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ABSTRACT
As small rotorcraft grow in capability, the possibilities for

their application increase dramatically. Many of these new ap-
plications require stable outdoor flight, necessitating a closer
look at the aerodynamic response of the aircraft in windy en-
vironments. This paper develops the equations of motion for a
single-propeller test stand by analyzing the blade-flapping re-
sponse of a small-stiff propeller in wind. The system dynamics
are simulated to show behavior under various wind conditions,
and stable system equilibria are identified. Experiments with a
rotor-pendulum validate the simulations, including system equi-
libria and gust response.

INTRODUCTION
Small unmanned aerial systems (UAS) are transforming

from hobbyist entertainment into utilitarian machines. UAS have
been tasked with objectives such as surveying farmland and aid-
ing in natural disasters [1] that require multi-rotor aircraft to fly
outdoors in potentially adverse weather. High winds pose a great
challenge to small UAS [2–4], and developing an understand-
ing of how they respond to wind and the mechanics behind that
response is key to compensating for them. This paper uses a
combination of theoretical and experimental work to describe
the forces and moments experienced by a single quadrotor-type
propeller in a uniform wind. Experimental results are collected
with a test stand in wind using a Gemfan 5030 propeller com-
monly used on quadrotor helicopters. These results promise to
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improve guidance and control algorithms for small, multi-rotor
helicopters.

Although an important part of full-sized helicopter dynam-
ics, blade-flapping is often assumed to be negligible in small
quadrotor vehicles [5, 6]. For indoor flight with relatively small
advance ratios, this assumption has proved valid even for highly
aerobatic flight [7, 8]. However, for outdoor flight in wind, the
effect of blade flapping and other aerodynamic phenomena must
be re-evaluated [4]. When a helicopter rotor moves forward in
air, the advancing side of the rotor produces more lift than the
retreating side, which causes a roll moment on the blades [9].
Many studies [10–13] indicate that this moment causes the rotor
blades to react with a maximum deflection at 90◦ phase delay,
i.e., above the helicopter’s nose, due either to a gyroscopic effect
or the blade frequency response. Others provide the equations
for flapping without explicitly indicating the expected phase de-
lay [14, 15]. This paper provides a more comprehensive look
at the blade-flap dynamics of a small, stiff propeller commonly
used in small UAS.

Hoffmann et al. [12] and Yeo et al. [16] each measured a
quadrotor propeller response to wind. Hoffmann et al. [12] tested
a single propeller in wind to identify the flap angle, and showed
that the hub experiences a force in the direction of the wind. Yeo
et al. [16] tested a single-degree-of-freedom pitch stand with two
propellers, as well as a fixed, rigid propeller in an edgewise flow,
and found that forces and moments scale with free-stream veloc-
ity as suggested in [12].

This paper investigates the source of the forces and moments
on a single propeller in wind, and describes blade-flapping dy-
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namics based on first-principle analyses. A simplified set of ana-
lytically tractable equations predict the phase delay and flap am-
plitude of a small, stiff propeller, the results of which are com-
pared to experimental data. The experimental testbed consists
of a two-degree-of-freedom rotor-pendulum, which is a spheri-
cal pendulum affixed with a spinning propeller. The long arm
of the spherical pendulum increases the effect of the hub forces,
demonstrating the propeller’s response to wind.

The contributions of this paper are (1) a detailed analysis of
the blade-flapping response of a small, stiff propeller in uniform
wind, yielding the derivation and solution of the equations of
motion for blade flapping and the rotor-pendulum system from
first-principles; (2) comparison of the first-principles model to
existing experimental measurements of forces and moments at
the hub of a propeller fixed in a uniform wind; and (3) the de-
sign, fabrication, and testing of a rotor-pendulum test stand that
demonstrates the effect of wind on a single propeller. This work
increases the theoretical and physical understanding of a small,
stiff propeller’s response to wind, which has the potential to yield
improved flight stability for small multi-rotor helicopters in ad-
verse weather conditions by virtue of an improved feedback re-
sponse using flow sensing and control [16].

The outline of the paper is as follows. The first section de-
scribes the rotor-pendulum system and develops the equations of
motion for a static rotor for comparison to pre-existing experi-
mental data. The second section investigates aerodynamic forces
acting on the propeller and derives the equations of motion for
the full rotor-pendulum system. The third section provides new
experimental results for the rotor-pendulum, with a comparison
to model predictions. The final section summarizes the paper and
ongoing work.

ROTOR DYNAMICS
This paper utilizes a rotor-pendulum to investigate the ef-

fect of wind on a small, stiff propeller. The rotor-pendulum is
a variation of the gyro-pendulum, which is a spherical pendu-
lum with a rapidly spinning mass on the mobile end that causes
the system to precess and nutate. Figure 1 shows the rotor-
pendulum system: a gyro-pendulum with the spinning mass re-
placed by a propeller. Consider inertial frame I , (O,e1,e2,e3)
and intermediate frame A , (O,a1,a2,a3), where a3 = e3 and
a1 · e1 = cosθ . Spherical frame B , (O,b1,b2,b3) satisfies
b2 = a2 and b1 ·a1 = cosφ . The hub frame is C , (O′,c1,c2,c3),
where c3 = b3 and c1 ·b1 = cosψ . Let Nb represent the number of
propeller blades and the superscript (n), where n = 1,2, or 3, de-
note the blade index, so that frame D(n) , (H(n),d(n)

1 ,d(n)
2 ,d(n)

3 )
has origin at the blade hinge, and rotates about c2 by the flap-
angle β . (The blade index (n) is included only where needed for
clarity.) Let r denote the displacement along the length of the
blade of a point P with respect to O′, and dr be the differential
position. The differential forces, moments, and mass are denoted
Fdr , dF , Mdr , dM, and mdr , dm, where the quantities F ,
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M, and m are each measured per unit length.
The blade-flap angle is derived under the assumption that

O′ is fixed in inertial space and the blade rotates around the
hub in the c3 direction at a constant rate Ω such that Ωt = ψ ,
where ψ is the blade azimuth. (The assumption that O′ is fixed
is relaxed in the analysis of the rotor-pendulum system.) Let
rP/O′ denote the position of blade-element P with respect to O′;
IvP/O′ =

Id
dt

(
rP/O′

)
and IaP/O′ =

Id
dt

(IvP/O′
)

denote the iner-
tial kinematics. Figure 2 denotes the hinge offset e = ‖rH/O′‖;
R− e = ‖rQ/H‖ is the length of the portion of the blade be-
yond the hinge offset and r− e = ‖rP/H‖ is the distance from
the hinge offset to point P. Let Sβ = sinβ and Cβ = cosβ .
Using the cross product with the angular velocity IωC = Ωc3
(IωC = θ̇a3 + φ̇b2 +Ωc3 where θ̇ = φ̇ = 0 due to the fixed hub)
to differentiate the unit vectors c1 and c2, the inertial kinematics
are

rP/O′ =(e+(r− e)Cβ )c1 +(r− e)Sβ c3 (1)
IvP/O′ =− (r− e)β̇Sβ c1

+(e+(r− e)Cβ )Ωc2 +(r− e)β̇Cβ c3
(2)

IaP/O′ =[−(r− e)(β̈Sβ + β̇
2Cβ )− (e+(r− e)Cβ )Ω

2]c1

−2(r− e)β̇ΩSβ c2 +[(r− e)β̈Cβ − (r− e)β̇ 2Sβ ]c3.
(3)

Figure 2 shows the differential forces on the blade element
at P: dF1 is the tension force; dF2 is the sum of the lift and drag
components in the c1–c2 plane; dF3 is the sum of the lift and drag
components in the c1–c3 plane; and gdm is the weight. The total
differential force acting on a blade element is

dF(n)
P =

(
−dF1Cβ −dF3Sβ

)
c1 +(−dF2)c2

+
(
−dF1Sβ +dF3Cβ −gdm

)
c3.

(4)
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FIGURE 2: FREE-BODY DIAGRAM

Equating the mass times the acceleration (Eqn. (3)) with the
force (Eqn. (4)) in the c3 direction according to Newton’s second
law yields the differential tension force dF1, which is used in the
angular-momentum form of Newton’s second law. The angular
momentum of the point P with respect to O′ is IhP/O′ = rP/O′ ×
(dmIvP/O′), i.e.,

IhP/O′ = dm[−(r− e)eSβ Ω− 1
2
(r− e)2S2β Ω]c1

+ dm[−(r− e)2
β̇ − (r− e)eCβ β̇ ]c2

+ dm[(e+(r− e)Cβ )
2
Ω]c3.

(5)

Blade-Flapping Equations Of Motion
The above equations are now used to derive the blade-

flapping equations for a rotor with a fixed hub, using the angular-
momentum form of Newton’s second law. The c2 component of
the inertial derivative of the angular momentum is

Id
dt

(
IhP/O′

)
· c2=dm[(−(r− e)2− (r− e)eCβ )β̈

+(r− e)eSβ β̇
2 +(−(r− e)eSβ −

1
2
(r− e)2S2β )Ω

2]

(6)

and the corresponding moment MO′ · c2 is

c2 ·
∫ R

0
rP/O′ ×dF(n)

P =−
∫ R

e
(eCβ +(r− e))dF3

+
∫ R

e
eSβ dF1 +

∫ R

e
(e+(r− e)Cβ )gdm+ kβ β ,

(7)

where the final term is the torsional spring moment.
The following substitutions are made according to con-

vention [17]: Iβ is the blade moment of inertia, Nβ is the
blade static moment, M′

β
is the aerodynamic moment on the

blade, and ωβ0 is the torsional spring natural frequency, i.e.,
Iβ =

∫ R
e (r−e)2dm, Nβ =

∫ R
e (r−e)dm, M′

β
=
∫ R

e (r−e)dF3, and

ωβ0 =
√

kβ/Iβ . The flap angle β is expected to remain suffi-
ciently small to permit the small-angle assumption [9, 12]. Set
ν2

β
= (1+Nβ e/Iβ +ω2

β0
/Ω2), and define ρ as the density of air,

C`α
as the lift slope, c as the blade chord, and consider the Lock

number γ = ρC`α
cR4/Iβ . We have M′

β
/(Iβ Ω2) = γMβ , where

Mβ = (ρC`α
cR4Ω2)−1 ∫ R

e (r− e)dF3. Setting Eqn. (6) equal to
Eqn. (7) yields the canonical blade-flapping equation (intermedi-
ate steps omitted for length), i.e.,

∗∗
β +ν

2
β

β = γMβ −
gNβ

Ω2Iβ

, (8)

where ∗ denotes differentiation with respect to ψ , following con-
vention [9].

The following parameters arise in the solution to Mβ : θ0 is
the blade pitch at the hinge, θtw is the linear blade twist, and
λi = λ0(1+ kxr cosψ) is the inflow ratio using a linear inflow
model [9]. When investigating blade flapping, uniform inflow is
often assumed [9,10,12,15]; however, Niemiec and Gandhi [18]
showed that using uniform inflow in trim calculations consider-
ably underpredicts pitching moment as compared to linear in-
flow, so we use a linear inflow model here. The average inflow
ratio λ0 is calculated implicitly, however a fixed value shows suf-
ficient agreement with the implicit calculation over a range of
conditions. The parameter kx = (15π/23) tan(χ/2) is taken from
the model by Pitt and Peters [9], where χ = tan−1(µ/λ0) [19],
and µ is the advance ratio of the propeller, which is the ratio of
wind speed over the hub to the tip speed of the blades. After solv-
ing for Mβ in order to identify the steady-state blade-flapping re-
sponse (omitted due to length constraint) and defining e′ , e/R,
Eqn. (8) becomes

∗∗
β +

γ

8

[
1− 8e′

3
+

(
4
3
−4e′

)
µSψ

] ∗
β

+

{
γ

8

[(
4
3
−2e′

)
µCψ +

(
1−2e′

)
µ

2S2ψ

]
+ν

2
β

}
β

=
γ

8
θ0

[
1− 4e′

3
+

(
8
3
−4e′

)
µSψ +

(
2−4e′

)
µ

2S2
ψ

]
+

γ

8
θtw

[
4
5
− e′+

(
2− 8e′

3

)
µSψ +

(
4
3
−2e′

)
µ

2S2
ψ

]
− γ

8
λ0

[
4
3
−2e′+

(
2−4e′

)
µSψ

]
− γ

8
λ0kx

[(
1− 4e′

3

)
Cψ +

(
2
3
− e′

)
µS2ψ

]
−

gNβ

Ω2Iβ

,

(9)

where the forcing terms on the right side and the
∗
β term re-

sult from the solution to Mβ , and the second- and higher-order
e′ terms are not shown due to space limitations.

Although we are primarily interested in the propeller’s be-
havior in wind, setting the advance ratio µ to zero (as in hover)
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allows us to represent the propeller as a damped second-order
system in order to gain intuition about the system. Here the
forcing function arises from a (virtual) periodic increase in angle
of attack analogous to a full-size helicopter’s cyclic pitch input,
e.g., the angle of attack is higher on the advancing side, lower
on the retreating side, and unchanged over the nose and tail. As
we are unable to physically change the angle of attack of each
blade on the small propeller, the solution serves only as a theo-
retical tool for comparison against full-size helicopters. Redefin-
ing Eqn. (9) using the normalized derivative with respect to time,

i.e.,
∗
β ,

.

β/Ω and setting µ = 0 yields the aforementioned clas-
sical, damped second-order system with natural frequency ωn,
damping ratio ζ , and forcing function AΩ2 sin(Ωt), where A is a
constant, i.e.,

β̈ +2ζ ωnβ̇ +ω
2
n β = AΩ

2 sin(Ωt). (10)
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FIGURE 3: BLADE-FLAPPING PHASE DELAY IN HOVER
(ADAPTED FROM [17])

Comparing Eqn. (10) to Eqn. (9), the damping ratio is ζ =

γ/(16νβ )
(

1−8e′/3+2e′2− e′4/3
)

and the natural frequency
is ωn = Ωνβ . Solving Eqn. (10) yields the particular solution

βp = βmax sin(Ωt−φD), (11)

where

βmax =
A√((

ωn
Ω

)2−1
)2

+
(
2ζ

ωn
Ω

)2
,

φD = tan−1

(
2ζ

ωn
Ω(

ωn
Ω

)2−1

)
.

(12)

Here, βmax indicates the maximum flapping amplitude variation
of the propeller, and φD represents the angular delay between the
maximum aerodynamic force and the maximum flapping ampli-
tude.

Figure 3 shows phase-delay solutions to Eqn. (10) for vary-
ing natural frequency and damping ratio. For a typical full-
size helicopter with νβ = 1.04 and ζ = 0.42, the phase delay is
85◦ [17]. Analysis of a small, stiff propeller is performed using
a Gemfan 5030 propeller rotating at 8000 rpm. The propeller is
2.7 grams and 12.7 centimeters in diameter, with a 1.5 centimeter
chord. Assuming e′ = 0.1 and kβ = 3 Nm/rad based on model
and experimental fit below, the values of the characteristic blade-
parameters are as follows: scaled natural frequency νβ = 1.9,
damping ratio ζ = 0.026, and Lock number γ = 1.04. Due to the
atypical values of these parameters compared to full-scale heli-
copters, the hover flap response is also atypical; the phase delay
is φD = 2.2◦ as shown by Fig. 3, with amplitude βmax = 0.053◦.

When solving Eqn. (9) assuming wind over the hub such
that µ 6= 0, periodic terms do not allow for a true analytical solu-
tion. However, if we take the Fourier series solution and assume
first harmonics only, i.e., β (ψ) = β0 +β1c cosψ +β1s sinψ , we
can harmonically match constant and periodic (sine and cosine)
terms on each side of the equation to achieve an approximate
solution [9], which (again omitting higher orders of e′) yields

β0 =
γ

8ν2
β

{
− e′µβ1c +θ0

[
1− 4e′

3
+
(
1−2e′

)
µ

2
]

+θtw

[
4
5
− e′+

(
2
3
− e′

)
µ

2
]
−λ0

(
4
3
−2e′

)}
,

(13)

β1c =
γ

8
(

ν2
β
−1
){−(4

3
−2e′

)
µβ0

−
[

1− 8e′

3
+

(
1
2
− e′

)
µ

2
]

β1s−λ0kx

(
1− 4e′

3

)}
,

(14)

β1s =
γ

8
(

ν2
β
−1
){[1− 8e′

3
−
(

1
2
− e′

)
µ

2
]

β1c

+θ0

(
8
3
−4e′

)
µ +θtw

(
2− 8e′

3

)
µ−λ0

(
2−4e′

)
µ

}
.

(15)

Equations (13–15) yield very different characteristics com-
pared to Eqn. (12), primarily due to the presence of the linear
inflow term λ0kx in Eqn. (14), which changes the azimuth an-
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gle of the maximum aerodynamic force. Specifically, the lin-
ear inflow model yields a 97% change in phase delay compared
to Eqn. (12), versus assuming uniform inflow in Eqns. (13–15),
which yields just a one percent change in phase delay compared
to Eqn. (12). In order to identify βmax and φD with µ 6= 0,
we apply the sinusoidal relationship Acos(ωt +φ) = I cosωt−
Qsinωt [20], which shows

β (ψ) = β0 +
√

β 2
1c +β 2

1s sin
[

ψ−
(

tan−1
(

β1s

β1c

)
− π

2

)]
. (16)

Comparing Eqn. (16) to Eqn. (11) indicates the maximum

flap amplitude variation βmax =
√

β 2
1c +β 2

1s and phase delay

φD = tan−1(β1s/β1c)−π/2. Assuming the same values as above
for e′, kβ , and propeller speed, the phase delay and maximum
flap of the propeller in 3 m/s wind are φD = 81◦ and βmax = 0.10◦.
Using force and moment calculations from the next section, the
blade-flapping model is used to compare forces and moments on
a fixed hub to those taken in a prior experiment using an ATI
Nano 17 six-axis Force-Torque transducer, with flow speed mea-
surements provided by a Thomas Scientific Traceable hotwire
anemometer. In order to best fit the model to the experiment,
values for e′ and kβ are chosen as e′ = 0.1 and kβ = 3 Nm/rad,
yielding the results in Figs. 4 and 5, which show agreement be-
tween model and experiment in the magnitude and direction of
forces at a propeller speed of 8000 rpm over a range of wind
speeds.

ROTOR-PENDULUM DYNAMICS
Figure 6 introduces two additional reference frames in order

to describe the aerodynamic forces, which depend on the mag-
nitude and direction of the wind as well as the phase delay of
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the propeller. Let IV∞ represent the velocity of the wind in the
inertial frame, and BV∞ represent the velocity of the wind expe-
rienced by an observer at point O′ in the spherical frame due to
the combination of the wind and the motion of point O′. Define
the wind frame U , (O′,u1,u2,u3), where u3 = b3, and u1 is the
direction of the component of BV∞ in the plane perpendicular
to b3. Also consider the phase-delay frame V , (O′,v1,v2,v3),
where v3 = u3 and v1 ·u1 = cosφD. From this definition, v2 will
correspond to the direction of maximum flapping.
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The hub forces in the plane perpendicular to b3, i.e., F⊥O′ ,
FO′ − (FO′ ·b3)b3, are a combination of the tilt of the thrust vec-
tor and the drag forces on the blades. Consider the case of two
blades. Starting from Eqn. (4), and averaging the force over an
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entire revolution, the planar hub force is

F⊥O′ =
Nb

2π

∫ 2π

0

[∫ R

0
(−dF2c2 ·u1)u1−

∫ R

e
Sβ dF3c1

]
dψ, (17)

where c2 ·u1 =−Sψ . The differential blade tension forces dF(1)
1

and dF(2)
1 cancel out because dF(1)

1 = −dF(2)
1 , leaving only the

dF2 and dF3 components. The dF3 component is calculated from
GemFan 5030 propeller experimental thrust data at a range of
speeds; the dF2 component arises from induced drag.

The dF3 term in Eqn. (17) is converted from the C frame
to the V frame, which does not rotate with ψ . According to
Eqn. (16), β responds as a once-per-revolution sinusoid β (ψ) =
β0 +βmaxS(ψ−φD). Making the small-angle assumption based on
the calculated magnitude of βmax, Eqn. (17) becomes

F⊥O′ =
Nb

2π

∫ 2π

0

[∫ R

0
(−dF2c2 ·u1)u1−

(
β0 +βmaxS(ψ−φD)

)
×
∫ R

e

(
C(ψ−φD)v1 +S(ψ−φD)v2

)
dF3

]
dψ.

(18)

The force along v1 resulting from dF3 in Eqn. (18) as well as all
forces due to β0 integrate to zero over one full rotation due to the
sinusoidal term, leaving only the v2 component.

Quadrotors experience high induced drag, which results
from the lift force and induced angle of attack. Let αind =
arctan(λi/0.75) denote the induced angle of attack (using for
simplicity the average angle, rather than integrating across the
blade), which results from the velocity of the wind relative to
the rotating blade; αe f f = αgeo−αind be the effective angle of
attack; and αgeo be the geometric angle of attack resulting from
the blade pitch relative to the d2 axis. Induced drag is the only
non-negligible component of differential force dF2, thus

dF2 =
1
2

ρ

(
Ωr− (c2 ·u1)(

BV∞ ·u1)
)2

c C`α
αe f f Sαind dr. (19)

There also exist bluff body drag forces acting in the direction
of the wind on the swept area of the rotor and the pendulum rod.
The bluff force on each component is

FRblu f f =
1
2

ρ||BV∞||2
(

ˆBV∞ ·b3πR2
)

CD
ˆBV∞,

F`blu f f =
1
2

ρ||BV∞||2
(

ˆBV∞ ·u1w`
)

CD
ˆBV∞,

(20)

where ˆBV∞ = BV∞/||BV∞||, rod width w = 1 cm and the drag
coefficient CD = 1.28 [21] is taken by approximating each com-
ponent as a three-dimensional flat plate.

The moment on the hub in the plane perpendicular to b3, i.e.,
M⊥O′ ,MO′−(MO′ ·b3)b3, is derived from the spring, hinge, and
the pitching moment of the airfoil. The lift and weight forces
do not transmit a moment to the hub due to the nature of the
hinge, leading to their absence in the following moment equa-
tion as compared to Eqn. (7) above. The moment in the plane
perpendicular to b3 is

M⊥O′ =
Nb

2π

∫ 2π

0
−
[

kβ β + eSβ

∫ R

e
dF1

]
c2dψ

+
Nb

2π

∫ 2π

0

∫ R

0
(dM1c1 ·u2)u2dψ,

(21)

where c1 ·u2 = Sψ .
The first half of Eqn. (21) is converted from the rotating C

frame to the V frame as in Eqn. (17), which yields

M⊥O′ =
Nb

2π

∫ 2π

0

[(
kβ + e

∫ R

e
dF1

)
×
(
β0 +βmaxS(ψ−φD)

)(
S(ψ−φD)v1−C(ψ−φD)v2

)]
dψ

+
Nb

2π

∫ 2π

0

∫ R

0
(dM1c1 ·u2)u2dψ.

(22)

The moment along v2 from the first half of Eqn. (22) and the
moment due to β0 integrate to zero over one full rotation due to
the sinusoidal term, leaving only the v1 component.

The centrifugal or tension differential force dF1 = rΩ2dm is
found by equating the c1 component in Eqns. (3) and (4), apply-
ing small-angle simplifications to trigonometric terms involving
β , and assuming that β̇ and β̈ are negligible in comparison to Ω.

The differential moment dM1 on the hub due to the airfoil
pitching is calculated by approximating the shape of the Gemfan
5030 airfoil as a 4-digit NACA airfoil, and using the calculation
for this shape to determine the coefficient of blade pitching mo-
ment according to [22, pp. 275-278], [23, pp. 113-114]. The
blade pitching differential moment is

dM1 =
1
2

ρ

(
Ωr− (c2 ·u1)(

BV∞ ·u1)
)2

c2cm,c/2dr, (23)

where cm,c/2 is the blade pitch moment coefficient per unit span
at the half chord.

The forces and moments derived above are applied to the
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rotor-pendulum in Fig. 7, where FO′ =F⊥O′+Cβ dF3c3 and MO′ =

M⊥O′ + τc3, and τ is the magnitude of the moment produced by
motor torque. Figure 7 also shows the force−(mM +mR)ge3 due
to the weight of the motor and rotor at the hub, the force−m`ge3
due to the weight of the rod, and the bluff body forces.

The position of the point O′ with respect to O is rO′/O =

`b3 and the corresponding inertial velocity is IvO′/O = `φ̇b1 +

`θ̇Sφ b2. The angular velocity of frame B with respect to I is
IωB = θ̇a3 + φ̇b2 = −θ̇Sφ b1 + φ̇b2 + θ̇Cφ b3, and the angular
velocity of the rotor is IωC = IωB +Ωb3. Let ` be the length
of the rod, mM and mR be the mass of the motor and rotor, re-
spectively, and I` and IR the moment of inertia matrices for the
rod and rotor, respectively. The total angular momentum of the
system with respect to origin O is

IhO =I`Iω
B+ r`/O×m`

Iv`/O

+ IR
I

ω
C + rO′/O× (mM +mR)

IvO′/O
(24)

and the moment about O is

MO =MO′ +
`

2
b3×

(
−m`ge3 +F`blu f f

)
+ `b3×

(
−(mM +mR)ge3 +FO′ +FRblu f f

)
.

(25)

Assuming that the angular velocity of the rotor Ω is suffi-
ciently large such that the angular velocity IωB may be ignored
in the calculation of IωC , and defining mO′ ,mM+mR, the equa-
tions of motion for the system resulting from Euler’s second law
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FIGURE 7: ROTOR-PENDULUM FREE-BODY DIAGRAM

are

θ̈ =
1(m`

3 +mO′
)
`2Sφ

[
−MO ·b1 +

mR

3
R2

φ̇
(
θ̇Cφ +Ω

)
−2
(

mO′ +
m`

3

)
`2

φ̇ θ̇Cφ

]
−ζRPθ̇ ,

(26)

φ̈ =
1(m`

3 +mO′
)
`2

[
MO ·b2 +

(
mO′ +

m`

3

)
`2

θ̇
2SφCφ

+
(

mO′ +
m`

2

)
g`Sφ−

mR

3
R2

θ̇Sφ

(
θ̇Cφ +Ω

)]
−ζRPφ̇ ,

(27)

which includes rotor-pendulum damping term ζRP, representing
the natural damping of the bearings, wires, and others compo-
nents of the physical system. When aerodynamic forces and
rotor-pendulum damping are ignored, Eqns. (26) and (27) reduce
to the standard gyro-pendulum equations [24, pp. 469-471].

In order to simulate the forces and moments in MATLAB,
the wind vector is used to identify µ = ||BV∞||/(ΩR), β , and the
U and V frames, which are used with the above calculations to
produce MO.

Equilibrium analysis is performed by setting [θ̇ , θ̈ , φ̇ , φ̈ ]T =
0 in Eqns. (26) and (27), assuming small angles such that the
norm of the wind velocity in the plane of the rotor is constant,
and assuming the parameters listed in Tab. 1. In the case with
IV∞ = 0 m/s, [θeq,φeq] = [0◦,180◦], whereas IV∞ = −3e1 m/s
yields [θeq,φeq] = [15◦,186◦]. Using state vector [θ , θ̇ ,φ , φ̇ ]T and
solving numerically for the Jacobian matrix, the linearized equa-
tions of motion are

d
dt


θ

θ̇

φ

φ̇

=


0 1 0 0

−45.6 −1.39 −3.99 −14.6
0 0 0 1

−0.0306 0.150 −44.1 −0.991




θ

θ̇

φ

φ̇

 , (28)

with IV∞ = −3e1 m/s and Ω = 8000 rpm. The eigenvalues
of this system are (−0.528 + 5.98i,−0.528− 5.98i,−0.664 +
7.45i,−0.664−7.45i), showing exponential stability with mod-
erate oscillation, which is consistent with simulation. The ma-
trix values differ when varying wind speed with constant Ω,
however, the eigenvalues remain in similar locations. Thus
the rotor-pendulum without wind settles to the downward ver-
tical, whereas the rotor-pendulum with wind converges to an off-
vertical angle approximately 15◦ from the wind direction.

The rotor-pendulum is simulated using Eqns. (26) and (27)
in the presence of a step wind input. Figure 8 shows the sim-
ulated trajectory of the tip of the rotor-pendulum projected on
the horizontal plane, from the perspective of looking down at
the hanging pendulum. As expected, with no wind at all, the
rotor-pendulum hangs downward. As the magnitude of the gust
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Parameter Name Value Units

mR rotor mass 0.0027 kg

mM motor mass 0.018 kg

m` rod mass 0.043 kg

R rotor radius 0.0635 m

c chord length 0.015 m

Nb number of blades 2 [ ]

e effective hinge offset 0.1 [ ]

kβ hinge spring const. 3 Nm/rad

Iβ blade inertia 1.81×10−6 kgm2

ρ density of air 1.225 kg/m3

Clα airfoil lift slope 2π [ ]

γ Lock number 1.04 [ ]

λ0 avg. inflow ratio 0.075 [ ]

θ0 root angle of attack 16 deg

θtw blade twist -6.6 deg

ωβ0 spring nat. freq. 1290 rad/s

νβ blade scaled nat. freq. 1.9 [ ]

ζ blade damping coef. 0.026 [ ]

ζRP pendulum damp. coef. 1 [ ]

TABLE 1: MODEL PARAMETERS

increases, the vertical offset angle and magnitude of oscillation
increase, with the rotor-pendulum settling over time to the equi-
librium value in the center of the oscillation. As the wind in-
creases, the angle θ about the e3 axis reduces slightly due to the
bluff body force, more closely aligning the pendulum to the wind
direction.

EXPERIMENT
In order to validate the rotor-pendulum model, an experi-

mental stand (Fig. 9) was built and tested in a known wind field
produced by a set of blower-style Dyson fans (Fig. 10), with the
system response identified using 18 OptiTrack motion-capture
cameras. The rotor-pendulum test stand was initiated in the
downward position.

Tests were performed with a rotor speed of 8000 rpm and
wind velocities of 0 m/s and −3e1 m/s. In order to verify the

-0.1 -0.05 0 0.05 0.1

e1 [m]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

e
2
[m

] I
V∞

4m/s
3m/s
2m/s
1m/s
0m/s
φ = 180◦

FIGURE 8: SIMULATED ROTOR-PENDULUM

FIGURE 9: ROTOR-PENDULUM STAND

aerodynamic effects on the rotor, a disk with equal moment of
inertia was constructed using a 3D printer and also tested at both
wind speeds to investigate possible confounding variables. As
expected, when testing without wind, both the rotor and disk ex-
hibit stable equilibria at φ = 180◦ and arbitrary θ . Under a con-
stant −3e1 m/s wind, the stable equilibrium point for the exper-
imental stand with the rotor is [θeq,φeq] = [20◦,190◦], and with
the disk is [θeq,φeq] = [6◦,182◦]. This result indicates that even in
the case of the disk without lifting surfaces, the bluff body aero-
dynamic drag of the system causes a change in the equilibrium
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FIGURE 10: ROTOR-PENDULUM TEST FACILITY

point.
A step input for wind from 0 to −3e1 m/s was generated by

quickly changing the angle of the blinds between the fans and the
test stand in Fig. 10 in order to maintain a smooth wind flow (as
opposed to suddenly opening the blinds). Figure 11 shows the
result of this test, as well as a comparison to theoretical results
under the same conditions. Without the lifting surfaces of a rotor,
bluff body drag moves the disk only slightly, and in the direction
approximately parallel to the wind direction as expected. The
propeller also moves primarily in the direction of the wind, but
at a much greater offset angle φ , and progresses in a spiral pattern
as it reaches its equilibrium point. This result shows the influence
of the lifting surfaces of the propeller, creating a higher moment
that also yields slight movement in the−e2 direction. Theoretical
and experimental results show strong agreement, indicating the
importance of linear inflow calculations in blade flapping analy-
sis, which dramatically change the flap characteristics compared
to hover. Slight inaccuracy between the model and experiment is
most likely due to the aerodynamic complexity of the system.

CONCLUSION
This paper presents a dynamic model of a rotor-pendulum

based on the aerodynamic response of a small, stiff propeller in
wind. The model includes the blade-flapping response of the pro-
peller and the resulting forces and moments. When simplified,
the equations-of-motion reduce to those of a gyro-pendulum.
State matrices and equilibrium points for the system under par-
ticular conditions are numerically identified, showing a stable
system with moderate oscillation in the presence of wind. Ex-
perimental results show strong agreement with theoretical pre-
dictions. Ongoing work includes analysis of the contributions of

-0.1 -0.05 0 0.05 0.1

e1 [m]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

e
2
[m

] I
V∞

Theoretical Propeller
Experimental Propeller
Experimental Disk
φ = 180◦

FIGURE 11: ROTOR-PENDULUM EXPERIMENT

each of the forces and moments on the system in order to create
a tractable model that can be implemented in real time for con-
trol. Ongoing work resulting from this paper includes the devel-
opment of a controllable quadrotor test stand that leverages the
blade-flapping response, forces, and moments here to yield feed-
back controllers capable of stabilizing the quadrotor in response
to a gust.
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