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Abstract— This paper presents an augmented path-

planning technique for unmanned aerial systems to 

generate focused trajectories about one or more areas of 

interest for non-uniform sensor data collection. The 

technique described in this paper uses a coordinate 

transformation that augments the work space with a 

temporary, virtual space in which existing path-planning 

and control algorithms can be used to provide uniform 

coverage. Transforming back to the original work space 

forces the planned trajectories to focus on regions of 

interest. We illustrate the application to precision 

farming, where regions of interest in a crop field 

correspond to stressed crop health. When collecting 

aerial survey data, we seek to have a higher density of 

sensor data in areas of interest (e.g., RGB images, 

multispectral images, etc.). The technique presented in 

this paper offers a method for concentrating sensor 

measurements around these regions of stressed crop 

health for one or more vehicles. In agricultural domains 

with multiple regions of interest, a Voronoi partitioning 

algorithm partitions the operating area into individual 

regions in which the augmented path-planning technique 

is applied. The path-planning in each region takes into 

account the resources available—i.e., vehicles with larger 

sensor footprints are assigned to larger regions and 

execute trajectories that are more broadly spread as 

compared to vehicles with smaller sensor footprints. 

Theoretical results are applied to commercial off-the-

shelf unmanned systems, both in simulation and in a fully 

realized precision agriculture demonstration field 

experiment. 

 

TABLE OF CONTENTS 

1. INTRODUCTION ..................................................... 1 

2. PROBLEM FORMULATION ..................................... 2 

3. TRANSFORMATION TO AND FROM THE 

AUGMENTED PLANNING SPACE ................................. 3 

4. DETERMINING VEHICLE FLIGHT PATHS ............... 4 

5. PARTITIONING SPACE BASED ON REGIONS OF 

INTEREST ................................................................... 5 

6. APPLYING TO COTS VEHICLES ........................... 6 

7. FLIGHT RESULTS................................................... 7 

8. CONCLUSIONS ..................................................... 10 

ACKNOWLEDGEMENTS ........................................... 10 

REFERENCES ........................................................... 10 

BIOGRAPHY ............................................................. 11 

 

1. INTRODUCTION 

The emerging prevalence of unmanned aerial systems 

(UAS) for collecting a wide array of data in many 

different industries increases the need for practical 

methods of utilizing common aerial platforms. In 

industries where data is spread over a large geographic 

area or where an aerial perspective is the optimal data 

set, UAS are a popular choice. For example, UAS in 

the agriculture industry are deployed to fly over a field 

of interest and collect imagery, which is usually 

stitched together to form an orthomosaic image of the 

entire field at a single point in time. The orthomosaic 

can be processed to determine if and where there may 

be areas of poor crop health in the coverage area using 

techniques discussed by Saxena and Armstrong and 

others [1][2]. This approach gives the farmer an 

invaluable asset to their operations—a quick way to 

attain a snapshot of their field with a clear depiction of 

potential problem areas in order to take action sooner 

than previously possible. 

The aerial perspective orthomosiac process is accurate 

to a certain degree, but the accuracy of the resulting 

orthomosiac is highly dependent on the image 

resolution and flight altitude when collecting input 

imagery [3]. The accuracy (as low as 1.25 m error over 

a 2.1 km2 area) is such that using the resulting imagery, 

one can determine a farm’s compliance with various 

conservation buffers and other agricultural 

conservation efforts in a region [4][5][6]. Farmers who 

prove compliance with these conservation efforts 

receive a number of tax benefits, and UAS can provide 

a faster, cheaper alternative to overhead satellite 

imagery or manned aircraft solutions. In addition to 

RGB orthomosaics, we use NDVI to gain valuable 

insights into the health of the field and estimate yield 

[7][8]. The NDVI values across an image have a strong 
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correlation with the actual yield of the field—i.e., 

healthier crops exhibit a higher NDVI value and 

typically produce a higher yield. The opposite is true 

with crops that exhibit a lower NDVI value [9][10]. 

There are limitations, however, that come with the use 

of UAS. Common commercial off-the-shelf (COTS) 

unmanned systems, while affordable and readily 

available, typically struggle to cover the acreage 

occupied by an average farm. As an example, the 

average farm size in the United States is 

approximately 434 acres, and the average farm size in 

the state of Virginia is 180 acres [11]. Even the smaller 

Virginia farms are difficult to cover with one vehicle 

without numerous battery changes. Due to their 

endurance and range limitations, it becomes 

imperative to maximize their time aloft on the task at 

hand. In the agricultural case, the task is to collect 

aerial imagery that ensures coverage of areas of 

stressed crop health while also maximizing the 

coverage of the field under survey. Conventional 

coverage path-planning methods do not take into 

account regions of interest, and instead cover the entire 

space. 

This paper presents a method to plan vehicle paths that 

focus on a region of interest defined by a single point, 

e.g., at the centroid of the region. The resulting path 

covers the entire space while also ensuring important 

regions are covered more densely. The farmer receives 

a processed aerial image set of their field that has 

identified potential areas of poor crop health. Further, 

the assessment accuracy is greater in the regions of 

interest, due to increased image overlap. The method 

presented in this paper is a specialization of the 

methods presented by Sydney and Paley for 

multivehicle coverage of a nonstationary 

spatiotemporal field [12]. 

In the case of multiple regions of interest in the same 

operating space, it is beneficial to use multiple UAS 

platforms to cover the entire space and to ensure the 

regions of interest are adequately covered. We propose 

to partition the operating space using the regions of 

interest as inputs to a Voronoi partitioning algorithm. 

A Voronoi partition is generated using a pre-specified 

set of points and, for each point, a region is found 

consisting of all points closer to that point than any 

other in the set [13]. Work has been done exploring 

load sharing and path planning using Voronoi 

tessellations specific to UAS applications. In military 

applications, we often don’t want or need multiple 

UAS in the same airspace. Therefore, the operational 

space is divided into separate regions and each agent 

is tasked to stay within its own region [14]. Once we 

have individual regions for each aircraft, path planning 

in each individual Voronoi region can follow typical 

path-planning architectures [15].  

The path-planning method described in this paper is 

applied such that each vehicle focuses its trajectories 

in a Voronoi partition defined by a point of interest, 

and the paths generated are simple lawnmower survey 

patterns. In an operational sense, farmers provide 

initial points of interest in their fields to be used as 

inputs to the partitioning and path-planning 

algorithms.  

The contribution of this paper is a path-planning 

method that generates vehicle trajectories aimed at 

tackling real-world data-sampling problems in the 

agricultural industry. Results are illustrated in 

simulation and onboard actual COTS aircraft in a fully 

realized flight operation. A graphical user interface 

(GUI) was developed to generate vehicle trajectories, 

upload them to the aircraft, and perform basic vehicle 

commands (i.e., takeoff, land, perform mission, and 

return to launch). With COTS aircraft and RGB 

cameras, we show that the algorithm presented 

outperforms typical survey patterns when detecting 

image keypoints, matched keypoints, and 3D points 

observed in overlapping images.  

The paper outline is as follows. Section 2 formulates 

the path-planning problem, focusing on agricultural 

applications. Section 3 outlines the overall procedure 

and equations used to transform the space to and from 

the planning domain. Section 4 briefly describes the 

method used to determine the flight paths for the UAS. 

Section 5 presents a partitioning scheme applicable to 

multi-vehicle operations consisting of multiple 

regions of interest. Section 6 discusses implementation 

onto COTS UAS platforms and subsequent flight 

operations carried out over a representative farm field. 

Section 7 summarizes the paper and ongoing work. 

 

2. PROBLEM FORMULATION 

Agricultural operations are typically broken down by 

individual fields—rarely does an action apply to every 

acre of a farm. An individual field is defined by three 

or more latitude and longitude coordinate pairs 

converted to (x, y) in meters to form a convex polygon. 

We convert the (x, y) coordinate pairs from Cartesian 

coordinates to the complex plane, which is useful 

when performing the transformations described in 

Section 3 to and from the planning space. 
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Points of interest are defined by a single latitude and 

longitude pair. For this work, this coordinate pair is 

located roughly at the centroid of an area of interest, 

which ensures the resulting path covers the full area of 

interest. In the precision agriculture applications 

discussed in this paper, the points of interest do not 

need to be exactly positioned because they represent a 

region of potentially poor crop health, which is 

generally not well localized.  

Figure 1: An example of a simple lawnmower 

search pattern with points of interest denoted in 

green.  Not all of the regions are adequately 

sampled by the flight pattern. 

With the field boundary and points of interest now 

defined, we proceed to plan a path to adequately cover 

the entire space. However, typical survey patterns 

potentially miss some important data or may not 

collect sufficient data about problem areas in the 

operating space. Figure 1 illustrates what a typical 

lawnmower flight pattern looks like in a rectangular 

field. Notice how the flight pattern fails to concentrate 

measurements on regions of interest. One solution is 

to create a uniform flight pattern denser than before, 

as depicted in Figure 2. A dense survey ensures that all 

points are adequately sampled, but is not always 

possible due to the endurance limitations of various 

COTS UAS.  

Figure 2: A dense survey pattern captures all of 

the points of interest, but is not necessarily 

feasible due to energy and/or time constraints. 

The following assumptions are made in this work. 

First, all boundaries are convex in shape. This 

assumption simplifies the path-planning portion of the 

work, and helps with the real-world agricultural 

implementation. Also, the COTS vehicles are multi-

rotor platforms. This assumption allows greater 

flexibility in path-planning, as multi-rotors can make 

sharp turns and reach a wide variety of spaces that 

fixed-wing platforms cannot. However, the methods 

described in this paper can also be applied to fixed-

wing platforms, with the caveat that the resulting 

trajectories would have to be smoothed and additional 

considerations taken to ensure a safe airspace.  

 

3. TRANSFORMATION TO AND FROM THE 

AUGMENTED PLANNING SPACE 

The ideal survey path balances endurance and sample 

density. Such a flight pattern may focus on a point of 

interest while remaining spread out in regions of less 

interest. To define such a pattern, consider the 

following procedure:  

 

1. Define (complex) boundary vertices; 

2. Transform the boundary into the augmented 

space, i.e., the R-domain; 

3. Define a planning grid in the R-domain; 

4. Define a uniform survey path from the 

planning grid; and 

5. Transform the survey path back to the 

original space, i.e., the r-domain. 

 

The set of points that define the boundary in the 

complex plane can also be expressed in polar 

coordinates: 

 

𝑍 = 𝑥 + 𝑖𝑦 (1) 

(𝑥, 𝑦) = (|𝑍|cos𝜃, |𝑍|sin𝜃) (2) 

|𝑍| = √𝑥2 + 𝑦2 ;  𝜃 = arctan (
𝑦

𝑥
) (3) 

 

Next, transform the boundary points into an 

augmented space such that angles are preserved, and 

the distance from the point of interest (POI) is 

decreased. The augmented space, i.e. the R-domain, is 

defined by the following transformation: 

 

|𝑅| = 𝑚|𝑍 − 𝑃𝑂𝐼|𝑝 (4) 

∠𝑅 = ∠(𝑍 − 𝑃𝑂𝐼) (5) 

𝑅 = |𝑅| cos(∠𝑅) + |𝑅| sin(∠𝑅) 𝑖, (6) 

 

where |R| is the magnitude of the point in the 

augmented space and ∠𝑅 is the argument of the point 
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in the augmented space. Notice that |R| and ∠𝑅 are 

calculated with respect to POI. If the POI is the origin, 

then space is warped about the origin; otherwise shift 

the transformation center to the POI.  

 

The constants 𝑚 and 𝑝 are factors that drive the 

amount of augmentation that occurs. The constant 𝑝 is 

defined by the user to vary the amount of warping 

about the point of interest. The smaller the value, the 

more the resulting path will be concentrated about the 

POI. The value must be positive, non-zero, and less 

than one to act as a sink towards the POI. A value 

greater than one acts as a repulsive force away from 

the POI. The p constant has a nonlinear effect on path 

distortion, in that it has a larger effect the closer the 

path is to the POI. The constant 𝑚 = 10(1−𝑝) has a 

uniform effect on the path contraction, i.e., the effect 

is the same over the entire planning space.  

 

At this point, we have the augmented space in which 

to plan a vehicle path. Determining the path will be 

discussed in more detail in Section 4. In short, the 

planned path is made up of a set of points in the 

complex plane that form a lawnmower-style path. The 

final step is to transform the augmented boundary and 

the planned path from the augmented space back to the 

original space, i.e., the r-domain. Note that we convert 

the waypoints in the augmented space, denoted 

by 𝑊𝑃, back to the original complex space, denoted 

by 𝑤𝑝. 

 

|𝑟| = (
1

𝑚
) |𝑅|

(
1
𝑝

)
+ 𝑅𝑒(𝑃𝑂𝐼) (7) 

∠𝑟 = ∠(𝑅) + 𝐼𝑚𝑎𝑔(𝑃𝑂𝐼) (8) 

𝑟 = |𝑟| cos(∠𝑟) + |𝑟| sin(∠𝑟) 𝑖 (9) 

|𝑤𝑝| = (
1

𝑚
) |𝑊𝑃|

(
1
𝑝

)
+ 𝑅𝑒(𝑃𝑂𝐼) (10) 

∠𝑤𝑝 = ∠(𝑊𝑃) + 𝐼𝑚𝑎𝑔(𝑃𝑂𝐼) (11) 

𝑤𝑝 = |𝑤𝑝| cos(∠𝑤𝑝) + |𝑤𝑝| sin(∠𝑤𝑝) 𝑖 (12) 

 

 

Figure 3: Transformation to and from the R-

domain, the augmented planning space. 

Figure 3 shows the results of the above process, not 

including the vehicle path. Notice the difference in 

axis scales, which is a result of the scaling and warping 

by the m and p values. On the left, note that the 

boundary is warped outward about the origin. The 

figure on the right shows the original space: observe 

that the grid is concentrated towards the point of 

interest at the origin. Figure 4 shows the same process 

with a point of interest other than the origin.  

 

 

Figure 4: The transformation applied to a point of 

interest other than the origin. 

 

4. DETERMINING VEHICLE FLIGHT PATHS 

Next we determine the vehicle trajectories that cover 

the augmented space. Many coverage algorithms exist 

[16][17], but the one most typically implemented for 

COTS UAS is the so-called lawnmower pattern. In this 

application, we implement a lawnmower pattern based 

on grid points inside the R-domain boundary. The 

spacing between the grid points is determined by the 

sensor footprint of each aircraft—the larger the sensor 

footprint, the more spread out the grid will be and, 

subsequently, the more spread out the flight pattern is. 

 

To define the grid in the 𝑅-domain, define a minimum 

bounding box to encompass the augmented boundary. 

In that minimum bounding box, define a mesh grid of 

points with the spacing as defined above and find the 

points in that mesh contained in the polygon defined 
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by the transformed boundary points in the 𝑅-domain. 

Figure 5 illustrates this step. 

 

Using the grid points as proxies for vehicle waypoints 

defines a lawnmower pattern. Connect the points in 

order to create the path. Notice how the resulting path 

is focused on the point of interest. The point of interest 

acts as a sink, pulling the flight pattern inward.  

 

 

Figure 6: Planned paths in the R-domain (left) and 

the r-domain (right). Note that the resulting path 

in the r-domain is concentrated about the point of 

interest while still covering the entire r-domain. 

 

5. PARTITIONING SPACE BASED ON REGIONS 

OF INTEREST 

Now that we have a method for concentrating a flight 

pattern about a point of interest, we consider the multi-

vehicle applications of this approach. The use case 

envisioned here is when the user has a boundary that 

encompasses multiple regions of interest. For 

example, each region of interest represents a region of 

potentially poor crop health, defined as a single point 

of interest.  

 

With the boundary points and the points of interest 

defined, we partition the operating space into smaller 

spaces, each corresponding to a point of interest 

assigned to a vehicle. For this, we implemented a 

modified Voronoi partitioning algorithm in Python 

[18]. A Voronoi diagram partitions a plane into 

regions based on the distance to a set of predefined 

points. A typical Voronoi diagram has partitions with 

non-closed boundaries (i.e., boundary edges that go to 

infinity). The algorithm used here finds the 

intersections of these infinite lines with the user-

defined boundary to close the Voronoi cell into a 

convex polygon. If the user-defined boundary is not 

rectangular, a minimum bounding box is used instead. 

Points of interest are defined by the user and input to 

the Voronoi algorithm. The output of the resulting 

Python script for three points of interest is shown in 

Figure 7. 

 

Figure 7: Results of the Voronoi algorithm for 

three points of interest. 

The Voronoi cells defined in Figure 7 are convex 

polygons that are used as inputs to the path-planning 

algorithm. Using the same points of interest and 

boundaries yields the results shown below in Figure 8. 

These results assume each vehicle has the same sensor 

footprint, and therefore the planned paths have the 

same spacing between legs.  

Figure 5: A grid in the minimum bounding box 

containing the augmented boundary. The points inside 

the polygon box represent the path-planning grid. 
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Figure 8: Applying the path-planning method to 

each Voronoi cell. 

6. APPLYING TO COTS VEHICLES 

The overall intention of this work is to tackle the real-

world problem of determining more useful flight 

patterns for COTS UAS in precision agriculture 

applications. The methods defined in the previous 

sections were integrated with several common UAS on 

the market at the time of publication. The targeted 

aircraft are those that implement the open-source 

MAVLink Micro Air Vehicle Communication 

protocol, such as the 3DR Solo or other aircraft driven 

by the Pixhawk autopilot. (At the time of this writing, 

a Python API labeled DroneKit [19], has been 

developed by 3DR to interface with MAVLink 

enabled aircraft.) 

 

We ported the MATLAB path-planning code into 

Python so that the software is run entirely in the same 

environment. In addition, implementing the source 

code in Python gives the flexibility to interface with a 

wide array of other software languages and 

applications. With the entire source code in Python, 

interfacing with the DroneKit Python API is seamless. 

The API allows us to connect to a MAVLink-enabled 

aircraft and upload a mission to the aircraft. Using the 

Python scripts, we save the planned paths in a format 

readable by the aircraft. Once the path is converted to 

a usable format, we connect and upload to the aircraft.  

 

A Graphical User Interface (GUI) was developed to 

help visualize the operating space and planned paths 

for each aircraft. Leaflet [20], an open-source mapping 

toolbox, was used to visualize the fields and flights. 

The GUI, depicted in Figure 9, allows a user to quickly 

change the values for the p and m constants, as well as 

the grid spacing. For the GUI in this work, the grid 

spacing is the number of passes that the aircraft will 

take according to the size of the sensor footprint.  

 

The GUI also allows the user to quickly change the 

path direction from North-South to East-West. It uses 

the Python software developed to generate the paths 

for each vehicle, with two modifications made with 

Figure 9: Vehicle paths generated for three MAVLink-enabled COTS UAS. The hot spots are displayed with 

a marker icon, and the three paths are warped towards each hot spot. 
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real-world flight operations in mind: first, as we move 

away from a hot spot, the sink effect it has on the path 

is less pronounced because we only care about 

augmenting the path when the camera footprint is able 

to capture the region of interest. This results in a 

decaying effect of the pull by the hot spot on the 

vehicle path. The second modification is to account for 

non-rectangular boundaries. With a non-rectangular 

boundary, we find a minimum bounding box to plan 

the vehicle paths and discard waypoints that do not lie 

in the original non-rectangular boundary.  

 

The methods developed in this work were 

demonstrated onboard a fully realized aircraft 

implementation. Using multiple 3DR Solo platforms, 

we were able to plan a path for each aircraft using the 

above methods, upload the paths to each vehicle, and 

collect aerial imagery over a plot of farmland in the 

Tappahannock, Virginia area. The vehicle paths for an 

October, 2016 flight are shown in the GUI screenshot 

in Figure 9. All three vehicles to completed their 

portion of the overall survey in approximately 20 

minutes. The vehicle denoted by the red path covered 

approximately 4.9 acres, whereas the vehicles denoted 

by the blue and black paths covered approximately 5.1 

and 5.4 acres, respectively. In total, the imagery 

collected by the three aircraft covered approximately 

15.4 acres. 

7. FLIGHT RESULTS 

The vehicle paths shown in red, blue, and black in 

Figure 9 were loaded onto three 3DR Solo quadcopters 

and flown autonomously with no pilot input. Note that 

the red, blue, and black boundaries combine to form 

the minimum bounding box of the non-rectangular 

boundary shown in yellow. The paths are first planned 

using the hot spots and the minimum bounding box, 

then the paths are trimmed of any waypoints not 

contained in the non-rectangular boundary of interest. 

Also note that the survey pattern legs farthest from the 

hot spot are straight instead of pulled towards the hot 

spot. The resulting stitched RGB orthomosaic is 

displayed below.  

 

 

Figure 10: RGB orthomosaic resulting from 

multi-vehicle flight operations. 

The orthomosaics for this work were created using the 

Pix4D image stitching cloud software using the 

geotagged images resulting from each survey pattern. 

For each orthomosaic, we look at various key statistics 

of the stitching process and resulting calibrations. 

Specifically, we look at the mean and median number 

of keypoints per image, the median matched keypoints 

per image, and the number of 3D points observed in 

two overlapping images. We also look at the average 

point density (per m3) of the resulting point cloud as a 

measure of point cloud accuracy. The stitching process 

metrics for the orthomosaic in Figure 9 outperform 

almost every corresponding metric for an orthomosaic 

generated from a typical survey pattern over the same 

area with comparable flight times. Figure 10 shows the 

resulting metrics from the stitching process for each 

flight. 

 

A higher number of keypoints per image typically 

means that we can match a higher number of keypoints 

between multiple images. The stitching process is 

more accurate with more matching features between 

images. Therefore, the higher the number of matching 

keypoints, the higher the accuracy will be for the 

resulting orthomosaic. Also, a higher number of 

matched keypoints typically results in a higher number 

of 3D points observed in overlapping images, which 

improves the accuracy of a point cloud generated from 

the same image data.
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The same analysis was performed for a rectangular 

boundary with a single aircraft. We flew a typical 

survey pattern in a small area followed by an 

augmented survey pattern in the same area, shown in 

Figure 12. The results of those flights are detailed in 

Figure 13. Again, we see that the augmented pattern 

has a higher mean and median amount of keypoints 

detected per image. We also see that the number of 

matched keypoints per image is increased, and in this 

case the number of 3D points is also increased. These 

metrics apply for the entire flight pattern, so the overall 

accuracy over the entire orthomosaic will be improved 

using the augmented survey pattern. The overall 

improvement is driven by a larger improvement in the 

region of interest compared to a typical survey pattern. 

For this testing, the imagery collected by the vehicle 

covered approximately 1.16 acres. 

 

Figure 12: (TOP) Typical survey pattern with the 

resulting orthomosaic. (BOTTOM) Augmented 

flight pattern with the resulting orthomosaic. 

 

Figure 11: The augmented survey typically collects more keypoints, matches more keypoints, and observes 

more 3D points than a typical survey pattern in the same region of interest. 
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Figure 13: The augmented survey slightly outperforms the typical survey pattern on a smaller flight area. 

This particular implementation was not without its 

limitations. Unfortunately, we could not guarantee that 

the images collected over the resulting flight plans 

would be of sufficient quality to be used in the image 

stitching process. Examining Figures 9 and 10, we see 

that portions of each flight trajectory are curved. What 

this means is that the vehicle will be maneuvering 

throughout that portion of the trajectory. In this test, 

the vehicles were moving slow enough so that they 

only had to yaw to initiate a turn. However, even with 

a simple yaw, there is some variation in the roll and 

pitch of the aircraft which can skew some of the 

images. This occurs mostly at the edges of the flight 

patterns when the aircraft is turning around as the yaw 

is larger in magnitude. The result is that the images 

collected on the edge of the space often do not provide 

sufficient enough data for the orthomosaic process and 

we see a clipping or tearing effect (see the bottom of 

Figure 10).  

 

Camera field of view (FOV) is an important aspect of 

flight planning to ensure that the imagery collected 

will have sufficient overlap for orthomosaic 

generation. In this work, to be consistent, we flew all 

flight profiles from an altitude of 19 meters (or 62.34 

feet) and used a GoPro HERO4 Black camera [21]. 

The Hero 4 Black flown at 19 meters gives a FOV of 

approximately 39 m x 29.3 m. In any flight profile, we 

want to ensure that there is sufficient overlap in 

enough of the images to give us better accuracy when 

generating an orthomosaic [22]. For the purposes of 

this work, we aimed to have roughly 60%-75% 

overlap between legs of a normal survey pattern in 

both the horizontal and vertical dimensions. 

 

Figure 14: (TOP) Veritcal and Horizontal overlap 

defined, with direction of flight shown in blue. 

(BOTTOM) Image overlap about the point of 

interest increases due to the augmented flight 

pattern. A drawback is the loss of sufficient 

overlap in the outer regions of the flight pattern. 

In Figure 14 (TOP), we define vertical overlap as the 

overlap between subsequent images in the direction of 

travel for the UAS. Horizontal overlap is the overlap 

between images in adjacent legs in a typical survey 

pattern. Figure 14 (BOTTOM) shows an example 

FOV overlaid on portions of the flight patterns from 

Figure 12. We can see that the augmented flight 

pattern with the same number of images in a region 

sees more image overlap over the POI than a typical 
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survey pattern. One drawback of this particular 

implementation is shown in the bottom left-hand 

region of Figure 14, where we lose some horizontal 

overlap between survey legs in portions of the flight 

pattern that become spread out due to the effect of the 

POI. 

 

8. CONCLUSIONS  

We present a path-planning method tailored for 

unmanned aerial systems that generates a vehicle path 

focused about a region of interest. A coordinate 

transformation is used to determine an augmented 

planning space that can be uniformly sampled by 

existing planning techniques. When transformed back 

into the original domain, the vehicle paths tend to be 

concentrated about the region of interest, resulting in 

a denser sampling by sensors onboard the vehicle. In a 

multi-vehicle operation, the operating space is 

partitioned based on the regions of interest and 

available vehicle resources by a Voronoi partitioning 

scheme. The methods described in this paper are 

implemented into a precision agriculture operating 

environment consisting of several COTS UAS. We 

show that the augmented algorithm can provide more 

keypoints per image and subsequently more matched 

keypoints than a typical survey pattern, which result in 

orthomosaics with higher accuracy. We also show that 

more keypoints also typically result in more 3D points 

observed in overlapping images, and ultimately 

provide more accurate point clouds, particularly in the 

region of interest. Concentrating the flight patterns 

towards a region of interest improves the orthomosaic 

accuracy in the region of interest; preserving a typical 

survey pattern as we move further from a region of 

interest helps keep the flight times comparable to a 

typical survey.  

In ongoing work, we are exploring the capabilities of 

other path-planning algorithms and sensors applied to 

the agricultural domain. Optimizing the planned 

vehicle paths in response to available resources and 

operating space geometry is the subject of future work, 

along with methods to reduce image artifacts resulting 

from dramatic shifts in vehicle orientation. Future 

work will also explore modifications to the algorithm 

presented to help mitigate the loss of horizontal image 

overlap in portions of the flight path that are further 

away from the point of interest.  
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