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ABSTRACT
We consider a competition between two swarms of aerial ve-

hicles, where multiple intruder vehicles try to approach and then
leave an area that multiple guardian vehicles are protecting. Pre-
existing swarming strategies for the guardians to maximize the
probability of capturing a single intruder are summarized. This
work considers the case where multiple intruders approach the
protected area sequentially with varied time intervals, to study
the impact of intrusion frequency on the probability of capture. In
addition, we formulate a payoff function treating the competition
as a zero-sum game, and use this function to design strategies
for the intruders, i.e., how to optimize the time interval between
intrusions. We propose an intrusion strategy and demonstrate its
performance with numerical simulations.

INTRODUCTION
Pursuit-evasion games involve many different variations de-

pending on the assumptions made on the pursuer, evader (or tar-
get), and the environment. Taxonomy and surveys of the research
in the field have been presented, for example, in [1] and [2]. In
the past decade, pursuit-evasion problems that involve multiple
players are gaining increasing research interest. For example,
strategies to encircle a target with a team of pursuers are pro-
posed in [3, 4]. From the evasion perspective, the optimal strate-
gies for multiple interacting agents have been studied too [5].

Although the aforementioned works consider strategies for
a group of agents against a single agent, there are also studies

of the competitions between two groups of agents. For example,
the multiplayer reach-avoid game deals with a scenario where
one group seeks to reach an area quickly while the other group
tries to delay or prevent it [6–8].

One example of a reach-avoid game is the so-called Capture-
the-Flag (CTF) [9]. In this game, each team owns a flag, and
their goal is to capture the opponent’s flag and safely return.
This game has a pursuit-evasion aspect, since an agent can be
intercepted by its opponent in the opponent’s territory. How-
ever, the capture-the-flag problem is very complex because it also
involves an attacking-defending aspect and, possibly, switching
of the agent roles, as well as the assignment problem to decide
which agent should pursue which opposing agent. Some works
have tackled this complex problem by combining the tools from
differential games and graph theory [6, 9], whereas some other
works made some simplifying assumptions on the attackers’ dy-
namics and used optimization techniques [7, 8].

Agent dynamics are typically modeled as first order (i.e.,
control input is velocity) and target capture is often defined
by interception (i.e., distance becomes sufficiently small) [6–9].
In contrast, we previously considered a related problem from
a dynamics perspective, inspired by the swarming behavior of
mosquitoes [10, 11]. Male mosquitoes aggregate and form mat-
ing swarms to attract female mosquitoes that fly faster than the
males. When the female enters the swarm, a male’s pursuit
behavior is triggered when the distance to the female becomes
small, which we call a close encounter. After the pursuit phase,
the male and female exhibit coupling flight during which they fly
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in approximately the same direction [12]. For a male to achieve
coupling flight, simply intercepting a female is insufficient; he
also has to align his velocity with the female. Since the female
flies faster than a swarming male, a male has to accelerate af-
ter the close-encounter in order to successfully track the female.
Therefore, the mosquito pursuit is modeled by agents with vari-
able speed.

The combination of limited perceptual range, target track-
ing instead of interception, and the dynamical model of the agent
raises the importance of quick response, i.e., when a male de-
tects a female, it has to speed up and match the velocity of a
fast female before the female escapes from the male’s perceptual
range. Inspired by these characteristics, we previously consid-
ered the scenario in which multiple guardians with limited per-
ceptual range and bounded acceleration are deployed to protect
an area from an intruder [13, 14]. We focused on the guardian’s
side and proposed various swarming strategies to increase the
probability of capturing the intruder.

This work considers the scenario of a zero-sum game be-
tween a guardian team and an intruder team. We pit intruder
strategies against the guarding strategies considered previously.
The contributions of this work are (1) formulation of a novel
pursuit-evasion game involving multiple intruders and guardians;
(2) theoretical predictions of the outcome of the game; and (3)
the design of intrusion strategy and its demonstration with com-
puter simulation. The problem studied in this work can be ap-
plied to a situation where multiple vehicles are deployed to en-
force a no-fly zone, for the application to drone countermeasures,
or for convoy protection. This work may also provide a guideline
in selecting the capabilities of the vehicles for such applications,
and provide a methodology to fully utilize those capabilities.

PROBLEM FORMULATION
Consider a planar system of point particles with unit mass

representing NP guardians and NT intruders (we use the sub-
scripts T and P to denote the intruder/target and guardian/pursuer,
respectively). The intruders seek to pass through (approach and
then safely leave) a region that is protected by the guardians.
Figure 1 illustrates the case with only one intruder. The timing
and the direction of the intruder trajectories are unknown to the
guardians. Once the intruder enters the perceptual range of a
guardian, the roles of the agents change—the intruder becomes
a target and the guardian becomes a pursuer. The goal of the
pursuer is to capture the target (i.e., approach the target and stay
close to it).

Agent Dynamics and Sensing Capabilities
Consider the case where the protected region is sufficiently

small to be approximated as a point O. Let O to be the origin
of the inertial frame; ri, vi, and ai denote the position, velocity,
and acceleration of particle i in the inertial frame. The guardians

have second-order dynamics, i.e., ṙi = vi and v̇i = ai. In addition,
assume the following capabilities of the guardians:

(A1) the magnitude of the guardian’s acceleration is bounded
according to ‖aP‖ ≤ umax; and

(A2) each guardian perceives the position and velocity of all
other agents within the range ρa.

Based on the perceptual range ρa, consider target capture defined
as follows.

Definition 1. Let rT/P = rT −rP denote the relative position of
the target with respect to the pursuer. Target capture is successful
if there exists tcap such that ‖rT/P‖< ρa, for all t > tcap.

This definition requires the guardian to track the target, in con-
trast to target intercept where distance condition has to be satis-
fied only instantaneously [6–9].

We also introduce another perceptual range that determines
when the pursuit behavior is triggered:

(A3) Each guardian becomes a pursuer once the distance to an
intruder becomes less than ρp, which we call the close-
encounter distance.

Note that the parameter ρp permits two interpretations. First, it
can be interpreted as the limitation of the guardians to distinguish
between a friendly guardian vehicle and the intruder, i.e., if ρp <
‖r j/i‖ < ρa, guardian i does not know whether an agent j (in
its perceptual range) is an intruder or not. Second, ρp may be a
control parameter that the guardian can choose: i.e., the guardian
will ignore the intruder unless it gets closer than the distance ρp.
In either case, the value of ρp will not exceed ρa.

For the intruder’s motion, assume the following:

(A4) Each intruder approaches O at their maximum speed
‖vT‖= vT on a straight path.

In other words, their trajectories are straight lines that pass
through O. Assume that the intruders do not react to the
guardians by changing its direction of motion. Although it seems
that the intruders’ behavior is highly restricted, the next section
shows that they still have certain degrees of freedom in planning
how they intrude O, by modifying the timing and the direction of
their arrival.

Strategy Sets
The intrusion-capture problem can be separated into two

parts. The first is the swarming phase in which the guardian
does not know where the intruder is. Once the intruder enters
the circle with radius ρp around a guardian, the pursuit phase
starts. The continuous strategy set for each guardian is the com-
manded acceleration ai during the above two phases, which were
the main focus of previous work [13, 14].
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FIGURE 1. Illustration of the intrusion and pursuit scenario. In the swarming phase, an intruder (red) is approaching the protected region (green).
The guardians (with static formation here for clarity) are deployed to wait for the intruder. Once the intruder enters the perceptual range, the guardian
turns into a pursuer and the intruder becomes the target.

The success of target capture depends on how quickly a
guardian can respond (i.e., close the distance and match the ve-
locity) to the intruder once it is in perceptual range ρp. If the
response is too slow, then the target will escape from the range
ρa. Previous work [13] showed the importance of the swarming
phase for guardians’ success, and proposed strategies for how
they should prepare for the intruder to maximize the probability
of target capture.

This work focuses on the intruders’ side, and considers their
strategies as follows. Let t int

j ∈ [t0,∞) and ψ int
j ∈ [0,2π) denote

the time and azimuthal direction that the jth intruder arrives at
O (assuming it is not captured), and let positive number T int

j =

t int
j+1−t int

j denote the time interval between two successive intrud-
ers. The strategy sets for the intruders are Ψint , {ψ j} ∈RNT and
tint , {t int

j } ∈ RNT , i.e., they can manipulate the timing and the
direction that they approach O. We assume that the time of ar-
rival tint is constrained as follows:

(A5) The jth intruder vehicle becomes available for deploy-
ment only after a certain time, which allows it to reach O
no earlier than sint

j (i.e., t int
j ≥ sint

j as illustrated in Fig. 2).

The set sint , {sint
j } is introduced to reflect various time con-

straints, which may exist in practice, for the intruder vehicles to
be ready for deployment, e.g., refueling, repair, or going to a set
position to achieve a given ψ int

j . If there is no such constraints,
one can simply use sint

j = t0, j = 1,2, ...,NT .

Payoff Function
We consider the intrusion-capture competition as a zero-sum

game between intruders and guardians by considering the payoff
function JI and JG =−JI associated to the team of intruders and
guardians respectively. The payoff for the intruder team is the

time

time
tint
1 tint

2

T int
1 T int

2 T int
3 = T int

4 = 0

tint
3 = tint

4 = tint
5

sint
3sint

1 sint
2 sint

4 sint
5

Deployment constraint

Intrusion time

Intrusion interval

FIGURE 2. Illustration of how the deployment constraint sint affects
the choice of intrusion time tint, and how the intrusion interval Tint is
computed from the intrusion time.

sum of the individual payoff for each intruder, i.e.,

JI =
NT

∑
i

Ji, (1)

where Ji is the payoff function associate to ith intruder. (Note
that we occasionally omit the subscript that indicates Ji is for an
intruder. Also note that the payoff for individual guardian is not
defined, because the performance is considered in terms of the
entire guardian swarm.)

The value of Ji is determined as described in the payoff ma-
trix in Fig. 3. Successful intrusion, corresponding to the first row
of the matrix, is the case where intruder i reaches O without be-
ing captured by any of the guardians. (Note, this definition is
independent from the capture that might occur after the intru-
sion.) Once the intruder successfully reaches O, it scores Vint(t),
which is a decreasing function of time defined as follows:

Vint(t) = e−(t−t0)/τ , (2)
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FIGURE 3. Value of individual intruder payoff Ji depending on the
performance of ith intruder and the guardian swarm.

where t0 is the start time of the game and τ is the intruder-payoff
time constant. If the intruder i misses O, or if it is captured by
any of the guardians before reaching O, it does not score Vint(t),
corresponding to the second row of the matrix.

The parameter τ > 0 models the risk of waiting incurred by
the intruder’s team. Consider, for example, the Capture-the-Flag
problem [9] where two teams (A and B) divide their members
into offensive and defensive players. The problem studied in
our work can be considered as the competition between team
A’s offensive players (intruders) and team B’s defensive players
(guardians). In this case, there is another identical game played
simultaneously where team A is guarding their flag against team
B’s offensive players. The decaying payoff Vint(t) with the time
constant τ quantifies the risk that A’s flag is attacked by B within
the duration of time t− t0.

The use of an exponential function in (2) is inspired by
the Poisson distribution (see Appendix), which is often used to
model the probability of an event occurring in a fixed interval
of time (e.g., an earthquake, or a customer entering a store).
In our problem, we are modeling the attack from B’s offensive
players as a Poisson process, i.e., the probability that A’s flag is
not attacked by B decays exponentially. Furthermore, with this
Poission-process assumption, the time constant τ corresponds to
the expected time interval between successive attacks from B.
Therefore, higher risk on team A (intruder’s side) can be mod-
eled by a smaller value of τ , i.e., faster decay in Vint(t). Note, if
the game is one sided and A does not have to defend their flag,
then the constant can be set to τ = ∞ so that Vint(t)≡ 1.

Next, consider the performance of the guardian swarm. If
any of the guardian captures the intruder i, then the guardian
swarm scores η > 0 (equivalently, the ith intruder scores −η),
which corresponds to the second column in Fig. 3. Note that
capture may be before or after the intrusion. The parameter η
describes the penalty on the intruder swarm to lose its vehicles.
Depending on the value of η , the scenario can be categorized
into the following three cases:

η = 0: Pure guarding scenario. Guardians cannot win the
game, but they lose unless they capture every tar-
get before intrusion.

0 < η < 1: The payoff Ji = Vint(t)−η , which corresponds to
capture after intrusion, changes its sign from posi-

tive to negative during the game.
η > 1: The payoff Ji = Vint(t)−η is already negative at

the beginning of the game. There is no benefit
for intruders to approach O unless they can escape
without capture.

Various intrusion-capture scenario can be modeled by the
proper choices of parameter η and τ . As one example, consider
a scenario where guardian vehicles are protecting an area against
bombers or missiles. What happens after the intrusion is not so
important (guardians have to capture the intruders before they
attack the area), so we use η � 1 for this case. Another ex-
ample is the scenario where intruders are manned aircraft for a
reconnaissance mission. The penalty for losing a vehicle will be
particularly high if it is manned, so we use η > 1 for this case.
Consequently, intruders will only attempt to approach if proba-
bility of capture is sufficiently low. The other parameter τ can be
chosen to model how sensitive the intruder’s mission is to time.

GUARDIAN STRATEGY
This section briefly summarizes our previous results on

the analyses of the intrusion-capture problem, and guardian’s
swarming strategies [13, 14]. First, we introduce nondimen-
sional parameters that describe which swarm (guardians or in-
truders) has the advantage in terms of their capabilities (i.e., dy-
namics and sensing). Second, we introduce guardian’s swarming
strategies, which we use as the baseline to test various intrusion
strategies in the following section. Readers are also referred to
[https://youtu.be/Cnz75WZ88rI] for an illustration of prior ex-
perimental results.

Nondimensional Parameters
Considering the individual encounter of a guardian and an

intruder, the difficulty of target capture is given in terms of the
intruder’s speed vT and the guardian’s capability umax, ρa, and
ρp. To explore this parameter space efficiently, we introduce the
following two nondimensional parameters [13, 14]:

α =
ρp

ρa
and Γ =

2umax(ρa +ρp)

v2
T

. (3)

The first parameter α ∈ (0,1] is the pursuit activation distance,
which describes the ratio between the two perceptual ranges de-
fined in assumptions (A2) and (A3). The second parameter Γ is
the nondimensionalized guardian acceleration, which describes
the ratio between the guardian’s capability and the intruder’s
speed.

A large value of Γ corresponds to the case where guardians
have an advantage, i.e., they can accelerate quickly and/or sense
the intruder from far away. On the other hand, a small value of
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Γ corresponds to the case where the intruder moves so fast that it
is hard to capture. We showed in [13] that Γ > 1 is a necessary
condition for a static guardian to capture the target.

There exist sufficient conditions for target capture when the
guardian’s acceleration during pursuit phase is given by a force
resembling a damped spring attached to the target, i.e., aP =

F(pursuit)
P = crT/P +bvT/P, where c and b are control parameters.

We previously showed that the pursuit is guaranteed if the rela-
tive velocity between the pursuer and the target, vT/P = vT −vP,
at the time of close encounter satisfy the following condition:

‖vT/P‖ ≤ v0, where v0 = vT

√
Γ(1−α)

2
. (4)

(See Proposition 2 in [13] for details.) The condition (4) states
that the guardian’s velocity vP at the time of close encounter has
to be sufficiently aligned with the intruder’s velocity vT to guar-
antee target capture. This condition was also used as a practical
definition for target capture:

Definition 2. Target j is captured if the condition ‖v j/i(t)‖ ≤
v0, where v0 is defined in (4), is satisfied at any point in time with
any guardian i ∈ {1,2, ...,NP}.

Definition 2 gives an instantaneous representation of target cap-
ture, in contrast to Definition 1, which requires the observation of
the system for all t. Swarming strategies to achieve the velocity
alignment even when Γ < 1 was the focus of our previous work,
which we summarize in the next.

Random Swarming Strategy
The two objectives of guardian’s swarming motion are to

(i) maintain high density around O where the intruder passes
through; and (ii) maintain high speed. The first objective in-
creases the probability of encountering a target, and the second
objective increases the probability of satisfying condition (4).

The control law (strategy) for the guardian is described by
the combination of artificial forces that generates the desired ac-
celeration of the agent. The overall forcing on guardian i is given
by Fi = (1−λ P

i )F
(swarm)
i +λ P

i F(pursuit)
i , where the switching pa-

rameter λ P
i ∈ {0,1} takes the value λ P

i = 0 (resp. 1) in the
swarming (resp. pursuit) phase.

The swarming algorithm F(swarm)
i consists of three forces;

central, spacing, and random force, i.e., F(swarm)
i = F(cent)

i +

F(spac)
i + F(rand)

i . The central force F(cent)
i resembling a damped

spring attached to O maintains the cohesiveness of the swarm:
F(cent)

i =−kcri−bcvi, where positive constants kc and bc are the
control gains. The spacing force F(spac)

i , which also resembles
a damped spring, generates attraction, repulsion, and alignment

(a) (b)
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FIGURE 4. Probability of target capture as a function of Kr with NP =

10. Left (resp. right) figure shows the results from random-swarming
(resp. velocity-alignment) strategy [13].

behavior between the agents:

F(space)
i =−ks ∑

j∈S(ρa)
i

(
1− x0

‖ri/ j‖

)
ri/ j−bsvi/ j. (5)

The positive parameter x0 denotes the rest length of the spring,
and the set S(ρa)

i = { j | ‖ri/ j‖ ≤ ρa} consists of all the agents
within the range ρa from agent i. The random force F(rand)

i has
a constant magnitude, ‖F(rand)

i ‖ = Krumax, in a random direction
θi, i.e.,

F(rand)
i = Krumax[cosθi, sinθi]

T , (6)

where Kr ∈ [0,1). The random variable θi is generated by the
random process θ̇ = Wwi, where wi denotes the unit-intensity
white noise, and W > 0 is a parameter describing the inten-
sity. The intensity W determines how much (on average) the
force F(rand)

i changes its direction in each time step. Finally,
the magnitude of F(swarm)

i can exceed the limit umax, in which
case the control is saturated while preserving its direction, i.e.,
Fi = umaxF(swarm)

i /‖F(swarm)
i ‖.

In [13], we focused on the control gain Kr to study how the
random forcing affects the probability of target capture. First we
showed the existence of a trade off between the two objectives
(swarm density and agent speed), i.e., with higher randomness,
guardians acquire higher velocities, but they also spread out and
the swarm density decreases. Then we found the optimal ran-
domness of the swarm for a given set of system parameters Γ

and α . The optimality was considered in terms of probability
of target capture Pcap (see Fig. 4). Note that we did not use the
payoff function JG in our previous work.
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Velocity-Alignment Strategy

The swarming algorithm introduced in the previous section
focused on the individual motion of the guardians. The strat-
egy we introduce in this section, which previously appeared in
[13], has cooperation among the guardians to improve the target-
capture capability. In particular, we consider a collaboration that
is generated from a velocity-alignment behavior.

Consider a one-digit binary signal (i.e., communication
of “Yes” or “No,” instead of a serial communication like
“010010...”) that each vehicle can broadcast to other vehicles
within the range ρa. The signal from vehicle i tells other vehi-
cles whether it is in a regular swarming state or in an alerted
state, which is the union of pursuit phase and velocity-alignment
phase. In practice, the signal can be based on vision or acoustic
sensing received by cameras or microphones, for example.

The algorithm for the velocity-alignment behavior is as fol-
lows. Let S(alert) be the set of guardians that are either in pursuit
phase or velocity-alignment phase. A guardian i in the swarm-
ing phase switches to velocity-alignment phase if it sees any
guardian in the set S(alert), i.e., if the following set is nonempty:
S(align)

i = { j | ‖ri/ j‖ ≤ ρa, j ∈ S(alert)}. The velocity-alignment
phase will terminate in one of the following two ways: (i)
guardian i switches back to the swarming phase when S(align)

i = /0;
or (ii) it switches to the pursuit phase when it encounters the tar-
get, i.e., ‖rT/i‖< ρp.

Additional forcing for guardian i in the velocity-alignment
phase is F(align)

i = ba ∑ j∈S(align)
i

v j/i, which is equivalent to chang-

ing the damping constant bs in the spacing term F(spac) to ba, only
for those guardians in the set S(align)

i . The constant ba (> bs) is
sufficiently large that it dominates the other control terms during
the the velocity-alignment phase.

If the guardian in pursuit phase aligns its velocity to the tar-
get, and if the velocity-alignment interaction propagates through
the swarm, guardians that are far from the target can start mov-
ing in the direction that matches the velocity of the target. This
mechanism allows the guardians to effectively increase their per-
ceptual range ρp to the size of the swarm in order to gain favor-
able initial conditions for pursuit. Simulation results (see Fig. 4
right) showed that the velocity-alignment significantly improves
Pcap if Γ is sufficiently large (Γ > 0.5 for this case), and also that
it works best with crystallized swarm generated with Kr = 0.

The previous work only considered the case with a single
intruder NT = 1. In addition, the capture that occurs before and
after the intrusion were not distinguished. This work addresses
these two aspects with the payoff function JI and the strate-
gies for intruder swarm. The simulation section shows that the
random-swarming strategy outperforms the velocity-alignment
strategy when the intruders use a certain intrusion strategy.

ESTIMATED PAYOFF
This section analyzes the estimated outcome of the game by

making some simplifying assumptions. Let Ne
T , Na

T , and Nb
T be

the number of intruders that escape after intrusion, captured after
intrusion, and captured before intrusion, respectively. Intruders
in each of the above groups score Ji = Vint , Ji = Vint −η , and
Ji = −η , respectively. Note that we do not consider the case
where an intruder misses O and is not captured (the left bottom
entry in Fig. 3). Hence, we have the relation NT =Ne

T +Na
T +Nb

T .
Recalling that Pcap is the overall probability that the intruder

is captured by any of the guardians, we have the relation

Pcap =
Na

T +Nb
T

NT
=

Na
T

NT
+

Nb
T

NT
, Pa +Pb, (7)

where we define Pa , Na
T/NT and Pb , Nb

T/NT to be the proba-
bility of capture after intrusion and before intrusion, respectively.
The probability of escaping (after intrusion) is

Pesc , 1−Pcap = 1−Pa−Pb. (8)

We predict the expected outcome of the game assuming the
following, though these assumptions are not enforced as part of
the game:

(B1) The expected time interval between two intruders, which
we denote by T̄int , is constant throughout the game, i.e.,
T̄int =

1
NT−1 ∑

NT−1
j=1 T int

j .
(B2) The number of intruders NT is sufficiently large that the

game may continue indefinitely.
(B3) The guardians return to the swarm Tcap < ∞ seconds

after the condition (4) is satisfied, so that the num-
ber of guardians protecting O is approximately constant
throughout the game.

(B4) The probabilities Pa and Pb are constant throughout the
game.

Under assumptions (B1)–(B4), the expected number of in-
truders that arrived at O by time t is nT (t) = (t− t0)/T̄int , among
which ncap = PcapnT are captured by the guardians. Therefore,
the estimated payoff associated to the loss of intruder vehicles
are

Ĵη(t) =−ηncap =−ηPcap
t− t0
T̄int

. (9)

(The accent ˆ is used to denote that it is an estimate.) On the other
hand, the estimated score that the intruders gain by successfully
intruding O is

ĴV (t) =
∫ t

t0
(1−Pb)ωint(s)Vint(s)ds, (10)
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FIGURE 5. Expected time history of intruder payoff ĴI(t̃) normalized
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ĴI(t̃∗), for each value of β .

where ωint describes the expected number of intruders that arrive
at O at time s, irrespective of whether they are captured or not.
By assumption (B1), we have ωint = 1/T̄int . Multiplying (1−Pb)
excludes those intruders who are captured before arriving at O,
i.e., only count the intruders who score Vint(s). We compute ĴV (t)
explicitly as follows:

ĴV (t) =
(

1−Pb
)∫ t

t0

e−(s−t0)/τ

T̄int
ds (11)

=
(

1−Pb
) τ

T̄int

(
1− e−(t−t0)/τ

)
. (12)

Let t̃ , (t− t0)/τ denote the nondimensionalized time, λ1 =
τ/T̄int denote the ratio between two time constants, and β =
Pb/Pcap denote the conditional probability that the capture oc-
curs before intrusion. Now, the expected value of the payoff
function JI at time t̃ is described as

ĴI = ĴV + Ĵη = λ1

(
(1−βPcap)

(
1− e−t̃

)
−ηPcapt̃

)
. (13)

Figure 5 shows the expected time history of the payoff ĴI(t̃) for
various values of β , when Pcap = 0.8 and η = 0.5. Since the
penalty η is kept constant while the benefit Vint diminishes with
time, the slope of JI converges to −ηPcap as time goes to infin-
ity. (The validity of this prediction is shown in the simulation
section.)

The figure also highlights the critical points where the in-
truders achieve their maximum payoff. Solving the equation

0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1

=0.2
=0.5
=1.0
=2.0
=4.0

A
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FIGURE 6. Necessary condition for intruder’s win. (Sufficient con-
dition for guardian’s win)

d
dt̃ (ĴI) = 0 for the critical time t̃, we obtain

t̃∗ =− log
(

ηPcap

1−βPcap

)
. (14)

If the quantity inside the logarithm is greater than 1, there does
not exist a critical point t̃∗ > 0 that yields a positive value for
ĴI . In this case, the intruders cannot win the game (see β = 0.8
and 1.0 in Fig. 5), and the optimal strategy for the intruders is
to terminate the game immediately at t̃ = 0 (i.e., no attempt of
intrusion). Therefore, the necessary condition for the intruders
to win the game is

ηPcap

1−βPcap
< 1, (15)

which is depicted in Fig. 6. The top right corner of the figure
corresponds to the case where all intruders are captured before
intrusion, whereas the bottom left corresponds to the case where
all intruders successfully escape after intrusion. To further under-
stand Fig. 6, look at the case with η = 1.0. If the overall capture
probability is Pcap = 1.0 (highlighted as point A), then all of the
captures have to occur after the intrusion (i.e., β = 0) for the in-
truders to win. If the overall capture probability is Pcap = 0.5
(highlighted as point B), then the intruders can win even if all of
the capture occurs before the intrusion (i.e., β = 1.0).

When a positive t̃∗ exists, the critical value of the payoff
function is

Ĵ∗I = ĴI(t̃∗) = λ1λ2

(
λ3

λ2
− log

λ3

λ2
−1
)
, (16)
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FIGURE 7. Estimated optimal intruder payoff ĴI(t̃∗) normalized by
λ1.

where λ2 = ηPcap and λ3 = 1−βPcap. Note that λ2 < λ3 from
condition (6). Also note that λ1 scales the entire Ĵ∗I . By differen-
tiating Ĵ∗I with respect to β , we obtain

dĴ∗I
dβ

= Pcapλ1λ2

(
1
λ3
− 1

λ2

)
, (17)

which is negative for λ2 < λ3. This result suggests that intruders
should minimize β in order to maximize Ĵ∗I . Similarly, differenti-
ation of Ĵ∗I with respect to Pcap gives a negative value, indicating
that Pcap should be minimized as well. The effect of β and Pcap
is illustrated in Fig. 7, which shows Ĵ∗I /λ1 for two values of η .

The intruder team needs to find strategies that minimize both
the overall probability of capture and the conditional probability
that captures occur before intrusion. The relative importance be-
tween the two probabilities depends on the vehicle cost η (i.e.,
the overall probability Pcap is more important than the condi-
tional probability β when η is high). The intruders also have
to estimate when they will achieve their optimal payoff and ter-
minate the game before the payoff starts decreasing.

SIMULATION RESULTS
This section presents simulation results. First, we show how

the probability of capture varies when intruders arrive at different
frequencies. Based on the results, we propose a grouping strategy
that improves the payoff of the intruders.

Effect of Intrusion Frequency
We first show the validity of the estimate ĴI (see (13)) de-

rived in the previous section. Figure 8 shows the time history
of JI from a single run. For this simulation, we used a fixed
intrusion interval T̄int = 3 (i.e., T int

j = 3 for all j). The approach-
ing direction Ψint is a random variable uniformly distributed in
[0,2π). The figure shows that JV asymptotes to a constant value

0 20 40 60 80

-10
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ĴI

JI

J⌘

JV

t0

FIGURE 8. Time history of payoff JI with constant intrusion interval
T int

j = 3 (s).
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FIGURE 9. Probability of capture in multi-intruder scenario. The
dashed lines show the probability of capture before intrusion Pb. (a)
The effect of T̄int tested with fixed intrusion interval. (b) The case with
simultaneous intrusion of NT intruders.

as Vint(t) converges to 0. The estimate ĴI is computed based on
the probabilities Pb and Pa obtained from the simulation. The es-
timate successfully captures the trend of actual payoff JI . How-
ever, since the estimate ĴI is based on the knowledge of Pb and
Pa, it may be calculated only with some uncertainties in practice.

Figure 9 shows the effect of intrusion frequency by simu-
lating two special cases. The first case is when the intrusion in-
terval is constant T int

j = T̄int,∀ j. Here, we specify tint directly
assuming that the deployment constraints are satisfied (we will
consider sint in the next section). The system parameters are cho-
sen as follows: Γ = 0.9, α = 0.5, NP = 10, and NT = 20. Note
that η and τ does not directly affect the probability of capture.
Various intervals are tested against two guardian strategies (ran-
dom swarming and velocity alignment). Figure 9-a shows that
the probability increases as the intrusion interval T̄int increases,
and converges to the value obtained with NT = 1 (see the opti-
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mal Pcap with Γ= 0.9 in Fig. 4). This result demonstrates that the
multi-intruder scenario becomes equivalent to the single-intruder
scenario as T̄int goes to infinity.

Figure 9-a also shows that random-swarming strategy
reaches its maximum Pcap with shorter intrusion interval than
the velocity-alignment strategy. This result indicates that the
random-swarming strategy is more robust in the multi-intruder
scenario. In addition, although the overall Pcap is higher with
velocity-alignment strategy, the probability of capture before in-
trusion Pb (dashed lines) is higher with the random-swarming
strategy. This trend is also true for the second case shown in
Fig. 9-b.

As the second special case, we consider T̄int = 0, i.e., all of
the NT intruders arrive at the same time. The left most datapoint
in Fig. 9-b corresponds to the single-intruder scenario, and there-
fore has the value that matches the right most datapoint in Fig. 9-
a. As the number of target increases, the probability of capture
decreases. The value at NT = 20 (not shown in the plot) will
match the left most datapoint in Fig. 9-a. A significant drop in
Pb is noticable for the velocity-alignment strategy. This result is
because sufficient number of velocity-matching interactions are
necessary for successful target capture, which occurs only after
the intruder passed through O, for the system parameters tested
in the simulation. If NP is much larger, for example, the capture
will occur before intrusion.

The simulation results shown in this section indicates that
the intruders should decrease the intrusion interval, and if pos-
sible, cluster the agents into groups and approach O simultane-
ously. This idea motivates the intruder’s strategies considered
next.

Intrusion Strategy
This section considers a simple grouping strategy for the in-

truder team in the presence of deployment constraint sint. The
results in Fig. 9-b showed the benefit of clustering multiple in-
truders to approach the protected region at the same time. (Note
we mean clustering only in terms of arrival time, but not in terms
of the direction of intrusion.) An example is shown in Fig. 2—
to form a group of three, intruders 3 and 4 wait until intruder 5
becomes ready for deployment.

More generally, we use the parameter Ngroup to define the
grouping strategy as follows: intruders wait until they form a
group of Ngroup agents, and approach O at the same time. The
main interest is in the tradeoff between the penalty in Vint due to
the waiting, and the benefit from grouping, which we study with
numerical simulation.

We use the same systems parameters as before except for
NT = 10. For the deployment constraint, we use Poisson dis-
tribution to randomly generate sint. The parameter T̄int = 2 in
this case specifies the mean value of the intervals {sint

j+1− sint
j }.

Since the Poisson distribution generates infinitely large time in-
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FIGURE 10. Intruder payoff with grouping strategy. (a) Different
Ngroup are tested against random-swarming strategy. (b) Three intruder
strategies are tested against two intruder strategies (random swarming
and velocity alignment).

terval with small probability, we saturate sufficiently long inter-
vals with 3T̄int to keep the simulation time reasonable. (Another
way to keep the simulation time within a reasonable value is to
terminate the simulation at a pre-specified time even if some of
the intruders have not been deployed.)

We compare different strategies using the payoff function JI
so that not only Pcap but also the ratio β = Pb/Pcap is taken into
consideration. The vehicle cost is set to be η = 1. Although the
timing to terminate the game is an important consideration and
the subject of ongoing work, here we simply use the maximum
value in the time history JI(t). Figure 10-a shows how the param-
eter Ngroup affects the maximum payoff. (Note that Ngroup = 1
corresponds to the case where sint = tint, i.e., the intrusion inter-
val is the original Poisson distribution.) The figure shows that
the optimal Ngroup that maximizes the payoff is dependent on the
time constant τ . For a smaller (resp. larger) τ , penalty due to
waiting is higher (resp. lower), so the optimal strategy is to use a
smaller (resp. larger) value for Ngroup.

Since the directions of intrusion Ψint were randomly cho-
sen, some intruders in the same group approach O from similar
directions, which is beneficial for guardians using the velocity-
alignment strategy. To avoid this situation, we also add a strategy
on Ψint by distributing ψ int

j uniformly in the interval [0,2π) for
the intruders in the same group. For example, if intruders j = 1,2
and 3 are in the same group, their directions of intrusion satisfy
ψ int

2 = ψ int
1 + 2π

3 , ψ int
3 = ψ int

2 + 2π
3 .

Figure 10-b shows the comparison between three intruder
strategies: (i) original Poisson intrusion interval with random di-
rection of intrusion, (ii) the grouping strategy (Ngroup = 5) with
random direction of intrusion, and (iii) the grouping strategy
(Ngroup = 5) with uniformly distributed direction of intrusion.
The results show that the additional strategy on the intrusion di-
rection improves the payoff. The results also show an interest-
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ing crossover between the two guardian strategies, i.e., random
swarming performs better than velocity-alignment strategy only
when the intruder team uses both grouping and uniformly dis-
tributed direction of intrusion.

CONCLUSION
This paper formulates a game between a team of intrud-

ers and a team of guardians. The game is an extension of the
previous study on guardian’s strategies against single intruder.
The proposed payoff function models various scenarios includ-
ing missile attacks and reconnaissance missions by the proper
choice of the parameter that weights the capture of intruders.
Based on the probability of capturing an intruder, analytical ex-
pressions are derived to estimate the averaged outcome of the
game. Simple grouping strategies for the intruders to simultane-
ously intrude the protected region are proposed and tested against
two guardian strategies (introduced in previous work). Simula-
tion results validated the theoretical results, and demonstrated the
performance in muti-intruder scenario.

In ongoing and future work, we are studying a principled
way of designing intruder strategies using the knowledge of the
system parameters with uncertainties. We also plan to extend
the guardian strategies to improve the performance in the multi-
intruder case.
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Appendix A: Poisson Distribution
The Poisson distribution for a discrete variable x = 0,1,2, ...

and real parameter λ is

P(x|λ ) = exp
(
−λ

λ x

x!

)
. (18)

This distribution is often used to describe the probability that an
event can occur x times in an interval (unit time), and the average
number of events in the unit time is specified by λ .

Let λ = 1/T̄ . Then the parameter T̄ describes the average
time interval between two events. Using x = 0, the quantity

P(T̄ ) = P(x = 0|λ = 1/T̄ ) = e−
1
T̄ (19)

describes the probability that no event occurs over a unit time.
Hence, considering the time interval [t0, t0 + t], the quantity

P′(t; T̄ ) = 1−P(T̄ )t = 1− e−
t
T̄ (20)

describes the probability that at least one event occurs during this
time interval. For t = 0, the probability is P′(0; T̄ ) = 0. As t goes
to infinity, the probability goes to unity, i.e., P′(∞; T̄ ) = 1.

In the simulation, we use this distribution to generate the
deployment constraint sint, where T̄ specifies the average time
interval between two intruders.
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