− ψ(n2)

∥∥ . (13)

The second artificial force is the gradient of the repulsive
portion of the Lennard-Jones potential [28], known as Pauli
repulsion. Let ε = 1 be the depth of the well and σ = 2ρ the
distance at which the potential between two UAVs is zero.
The gradient of the Lennard-Jones potential is
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∇P jk = −48

O∑
i 6=j

(
σ12||Θj

k −Θi
k||−13

) Θj
k −Θi

k

||Θj
k −Θi

k||
, (14)

where repulsion occurs only when UAVs have overlapping
search radii.

The third force is a spring force connecting the UAV to
the node of highest likelihood along the edge of maximum
gradient, i.e., nmax ∈ {n1, n2} such that φk(nmax) is
greatest. If the node of interest is out of sensor range, the
spring force brings the UAV closer to the nodes of interest.
The spring force is

∇Qjk = −K
(
||Θj

k − ψ(nmax)|| − ρ
) Θj

k − ψ(nmax)

||Θj
k − ψ(nmax)||

,

(15)

where K is the spring constant and ρ is the rest length.

The total control force applied to UAV j is

F jk = [Xj
k, Y

j
k ] = ∇Rjk +∇P jk +∇Qjk, (16)

where the components are scaled as above.

3. TARGET DATA ASSOCIATION GOVERNED
BY EARTH MOVER’S DISTANCE

Track-after-detect filters are initialized for each detected tar-
get when the likelihood network reaches a critical threshold
φmax. The new tracker is initially populated with a univariate
normal distribution based on measurements of the target
position. Having trackers and the LRT functioning at the
same time necessitates a procedure to determine whether
subsequent measurements from the UAVs should be used to
update the LRT or a particular target’s tracker. This procedure
is called data association. This section explores the procedure
used to generate probability measurements from target detec-
tions and how to properly associate new measurements using
the earth mover’s distance metric.

Target Detection and Tracker Instantiation

Consider a measurement data model based on an imperfect
sensor with a finite range of view. Let targets within the
sensor range ρ be detected with probability Pd and false-
alarm rate of Pf per time step [29]. Combining the two
probabilities, the sensitivity m of each sensor is [29]

m = z(Pd)− z(Pf ), (17)

where z(·) represents the z-transformation into standard de-
viation units given by the quantile function [29]

z(p) =
√

2erf−1(2p− 1).

Let wk represent unit-normal measurement noise in standard
deviation units at time step k. Without a target, the measure-
ment is ζk = wk, whereas with a target the measurement is

Measurement Response
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Figure 1: Probability of Occurrence plot with Pd = 0.95 and
Pf = 0.05

ζk = m+wk. Assuming a zero-mean Gaussian sensor model
[30] transforms the log-likelihood ratio (8) into

logL(ζk|ξk) = − (ζk −m)2

2
+
ζ2
k

2
= m

(
ζk −

m

2

)
.

Note, the log-likelihood ratio is only applied to the prior
likelihood inside a disc of radius ρ centered on the UAV
location. Targets in sensor range are declared detected and
measurements of the target locations are generated when the
target likelihood on the LRT surface reaches φmax. The
likelihood inside of ρ is subsequently suppressed to zero.

Target measurements include location. Recalling that ξk =
(xk, yk) represents the actual location of a target, the mea-
surement of the target location by UAV j at time step k is

ξ̃jk = ξk + ν(0, s),

where ν is Gaussian measurement noise with zero mean and
standard deviation, s. (The location of a measurement in the
absence of a target (i.e., a false alarm), is generated randomly
from a uniform distribution centered on the UAV.)

To prevent superfluous target measurements from entering
the data association process, we introduce a criterion of c =
m/2, where m is given by equation (17), as shown on the
probability of occurrence graph in Figure 1. This choice
represents the intersection of the probability of occurrence
curves for noisy measurements with and without signals.

After a detection, the initial track probability is formed using
the measurement of the target location ξ̃jk and the locations
ψ of the nodes that compose the road network. Recall that s
is the standard deviation of the position measurement noise.
The measurement probability density gathered by UAV j at
time k is thus
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U jk =
1

s
√

2π
e
−

(ξ̃jk − ψ(V ))2

2s2 .

Measurement Data Association and Measurement Update

Earth mover’s distance (EMD) is a solution to the trans-
portation problem introduced by Rubner, Tomasi, and Guibas
[4]. Comparing two piles (signatures) can be effectively
performed by finding how much dirt (probability) must be
moved from one pile to the other until they are of identical
height. Specifically, the EMD represents the minimum cost
required to transform one signature into another, where a unit
cost is moving one unit of probability by one unit of distance.
In this case the signatures are the probability densities of the
instantiated trackers, P lk, and the measurements produced by
UAV j at time k, Û jk .

A linear programming problem can formalized for the case
of moving probability on a road network as follows. Let P
be the first signature with q elements indexed by i and Q
be the second signature with r elements indexed by g [4].
The ground distance metric between the elements of P and
Q is represented by the matrix D = [dig] and is obtained by
applying Dijkstra’s algorithm in a pairwise fashion between
the two signature’s elements along the road network graph.
The overall cost of work is [4]

WORK(P,Q, F ) =

q∑
i=1

r∑
g=1

digfig. (18)

The flow F = [fig] that minimizes (18) can be found when
subject to the following constraints for probability distribu-
tions with equal total probabilities [31]

fig ≥ 0 1 ≤ i ≤ q, 1 ≤ i ≤ r (19)
r∑
g=1

fig = P (i) 1 ≤ i ≤ q (20)

q∑
i=1

fig = Q(g) 1 ≤ g ≤ r (21)

q∑
i=1

r∑
g=1

fig =

q∑
i=1

P (i) =

r∑
g=1

Q(g) = 1. (22)

Constraint (19) requires supplies transferred from P to Q(g)
to be nonnegative. Constraint (20) ensures that the probability
matched to Q is equal to the probability in P (i). Similarly,
constraint (21) ensures that the probability matched to P is
equal to the probability in Q(g); and constraint (24) requires
that the signature with the most probability be moved, which
is known as the total flow [4]. In this case, both signatures
are normalized, so the total flow is one. With an F that
minimizes the overall cost of the signature transformation,
the earth mover’s distance is [4], [32]

EMD (P,Q) =

∑q
i=1

∑r
g=1 digfig∑q

i=1

∑r
g=1 fig

=

q∑
i=1

r∑
g=1

digfig.

Let Ik denote the total number of trackers running at time k
and T jk denote the total number of measurements at time step
k produced by UAV j. Given the EMD between the measure-
ment and tracker distributions, an RIk×T

j
k data association

matrix DA can be formed to succinctly compile all of the
EMD costs (see Algorithm 1).

The approach for associating measurements to trackers re-
quires iteratively finding the row (tracker) and column (UAV
measurement) in matrix DA corresponding to the minimum
EMD cost. Let E represent the maximum EMD outcome that
would be considered an association between a measurement
and tracker. If the minimum EMD cost in DA is below E ,
then the measurement and tracker associated with that cost
are associated with one another. The posterior of the tracker
P
l
k is updated as described in Algorithm 1 (see line 11).

Next, other EMDs generated using the newly associated
tracker and measurement are removed from DA and a new
search for the minimum EMD cost is started. If no mini-
mum EMD can be found, then any additional unassociated
measurements are used to update the LRT surface according
to the procedure described in Section 2. This procedure is
repeated on each timestep for each UAV.

Algorithm 1 EMD Data Association

Require: Ik, T jk , Û
j
k , P

l
k, O, E

1: . Where Ik is the total number of instantiated trackers,
T jk the total number of measurements, Û jk the mea-
surement probability, P lk the tracker probability, O the
number of UAVs, and E the EMD threshold

2: Repeat for each timestep k
3: for j = 1 : O do
4: for l = 1 : Ik do
5: for q = 1 : T jk do
6: DA(l, q) = EMD

(
P lk, Û

j
k(:, q)

)
7: end for
8: end for
9: Note the index l, q of min(EMD) in DA
10: while DA(min(EMD)) < E do
11: Generate posterior: Plk = P lk × Û

j
k(:, q)

12: Set the elements (:, q) and (l, :) in DA to E + 1
13: Note the new index l, q of min(EMD) in DA
14: end while
15: Note the number of unused P lk
16: if number of unused P lk > 0 then
17: Update LRT with measurement
18: end if
19: end for

The posteriors achieved after all of the measurements have
been associated appropriately are diffused as in (5) and
formed into the prior for the next time step i.e.,

P lk+1 = e−αL∆t
P
l
k. (19)
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Let Pmin be the minimum probability threshold before a
tracker instantiation is dissolved. Prior to the beginning of the
next time step k + 1, the probability contained in each prior
P lk+1 is evaluated to determine if the maximum probability
has dropped below Pmin. If this situation occurs, tracker l is
dissolved and the track probability becomes zero.

4. COORDINATED CONTROL OF TARGET
DETECTION AND TRACKING

Tracking Preliminaries

Both tracking algorithms in this section require that UAV
measurements are assigned to a tracker. In each tracker, the
location of maximum probability indicates the most likely
position of the target. As a result, without perfect knowledge
of target location, the UAV assigned to provide measurement
updates to the tracker has the highest chance of providing
updated data if the location of highest probability is in sensor
range. The assignment is performed by the following proto-
col for linking UAVs to trackers.

At any given time, a varying number Ik of trackers can be
running. Also remember that P lk denotes the probability in
tracker l at time step k for tracker l = 1, ..., Ik and recall
Θj
k represents the planar position at time step k of UAV

j = 1, ..., O. Recalling that ψ contains the positions of
each node in the network, and utilizing the max function
to extract the index of the maximum probability in P lk, the
distance between the peak of that distribution and each UAV
can be represented by the Euclidean distance between Θj

k and
ψ(max(P lk)).

These pairwise Euclidean distances are used to form an
RO×Ik distance matrix between each UAV and instantiated
tracker. A minimum travel distance metric is used to choose
pairings of UAVs to trackers. Since each UAV can only be
assigned to one tracker, certain combinations of sums along
the pairwise distance matrix are inadmissible options. These
possibilities are pruned and the combination that yields the
sum of assignments with minimum distance traveled from
UAV to tracker maximum location is chosen.

Let the assigned peak probability and index of that probability
be represented by P ljk , indicating that the peak probability
in tracker l is linked to UAV j at time k. This assignment
information is then fed through to the subsequent search and
track algorithms.

Strategy 1: Loiter Tracking

The first strategy for tracking targets after detection is loiter
tracking. With no trackers running, this algorithm reduces
to the LRT gradient-search algorithm described in Section 2.
When a tracker is instantiated, the minimum travel distance
metric is used at each time step to assign each UAV to a peak
probability. That UAV will feed new measurements of the
target into the tracker through the data association process.
The attraction between a UAV and the associated tracker peak
probability is performed using an artificial spring potential as
described in Section 2. In this case, the spring is attached
to the node of peak probability in the assigned tracker. The
associated spring force between the paired UAV j and peak
probability P ljk is

∇Lljk = −K
(
||Θj

k − ψ(P ljk )||
) Θj

k − ψ(P ljk )

||Θj
k − ψ(P ljk )||

, (20)

where K is the spring constant and the rest length is zero.

Using the loiter tracking strategy, an assigned UAV no longer
follows the likelihood gradient; it does avoid collisions using
a modified avoidance force. The assigned UAV is no longer
actively repulsed from unassigned UAVs, only from assigned
UAVs. Let J be the set of all UAVs assigned to trackers. The
Pauli repulsion force for assigned agents becomes

∇P jk = −48

O∑
i6=j,
i∈J

(
σ12||Θj

k −Θi
k||−13

) Θj
k −Θi

k

||Θj
k −Θi

k||
, (21)

where ε = 1 and σ = 2ρ.

The total control forces applied from the loiter strategy to
UAV j are represented as

F jk =

{
∇Lljk +∇P jk , j ∈ J

∇Rjk +∇P jk +∇Qjk, j /∈ J ,
(22)

where J is the set of all UAVs assigned to trackers.

Strategy 2: Search-and-Loiter Tracking

The second strategy is the Search-and-Loiter algorithm.
When a tracker l is assigned to an agent j, the peak prob-
ability in that tracker is encoded in P ljk . By continually
monitoring the peak probability, the accuracy of the tracker
can be determined at each time step. As the peak drops,
so too does the probabilistic knowledge of the true target
location. As a result, to maintain the health of the tracker,
new measurements are required to keep the tracker accurate.

The loiter strategy improves tracker accuracy by continually
providing the tracker with new measurements, thereby keep-
ing the peak probability high. The second strategy relies on
the tracker to maintain its target estimate even in the absence
of measurements. A loiter threshold % tells the assigned UAV
when the estimated target location is no longer adequate. So
long as P ljk remains above % (as monitored by the assigned
UAV), the UAV is free to continue searching the likelihood
network for other targets. When P ljk drops below %, the UAV
returns to the target and provides new measurements of the
target to bring P ljk back above %.

The total control forces for Search-and-Loiter tracking ap-
plied to UAV j are represented as

F jk =


∇Lljk +∇P jk , j ∈ J & P ljk ≤ %

∇Rjk +∇P jk +∇Qjk, j ∈ J & P ljk > %
∇Rjk +∇P jk +∇Qjk, j /∈ J .

(23)

(Note, the same Pauli repulsion rules apply as in the loiter
tracking strategy. The term ∇P jk changes based on whether
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the UAV is assigned or not according to Equations (14) and
(21).)

Simulation Parameters and Metrics

Four parameters determine simulation performance: inter-
section density (ID), coverage rate, guidance algorithm, and
UAV-to-target ratio Õ. ID is the number of intersections per
square mile of a road-network snapshot [33].

To describe the ability of UAVs to find targets, the relative
coverage rate is found using the procedure in [34]. Let Vmax
be the maximum speed of targets on the road network. Let
θ̃ represent the angle between the velocity of a target and
a UAV, nT represent the target density over the confines
of the map, S = 2ρ + πρ2/(Vmax∆t) represent the cross
section of coverage between the target and mobile sensors,

and
√
ξ2 + Θ2 − 2Θξ cos θ̃ represent the relative velocity

between UAVs and targets. Relative coverage rate estimates
the sensor coverage of targets per unit time for a UAV and is
defined as [21]

C = nTS
√
ξ2 + Θ2 − 2Θξ cos θ̃, (24)

which is similar to the mean free path theory from the kinetic
theory of gas molecules found in physics.

Under the assumption of the random mobility model, the
relative velocity becomes the average relative speed between
the targets and the UAVs [34]

1

2π

∫ 2π

0

√
ξ2 + Θ2 − 2Θξ cos θ̃dθ̃. (25)

The target density within the confines of the map is

nT =
T

A
, (26)

where A is the convex hull of the road network.

For simulations, a single road network in downtown Bal-
timore, Maryland with ID 194 (A = 4.59 × 106 m2) was
used and the altitude of the UAVs was varied linearly from
h = 457 m to 1829 m. This range was chosen to model
variations in the standard operating altitude of the ScanEagle
[35], which normally performs surveillance at 457 m. The
UAV-to-target ratio Õ was varied between 0.25, 0.5, 1.0, and
1.5.

Changes in altitude are accompanied by changes in the fi-
delity of the sensors onboard for detecting and gathering
measurements of target location. The change in accuracy can
be extended to changes in the simulation model by varying
Pd, Pf , ρ, and s with altitude. Pd, Pf , and s were assumed to
vary linearly with altitude according to
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Figure 2: ROCs for linearly increasing altitude

Table 1: Relation between altitude, Pd, Pf , s, and ρ

Altitude (m) Pd Pf s (m) ρ (m)
457.2 0.95 0.025 5 93.5
914.4 0.925 0.05 10 187.0
1372.0 0.90 0.075 15 280.0
1828.8 0.875 0.10 20 374.0

Pd = 0.975− 0.025
h

457
(27)

Pf = 0.025
h

457
(28)

s =
5

457
h. (29)

Variations in Pd and Pf produce the series of receiver oper-
ating characteristic curves (ROC) [29] in Figure 2.

As altitude increases, the field of view of the camera footprint
increases. Let FL be the focal length of the sensor and Sr the
sensor radius. The radius of the circular sensor footprint for
each height is

ρ =
Sr
FL

h. (30)

A summary of simulation parameters are provided for a
camera with FL = 90 mm and Sr = 18.4 mm in Table 1.
Additional parameters used for the simulation are described
in Table 2.

The performance of our simulations is compared using a
number of metrics [36], including the number of valid tracks
(NV T ), the number of spurious tracks (NST ), the number
of valid associations (NV A), and the number of false associ-
ations (NFA). Each of these measures is recorded for every
time step and Monte Carlo trial, and are averaged over the
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Table 2: Simulation parameters

Parameter Value (units) Definition
∆t 0.3 (sec) time step
φmax 10 target detection threshold
θ̇max 70 (◦/sec) UAV max turn rate
Smax 80 (mph) UAV speed
Vmax 50 (mph) target speed
α 0.4470 (m2/s) target diffusivity
c m/2 criterion
E 300 EMD threshold
Pmin 0.07 track dissolve threshold
C 50 LRT decay term
% 0.3 loiter threshold
A 4.59×106 m2 convex hull of network

entire data set for a particular scenario described by the four
parameters: intersection density (ID), coverage rate, guidance
algorithm, and UAV-to-target ratio Õ. These metrics may
also be combined into additional useful metrics, including the
measure of completeness (MOC), which is the ratio of valid
trackers to total number of targets [36]. Each altitude was
simulated for both of the tracking algorithms over 50 trials in
a custom Matlab simulation environment.

Simulation Results

Figure 3 shows the change inMOC vs. time for four different
Õ’s and a variety of different coverage rates. For all four
UAV-to-target ratios, both algorithms are characterized by
two sequences: the (mostly) positive linear aggregation of in-
formation about the targets and road network, and the plateau
achieved when some percentage of the total targets are found.
As coverage rate increases the slope of the linear aggregation
portion becomes sharper, indicating quicker data collection.
This trend results in the plateau being higher, and thus leads
to MOC becoming close to unity for the maximum coverage
rate used in simulation. Having the highest coverage rate
consistently yields the quickest and most complete tracking
of targets for all four UAV-to-target ratios.

Comparing the performance of the two algorithms, the loiter
algorithm perform substantially better in quickly gathering
information and achieving a higher steady-state MOC for
lower coverage rates. However, as the coverage rate in-
creases, this gap in steady-state MOC between each algo-
rithm becomes smaller and the two algorithms both perform.

The algorithms perform relatively well for different UAV-to-
target ratios. For Õ = 0.25 there is 1 UAV and 4 targets.
As a result, this UAV-to-target ratio achieves at best a steady-
state average of 25% because both algorithms are compelling
the UAV to focus on keeping one tracker accurate rather
than tracking all possible targets. On the other side of the
spectrum is the case of Õ = 1.5, which involves 3 UAVs and
2 targets. As coverage rate increases, so too does the steady-
state MOC, reaching close to 100% relatively early in the
simulation.

Let the percentage of valid trackers PV T be

PV T =
NV T

NV T +NST
. (31)

For all four UAV-to-target ratios the difference in PVT for
each algorithm is negligible and both instantiate valid trackers
97% of the time for a wide range of altitudes. However,
by highlighting a couple trials from the case of 4 targets
and 1 UAV, some of the characteristics of Search-and-Loiter
relative to the loiter algorithm become visible. For case
study 1, Search-and-Loiter detects a third target that the loiter
algorithm never sees and keeps occasional tracks on a second
target that loiter loses. In case study 2, Search-and-Loiter
loses its track of all targets after matching the performance
of the loiter algorithm. However, after regaining a track on
one target, Search-and-Loiter performs substantially better
than loiter and has instantiated trackers on all four targets
by the end of the simulation. In case study 3, Search-and-
Loiter performs better than pure loiter, tracking as many
as three targets. Search-and-loiter does experience a quick
tracker loss, indicative of the UAV returning to perform its
loiter assignment in Search-and-Loiter, but returning too late.
This problem can be solved by further tuning of the return
threshold in this strategy, as well as a superior target motion
model.

Let the percentage of valid associations PV A be

PV A =
NV A

NV A+NFA
. (32)

Figure 5 shows the relationship between coverage rate C and
PV A for both algorithms and all four UAV-to-target ratios.
In these cases, differences between algorithms are slightly
more defined than for the case of PV T . The loiter algorithm
performs slightly better in providing trackers with accurate
measurement updates than the Search-and-Loiter algorithm.
The performance difference can be explained by recalling that
UAVs employing the loiter strategy are continually providing
updates to the tracker and their search radius always has the
target they are tracking fully in view. In addition, for all
cases except Õ = 0.25, the PV A seems to plateau and
then drop indicating that the quality of the measurements
being provided is dropping and more incorrect associations
are occurring. This negative slope in PV A decreases as Õ
increases. The decrease in PV A with increasing coverage
rate was an expected outcome based on a measurement model
uncertainty that increased with altitude, but the effect of
increasing Õ was not anticipated.

5. CONCLUSION
The variety of mission requirements for surveillance op-
erations make the search and track problem difficult and
computationally intensive. We present a Bayesian filtering
framework for cooperative search-and-track of mobile targets
on a road network using UAVs with finite field of view. UAVs
generate measurements of targets on a likelihood network
and call detections once the local likelihood passes a critical
threshold. Measurements from detected targets are used to
create a measurement probability distribution that indicates
locations of targets. A data-association framework takes
prior tracker probability distributions and new measurement
probability distributions and compares them using the earth
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(c) For UAV-to-target ratio 1.0

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.02 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.09 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.20 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.35 targets/sec

Loiter
Search-and-Loiter

(d) For UAV-to-target ratio 1.5

Figure 3: MOC vs. time for increasing coverage rate. The loiter algorithm consistently performs better in tracking all of the
targets than the Search-and-Loiter algorithm. As coverage rate increases, the time required to reach the plateau in performance
decreases and the steady-state performance increases.
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(c) Case Study 3

Figure 4: Case study of valid tracks vs. time for 4 targets and 1 UAV at an altitude of 1828.8 m. The performance of Search-
and-Loiter exceeds that of pure loiter in both maximum number of targets tracked and cumulative time tracking each target.
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Figure 5: The percentage of associations that are valid vs.
coverage rate. The percentage of valid associations decreases
with increased coverage rate for low UAV-to-target ratios, but
becomes constant at high UAV-to-target ratios.

mover’s distance. Utilizing artificial potentials, two motion-
planning strategies were created to balance finding unde-
tected targets with keeping trackers accurate.

On average, the loiter algorithm performed better than the
Search-and-Loiter algorithm in achieving high levels of MOC
and in accuracy of trackers and data associations. However, in
the cases where there are many fewer UAVs than targets, the
Search-and-Loiter algorithm can provide temporary tracks on
many more targets than pure loiter and give operators a better
understanding of the target distribution on the road network.
The average outcome being in favor of loiter is not surprising
since the Search-and-Loiter algorithm is highly dependent on
both the motion model (a random walk) and the threshold
for returning to the tracker. Both of these were determined
heuristically and they could both be greatly improved through
optimization based on the target model. As a result, important
ongoing contributions to tracking algorithm development in
this framework would include a more accurate motion model
for targets, more accurate variation in measurement uncer-
tainty for higher altitude UAVs, and an optimal Search-and-
Loiter algorithm rather than a heuristic-based algorithm.
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