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The long-term goal of this research is to optimize estimation of an unknown flowfield

using an autonomous multi-vehicle or multi-sensor system. The specific research objective

is to provide theoretically justified, nonlinear control, estimation, and optimization tech-

niques enabling a group of sensors to coordinate their motion to target measurements that

improve observability of the surrounding environment, even when the environment is un-

known. Measures of observability provide an optimization metric for multi-agent control

algorithms that avoid spatial regions of the domain prone to degraded or ill-conditioned

estimation performance, thereby improving closed-loop control performance when esti-

mated quantities are used in feedback control. The control, estimation, and optimization

framework is applied to three applications of multi-agent flowfield sensing including (1) en-

vironmental sampling of strong flowfields using multiple autonomous unmanned vehicles,

(2) wake sensing and observability-based optimal control for two-aircraft formation flight,

and (3) bio-inspired flow sensing and control of an autonomous unmanned underwater

vehicle.

For environmental sampling, this dissertation presents an adaptive sampling algo-

rithm steering a multi-vehicle system to sampling formations that improve flowfield ob-



servability while simultaneously estimating the flow for use in feedback control, even in

strong flows where vehicle motion is hindered. The resulting closed-loop trajectories pro-

vide more informative measurements, improving estimation performance. For formation

flight, this dissertation uses lifting-line theory to represent a two-aircraft formation and

derives optimal control strategies steering the follower aircraft to a desired position rela-

tive to the leader while simultaneously optimizing the observability of the leader’s relative

position. The control algorithms guide the follower aircraft to a desired final position along

trajectories that maintain adequate observability and avoid areas prone to estimator diver-

gence. Toward bio-inspired flow sensing, this dissertation presents an observability-based

sensor placement strategy optimizing measures of flowfield observability and derives dy-

namic output-feedback control algorithms autonomously steering an underwater vehicle to

bio-inspired behavior using a multi-modal artificial lateral line. Beyond these applications,

the broader impact of this research is a general framework for using observability to assess

and optimize experimental design and nonlinear control and estimation performance.
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Chapter 1: Introduction

As human beings, our insatiable curiosity compels a desire to understand the world

around us. To do so, we take careful observations of dynamic processes in our environment

and seek to understand the underlying principles governing our observations. For example,

early weather forecasters observed the motion and formation of clouds to predict the

onset of ominous weather within coming hours. Unsatisfied with lead times on the order

of hours, we developed sophisticated measurement tools to provide observations from

multiple sensing modalities, allowing us to predict long term weather patterns and the

onset of storms days before they occur [1].

More recently, scientists and engineers have developed sophisticated autonomous

systems to collect the vital observations needed to expand our understanding of the world.

In environmental sampling applications, autonomous vehicles are tasked with collecting

observations that can lead to better understanding of spatiotemporal dynamic processes

in nature. In other applications, sensors are developed using inspiration from nature to

allow autonomous systems to better characterize their environment, thereby improving

their capability for autonomy. Indeed, by incorporating bio-inspired design, we have

advanced engineered robotic systems from simple mechanical apparatuses to extremely

sophisticated machines that emulate sensorimotor properties perfected over billions of

years of evolution.

A common thread to both environmental sampling and bio-inspired sensing and
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control is that multiple sensing agents (agents are defined as vehicles or sensors mounted

on a vehicle) are used to produce an estimate of the environment in which the vehicles

operate. Often, the goal is to produce an estimate of the fluid dynamics in the domain of

the system. For example, unmanned aircraft have been used to estimate wind speeds in a

tropical cyclone [2], formation flying birds use distributed sensing modalities to estimate

the wake produced by their neighbors [3], and a sensor array emulating the fish lateral line

has been used to estimate the local fluid motion near an underwater robotic vehicle [4]. By

collecting observations that encapsulate the most informative data about the flowfield, the

resulting estimation performance can be improved. This is accomplished using coordinated

control and optimization to steer the vehicles (or place the sensors) to (in) locations

that best observe the most influential domains of the fluid model. By improving the

observability of the flow domain, the multi-vehicle (multi-sensor) system is better able to

estimate the flowfield.

This dissertation presents a mathematical framework for improving autonomous

control and estimation performance in a flowfield by optimizing the control to best observe

the flow, even in an unknown flowfield. The framework is applied to three applications

of autonomous control: (1) environmental sampling and estimation of strong, spatially-

varying flowfields using multiple unmanned vehicles, (2) wake sensing and control for

aircraft in close formation flight, and (3) bio-inspired hydrodynamic sensing and control of

an underwater vehicle. For environmental sampling with multiple autonomous vehicles in a

strong flowfield, decentralized control algorithms steer the vehicles to coordinated sampling

formations that maximize observability of the flow domain. We optimize the control

parameters using measures of flowfield observability as a cost metric. In wake sensing

for close formation flight of autonomous aircraft, this dissertation incorporates measures
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of flowfield observability to guide the design of autonomous controllers that regulate the

relative position of vehicles while simultaneously improving estimation of the flowfield

created by lead vehicle’s wake. For bio-inspired flow sensing and control, this dissertation

derives a sensor placement strategy that optimizes observability of the hydrodynamic

environment and derives estimation and control strategies to enable autonomous operation

of an underwater vehicle outfitted with an artificial lateral line. We also describe the

experimental implementation of bio-inspired flow sensing and autonomous control on a

robotic prototype outfitted with an artificial lateral line. The results of this dissertation

enable greater autonomy of unmanned multi-vehicle systems, allowing the vehicles to

gather new observations that may help scientists further understand dynamic processes in

our environment.

1.1 Statement of Problem

This research seeks to understand the interconnectedness of control and estimation

for the purpose of optimizing an autonomous multi-vehicle or multi-sensor systems ability

to estimate its environment. Specifically, this dissertation combines tools from nonlin-

ear control, nonlinear estimation, and observability optimization to improve autonomy

of multi-vehicle or multi-sensor systems that estimate flowfields, as illustrated in Figure

1.1. To understand Figure 1.1, note that control dictates the spatiotemporal observations

gathered by each sensor, which significantly affects the resulting estimate of the flowfield,

as illustrated by the arrow from the control to estimation blocks in Figure 1.1. Similarly,

if estimates of the flow are used in feedback control, the accuracy of the estimate signifi-

cantly affects the performance of the control. Therefore, there is an inherent need for an

optimization procedure that produces control signals whose resulting trajectories generate

3



Estimation Optimization

Control

Figure 1.1: This research seeks to understand the interconnectedness of nonlinear control,

estimation, and optimization for sensing flowfields using autonomous, multi-agent systems.

observations that improve estimation, thereby improving the ensuing control performance.

Throughout this dissertation, measures of flowfield observability serve as an optimization

metric.

When applied to environmental sampling, wake sensing for formation flight, and

bio-inspired hydrodynamic sensing and control, the main challenges addressed in this

dissertation are as follows.

Environmental Sampling:

1. Derive decentralized control algorithms steering vehicles to coordinated sampling for-

mations subject to strong flowfields1 that can hinder vehicle motion.

2. Generate multi-vehicle sampling formations that target measurements providing op-

timal observability of the flowfield, even when the flowfield is unknown.

Wake Sensing for Formation Flight:

1A strong flowfield is defined as a flow where the flowspeed can exceed the speed of the vehicle relative

to the flow. In a strong flow, the vehicle’s direction of travel is limited and forward progress may be

impossible.
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1. Design a strategy to estimate the position of a lead aircraft by assimilating noisy

aerodynamic measurements distributed along the follower aircraft’s wing.

2. Characterize spatial coordinates where the follower aircraft’s estimation strategy is

prone to degraded estimation performance.

3. Derive a feedback control algorithm that steers the follower aircraft to a desired posi-

tion relative to the leader, uses estimates of the leader aircraft position, and avoids

areas with poor flowfield observability.

Bio-inspired Flow Sensing and Control:

1. Design a strategy to configure the placement of sensors within an artificial lateral

line array such that they are best able to observe fluid motion.

2. Derive an estimation strategy to assimilate noisy measurements from a multi-modal

artificial lateral line and estimate flow characteristics needed for feedback control.

Use the estimated flow properties to derive feedback control strategies emulating bio-

inspired behavior.

3. Use dynamic output feedback control to demonstrate rheotaxis and station-holding

behaviors on a robotic fish prototype outfitted with an artificial lateral line.

1.2 Background and Related Work

This section provides an overview of related work in the areas of environmental

sampling and multi-vehicle control, close formation flight, and bio-inspired sensing and

control for underwater vehicles. Due to the depth and cross-disciplinary nature of these

three relatively unrelated applications, it is impossible to provide a complete survey of
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all research pertinent to these topics; however, this section provides reference to the most

relevant works of which the results of this dissertation are related. In addition, Section

1.2.4 provides a brief history and overview of observability with regard to dynamical

systems. References to the works presented in this section are also provided throughout

the dissertation.

1.2.1 Environmental Sampling

Unmanned aerial vehicles (UAVs) have shown great value in their ability to explore

harsh physical environments that are too dangerous for manned platforms. For example,

autonomous underwater vehicles have shed light on some of the deepest trenches of the

sea [5] and robotic rovers have explored expanses of the desolate martian landscape [6].

Recently, autonomous vehicles have been proposed as a safe and effective way to penetrate

extreme weather systems such as hurricanes and tornados [7], shedding light on physical

processes that may be inaccessible to manned vehicles or remote sensing techniques [8], [9].

Unmanned aircraft can fly in hurricanes at altitudes lower than it is safe for manned air-

craft to operate [9] and can target observations at regions of interest within the storm [10].

In 2006, an Aerosonde unmanned aircraft flying at low altitude successfully penetrated a

typhoon eyewall while streaming temperature, pressure, and windspeed data to a remote

command center [9]. In 2010, the Global Hawk UAV passed over Hurricane Earl at high al-

titude while collecting temperature, convection, and precipitation measurements [11], [12].

In addition, smaller unmanned aircraft have been utilized to sample within pre-tornadic

supercell thunderstorms [13].

The ability to target observations in the environment is achieved by coordinating

the motion of a group of vehicles, motivating the field of coordinated control . It is often
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desirable for vehicles to collect in-situ observations at regular intervals along a repeated

pattern, thereby measuring data with a suitable spatiotemporal sampling density. Multiple

long-endurance vehicles deployed in a coordinated manner can collect data over vast spatial

and temporal domains while simultaneously regulating the sampling densities of their

measurements according to the variability of the environment.

Recently, many authors have contributed coordinated control algorithms for two-

dimensional vehicle motion in a flowfield [14], [15], [16], [17], [18]. A few notable works

are described as follows, presented in order from the flow-free to strong flow settings.

Sepulchre et al. [14] provided decentralized algorithms to stabilize planar parallel and

circular formations in a flow-free setting, as well as symmetric circular formations in

which vehicle separation is regulated around the circular formation. Zhang et al. used

orbit functions [19], [20] to coordinate multi-vehicle motion around closed curves. Arranz,

Seuret, and Canudas de Wit [21], [17] provided decentralized control algorithms steering

vehicles to circular formations with time-varying radius and position. Paley and Peterson

[15] extended the parallel and circular formation results to motion in a time-invariant,

moderate flowfield, including time-splay circular formations (formations in which a vehicle

revisits a point on the formation at regular time intervals) in a uniform flowfield, whereas

Techy, Paley, and Woolsey [16] extended the moderate-flow results to motion around

convex loops. Similar work includes that of Frew et al. [22] who used Lyapunov analysis

to generate guidance vector fields in a known flowfield. The extension to time-varying

flows was made by Peterson and Paley [23]. Bakolas and Tsiotras [24] provided control

algorithms providing coverage of a desired region subject to strong flows, however, they

assumed a kinematic model of vehicle motion rather than a dynamic vehicle model of the

previously noted works.
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A flurry of literature has been produced extending planar coordination results to

three dimensions, ranging from simple three-dimensional self-propelled particle models

to high fidelity models of aircraft motion. A few notable works include Justh and Kr-

ishnaprasad [25] who utilized a three-dimensional self-propelled particle model to derive

multi-vehicle steering control algorithms that stabilize rectilinear, circular, and helical

formations in a flow-free setting. Using a similar model, Scardovi et al. [26] provided for-

mation control algorithms assuming varying communication topologies between vehicles.

Hernandez and Paley [27] extended the results to three-dimensional motion coordination

in a time-invariant, moderate flowfield. Using a simplified model of aircraft motion with

low-level autopilots, Ren and Beard [28] derive trajectory tracking control algorithms for

a single vehicle that can be applied to a multi-vehicle application. For a complete review

of three-dimensional aircraft models, autopilot design, and guidance algorithms, see [29].

Control strategies developed for motion in a flowfield often assume the flow is known.

In order to achieve the desired results in an unknown or partially known flowfield, each ve-

hicle must estimate the local flow. For general vehicle models, prior works have generated

flowfield estimates from noisy local flow measurements using a nonlinear observer [23], a

distributed consensus filter [30], and a particle filter [31]. Notable research includes Lynch,

Schwartz, Yang, and Freeman [32] who utilized decentralized proportional-integral average

consensus estimators coupled with Kalman filters to estimate environmental fields using

sensor platforms with time-varying communication topologies and Peterson and Paley [33]

who implemented a distributed information-consensus filter to estimate the coefficients of

a flowfield defined by a finite number of basis functions.

Many techniques have been utilized to estimate the wind fields specific to aircraft

flight. Chao and Chen [34] employed multiple UAVs to estimate parameters associated
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with a partial differential equation approximating a wind field, whereas Mulgund and

Stengel [35] implemented an extended Kalman filter to provide wind shear estimates for

use in feedback control of an aircraft. Lawrance and Sukkarieh [36] used Gaussian process

regression to estimate a wind field for exploration and exploitation of gliding UAVs and

Langelaan, Alley, and Neidhoefer [37] provide a general method for estimating wind fields

for small unmanned aerial vehicles outfitted with basic position and rate sensing hardware.

In related work with underwater vehicles, Thompson et al. [38] derive path planning

procedures using flowfield predictions of ocean currents generated using a forecast model.

Experimental demonstration of coordinated control algorithms has been pursued by

many researchers using ground [39] [40], [41], air [42], [43], [44], [45], and underwater [8],

[38], [46], [47] vehicles. Notable works include Peterson [42] who demonstrated closed-

loop control of two unmanned aircraft to circular formations in an estimated wind field.

Techy, Woolsey, and Schmale III synchronized dual aircraft formations for aerobiological

sampling [43]. In the underwater environment, Napora and Paley [46], [48] demonstrated

parallel and circular formations using a fleet of autonomous underwater vehicles using

closed-loop feedback control with motion capture. Leonard et al. [8] coordinated multiple

underwater gliders to target observations for measuring dynamical processes in the ocean.

Although coordinated control and flowfield estimation techniques enable operation

in unknown flowfields, there exists a need to adaptively optimize multi-vehicle sampling

trajectories such that they provide the most informative data in a spatiotemporal envi-

ronment. For example, large-scale severe weather systems such as hurricanes span tens to

hundreds of thousands of square kilometers [49], which is more than a typical unmanned

aerial vehicle can cover alone. Similarly, resolving three-dimensional circulation processes

in the ocean requires high resolution and synoptic sampling by multiple coordinated sam-
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pling platforms [50].

A body of literature has been produced addressing the adaptive sampling and op-

timization problem, of which a few notable works are mentioned here. Graham and

Cortes [51] optimize sampling trajectories of a robotic sensor network in a random spa-

tiotemporal field, minimizing the maximum predictive variance of an estimator over the

space of network trajectories. Leonard et al. [8] adaptively optimized glider trajectories

to minimize a measure of the mean square error of the estimate of a spatiotemporal field.

Cortes, Hernandez, Karatas, and Bullo [51] derive an adaptive coordination algorithm pro-

viding optimal coverage of a spatial domain. Choi and How [52] present and path planning

model for informative forecasting using measures of mutual information to reduce uncer-

tainty in a forecast model. Sydney and Paley [53] provide multi vehicle controls to sample

nonstationary spatiotemporal fields characterized by spatial and temporal decorrelation

scales.

1.2.2 Formation Flight

An extensive body of literature has been produced regarding the modeling of close

formation flight [54], from the aerodynamics of birds in formation [55] to power savings

produced by specific aircraft formations [56]. A large portion of the close-formation mod-

eling, [57], [58], [59] control, [60], [61] and experimental [62] studies have focused on forma-

tions that produce significant reductions in the induced drag on an aircraft flying within

the wake of another aircraft. Blake and Multhopp [57] model a two aircraft formation

using potential flow theory and derive relative positions providing optimal aerodynamic

efficiency savings. Pachter, D’Azzo and Proud [60] derive a feedback control algorithm sta-

bilizing a linearized model of two aircraft formation flight. Chichka, Wolfe, and Speyer [58]
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extend the results to a model a three aircraft in a tight formation. Most of these works

utilize lifting-line or vortex-lattice methods [63], [64] to model the aerodynamics of air-

craft interactions. In closely related work, Dogan and Sato [65], and Dogan, Lewis, and

Blake [66] address the modeling and experimental study of aerodynamic and dynamical ef-

fects related to aerial refueling and present a feedback controller to stabilize a two-aircraft

refueling maneuver.

Success of close-formation flight is predicated on knowledge of the lead aircraft’s

relative position and the characteristics of its associated wake. There are significantly less

publications regarding estimation of the relative aircraft positions for close formation flight.

In experimental work conducted by the National Aeronautics and Space Administration

(NASA), high precision GPS measurements blended with integrated inertial measurement

systems were incorporated used to experimentally validate autonomous formation flight

[67]. Envisioning operation in GPS denied environments, Hemati, Eldredge, and Speyer

[68], [69] used lifting-line theory to model a two-aircraft formation and utilized extended

Kalman filtering (EKF) and particle filtering techniques to estimate parameters of the

lead aircraft’s wake using distributed aerodynamic measurements taken along the follower

aircraft’s wing. In that work, the authors noted that both estimation strategies had

difficulty reliably estimating the lead aircraft position and found that filter divergence

was dependent on the initial relative aircraft positions.

1.2.3 Biologically Inspired Sensing and Control

Stream-dwelling fish have a remarkable ability to navigate tumultuous, unknown

environments riddled with obstacles [70]. In fact, many species exhibit a behavior known

as station-holding, in which individuals are able to sense the relative position of an obstacle
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in a current and hold position in its wake [71]. Similarly, fish are known to orient upstream

in a flowfield, a behavior known as (positive) rheotaxis [70]. These behaviors are mediated

by sensing modalities such as vision and the lateral line. In fact, fish are able to navigate

in the absence of light or without vision [70]. The lateral line is also believed to play an

important role in schooling [72] and sensing predators [73], prey [74], and other features

within their environment [75], [76]. A bio-inspired artificial lateral line can significantly

improve an underwater robot’s ability to characterize its surroundings, thereby improving

its ability to operate in environments where traditional sensing modalities are hindered.

The lateral line system is composed of hundreds to thousands of receptors, known

as neuromasts, distributed along the body of the fish [71]. Neuromasts are divided into

two categories: superficial neuromasts, located on the external surface of the fish, consist

of hair cells encased in a gelatinous dome called a cupula [77] and sense local flow velocity

[78]; canal neuromasts are located under the skin in fluid filled canals and sense pressure

differences between adjacent pores of the canal [79], [80].

Several recent works describe an artificial lateral line for underwater vehicle sensing

[81], [82]. For example, Yang et al. [81] created an artificial lateral line using an array

of micro-fabricated hot-wire anemometry sensors. Many similar works have emulated

the function of the canal lateral line system by using pressure [79], [83], [84], optical

[85], and capacitive [86] sensor arrays. Artificial superficial neuromast sensors have been

developed using various materials including ionic polymer metal composites (IPMC) [87],

multi-layered silicon beams [88], and encapsulated metal-oxide semiconductors [89]. For

a comprehensive review of biomimetic hair sensors similar to the superficial neuromast

system, see Tao and Yu [82].

Previous works have incorporated single-modality sensor arrays for bio-inspired

12



closed-loop control. Gao and Triantafyllou [90] used a pressure sensor array to control

the angle of attack of an underwater vehicle with respect to a free stream flow. Salumae

and Kruusma used pressure difference measurements to demonstrate rheotaxis [91]. In

other work, the same authors used empirical methods to demonstrate station-holding [92].

Similar works have focused on flow-sensing using an artificial lateral line, rather

than feedback control. Fernandez used particle filtering techniques to track vortices near

a pressure sensor array [4], whereas Venturelli et al. [79] showed that the position of

a Karman vortex street can be discriminated using a pressure sensor array. Ren and

Mohseni [76] investigated how an array of canal lateral line sensors are affected by the

presence of a Karman vortex street, which is a hydrodynamic structure characterized by

vortices of opposite circulation strength shed from an upstream obstacle.

1.2.4 Observability

Throughout this dissertation, measures of observability are used to optimize the

multi-agent sensing system. Observability in control theory is a measure of how well the

state variables of a system can be determined by measurements of its outputs. Here, the

general goal is to place a finite number of sensors in a (moving or static) configuration that

maximizes (minimizes) observability (unobservability) of states characterizing a flowfield

model. For a thorough discussion of observability in linear systems, see [93], whereas

as review of nonlinear observability is in [94]. Notions of nonlinear observability were

first introduced by Hermann and Krener [95] using techniques from differential geometry.

By calculating the rank of the dynamic and output vector field’s Lie algebra gradient, a

binary assessment of local observability, known as the observability rank condition [95],

or Kalman condition [94], is achieved.
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Analytical calculation of observability can be difficult to assess for even simple non-

linear systems, motivating recent empirical techniques. Lall, Marsden, and Glavaski [96]

introduced the empirical observability Gramian for balanced model reduction of nonlinear

control systems, which is advantageous for high dimensional and highly nonlinear sys-

tems since it only requires the ability to simulate the system [97]. Subsequently, it was

shown that the empirical observability Gramian is proportional to the Fisher information

matrix [98], differing by only the measurement noise covariance. This implies empirical

observability analysis can be used as a metric that predicts estimation performance, but

is independent of measurement noise characteristics.

Since its inception, empirical observability techniques have been used in a wide range

of applications including model reduction of high-dimensional nonlinear systems [96], op-

timization of a sensor placement in monitoring chemical reactions [99], and more recently,

evaluating the effectiveness of candidate sampling trajectories (or sensor placements) for

flowfield estimation [97], [100], [101]. Krener and Ide [97] used the nonlinear observability

rank condition [95] to evaluate the effectiveness of Eulerian and Lagrangian drifter sen-

sors with no control authority; the authors in [102], [103] assimilated Lagrangian drifter

measurements in an extended Kalman filter to estimate ocean flows. Hinson and Mor-

gansen [100], [101] used observability to derive control algorithms and sensor placement

strategies improving for wind direction identification in aircraft and for wake estimation

on a pitching and heaving airfoil. Observability techniques have also been in satellite

tracking applications [104] and for placing sensors to monitor power systems [105].
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1.3 Contributions of Dissertation

This dissertation makes contributions to the general fields of multi-vehicle control

theory, environmental sampling, autonomous close-formation flight, and bio-inspired sens-

ing and control. Some results from this dissertation have been published or are submitted

for publication [106], [107], [108], [78]. Early versions of the published work include the

conference papers [109], [110], [111], [112], [113], [114]. Some results, including much of the

bio-inspired flow sensing analysis and experimental work, along with the wake sensing and

formation flight results, have not appeared elsewhere. The contributions are organized into

three general categories in which they lie, notably environmental sampling, wake sensing

for formation flight, and bio-inspired sensing and control. They are as follows.

Environmental Sampling

This dissertation:

1. Derives theoretically-justified, decentralized multi-vehicle control algorithms steer-

ing vehicles to desired sampling formations subject to known, strong flowfields that

can hinder vehicle motion. Due to the presence of strong flowfields that can make

forward progress impossible, notions of trajectory feasibility are defined to enable

derivation of kinematic conditions ensuring feasibility of a desired sampling trajec-

tory. Feasibility analysis facilitates derivation of multi-vehicle control algorithms

steering vehicles to desired sampling formations in a strong flowfield. This disserta-

tion derives control algorithms autonomously steering vehicles to parallel, circular,

folium, and spirograph motion primitives; the motion primitives enable derivation

of multi-vehicle control algorithms steering the collection of vehicles to formations

with
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• Specified position of the formation center

• Specified radial position of the formation center and arbitrary azimuth

• Regulated spacing between vehicles along the formation; specifically, equal

spacing between vehicles is known as the splay formation

• Regulated speed along the formation.

This work considers two- and three-dimensional vehicle motion models. For three-

dimensional motion, this dissertation derives autonomous multi-vehicle control algo-

rithms allowing the vehicles to cooperate with the flow to coordinate multi-vehicle

motion without changing the flow-relative speed of the vehicle. Previous results

required vehicles to change their flow-relative speed, which can decrease vehicle en-

durance [115].

2. Presents a recursive Bayesian filtering formulation for estimating the flowfield by

assimilating noisy measurements of the flow collected from multiple sampling vehicles

in space and time.

3. Proposes an adaptive sampling algorithm that optimizes multi-vehicle sampling for-

mations to maximize flowfield observability while simultaneously estimating the flow-

field. Measures of flowfield observability provide a metric for iteratively optimizing

the parameters defining a family of desired sampling formations. Estimates of the

flowfield are utilized in the feedback control and optimization procedures.

Wake Sensing for Formation Flight

1. Analyzes observability of lead aircraft position using distributed aerodynamic mea-

surements on followers wing.
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2. Presents a recursive Bayesian filtering framework incorporating noisy measurements

from multiple sensing modalities to estimate the leader aircraft position relative to

the follower.

3. Provides optimal control algorithms for two-aircraft formation flight using mea-

sures of observability to avoid spatial domains prone to degraded estimation per-

formance. The observability-based optimization routine improves closed-loop per-

formance when estimates of the the leader position are used in feedback control.

Bio-inspired Control and Hydrodynamic Sensing

1. Derives a sensor placement strategy optimizing measures of flowfield observability.

Using a Monte-Carlo simulation analysis, the optimized sensor array is shown to

outperform 99.9% of random configurations when estimating properties of a uniform

flowfield.

2. Presents recursive Bayesian and particle filtering frameworks for estimating flow

properties using noisy, distributed measurements from a multi-modal artificial lateral

line.

3. Provides theoretically justified vehicle control algorithms enabling autonomous ex-

ecution of bio-inspired behaviors. Using estimated flowfield properties for feedback

control, we derive control algorithms steering vehicles to rheotactic behavior, the

tendency of fish to orient upstream, and station-holding, the tendency of fish to

hold position behind an upstream obstacle.

4. Experimentally demonstrates rheotaxis and station-holding on a robotic prototype

outfitted with a multi-modal artificial lateral line composed of flow and pressure

sensors.
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1.4 Outline of Dissertation

Chapter 2 presents the fundamental mathematical and analytical tools used to ad-

dress the control, estimation, and optimization problems addressed throughout this dis-

sertation. It introduces the general form of the nonlinear systems considered in this work,

providing basic notation to clarify and streamline presentation throughout the disserta-

tion. The chapter is organized according to the mathematical concepts used for each of the

components in the technical approach, shown in Figure 1.1. Sections 2.1 and 2.2 describe

the mathematical tools used to derive control algorithms for the multi-vehicle or multi-

sensor sampling and estimation problem in Chapters 3, 5, and 6. Section 2.1.1 provides an

overview of Lyapunov-based control techniques used to steer a group of vehicles to a desired

sampling formation, whereas Section 2.1.2 describes tools from optimal control utilized in

deriving observability-based control algorithms for close formation flight in Chapter 6.

When deriving multi-vehicle control algorithms in Chapter 3, we assume an underlying

communication topology between vehicles; Section 2.2 reviews tools from graph theory

that mathematically specify these communication topologies. Section 2.3 provides a re-

view of nonlinear and empirical observability measures that serve as optimization metrics

allowing a multi-sensor system to maximize the observability of a physical process. Sec-

tion 2.4 summarizes two nonlinear flowfield estimation techniques including the grid-based

recursive Bayesian filter and the particle filter. The grid-based recursive Bayesian filter

is implemented in the environmental sampling, formation flight, and bio-inspired sensing

applications; the particle filter is implemented for nonlinear, high-dimensional state-space

models of vortex flows in Chapter 7.

Chapter 3 derives decentralized multi-vehicle control algorithms steering a collection
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of vehicles to a desired sampling formation, even in the presence of strong flows that can

disrupt vehicle motion. Section 3.1 models a collection of vehicles in a flowfield as self-

propelled particles and derives particle motion models with respect to both inertial and

rotating reference frames. Section 3.1 also provides two-dimensional flowfield models used

in the control and sampling examples of Chapters 3 and 5. In a strong flow the flowspeed

can exceed the flow-relative speed of an individual vehicle, implying that forward progress

is not possible in all regions of the flow. This issue motivates the study of trajectory and

formation feasibility in a strong flowfield, presented in Section 3.2.

Feasibility analysis provides insight for choosing sampling formations that are feasi-

ble and provide the best spatiotemporal sampling density for the goals of the multi-vehicle

sampling mission. Section 3.3 uses the feasibility analysis of Section 3.2 and derives con-

trol algorithms steering a vehicle to feasible sampling formations. The chapter considers

four basic formation primitives including a straight line, circle, folium, and a spirograph.

Section 3.4 uses the results of Section 3.3 to derive decentralized multi-vehicle control

algorithms steering vehicles to a formation of the desired motion primitive.

Chapter 4 extends the two-dimensional results to motion in three dimensions and

unknown flowfields by considering a three-dimensional self-propelled vehicle model and

a flowfield with a vertical gradient. A recursive Bayesian filter assimilates noisy mea-

surements of the local flow from multiple vehicles, producing an estimate of the global

three-dimensional flowfield. By utilizing the variation of flowspeed with altitude, the ve-

hicles are able to coordinate motion without changing their flow-relative speed, which can

significantly extend their range and time of operation.

Chapter 5 provides a multi-vehicle, adaptive sampling algorithm that uses mea-

sures of flowfield observability to optimize parametric inputs to a coordinated sampling

19



formation. We consider the application of sampling in an idealized hurricane using a

fleet of unmanned aircraft. Section 5.1 presents the sampling problem and defines the

control objective. Section 5.2 applies nonlinear observability measures to evaluate candi-

date sampling trajectories in a Rankine vortex. Section 5.3 builds upon the observability

analysis and presents an observability-based adaptive sampling algorithm that maximizes

flowfield observability over the space of parameterized candidate sampling formations us-

ing estimates of the flowfield. The vehicles collect noisy measurements of the flow and

implement a recursive Bayesian filter to estimate the flowfield parameters. Using the es-

timated flowfield, we calculate the smallest singular value of the empirical observability

Gramian to optimize sampling trajectories over a given time interval. The optimized sam-

pling formation parameters and the estimated flowfield are implemented in a decentralized

multi-vehicle control from Chapter 3 to steer vehicles to the optimal sampling formation.

Section 5.4 illustrates results of simulating the adaptive sampling algorithm in moderate

and strong flowfields, and analyzes characteristics of the algorithm’s performance.

Chapter 6 applies the control, estimation, and observability optimization tools to

close formation flight of two aircraft. Section 6.1 uses lifting-line theory to develop a

model of two aircraft in formation flight. Section 6.2 provides quantitative analysis of

the observability of a lead aircraft’s wake parameters given distributed measurements of

differential pressure collected along the follower’s wing. Section 6.3 reviews details of the

recursive Bayesian filter when used to estimate parameters defining the lead aircraft’s

wake. Section 6.4 formulates two observability-based optimal control strategies steering

the follower aircraft to a desired position relative to the leader while maximizing observ-

ability of the lead aircraft parameters along its trajectories. Section 6.5 combines the

analysis and control design of previous sections, providing numerical examples of forma-
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tion flight and aerial refueling maneuvers in which estimates generated by the recursive

Bayesian filter are incorporated in the optimal control strategies.

Chapter 7 applies nonlinear control, estimation, and observability optimization to

the design and operation of a bio-inspired robotic fish prototype. Section 7.1 uses poten-

tial flow theory to model the flow around a streamlined underwater vehicle in a uniform

flowfield and in the wake of an obstacle. Building upon the flow models of Section 7.1,

Section 7.2 presents a state-space motion and measurement model for an underwater ve-

hicle outfitted with a multi-modal artificial lateral line. Section 7.3 uses measures of

flowfield observability to derive a sensor placement strategy optimizing measures of flow-

field observability in a uniform flow. A recursive Bayesian formulation is implemented to

estimate properties of the free stream flow. Analysis of Monte Carlo simulations shows

the optimized sensor configuration outperforms 99.9% of all sensor configurations. Section

7.4 derives and simulates theoretically-justified control algorithms steering the vehicle to

bio-inspired behaviors including rheotaxis and station-holding. Section 7.5 presents the

design, fabrication, and implementation of a bio-inspired lateral line incorporating ionic

polymer metal composite (IPMC) and pressure sensors in a distributed array. It also

presents a novel bootstrapping calibration method enabling use of the multi-modal ar-

tificial lateral line without external position or orientation references. Finally, Section

7.6 provides experimental results demonstrating rheotaxis and station-holding behaviors

using the multi-modal artificial lateral line control system.

Chapter 8 concludes by summarizing the contributions of the dissertation in Section

8.1 and describing ongoing and future work in Section 8.2. In each section, the contribu-

tions and ongoing work recommendations are categorized starting with general comments

and then according to the application under which they apply. To efficiently find defini-
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tions, terminology, and important concepts, the end of the dissertation contains an index

of key terms with corresponding page numbers.
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Chapter 2: Mathematical Background

Throughout this chapter, consider an N -dimensional (possibly) nonlinear system

with P outputs. Let x(t) ∈ RN represent the N -dimensional state-vector of a dynamical

system at time t and β(t) ∈ RP denote a P -dimensional vector of measurements1. For

example, x(t) could represent N = 6 scalar quantities describing the position and velocity

of a vehicle in three-dimensional space such that

x(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T ∈ R6,

and β(t) ∈ R may represent a measurement of the vehicle’s speed, i.e. P = 1, β(t) =

√
ẋ(t)2 + ẏ(t)2 + ż(t)2. Assume the state vector x(t) evolves in time according to

ẋ(t) = h(x(t)) +
M∑

k=1

gk(x(t), uk(t)), (2.1)

where h(·) : RN → RN and gk(·), k = 1, . . . ,M are time-invariant functions of x(t) and

u(t) = [u1, . . . , uM ] ∈ RM is an M -dimensional control vector. Combining (2.1) with the

output β(t) gives the autonomous, nonlinear state-space form

ẋ(t) = h(x(t)) +
M∑

k=1

gk(x(t), uk(t))

β(t) = q(x(t)),

(2.2)

where q(·) : RN → RP is a (possibly) nonlinear output function of x(t).

1Bold fonts represent a matrix such as an N × 1 matrix, x = [x1 x2 ... xN ]T , or an N × N matrix,

L ∈ RN×N .

23



2.1 Nonlinear and Optimal Control

This section provides an overview of the control methods used throughout this

dissertation. The coordinated multi-vehicle sampling and bio-inspired control problems

addressed in Chapters 3, 4, 5, and 7 utilize Laypunov-based control and analysis techniques

to drive each system to a desired equilibrium or steady-state. Section 2.1.1 provides

a review of Lyapunov-based stability and control analysis in the context of a general

dynamical system and provides discussion of an additional tool, the invariance principle,

that allows one to prove stability of the resulting control algorithms even after relaxing

the constraining assumptions in Lyapunov’s method. Sections 2.1.2 and 2.1.3 present

optimal control and path planning frameworks that are utilized in the design of optimal

trajectories for formation flight, discussed in Chapter 6.

2.1.1 Lyapunov-based control

Given the equations of motion (2.1), the goal of Lyapunov-based control is to derive a

control vector u(t) driving the state to a desired equilibrium point or steady-state behavior.

To begin, Lyapunov’s stability theorem is as follows [116].

Lyapunov’s Stability Theorem: [116, pp. 114] Let x∗ denote a zero-input equilibrium

point of (2.1) such that h(x∗) = 0. (Without loss of generality assume x∗ = 0 [116]).

Consider a domain D ⊂ RN containing x∗ and a continuously differentiable function2

S(x) with the properties S(x∗) = 0 and S(x) > 0 in D − {x∗}. If Ṡ(x) ≤ 0 in D then x∗

is stable in the sense of Lyapunov and if Ṡ(x) < 0 in D − {x∗} then x∗ is asymptotically

stable [116, pp. 114].

2The variable t is omitted for brevity. Note that all state and control variables are functions of time.
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For proof see [116, pp. 114–116].

The primary goal in Lyapunov-based control is to find a Lyapunov function whose

derivative can be manipulated by a suitable control to enforce negative definiteness. Given

the equations of motion (2.1), the time derivative of S(x) is

Ṡ(x) = ∂S
∂x ẋ = ∂S

∂x (h(x) + g(x,u))

= ∂S
∂xh(x) + ∂S

∂xg(x,u).

(2.3)

To ensure asymptotic stability of x∗, one must design a feedback control u(t) = u(x(t))

such that

∂S
∂xh(x) + ∂S

∂xg(x,u) < 0, (2.4)

for all x ∈ D. The control vector u can often be chosen to ensure that Ṡ is at least negative

semi-definite, proving stability in the sense of Lyapunov but not asymptotic stability. The

following provides an overview of the LaSalle’s invariance principle [116], which can be

used to prove asymptotic stability even when Ṡ is negative semi-definite and relaxes the

requirement that S be positive definite in the domain D.

The invariance principle relies on mathematical definitions from set theory, namely

the concepts of compact and positively invariant sets . For brevity, the definitions are

simply stated here; however, a complete review can be found in [116, pp. 127]. A set

U ⊂ RN is compact if it is closed and bounded. A closed set is one in which every

convergent sequence with elements in U converges to a point in U . Moreover, a bounded

set is one in which all points within the set lie within a fixed distance of one another. A

set U is positively invariant if a solution x(t) to (2.1) with x(0) ∈ U remains in U for all

t ≥ 0, i.e.

x(0) ∈ U =⇒ x(t) ∈ U, ∀t ≥ 0. (2.5)
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With the definitions of compact and positively invariants sets, LaSalle’s invariance prin-

ciple is stated as follows [116, pp. 128].

LaSalle’s Invariance Principle: [116, pp. 126–129] Let U ⊂ D be a compact set that is

positively invariant with respect to (2.1) (with control u(x)). Consider a continuously

differentiable function S such that Ṡ ≤ 0 in U and let Q be the set of points in U for

which Ṡ = 0. Let W be the largest invariant set in Q. Every solution starting in U

approaches W as t→∞.

For proof see [116, pp. 128].

Important advantages provided by the invariance principle are that (1) the poten-

tial function S need not be positive definite (but can be), and (2) asymptotic stabil-

ity is established even when Ṡ ≤ 0 if the only solution x(t) that can stay in the set

Q = {x ∈ D|Ṡ(x) = 0} is the solution x∗. The goal of the feedback control design is to

derive u = u(x) such that the closed-loop dynamics satisfy the requirements of the invari-

ance principle, thereby establishing asymptotic stability of a desired equilibrium point or

equilibrium set.

2.1.2 Optimal Control

This section presents an overview of the classical optimal control formulation as

follows. The goal of the optimal control problem is to derive a control uopt(t) driving the

state from an initial condition x(t0) = x0 at time t0 to the desired final state xdes = x(tf )

at time tf that minimizes the metric

JC(x(t0),u(t);R) =

∫ t0+tf

t0

l(x(t)) + u(t)TRu(t) dt, (2.6)
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where l(·) is a cost function dependent on x and R ∈ RP×P is a constant, positive definite

matrix weighting the control inputs u(t). Imposing an additional constraint on the control

such that ||u(t)| | ≤ umax, bounds the control effort. Minimizing (2.6) is a constrained

nonlinear optimization problem whose solution provides the control sequence uopt(t) that

produces the optimal trajectory with respect to the cost function while minimizing control

effort.

Calculating the solution to (2.6) is computationally expensive and can be intractable

for complicated dynamics (2.1) and cost functions l(x). For linear systems with a quadratic

cost function l(x) = xTQx, where Q ∈ RN×N , the analytical solution provides the familiar

linear quadratic regulator (LQR) control result. In Chapter 6, we assume the cost func-

tion is dependent on observability measures and use the numerical optimization software

package GPOPS [117], [118] in MATLAB to calculate the control u(t), t ∈ [t0, tf ] that

minimizes (2.6). The optimal control uopt(t) drives the state to xdes while maximizing

observability and minimizing control authority.

2.1.3 Level Set Methods for Optimal Path Planning and Control

When state estimates are used in feedback control, the formulation presented above

requires iterative calculation of the optimal control values, which can be computationally

expensive and therefore difficult to implement in real-time. It also requires specification

of a feasible horizon time that may be unknown a priori given any control actuation

limits. An alternative approach incorporates a weighted wavefront expansion, known as

the fast marching method [119], to generate an optimal “cost-to-go” potential relative

to the desired final state xdes. By construction, the gradient of this potential function

provides the optimal control with respect to a given cost function. This method does not

27



require iterative calculation of the control since the potential is calculated over the entire

state-space, making the control computationally inexpensive compared to the previous

formulation control and easier to implement in real-time.

The optimal path planning problem is formulated as follows [119, pg. 284–291].

Given a desired final state xdes, the goal is to find the trajectory L(υ) : [0,∞)→ RN from

xdes to any point x0 that minimizes the cost metric [119]

∫ x0

xdes

l(L(υ))dυ,

where υ is the arc-length parameterization of the path L and l(·) is the cost function

evaluated along L. Let the minimum cost required to travel from xdes to a point x

be [119]

JW (x) , min
L

∫ x

xdes

l(L(υ))dυ, (2.7)

such that the level set JW (x) = C is the set of points that can be reached with minimal

cost C. By construction, level sets are orthogonal to the minimal cost paths [119] implying

that the optimal path descends the gradient of JW (x).

The fast marching method [119] is a wavefront propagation technique that is used to

efficiently compute JW (x) for the domain around xdes [119, pg. 86–99]. Since the optimal

path descends the gradient of JW (x), the optimal feedback control is

uopt = −KW∇JW (x), (2.8)

where the gain KW > 0. Assuming the desired final location is fixed, the cost potential

JW (x) need be calculated only once to produce all possible optimal paths.

Section 2.3 presents measures of observability of a nonlinear system. By using a

measure of observability as the cost function in (2.6) and (2.7), the resulting control

algorithms drive the system to a desired state while maximizing the observability over
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the trajectory. The next section provides an overview of tools from graph theory that

mathematically represent communication topologies between vehicles in a multi-vehicle

system.

2.2 Graph Theory

Chapters 3 and 5 present decentralized multi-vehicle control algorithms steering

vehicles to coordinated sampling formations. To allow individual vehicles to calculate

their control in a distributed manner, assume there is a communication topology allowing

vehicles to share information with one another, such as position and velocity. This section

presents tools from graph theory that model the communication topologies as matrices.

A graph is a mathematical representation of points where pairs of points are con-

nected or share information along links [120]. For example, the points could represent

computers in a network and the links could represent a pathway by which a message can

be shared between two computers. Each point in the graph is called a vertex, and each

connection is called an edge [120]. Edges can be directed, meaning information can be

passed in only one direction between the vertices, or undirected, implying information

passes both directions between vertices [120].

Following [121], assume the communication topology between a group of vehicles is

defined by an undirected graph G(V, E) consisting of n vertices V = {v1, . . . , vn} represent-

ing each vehicle and edges (i, j) ∈ E representing a communication link between vertices

vi and vj [122]. Let N (k) = {j|(j, k) ∈ E} be the set of vertices connected to k, called the

set of neighbors.

The matrices associated with the graph G are as follows. The adjacency matrix Z

of G has dimension n×n with elements Zij = 1 if (vj , vi) ∈ E and zero otherwise [123]. Z
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represents all the vehicle connections in E in matrix form. Let H ∈ Rn×n be the degree

matrix whose ith diagonal entry corresponds to the number of edges associated with the

ith vertex. The Laplacian matrix L = H − Z has the important property that for a

complex vector r ∈ Cn the inner product3 〈r,Lr〉 vanishes only when r = 1r0, where

1 ∈ Rn is a vector of ones and r0 is a scaler [121]. The complex quadratic form 〈r,Lr〉

is the total length of the polygonal line connecting communicating vertices [121] which,

when minimized, corresponds to coordinated motion. This work considers an all-to-all

communication topology , which corresponds to the Laplacian matrix

L = In − 1
n11T , (2.9)

where In is the n × n identity matrix. Extensions to limited communication topologies

are possible [17], [124], but outside the scope of this work.

2.3 Nonlinear and Empirical Observability

As defined in Section 1.2.4, observability in control theory is a measure of how well

the state variables of a system can be determined from its outputs. In linear systems,

observability is characterized by the observability rank condition [93], which is a special

case of the observability rank condition of a nonlinear system [95]. A nonlinear system is

called observable if two states are indistinguishable only if the states are identical [95] and

is determined using tools from differential geometry. This section provides an overview of

mathematical notions of observability as well as measures of observability in linear and

nonlinear systems.

3〈x, y〉 , Re (x∗y), where x∗ is the complex conjugate of x, denotes the inner product of complex

numbers x and y.
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2.3.1 Observability of a Dynamical System

By definition, a system is observable at time t0 if there exists a finite t1 > t0

such that knowledge of the input u(t), t ∈ [t0, t1] and measurements from the output

β(t), t ∈ [t0, t1] are sufficient to uniquely determine the initial state x(t0) = x0 [93].

For a nonlinear system of the form (2.2), local observability can be established using

tools from differential geometry namely, the Lie derivative. A brief review of nonlinear

observability analysis follows. For detailed discussion of nonlinear observability techniques,

the interested reader is referred to [94]. We begin by presenting the observability rank

condition, which provides a binary analysis of local observability for a nonlinear system.

The first order Lie derivative L1
hq specifies the rate of change of the function q(·)

in the direction of the function h(·) defined by [94], [100]

L1
hq = ∂q

∂xh(x). (2.10)

Higher order derivatives can be calculated such that the kth Lie derivative is given by

Lkhq = ∂
∂x

[
Lk−1
h q

]
h. (2.11)

Note that (2.10) and (2.11) are the Lie derivatives with respect to the drift vector field

h(x). One can also calculate Lie derivatives with respect to the control vector fields

gk(x) and mixed higher order derivatives can be obtained via combinations of the drift

and control vector fields. Let G denote the observability Lie algebra spanning the Lie

derivatives of the output function q(x) with respect to the drift vector field h(x) and the

control vector fields gj(x,u) (j = 1, . . . ,M) [94], [95], [100],

O = span{LF1LF2 . . . LFkqj}, j ∈ P, k = 1, 2, . . . (2.12)
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where Fi ∈ {h, g1, . . . , gM} for i ∈ {1, . . . , k} [94]. The gradient dO represents the obser-

vation space of (2.2) [125]. The observability rank condition states that the system (2.2)

is locally observable at x0 if dO evaluated at x0 has dimension N [94], [95]. Note that

since the observability space O contains high order mixed Lie derivatives, the gradient dO

can be difficult to calculate analytically even for simple nonlinear systems.

Note that the observability rank condition provides only a binary analysis of local ob-

servability rather than a continuous measure. For this reason, Gramian-based approaches

are commonly used to calculate an N × N observability Gramian whose singular values

correspond to the observability of the system’s modes [126]. To calculate the classical

observability Gramian, the system must be linearized. By assuming linearization about

a nominal equilibrium condition, the linear (time-invariant) state-space representation of

2.2 is

ẋ(t) = Ax(t) +Bu(t)

β(t) = Cx(t).

(2.13)

The linear observability Gramian over the interval [t0, tf ] is defined [126]

WO =

∫ tf

t0

eA
T τCTCeAτdτ. (2.14)

If WO has rank N , then the linear system (2.13) is observable [93].

For a nonlinear system, a linear realization about an equilibrium is one option, but

it fails to adequately model the input/output relationship of the nonlinear system over a

wide range of operating conditions [97]. One alternative for determining the observability

of a nonlinear system is to use the empirical observability Gramian [97], also known as

the observability covariance matrix, [96], [127] which does not require linearization but

merely the ability to simulate the nonlinear system. The empirical observability Gramian

is useful because it approximates the input-output behavior of a nonlinear system more
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accurately than the observability Gramian found by linearization [127] and is equal to

(2.14) for a linear system.

This work focuses primarily on assessing the observability of the states or parameters

needed for feedback control, which may represent a subset of the states contained in the

total state vector x(t). Let Ω ⊆ x be the set of states or parameters upon which one

calculates the empirical observability Gramian. The empirical observability Gramian is a

Hermitian matrix defined as follows. Let εiei be a small displacement of the initial state

(parameter) along the ith unit vector ei ∈ RG and let Ω ∈ RG be the nominal parameter

values. The (i, j)th component of the G×G empirical observability Gramian WO is [97]

WO(i, j) = 1
4εiεj

∫ T
0

[
β+i(τ)− β−i(τ)

]T [
β+j(τ)− β−j(τ)

]
dτ,

i = 1, . . . , G, j = 1, . . . , G,

(2.15)

where Ω±i = Ω ± εiei produces the output β±i = q(x; Ω±i). The empirical and linear

observability Gramians are matrices measuring the local sensitivity of the outputs to

changes in the initial state x0. In either case, if the Gramian has rank N the system is

locally observable. Though the rank test provides an assessment of whether the system is

locally observable, the following section describes measures of the observability Gramian

that assess how close the system is to being unobservable and how observability differs

between modes of the system.

For systems in which the output β(x; Ω) is a continuous function of time-invariant

parameters Ω, the observability Gramian and the Fisher information matrix are closely

related [98]. The Fisher information matrix F provides a measure of the information

content within a set of noisy measurements and is associated with the inverse of the

measurement covariance matrix [128]. In the limit that εi → 0, (2.15) becomes

lim
εi→0

β+i − β−i
2εi

=
∂β

∂Ωi
. (2.16)
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For infinitesimally small perturbations, the empirical observability Gramian (2.15) is ap-

proximated by

WO ≈




〈 ∂β∂Ω1
, ∂β∂Ω1

〉 . . . 〈 ∂β∂Ω1
, ∂β
∂ΩG
〉

...
. . .

...

〈 ∂β∂ΩG
, ∂β∂Ω1

〉 . . . 〈 ∂β∂ΩG
, ∂β
∂ΩG
〉



∈ RG×G. (2.17)

Let

B ,
[
∂β
∂Ω1

, . . . , ∂β
∂ΩG

]T
∈ CG×P . (2.18)

If one assumes each measurement is independent with equal noise variance, the statistics

of any noise corrupting the measurements can be modeled by the diagonal sensor noise

covariance matrix R given by R = R0IG×G where R0 is the sensor noise variance. Under

this assumption, the approximate empirical observability Gramian (2.17) becomes

WO ≈ 1
R0

BB∗ = 1
R0
F , (2.19)

which is proportional to the Fisher information matrix F = BB∗ [98].

2.3.2 Measures of Observability

In linear systems theory, the singular values σj of the observability Gramian deter-

mine the relative ease in determining the initial states of a linear system from the outputs

generated over a time interval [93, p. 125-126]. Large singular values imply that it is easy

to invert the mapping from outputs to initial states [97]. The reciprocal of the smallest

singular value σmin of the observability Gramian, called the unobservability index, is a

measure of the relative ease in which an estimation scheme can determine the initial state

of a system [97]; large values imply that the system is difficult to observe, whereas small

values indicate the opposite. The unobservability index is [97]

ξ , 1/σmin. (2.20)
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In stochastic estimation, a large value of ξ implies that noise in the measurements will

significantly impact the estimate error. Conversely, a small value of ξ implies that the

estimation error may not be sensitive to measurement noise [97].

The unobservability index is just one of several metrics providing a measure of

observability. For instance, the estimation condition number [99], [97]

λ = σmax
σmin

= σmaxξ, (2.21)

reflects the degree of variability in the observability of the system. A large value of λ

implies that a small perturbation in one direction may have a more pronounced effect

on the output than a large perturbation in another direction, which implies that the

observability of the system is sensitive to the perturbation direction and the estimation

problem may be ill-conditioned [97].

Several other metrics of the observability gramian have been proposed to analyze

the sensor placement problem [99], [98] including the trace, maximum singular value,

determinant, and trace of the inverse [99], [98] of the observability Gramian. Maximizing

the trace corresponds to maximizing the L2 norm of the outputs [98], whereas maximizing

the determinant corresponds to a maximization of independence between outputs [98].

Minimizing the trace of the inverse is comparable to minimizing the error covariance

[98]. One can also optimize individual elements along the diagonal of the observability

Gramian, which correspond to the observability of individual states. Assuming a system is

observable, this dissertation primarily focuses on the unobservability index (2.20) and the

estimation condition (2.21) in Chapters 5, 6, and 7, since they measure the least observable

mode and the anticipated estimation performance, respectively. For deeper analysis of the

observability of an individual state or for observability metrics applicable to unobservable

systems, 7 also focuses on individual elements of the observability Gramian.
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2.4 Bayesian Estimation

This section presents nonlinear filtering schemes to estimate unknown states (or

parameters) of the model (2.2). Throughout this dissertation we focus on estimating

the states (parameters) Ω ⊆ x that characterize a flowfield model and are important for

feedback control. For a linear system with Gaussian noise, the optimal Bayesian filter is

the Kalman filter, whereas for a nonlinear system with nonlinear noise, a common Bayesian

filter is a particle filter [129].

This section presents two versions of the Bayesian filter namely, the grid-based

recursive Bayesian filter and the particle filter. In the grid-based method a G-dimensional

grid represents a subset of all possible values of the true state vector Ω. Each element

within the grid represents an estimate of the state and has a corresponding probability

density quantifying the likelihood that it represents the true state. The probability density

of each estimate is recursively updated as measurements are assimilated in space and

time. In the particle filter each particle represents an estimate of the state and has a

weight corresponding to the likelihood that the particle represents the true state. The

state of each particle evolves in time using the dynamics of the system and its weight

evolves recursively as measurements are assimilated. Section 2.4.1 presents the grid-based

recursive Bayesian filter and Section 2.4.2 presents the particle filter.

2.4.1 Grid-based Recursive Bayesian Filter

The discrete-time Bayesian formalism proceeds as follows [129]. Let Ω̂(t) denote

the state estimate at time t, β̃k(t) denote the kth sensors’s noisy observation at time t,

and Ak(t) = {β̃k(1), . . . , β̃k(t)} denote the set of observations from sensor k up to time t.
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The posterior probability of the state Ω̂(t) given Ak(t) is [129]

p(Ω(t)|A(t)) = κp(β̃(t)|Ω(t))

∫
p(Ω(t)|Ω(t−∆t))p(Ω(t−∆t)|A(t−∆t))dΩ(t−∆t), (2.22)

where the coefficient κ is chosen so that p(Ω̂(t)|Ak(t)) has unit integral over the state

space. The conditional probability p(β̃(t)|Ω(t)) is a likelihood function, which represents

the probability that the state Ω(t) generated the observation β̃(t). The motion model

p(Ω(t)|Ω(t−∆t)) represents a nonlinear operator that updates the probability density

function from t−∆t to t, [130, p. 372-375] assuming known control inputs u. For linear

motion, define the motion matrix Ψ and let p(Ω(t)|Ω(t−∆t)) = N (ΨΩ(t−∆t); Σp),

where N (ΨΩ(t−∆t); Σp) is normally distributed white noise with mean ΨΩ(t−∆t) and

covariance matrix Σp. The quantity p(Ω(t−∆t)|A(t−∆t)) is the prior probability density

resulting from measurements taken up to t−∆t. At t = 0 the prior probability is assumed

to be uniformly distributed in the absence of information other than the parameter lower

and upper bounds. The maximum likelihood estimate Ω̂ of the lead aircraft parameters

is associated with the point in parameter space corresponding to the maximum of the

posterior probability density, i.e.,

Ω̂ = mode p(Ω(t)|A(t)). (2.23)

Suppose the kth sensor obtains the following noisy measurement at time t:

β̃k(t) = βk(t) + ηk(t),∈ RP ,

where the noise ηk(t) ∼ N (0, σ2
k) is normally distributed with zero mean and variance

σ2
k. For each point Ω(t) in the G-dimensional state space, let the likelihood function be a

multi-variate Gaussian, i.e.,

p(β̃k(t)|Ω(t)) = 1√
2π|Σ| exp[−1

2 [βk(Ω(t))− β̃k(t)]TΣ−1[βk(Ω(t))− β̃k(t)]], (2.24)
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where Σ = diag(σ2
1, . . . , σ

2
G). Assuming measurements are taken from k = 1, . . . , n sensors,

the total likelihood function is the product of the likelihood functions produced by all n

sensor measurements

p(β̃(t)|Ω(t)) =

n∏

k=1

p(β̃k(t)|Ω(t)), (2.25)

where p(β̃k(t)|Ω(t)) is given by (2.24). (Note, (2.25) assumes that the kth sensor com-

municates its measurement to either a central hub or to every other sensor such that

all agents have knowledge of p(Ω(t)|A(t)) in (2.22). Distributed versions of (2.22) are

possible [32], [42] but beyond the scope of this work.)

2.4.2 Particle Filter

Particle filtering is a Bayesian estimation technique in which each particle represents

an estimate of the state Ω given the measurements A(t) [131]. This estimation scheme is

well suited for systems of high-dimension with nonlinear dynamics and nonlinear measure-

ment noise models. For a detailed discussion of the particle filter estimation algorithm, see

Arulampalam et al. [131]. Assuming Lp particles, each particle li = Ω̂i has an associated

weight wi, such that the weighted sum of particles approximate the posterior probability

density function

p(Ω(t)|A(t)) ≈
Lp∑

k=1

wk(t)δ(Ω(t)− lk(t)), (2.26)

where δ(·) is the Dirac delta function [131]. Particles with a larger weight have higher

probability of representing the true state Ω than particles with a lower weight. In the limit

that Lp → ∞ the particle distribution and associated weights approach the continuous

probability density function p(Ω(t)|A(t)) [131]. The ith particle evolves in time via (2.1)

assuming that the kinematics of each element in li(t) is subject to independent, zero-mean,

Gaussian process noise η = N (0,σ) with variance σ2 = (σ2
1, . . . , σ

2
G). The corresponding
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particle weights are updated recursively in time such that

wk(t) = κp(β(t)|lk(t))wk(t−∆t), (2.27)

where p(β(t)|lk(t)) is the likelihood function (2.25) and κ is a normalizing constant such

that
∑Lp

k=1wk(t) = 1.
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Chapter 3: Motion Coordination in a Flowfield

The goal of this chapter is to provide distributed control algorithms steering a group

of vehicles to families of sampling formations that regulate spatiotemporal sampling den-

sity and provide basic motion primitives upon which a sampling mission may be built. This

chapter considers coordinated formations including straight lines, circles, folium patterns,

and the spirograph.

3.1 Two-Dimensional Self-propelled Particle Model in a Time-invariant Flow

This section models two-dimensional motion of an unmanned vehicle using a self-

propelled particle model in the presence of a time-invariant flowfield. Section 3.1.1 presents

a model of multi-particle motion with respect to an inertial reference frame, whereas

Section 3.1.2 represents the particle kinematics with respect to a rotating reference frame.

The vehicle motion models are used to derive multi-vehicle control algorithms in Section

3.4. Section 3.1.3 provides models of two-dimensional flow used throughout Chapters 3,

4, and 5.

3.1.1 Particle Motion With Respect to an Inertial Reference Frame

This section extends an existing dynamic model common to many works on collective

motion [15], [16], [17], [18], [132]. The model consists of a collection of n self-propelled

Newtonian particles. Each particle is subject to a control force normal to its velocity and
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travels at a constant speed relative to an external flowfield. It is assumed without loss

of generality that the flow-relative speed is unity. Given a ground-fixed inertial reference

frame I with origin O (identified with the complex plane), the kth particle’s position is

represented by the vector rk/O, or in complex coordinates [rk/O]I , rk = xk + iyk ∈ C.

Given the unit-speed assumption, the kth particle’s velocity can be represented by eiθk ,

a point on the unit circle. Using complex coordinates, the kth particle’s flow-relative

velocity is eiθk = cos θk + i sin θk.

The state-feedback control uk determines the kth particle’s rate of change of velocity

orientation (steering control). The equations of motion for the kth particle in the absence

of a flowfield are1

ṙk = eiθk

θ̇k = uk (r,θ) , k = 1, . . . , n.

(3.1)

State-feedback control algorithms uk(r,θ) utilizing r and θ drive each particle to the

desired collective motion and have been extensively studied in recent years [21], [17], [14],

[132], [18], [124].

In the presence of a time-invariant flowfield fk = f (rk) ∈ C each particle’s velocity

is represented by the vector sum of its velocity relative to the flow and the flow velocity

relative to the inertial frame I, as illustrated in Figure 3.1. In this case, the kth particle’s

motion is governed by

ṙk = eiθk + fk

θ̇k = uk (r,θ) , k = 1, . . . , n.

(3.2)

Here the flow magnitude is allowed to exceed the speed of the particle relative to

the flow. Let γk represent the orientation of the kth particle’s inertial velocity and sk its

1We drop the subscript and use bold fonts to represent an n × 1 matrix, e.g., r = [r1 r2 ... rn]T and

θ = [θ1 θ2 ... θn]T .
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Figure 3.1: The inertial velocity of a particle is the sum of the flow velocity relative to the

ground and the velocity of the particle relative to the flow. Illustration of particle velocity

in a (a) moderate flowfield and (b) strong flowfield. In a strong flowfield the direction of

travel is limited.

magnitude. Previous work on motion coordination in a moderate flow [15], i.e., where

|fk| < 1, utilized the following coordinate transformation:

γk , arg(eiθk + fk) (3.3)

sk , |eiθk + fk|. (3.4)

Under this transformation, the equations of motion (3.2) become

ṙk = ske
iγk

γ̇k = νk,

(3.5)

where νk is the control relative to the fixed inertial frame I. Controls uk and νk are related

by2

uk =
νk − 〈f ′k, i〉

1− s−1
k 〈eiγk , fk〉

=
skνk − sk〈f ′k, i〉
sk − 〈eiγk , fk〉

, (3.6)

2〈x, y〉 , Re (x∗y), where x∗ is the complex conjugate of x, denotes the inner product of complex

numbers x and y.
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where f ′k = ∂fk
∂rk

. Figure 3.1 illustrates the particle model in both the moderate (Fig. 3.1(a))

and strong flow (Fig. 3.1(b)) regimes. Note that a unit circle centered at the tip of fk

represents the possible values of ṙk = eiθk + fk.

Paley and Peterson [15] showed that in a moderate flow the transformation (3.6)

defines a one-to-one mapping between uk (control of the flow-relative velocity orientation)

and νk (control of the velocity relative to I), since the denominator of (3.6) is never zero.

This result allowed development of control laws for (3.2), extending those developed for

the flow-free model (3.1). However, for flow speeds greater than or equal to the vehicle

speed, the transformation (3.6) is no longer one-to-one. To see this, consider a particle at

position rk subject to a strong flow as shown in Figure 3.1(b). A unit circle drawn about

the tip of fk defines the possible orientations of the total velocity ṙk = eiθk + fk. In a

strong flow, the unit circle is not guaranteed to enclose rk, which implies that the set of

possible inertial velocity orientations is a subset of the circle (called the cone of admissable

directions by Bakolas and Tsiotras [24]). In a moderate flow as illustrated in Figure 3.1(a)

the unit circle encloses rk, implying that any given θk corresponds to a single γk. Thus,

in any moderate flow a given θk maps to a single γk, but in a strong flow a given γk maps

to one of two possible θk’s. The speed sk is required to determine θk as shown in Figure

3.1(b). Lemma 1 identifies two singularities in the transformation (3.6).

Lemma 1. For |fk| ≥ 1, the transformation (3.6) is singular when θk = arg(fk) ±

cos−1(|fk|−1).

Proof. Substituting eiγk = |eiθk + fk|−1(eiθk + fk) and (3.4) into the denominator of (3.6)

implies that uk is singular when

sk = 〈eiγk , fk〉 = |eiθk + fk|
−1〈eiθk + fk, fk〉 = sk

−1
(
〈eiθk , fk〉+ |fk|2

)
. (3.7)
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Figure 3.2: Orientation relations corresponding to the singularities of (3.6).

If one considers the flow fk in its polar form fk = |fk|eiψk , where ψk = arg (fk), substitu-

tion into (3.7) and solving for 〈eiθk , eiψk〉 gives

〈eiθk , eiψk〉 = cos(ψk − θk) = |fk|−1
(
s2
k − |fk|2

)
= |fk|−1

(
|eiθk + fk|2 − |fk|2

)
. (3.8)

Figure 3.2 shows that when eiθk is drawn such that
∣∣eiθk + fk

∣∣ is tangent to a unit

circle drawn about fk, a right triangle is formed with hypotenuse |fk| and sides
∣∣eiθk + fk

∣∣

and
∣∣eiθk

∣∣. Since the vector triad forms a right triangle [133] let ξ , sin−1(|fk|−1), and

since the sum of the interior angles of a triangle are supplementary,

ξ + λ+
π

2
= π. (3.9)

By projecting fk, note that

θk − ψk + λ = π. (3.10)

Equating (3.10) and (3.9) and taking the cosine of the result implies

cos (θk − ψk) = −|fk|−1, (3.11)
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which when substituted into (3.8) gives the Pythagorean Theorem, |eiθk +fk|2 +1 = |fk|2.

Thus, when sk = 〈eiγk , fk〉, θk is such that eiθk , fk, and eiθk + fk form a right triangle.

Solving (3.11) for θk while noting cos (θk − ψk) = cos (ψk − θk) completes the proof.

Lemma 1 shows that strong flows introduce singularities in the coordinate transform

(3.6), resulting in an unbounded turn rate. However, the design of the vehicle and the

medium in which it travels dictate the maximum controlled rate of turn a priori. The

turn-rate constraint can be modeled as saturation of uk, in which case (3.2) becomes

ṙk = eiθk + fk

θ̇k = sat (uk (r,θ) ;umax) ,

(3.12)

where

sat (u;umax) =





umax, u > umax

u, −umax ≤ u ≤ umax

−umax, u < −umax.

(3.13)

In the notation of Chapter 2 the state vector is x = [r,θ]T . The drift vector field is

h(x) = [eiθ1 + f1, . . . , e
iθn + fn,0n×1]T and gk = 0 for k = 1, . . . , n and gk = sat(uk;umax)

otherwise.

The saturation model (3.12) allows use of model (3.5) to design νk and (3.6) to

map νk to uk. Unless restricted by the vehicle dynamics, umax must be chosen large

enough so that νmax = νmax(umax) > |κmaxsmax|, where κmax is the maximum desired

curvature of the particle trajectory and smax is the maximum particle speed along the

trajectory. (The relation between umax and νmax is discussed by Peterson and Paley. [23])

The upper bound on νk is represented using γ̇k = sat (ν (r, θ) ; νmax). As θk approaches

either singularity provided in Lemma 1, θ̇k remains bounded, passing through the singular

point at a constant rate ±umax.
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3.1.2 Particle Motion with Respect to a Rotating Reference Frame

This section derives a dynamic model of self-propelled particle motion in a rotating

reference frame. By steering a group of vehicles to a formation with respect to a rotating

reference frame, the resulting inertial frame formation revisits regions of the environment

at specified intervals in time, thereby regulating the azimuthal and radial sampling den-

sity in the inertial reference frame. A proposed sampling formation is that of a spirograph

which, when viewed with respect to a frame rotating at constant angular rate, a spiro-

graph becomes a circular trajectory. Control algorithms producing circular trajectories

are discussed in Section 3.3.2.

Let I = (O, e1, e2, e3) represent an inertial reference frame with origin O and B =

(O,b1,b2,b3), where b3 = e3, represent a rotating reference frame with angular velocity

IωB = Ωe3. (Complex notation is used to represent Cartesian coordinates in I and B.)

The orientation α = Ωt + α(0) of frame B with respect to I satisfies e1 · b1 = cosα, as

shown in Figure 3.3(a). The inertial kinematics of the kth particle with respect to O are

described by rk , [rk/O]I and Ivk/O ,
Id
dt (rk/O). Assume for now there is no flow. Let the

path frame Ck = (k, c1, c2, c3) be a frame with origin at the kth particle’s position, where

c3 = e3, c1 = Ivk/O/hk, and hk , ‖Ivk/O‖ = 1 is the speed of the particle. Variable θk

is the orientation of the velocity, so e1 · c1 = cos θk.

Since frame B shares its origin with frame I, the kinematics of the kth particle in

frame B are given by r̃k , [rk/O]B and Bvk/O ,
Bd
dt (rk/O). As in frame I, this gives rise

to the path frame Dk = (k,d1,d2,d3), with origin at r̃k, where d3 = e3, d1 = Bvk/O/h̃k,

and h̃k , ‖Bvk/O‖ represents the speed of the kth particle relative to frame B. In B-

frame coordinates, (x̃k, ỹk)B, the position and velocity are given by rk/O = x̃kb1 + ỹkb2
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Figure 3.3: The orientation of the kth particle’s velocity (a) in no flow and (b) in flow f̃ .

and Bvk/O = ˙̃xkb1 + ˙̃ykb2, respectively, which implies h̃k =
√

˙̃x2
k + ˙̃y2

k. Let θ̃k be the

orientation of Bvk/O relative to b1, so that b1 · d1 = cos θ̃k.

The transport equation [134, p. 433–435], Ivk/O = Bvk/O + IωB × rk/O, gives the

kinematic relationship

hkc1 = h̃kd1 + Ωb3 × (x̃kb1 + ỹkb2) = h̃kd1 + Ω(x̃kb2 − ỹkb1). (3.14)

Noting that c1 = cos θke1 + sin θke2, (3.14) can be written

hk cos (θk − α) b1 + hk sin (θk − α) b2 =
(
h̃k cos θ̃k − Ωỹk

)
b1 +

(
h̃k sin θ̃k + Ωx̃k

)
b2.

(3.15)

The inertial derivative of (3.14), assuming hk is constant, gives

hkθ̇kc2 =
˙̃
hkd1 + h̃k

(
˙̃
θk + Ω

)
d2 −

(
Ω ˙̃yk + Ω2x̃k

)
b1 +

(
Ω ˙̃xk − Ω2ỹk

)
b2. (3.16)

By utilizing c2 = − sin (θk − α) b1 + cos (θk − α) b2, (3.16) results in the following scalar

equations of motion relative to reference frame B:

−hkuk sin(θ − α) =
˙̃
hk cos θ̃k − h̃k( ˙̃

θk + Ω) sin θ̃k − x̃kΩ2 − ˙̃ykΩ

hkuk cos(θk − α) =
˙̃
hk sin θ̃k + h̃k(

˙̃
θk + Ω) cos θ̃k − ỹkΩ2 + ˙̃xkΩ.

(3.17)
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Note that substituting ˙̃xk = h̃k cos θ̃k and ˙̃yk = h̃k sin θ̃k into (3.17) and using (3.15)

to eliminate θk − α and hk gives

−ukh̃k sin θ̃k − ukΩx̃k =
˙̃
hk cos θ̃k − h̃k( ˙̃

θk + Ω) sin θ̃k − x̃kΩ2 − h̃k sin θ̃kΩ

ukh̃k cos θ̃k − ukΩỹk =
˙̃
hk sin θ̃k + h̃k(

˙̃
θk + Ω) cos θ̃k − ỹkΩ2 + h̃k cos θ̃kΩ.

(3.18)

Solving (3.18) for
˙̃
hk and

˙̃
θk, respectively, with complex notation r̃k = x̃k + iỹk, results in

the equations of motion of the kth particle relative to frame B:

˙̃rk = h̃ke
iθ̃k

˙̃
hk = (Ω2 − ukΩ)〈r̃k, eiθ̃k〉

˙̃
θk = uk − 2Ω + h̃−1

k (Ω2 − uΩ)〈r̃k, ieiθ̃k〉 , ũk.

(3.19)

Let ũk be defined as the steering control with respect to rotating frame B. The

mapping from ũk to uk is

uk =
ũkh̃k + 2Ωh̃k − Ω2〈r̃k, ieiθ̃k〉

h̃k − Ω〈r̃k, ieiθ̃k〉
. (3.20)

Equations (3.19) and (3.20) are the equations of motion of a self-propelled particle rep-

resented in coordinates relative to a frame rotating with constant angular rate Ω. Note

that the mapping from ũk to uk is singular when h̃k = Ω〈r̃k, ieiθ̃k〉. Lemma 2 establishes

the singular conditions with respect to the inertial speed hk.

Lemma 2. The control transform (3.20) is singular when hk = Ω〈r̃k, eiθ̃k〉.

Proof. The absolute value of (3.14) squared gives

h2
k = h̃2

k + Ω2〈r̃, r̃〉 − 2Ω〈r̃, ieiθ̃k〉. (3.21)

Substituting the singular condition h̃k = Ω〈r̃k, ieiθ̃k〉 into (3.21) yields

h2
k = Ω2〈r̃k, ieiθ̃k 〉2 + Ω2〈r̃k, r̃k〉 − 2Ω2〈r̃k, ieiθ̃k〉2

= Ω2〈r̃k, eiθ̃k〉2,
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revealing a relation between the speed of a particle and its position. The mapping can

become singular when

hk = Ω〈r̃k, eiθ̃k〉. (3.22)

Specifically, if the vehicle is assumed to travel at unit speed in the inertial frame the

mapping is singular if Ω−1 = 〈r̃k, eiθ̃k〉.

The singularity identified in Lemma 2 occurs when the speed of the vehicle is zero

with respect to frame B. For example, when eiθ̃k is normal to r̃k and Ω > 0, the singular

condition simplifies to Ω−1 = |r̃k|.

Next, augment the dynamics presented in (3.19) to include flow terms represented by

f̃k. Note f̃k = f̃(r̃k) ∈ C, is assumed to be time invariant with respect to frame B, which

implies that the corresponding flowfield with respect to frame I is azimuthally symmetric

about O. Again, adapting the kinematic model of the effect of the flow that is used to

derive (3.2), the flowfield with respect to the rotating reference frame is incorporated into

(3.19) so that

˙̃rk = h̃ke
iθ̃k + f̃k

˙̃
hk = (Ω2 − ukΩ)〈r̃k, eiθ̃k〉

˙̃
θk = ũk.

(3.23)

Note uk is still calculated from ũk using (3.20).

Path-planning applications desire control of the total velocity of the particle rather

than the flow-relative velocity. For this reason let

s̃k , |h̃keiθ̃k + f̃k| (3.24)

γ̃k , arg(h̃ke
iθ̃k + f̃k), (3.25)
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such that ˙̃rk = s̃ke
iγ̃k . Figure 3.3(b) illustrates the following relations

s̃k cos γ̃k = h̃k cos θ̃k + 〈f̃k, 1〉

s̃k sin γ̃k = h̃k sin θ̃k + 〈f̃k, i〉,
(3.26)

which after division yield

tan γ̃k =
h̃k sin θ̃k + 〈f̃k, i〉
h̃k cos θ̃k + 〈f̃k, 1〉

. (3.27)

Taking the time derivative of (3.27) and using (3.26) gives

˙̃γk = s̃−1
k 〈

˙̃
fk, ie

iγ̃k〉 − s̃−1
k

(
Ω2 − ukΩ

) [
〈r̃k, s̃keiγ̃k〉 − 〈r̃k, f̃k〉

]
〈f̃k, ieiγ̃k〉h̃−2

k

+s̃−1
k

(
s̃k − 〈f̃k, eiγ̃k〉

)
ũk

, ν̃k,

(3.28)

where ν̃k represents control of the total velocity orientation with respect to the rotating

frame and
˙̃
fk = ∂f̃k

∂r̃k
˙̃rk. Using (3.28) with (3.20) yields the following mapping between uk

and ν̃k necessary for implementing a control designed in the rotating frame for use in the

inertial frame:

uk = m1+m2−m3
w1+w2−w3

, (3.29)

where

m1 = s̃kν̃k − 〈 ˙̃
fk, ie

iγk〉+ 2Ω
(
s̃k − 〈f̃k, eiγk〉

)

m2 = Ω2〈r̃k, s̃keiγk − f̃k〉〈f̃k, ieiγ̃k〉h̃−2
k

m3 = Ω2
(
s̃k − 〈f̃k, eiγ̃k〉

)
〈r̃k, is̃keiγ̃k − if̃k〉h̃−2

k

w1 = s̃k − 〈f̃k, eiγ̃k〉 − Ω
∣∣∣f̃k
∣∣∣
2
h̃−2
k 〈r̃k, ieiγ̃k〉

w2 = Ωs̃kh̃
−2
k

(
〈r̃k, if̃k〉+ 〈r̃k, eiγ̃k〉〈f̃k, ieiγ̃k〉+ 〈f̃k, eiγ̃k〉〈r̃k, ieiγ̃k〉

)

w3 = Ωs̃kh̃
−2
k 〈r̃k, ieiγ̃k〉.

The equations of motion of the kth particle with respect to a rotating frame subject
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to a flowfield are:

˙̃rk = s̃ke
iγ̃k

˙̃
hk =

(
Ω2 − ukΩ

)
〈r̃k, s̃keiγ̃k − f̃k〉h̃−1

k

˙̃γk = ν̃k,

(3.30)

where uk is given by (3.29). Similar to the inertial-frame dynamics, saturation of uk is

used to avoid singularities in the transformations (3.20) and (3.29).

For a known, spatially varying flowfield, s̃k can be calculated as follows [15]. Let

f̃k = f̃x,k + if̃y,k be the flowfield at r̃k, where f̃x,k = 〈f̃k, 1〉 and f̃y,k = 〈f̃k, i〉 represent the

real and imaginary parts of the flow respectively. By definition (3.24) gives

s̃k =

√
h̃2
k − f̃2

x,k − f̃2
y,k + 2s̃k

(
f̃x,k cos γ̃k + f̃y,k sin γ̃k

)
. (3.31)

Squaring this result and utilizing the quadratic formula to solve for s̃k gives

s̃k = 〈eiγ̃k , f̃k〉+
√
h̃2
k − 〈ieiγ̃k , f̃k〉2, (3.32)

where the positive root is taken since s̃k > 0.

3.1.3 Flowfield Models

This section presents time-invariant, two-dimensional flowfields used to simulate the

multi-vehicle control algorithms derived in this chapter. (Extensions to three-dimensional

flows with a vertical flowspeed gradient are discussed in Chapter 4.) Specifically, three

flowfield models are considered including a random, spatially correlated flow, a uniform

flow, and an idealized hurricane model known as a Rankine vortex. Each model serves as

an example of an environmental flow upon which simulations of the multi-vehicle control

algorithms derived in Section 3.3 are examined. The Rankine vortex model is used in

Chapter 5 to analyze the observability-based adaptive sampling algorithm in an idealized
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hurricane environment. Figure 3.4 shows each flowfield model plotted in the complex

plane.

This work characterizes a random velocity field by assuming exponential spatial

correlation in the two-dimensional plane. The random flowfield is homogenous, implying

that the correlation scales are constant in space. For this work, assume the correlation

constant is 0.5% of the spatial domain and the flow speeds are scaled such that the

maximum flowspeed is 1.4. The interested reader is referred to [115] and its associated

references for further discussion of random fields. The random flowfield used in this chapter

is illustrated in Figure 3.4(a) and is evaluated at discrete locations. Interpolating between

grid locations provides a continuous flowfield for simulating particle motion. The shaded

regions denote areas of the flowfield where the flowspeed is greater than the flow-relative

speed of the each vehicle, i.e. |fk| ≥ 1.

A uniform flow is characterized by its direction which, without loss of generality is

aligned with the positive real axis. The uniform flowfield is

f(rk) = ψ ∈ R, (3.33)

where 0 < |ψ| < 1, as illustrated in Figure 3.4(b). We restrict the uniform flow to moderate

flow speeds since, in a strong uniform flowfield, the particles have no control authority to

maintain a position and will therefore be pushed downstream indefinitely.

In a Rankine vortex [97] the tangential windspeed increases linearly with radius

to its maximum flowspeed vmax at the radius of maximum wind rmax and exponentially

decreases for radii greater than rmax with exponential decay constant µ. The Rankine

vortex model is arg(fk) = arg(irk) with

|f(rk)| =





vmax (|rk|/rmax) , 0 < |rk| ≤ rmax

vmax (|rk|/rmax)−µ , |rk| > rmax,

(3.34)
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Figure 3.4: (a) Random flowfield with constant spatial decorrelation scales; (b) uniform

flowfield; and (c) Rankine vortex.

where radius r = rmax represents the eyewall of an idealized hurricane. Figure 3.4(c) shows

an illustration of the Rankine vortex model with rmax = 30, vmax = 1.5, and µ = 0.6; the

shaded region depicts where |fk| ≥ 1.

3.2 Trajectory Feasibility in a Strong Flow

Strong flows present the possibility that a desired trajectory or formation is not

feasible. This section derives the kinematic conditions a flowfield must satisfy to ensure

trajectory feasibility. Conditions are derived for trajectories relative to both inertial and

rotating reference frames. These results have similarities to that of Bakolas and Tsiotras

in assessing the reachability of two points within a flowfield for a kinematic model of an

aircraft [24]; however, this work considers flowfields that can vary continuously through

space rather than flowfields that are assumed to be regionally uniform.

3.2.1 Feasibility With Respect to an Inertial Reference Frame

A strong flowfield presents a challenge to coordinated motion if an individual vehicle

is unable to reach the desired trajectory. Moreover, the desired trajectory itself may not

53



be achievable if even a portion of the trajectory opposes the flow. The following analysis

describes a set of constraints the flow must satisfy such that a given desired trajectory is

feasible. (Equivalently, one can view the constraints as limiting the possible trajectories

in a given flowfield.)

For a vehicle to travel along curve L, the flow at every point on the path must

be such that the vehicle can maintain a velocity tangent to L. That is, for every point

on the desired trajectory, the component of the flow normal to L must be less than the

vehicle speed relative to the flow. For a unit speed particle and tangent vector eiγk , this

implies that the absolute value of the inner product between the normal vector ieiγk and

the flow fk must satisfy |〈ieiγk , fk〉| ≤ 1. If 〈eiγk , fk〉 ≤ 0, then the flow opposes (or is

normal to) the direction of the trajectory and must therefore have magnitude less than

one. If 〈eiγk , fk〉 > 0, then the flow must only satisfy the normal constraint. This result is

summarized as follows:

Theorem 1. Trajectory L is feasible in flowfield f if, for all rk ∈ L, fk = f (rk) satisfies

〈eiγk , fk〉 ≤ 0 and |fk| < 1, or

〈eiγk , fk〉 > 0 and |〈ieiγk , fk〉| ≤ 1,

(3.35)

where eiγk is tangent to L at rk.

Theorem 1 implies that the flow vector at a given point on the trajectory must lie

within a U-shaped envelope oriented along the trajectory tangent, shown by the shaded

region in Figure 3.5(a). Trajectories that do not satisfy (3.35) are not feasible. Theorem

1 allows one to quantify regions of a known, time-invariant flowfield in which parametric

families of feasible trajectories are found. Analysis over the entire space of candidate

trajectory centers produces a map of regions in which feasible trajectories can be achieved.

54



fk

L
eiγk

ieiγk

rk

Im(r)

Re(r)

fk

eiγk

I ieiγk

(a)

L

r̃k

Im(r̃)

Re(r̃)

eiθ̃k

B

|Ω|−1

r̃k
eiθ̃k

α∗

(b)

L
rk

Im(r̃)

Re(r̃)

eiγ̃k

B

f̃k
ieiγ̃k

eiγ̃k

ieiγ̃k

f̃k

(c)

Figure 3.5: Feasibility constraint for a) inertial frame, b) rotating flow-free frame, and c)

rotating with-flow reference frame.

Figures 3.6(a) and 3.6(b) illustrate the feasible regions for fixed-size circular and

folium trajectories of radius (lobe length) 20 in a randomly generated strong flowfield,

whereas Figures 3.6(c) and 3.6(d) illustrate feasibility in a strong Rankine vortex (vmax =

1.2). A trajectory whose center lies in the shaded region is not feasible; unshaded regions

are feasible. Three example trajectories are plotted in each figure. Portions of a trajectory

plotted with a thin red line indicate where the flow fails to satisfy Theorem 1, whereas

portions shown in green satisfy the constraint. Note feasibility analysis reveals that fea-

sible circles and folia are centered close to the origin in the Rankine vortex. Moreover,

quadrifolia centered about the origin with lobe length 20 are in a moderate flow regime for

the majority of the trajectory. This analysis implies that quadrifolium formations may be

a poor candidate sampling trajectory in strong flows due to their infeasibility over large

areas and lack of feasible sampling at rmax.

3.2.2 Feasibility with Respect to a Rotating Reference Frame

Section 3.1.2 derives the dynamics of a self-propelled particle with respect to a

rotating reference frame. The equations of motion in Equations (3.19) and (3.30) reveal
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(a) (b)

(c) (d)

Figure 3.6: Feasible regions of circular (a,c) and quadrifolium (b,d) formations with radius

(lobe length) 20 in random and Rankine vortex flowfields.

that the speed of the particle in the rotating frame is a dynamic variable whose time

derivative depends on the position and velocity of the particle. This subsection defines

kinematic constraints on motion with respect to a rotating reference frame.

In the absence of an external flow, the kinematic terms arising from the rotating

reference frame B affect the speed h̃k of the vehicle with respect to B. For a constant-speed

particle traveling in the direction of rotation, the speed of the particle with respect to B

is a decreasing function of the rotation rate and the distance to the center of rotation.
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For a given trajectory to be feasible with respect to the rotating frame, a particle must

maintain forward progress over the entire trajectory, which implies the following result.

It is assumed that a fixed point in the rotating frame is not a feasible trajectory.

Lemma 3. Trajectory L in frame B rotating at rate Ω is a feasible solution to (3.19) if,

for all r̃k ∈ L, |r̃k| < |Ω|−1, or if |r̃k| ≥ |Ω|−1 and

Ω〈r̃k, ieiθ̃k〉 > 0 and |Ω〈r̃k, eiθ̃k〉| ≤ 1, (3.36)

where eiθ̃k is tangent to L at r̃k.

Proof. Summing the squared components of (3.15) and using hk = 1 yields

1 = h̃2
k + Ω2

(
x̃2
k + ỹ2

k

)
+ 2Ωh̃k(x̃k sin θ̃k − ỹk cos θ̃k).

Completing the square to solve for h̃k and simplifying with r̃k = x̃k + iỹk gives

h̃k = Ω〈r̃k, ieiθ̃k〉+

√
1− Ω2〈r̃k, eiθ̃k〉2, (3.37)

where the positive root is taken since h̃k > 0 is required to maintain forward progress.

Note that the inner products 〈r̃k, ieiθ̃k〉 and 〈r̃k, eiθ̃k〉 differ in phase by π/2 which implies

that for |r̃k| < |Ω|−1, (3.37) is real and positive. A trajectory is infeasible if (3.37) is

negative or complex, implying that for |r̃k| ≥ |Ω|−1, a feasible trajectory must satisfy

(3.36).

Lemma 3 is illustrated for Ω > 0 in Figure 3.5(b). Feasible trajectories in the

rotating frame with |r̃k| ≥ |Ω|−1 must travel in a direction opposing the rate of rotation.

The range of feasible directions of travel is determined by the position of the vehicle and

rate of rotation of the rotating frame. Notice that in complex notation, (3.15) can be

written ei(θk−α) = h̃ke
iθ̃k + iΩr̃k. Therefore, one can represent the velocity with respect to
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the rotating frame as h̃ke
iθ̃k = ei(θk−α)−iΩr̃k. The range of feasible velocities with respect

to the rotating frame is thus defined by a unit circle drawn about the tip of −iΩr̃k. In a

similar manner to a vehicle’s range of travel in a strong flowfield, it can be shown that for

|r̃k| ≥ |Ω|−1, the angular range α∗ of feasible directions of travel about arg(−iΩr̃k) is given

by α∗ = 2 sin−1
(
|Ωr̃k|−1

)
. α∗ can be calculated by replacing the vector fk with −iΩr̃k in

Figure 3.1(b) (also see Figure 3.2 in Appendix A) and noting that α∗ is the angle formed

between the two lines tangent to the unit circle.

When an external flowfield is present as in (3.23), the feasibility constraint on the

flowfield in a rotating frame is similar to Theorem 1. The transport equation [134, p.

433-435] represented in complex coordinates with respect to frame B gives

ei(θk−α) + fke
−iα = s̃ke

iγ̃k + iΩr̃k. (3.38)

An external flowfield is represented with respect to the rotating frame via the transport

equation such that in complex coordinates

fk = f̃ke
iα + iΩr̃ke

iα, (3.39)

where f̃k represents the flowfield relative to the rotating frame. Rearranging (3.39) reveals

fke
−iα = f̃k + iΩr̃k, (3.40)

which when substituted into (3.38) gives

s̃ke
iγ̃k = ei(θk−α) + f̃k. (3.41)

Equation (3.41) shows that the total velocity of the kth particle with respect to

frame B can be represented as a unit circle drawn about the tip of f̃k. Similar to Theorem

1, for a particle to travel along curve L in rotating frame B, the component of the flow
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normal to the trajectory must be less than the vehicle speed with respect to the flow in

the inertial frame. For a unit-speed particle with tangent vector eiγ̃k in the rotating frame,

this implies that the absolute value of the inner product between the normal vector ieiγ̃k

and the flow must satisfy |〈ieiγ̃k , f̃k〉| ≤ 1. If 〈eiγ̃k , f̃k〉 ≤ 0 then the flow is normal to

or opposes the direction of travel and must therefore have magnitude less than one. If

〈eiγ̃k , f̃k〉 > 0 only the normal constraint must be satisfied. This implies the following

result.

Theorem 2. Trajectory L in rotating reference frame B is a feasible solution to (3.30)

with flowfield f̃ if for all r̃k ∈ L, f̃k = f̃ (r̃k) is such that

〈eiγ̃k , f̃k〉 ≤ 0 and |f̃k| < 1 or

〈eiγ̃k , f̃k〉 > 0 and |〈ieiγ̃k , f̃k〉| ≤ 1,

(3.42)

where eiγ̃k is tangent to L at r̃k.

Similar to Theorem 1 but with respect to rotating reference frame B, Theorem 2

implies that the flow vector f̃k must lie within a U-shaped envelope oriented along the

trajectory tangent, shown by the shaded region in Figure 3.5(c). Note that Theorem 2 has

no apparent dependence on r̃k and Ω as in Lemma 3. The dependence is implicit in f̃k,

which is a function of both the external flow fk and the kinematic term iΩr̃k as shown in

(3.40). Figure 3.7 shows the feasibility of various spirograph parameter sets in the presence

of a Rankine vortex. A spirograph is formed by traversing a circle centered at c0 with radius

ω−1
0 in the rotating reference frame. In each figure, the results are generalized by using non-

dimensional parameters defining a spirograph (Ω̂, ω̂0, ˆ|c0|), where Ω̂ , (2πΩrmax)/vmax

(the period of revolution of a passive particle at rmax), ˆ|c0| , |c0|/rmax (non-dimensional

distance of circle center from origin), and ω̂0 , ω0rmax (non-dimensional radius of a circle

in the rotating reference frame). The Rankine vortex parameters are rmax and vmax. In
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(a) (b)

Figure 3.7: Feasibility analysis of a) spirograph formations for varying non-dimensional

Ω̂ and ˆ|c0| values with fixed radius ω̂−1
0 = 2/3 and b) spirograph feasibility for varying Ω̂

and ω̂−1
0 with ˆ|c0| = 1.

Figure 3.7(a), the feasibility of rate of rotation Ω̂ is plotted versus the distance of circle

center from the origin for a counterclockwise circle of constant radius, |ω̂0|−1 = 2/3. In

3.7(b), the feasibility of Ω̂ is plotted versus the radius of the circle for a fixed distance,

ˆ|c0| = 1. Dark areas indicate where the parameter set (Ω̂, ω̂0, ˆ|c0|) is infeasible.

3.3 Control in (Strong) Flowfields: Motion Primitives for Flowfield Sampling

This section presents the derivation of control algorithms steering a vehicle to a

desired trajectory. We derive control algorithms steering a vehicle to straight [15], circular

[121], folium, and spirograph trajectories, which serve as motion primitives upon which

a multi-vehicle sampling mission may be built. As illustrated in Figure 3.8, in a straight

trajectory the vehicle steers to maintain a constant total velocity orientation. In circular,

folium, and spirograph trajectories the control algorithm steers the kth vehicle about a
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Figure 3.8: Straight, circular, quadrifolium, and spirograph motion primitives used for

multi-vehicle sampling formations.

specified center of curvature ck. When each vehicle’s center of rotation is coincident, a

multi-vehicle sampling formation is achieved. Section 3.4 provides multi-vehicle control

algorithms steering each vehicle to a common center of rotation.

This section describes particle curvature control in a flow, following the work of

Paley et al. [132], who produced decentralized algorithms to stabilize the family of convex

loops called super-ellipses in a flow-free environment and Techy et al. [16], where the

convex-loop results were extended to the vehicle model with (uniform) flow.

3.3.1 Control to Straight Trajectories

To travel in a straight line the kth vehicle must maintain a constant total velocity

orientation γk(t) = γ0, which necessitates steering when a spatially-varying flowfield is

present. Following Paley and Peterson [15], using the coordinate transformations (3.3)

and (3.4) and the control mapping (3.6), one maintains direct control of the rate of change

of the total velocity, γ̇k = νk. Therefore, if a feasible path exists, the kth vehicle travels

in a straight line by implementing the control (3.6) with νk = 0. Section 3.4 provides a

decentralized multi-vehicle control steering vehicles to a parallel formation with desired

heading γdes, i.e. γk(t) = γj(t) = γdes for all j, k = 1, . . . , n.
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3.3.2 Control to Non-zero Curvature Trajectories

Our next goal is to drive the kth particle about a smooth, closed curve L with

definite, bounded curvature, κk. To do so, L is parameterized by its center ck. In a ck-

centered coordinate system the particle position ρk is parameterized by the polar angle

φk. For a closed, convex curve L, completion of one rotation about L sweeps through 2π

radians. Thus, ρk (φ) ∈ R where φk ∈ [0, 2π). The orientation of the particle’s inertial

velocity relative to the ck centered coordinate system is γk and it is assumed that a smooth

mapping γk 7→ φ (γk) exists. The derivative dρk
dφk

is tangent to L, implying the constraint

eiγk =
∣∣∣ dρkdφk

∣∣∣
−1

dρk
dφk

.

The local curvature is [132]

κk (φk) = ±dγk
dσ

, (3.43)

where

σ (φk) =

∫ φk

0

∣∣∣∣
dρ

dφ

∣∣∣∣ dφ (3.44)

is the arc length along the curve. Note that the sign of κk determines the direction of

rotation about the curve, which is either clockwise or counterclockwise. Equations (3.43)

and (3.44) imply [132]

κ−1
k = ±dσk

dφk

dφk
dγk

= ±
∣∣∣∣
dρk
dφk

∣∣∣∣
dφk
dγk

. (3.45)

Under the tangent constraint, (3.45) can be written [132]

eiγkκ−1
k = ±dρk

dφk

dφk
dγk

=
dρk
dγk

.

In a reference frame not centered at ck, L has center of rotation

ck , rk ∓ ρk(γk). (3.46)
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The time derivative along solutions of (3.5) gives the velocity of the center [15], [132]

ċk = ske
iγk ∓ dρk

dγk

dγk
dt

= eiγk
[
sk ∓ κ−1

k νk
]
. (3.47)

From (3.47) note that the curvature control algorithm [15]

νk = ±κk(γk)sk (3.48)

forces ċk = 0, implying that the kth particle drives about a stationary L.

A simple example of this control strategy is that of a circular formation. A circle

has constant curvature, κk = ω0 for all k, which for a unit speed particle defines a radius

of |ω0|−1, as illustrated in Figure 3.8. A particle traversing a circular trajectory has total

velocity tangent to the radius of the circle. Thus, the center of the kth particle’s trajectory

is [15]

ck = rk + iω−1
0

ṙk
|ṙk|

= rk + iω−1
0 eiγk . (3.49)

An existing strategy for data collection in a hurricane is to fly a figure-four pattern

through the center of the hurricane.3 A continuously differentiable flight path covering

similar spatial densities is that of the b-petalled folium, or polar rose, where b ≥ 3 [135].

Specifically, the quadrifolium (b = 4) is a pattern similar to a figure-four with continuous

curvature. In polar coordinates, the equation of the b-folium is ρk = a sin (gk(b)φk), where

ρk is the distance of the kth particle from the ck, b is the number of lobes4, φ ∈ [0, 2π] is

the central or polar angle, a is the maximum radius of each lobe, and

gk(b) =





b, b odd

b/2, b even.

Previous work required the curvature to be nonzero and the figure to be convex [16],

[20], [132]. Here this convexity assumption is relaxed. The b-folium is not convex; however,

3Willoughby, H. and Majumdar, S., Personal Communication, July 14, 2011
4b must be odd or divisible by four to be considered a folium.
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its curvature is strictly positive (or negative). In traversing one rotation about the figure

the particle velocity rotates through 2π(g(b)−1) radians for b odd and 2π(g(b)+1) radians

for b even. Using curvature control (3.48) requires γk to be defined over 2π(g(b) ± 1)

radians. To accomplish this, one can augment the state-space equations with an integer

lobe-counter, lk ∈ N, which represents the number of lobes a particle has traversed. When

a particle’s inertial velocity orientation γk reaches 2π rad, lk increases by one and the

orientation angle γk is reset to zero. Utilizing the curvature control as a function of γk(θk)

and lk gives

νk = κk(γk(θk) + 2πlk)sk. (3.50)

Equation (3.50) drives the kth particle about a non-convex figure with strictly positive

(negative) curvature.

In the case of the folium, the curvature is the following function of the polar angle

φk:

κk (φk; b) =

∣∣ρ2
k + 2ρ′2k − ρkρ′′k

∣∣
(
ρ2
k + ρ′2k

)3/2 =
b2 + b2 sin2 (bφk) + cos2 (bφk)

a
[
cos2 (bφk) + b2 sin2 (bφk)

]3/2 . (3.51)

In order to provide state feedback, one must specify φk as a function of the tangent angle

γk such that the curvature control law is valid. For the quadrifolium (b = 4) this relation

is

γk (φk) =
1

2
π + φk − tan−1 (cotφk − tanφk) + πb2φk/πc. (3.52)

Note the tangent angle is a function of the polar angle, not vice versa. A look-up table

is used to numerically implement (3.52). From (3.51) and (3.52) one can calculate the

curvature as a function of the inertial orientation, such that the control (3.50) drives the

particle around the quadrifolium trajectory.
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3.3.3 Control to Spirograph Trajectories

An alternative to circular and folium trajectories is a spirograph trajectory. For a

given rate of rotation Ω of frame B, circle radius |ω0|−1, and radius of circle center |c0|,

the feasibility of the resulting formation can be analyzed using Theorem 2. By applying

the control (3.48) to the equations of motion (3.30), a particle will converge to a circle

in frame B, assuming the formation center is feasible in the rotating frame. A circular

formation with nonzero center position produces a spirograph formation with respect to

the inertial frame I, as shown in Figure 3.8. The spirograph is an attractive sampling

formation because it remains feasible in vortex flowfields while providing superior radial

and azimuthal sampling density.

3.4 Control in (Strong) Flowfields: Decentralized Multi-vehicle Control

This section extends the results of the previous section by deriving multi-vehicle

control algorithms steering vehicles to a prescribed formation dictated by the curvature

control. In a parallel formation vehicles are steered to a desired inertial velocity orienta-

tion. For circular, b-folium, and spirograph formations, Lyapunov-based control techniques

are used to steer each vehicle such that their centers of rotation are coincident.

3.4.1 Stabilization of a Parallel Formation

Synchronization of the total horizontal velocity orientation occurs when γj = γk for

all j, k ∈ {1, . . . , n} and corresponds to the maximum of the quantity [14], [15]

|pγ | =
1

n

∣∣∣∣∣
n∑

k=1

eiγk

∣∣∣∣∣ . (3.53)
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Furthermore, synchronization of all vehicle orientations to a desired feasible γ0 corresponds

to the minimum of the potential function formed using (3.53) and a cosine function such

that

U(γ, s) = 1− |pγ |2 +

n∑

k=1

ak0(1− cos(γ0 − γk)) ≥ 0, (3.54)

where ak0 = 1 if the kth vehicle has knowledge of γ0 and zero otherwise. As long as ak0 = 1

for at least one vehicle, (3.54) is positive semi-definite in the space of relative orientations

γj − γk, with equality to zero occurring only when γk = γ0 for all k ∈ {1, . . . , n} [15]. The

time derivative of (3.54) is

U̇ = −
n∑

k=1

[
2

n
〈pγ , ieiγk〉+ ak0 sin(γ0 − γk)

]
νk,

implying that the steering control

νk = Kγ

(
2

n
〈pγ , ieiγk〉+ ak0 sin(γ0 − γk)

)
, Kγ > 0, (3.55)

guarantees U̇ = −∑n
k=1Kγ

[
2
n〈pγ , ieiγk〉+ ak0 sin(γ0 − γk)

]2 ≤ 0, which implies vehicles

are steered to a critical point satisfying U̇ = 0. In a strong flow, the control (3.55) will

steer the vehicle to γdes only if γdes is a feasible direction of travel. Parallel formations

are addressed in Chapter 4.

3.4.2 Stabilization of a Single Vehicle to a Non-zero Curvature Formation with

Specified Position

The results of Section 3.3.2 steer a vehicle to a closed curve, but do not specify

the position of the formation in inertial space. Building upon Section 3.3.2, this section

describes the design of a control law that steers a particle to a feasible formation with

specified center of rotation in a strong flowfield. Lyapunov analysis is used to establish

the stability of the formation in a strong flow when the initial formation center lies within
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a feasible disk centered at a feasible steady-state reference center c0. The notation B (c, a)

is used to represent a disk of radius a centered at c ∈ C.

Theorem 3. Consider a strong flow fk. Let F be a feasible region and c0 ∈ C. Let

νmax > max
k,t
|κ(γk(t))sk(t)| (3.56)

and B (c0, |ck (0)− c0|) ⊂ F . The model (3.12) with the mapping (3.6) and

νk = sat
(
κk
(
sk +K〈eiγk , ck − c0〉

)
; νmax

)
(3.57)

forces convergence of the kth particle to a formation centered at c0.

Proof. Consider the candidate potential function

Spres =
1

2
|ck − c0|2, (3.58)

where ck is given by (3.46). The time derivative of (3.58) is

Ṡpres = 〈ck − c0, ċk〉 = 〈ck − c0, e
iγk〉

(
sk − κ−1

k νk
)
. (3.59)

Note from (3.57) that for |νk| < νmax

〈ck − c0, e
iγk〉 =

νk − κksk
Kκk

. (3.60)

Substituting this result into (3.59) gives

Ṡpres =

(
νk − κksk
Kκk

)(
sk − κ−1

k νk
)

= −(νk − κksk)2

Kκ2
k

≤ 0. (3.61)

When |νk| = νmax, V̇ < 0 since νmax > maxk,t |κksk(t)|. Consequently, ck is con-

tained by B (c0, |ck (0)− c0|) ⊂ F . Moreover, solutions converge to the largest invariant

set in which V̇ = 0. From (3.57) and (3.59) this set contains solutions for which νk = κksk,

which implies ck = c0.
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In flows with radial symmetry a prescribed center overdetermines the formation

position with respect to the flowfield; one need only prescribe the radial position of the

formation center to accomplish an equivalent spatiotemporal sampling density with respect

to the flowfield. The following control algorithm steers the kth particle to a trajectory in

which the steady-state value |ck| = |c0| ∈ R is specified. (The previous result and similar

works [15], [23], [136] require the specification of ck or allow the center to be arbitrary.)

Theorem 4. Consider a strong flowfield fk. Let F be a feasible region and |c0| ∈ R

be a distance at which a feasible formation center exists. Let νmax satisfy (3.56) and

B (|c0|, ||ck (0) | − |c0||) ⊂ F . The model (3.12) with the mapping (3.6) and

νk = sat(κk(sk +K〈rk, eiγk〉(1− |c0||ck|−1)); νmax), K > 0, (3.62)

forces convergence of the kth particle to a formation with curvature κ at distance |c0| from

the origin of reference frame I with arbitrary azimuth.

Proof. Consider the potential function

Sarb =
1

2
(|ck| − |c0|)2, (3.63)

where |ck| is the distance of circle center k from origin O. The time derivative of (3.63)

along solutions to the equations of motion (3.12) is

Ṡarb = (|ck| − |c0|) d
dt |ck|

= (|ck| − |c0|)|ck|−1〈rk, eiγk〉(sk − κ−1
k νk).

(3.64)

Note from (3.62) that for |νk| < νmax, the control (3.62) into (3.64) gives

Ṡarb = −
n∑

k=1

K〈rk, eiγk〉2(1− |c0||ck|−1)2 ≤ 0. (3.65)

Moreover, when νk = νmax, Ṡarb < 0 since νmax > maxk,t|κ(γk(t))sk(t)|. Equation (3.65)

implies that Ṡarb is negative semi-definite with Ṡarb = 0 occurring when |ck| = |c0| or
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〈rk, eiγk〉 = 0. The invariant set Λ for which Ṡarb = 0 contains trajectories with |ck| = |c0|

or 〈rk, eiγk〉 = 0. The invariance principle [116] stipulates that particle k converges to

Λ. Variation of (3.63) about the critical point 〈rk, eiγk〉 = 0 shows that motion about

〈rk, eiγk〉 = 0 is unstable since Ṡarb ≤ 0.

Theorems 3 and 4 show that an individual particle will converge to a reference center

provided that the reference center and a disk containing the initial particle centers lie

within a feasible region. The reference center is called a prescribed center and any particle

with information of the prescribed center is called an informed particle. The following

analysis provides decentralized, multi-vehicle control algorithms that incorporate vehicle

communication topologies in order to steer vehicles to a common formation center. We

use the results of Theorems 3 and 4 to augment the multi-vehicle Lyapunov function and

prescribe a desired formation position.

3.4.3 Stabilization of Non-zero Curvature, Multi-vehicle Formations

This section applies the results of the previous section and use Lyapunov analysis

to design decentralized multi-vehicle controls that collectively steer the particles such

that they achieve coincident centers, i.e., ck = cj for all pairs j, k = 1, . . . , n. Let c =

[c1 c2 ... cn]T be an n× 1 matrix of instantaneous centers of rotation where ck is given by

(3.46). Consider the potential function [16]

Sm (r,γ) =
1

2
〈c,Lc〉, (3.66)

where L is the n × n Laplacian matrix defining the communication topology. This work

assumes an all-to-all network corresponding to a Laplacian given by (2.9) [137]. (Exten-

sions of the flow-free model to limited communication topologies is discussed in [124].)
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Equation (3.66) is positive semi-definite in the space of particle positions and positive def-

inite in the reduced space of relative circle centers. Equality to zero occurs when c = c01,

c0 ∈ C. Using (3.47), the time derivative of (3.66) is [15], [16], [132]

Ṡm (r,γ) =

n∑

k=1

〈ċk,Lkc〉 =

n∑

k=1

〈eiγk ,Lkc〉
(
sk ∓ κ−1

k νk
)
, (3.67)

where Lk is the kth row of L. The control [16], [132]

νk = ±κk
(
sk +K〈eiγk ,Lkc〉

)
(3.68)

substituted into (3.67) gives [16], [132]

Ṡm (r,γ) = −K
n∑

k=1

〈eiγk ,Lkc〉2 ≤ 0. (3.69)

The invariance principle stipulates that solutions of (3.5) with control (3.68) converge to

the largest invariant set Λ where [132]

〈eiγk ,Lkc〉 ≡ 0. (3.70)

Since eiγk 6= 0, then Lkc = 0 in Λ, which is satisfied when the centers are coincident.

Moreover, when (3.70) is satisfied the control in (3.68) simplifies to (3.48) which implies ċ =

0. (Note that this framework does not incorporate collision avoidance between particles.)

The following result shows that a multi-vehicle system having initial centers in a

feasible region and at least one informed particle will converge to a prescribed center in

the same feasible region.

Corollary 1. Consider a strong flowfield fk. Let F be a feasible region and c0 ∈ C. Let

νmax > max
k,t
|κ(γk(t))sk(t)| ,

and

B(c0,max
k
|ck (0)− c0|) ⊂ F .
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The model (3.12) with the mapping (3.6) and

νk = sat
(
κ
[
sk +K

(
〈eiγk ,Lkc〉+ ak0〈eiγk , ck − c0〉

)]
; νmax

)
, K > 0, (3.71)

where ak0 = 1 for at least one particle and zero otherwise, forces convergence to the

formation specified by the curvature function κ centered at c0.

Proof. Consider the composite potential function formed by the sum of (3.66) and (3.57)

[14]

S = 1
2〈c,Lc〉+ 1

2

∑n
k=1 ak0 |ck − c0|2 . (3.72)

The time derivative of (3.72) along solutions of (3.12) is

Ṡ =
n∑

k=1

(
〈eiγk ,Lkc〉+ ak0〈eiγk , ck − c0〉

) (
sk − κ−1νk

)
. (3.73)

For νk < νmax notice from (3.71)

νk − κsk
Kκ

= 〈eiγk ,Lkc〉+ ak0〈eiγk , ck − c0〉

giving

Ṡ = −
n∑

k=1

(νk − κsk)2

Kκ2
≤ 0. (3.74)

When νk = νmax, Ṡ < 0 since νmax > maxk,t |κsk(t)|. Therefore the collection of particle

centers is bounded within the ball B (c0, |ck (0)− c0|) ⊂ F . Solutions converge to the

largest invariant set for which Ṡ = 0, which occurs when νk = κsk for all k, implying from

(3.71)

〈eiγk ,Lkc〉+ ak0〈eiγk , ck − c0〉 = 0 (3.75)

for all k.

If ak0 = 0 for at most n− 1 particles, then (3.75) is satisfied only if Lkc = 0, which

occurs when ck = cj for all k and j. For k with ak0 = 1, (3.75) is satisfied only if ck = c0.

Therefore, c must satisfy c = c01 [15].
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Note that the control is calculated based on the inertial variable γk, which corre-

sponds to one of two values of θk. This implies that the control does not differentiate

between aligning or opposing the flowfield. In circulating flowfields with a circular for-

mation, simulation results show that particles with random initial conditions converge to

a circular formation in which particles aligned with the flow travelled faster than those

anti-aligned. Simulations also show that increasing the gain K in (3.71) tends to align

particles with the flow.

Figures 3.9(a) and 3.9(b) show simulation results illustrating multi-vehicle control

to circular and quadrifolium formations in the random strong flowfield shown previously

in Figure 3.6. Particle trajectories are shown in blue. The circular formation parameters

were |ω0|−1 = 20, K = 0.1, and c0 = −40+30i and the quadrifolium formation parameters

were a = 20, c0 = −50 + 50i. Note c0 was chosen to be consistent with the feasibility

analysis shown in Figure 3.6(a). The value of νmax was calculated from umax = π/2

rad/s. Note from Figures 3.6(a) and 3.9(a) that B(maxk |ck(0)− c0|) does not lie entirely

in a feasible region as required by Corollary 1, yet the particle centers still converge to

c0. Figures 3.9(c) and 3.9(d) illustrate simulation results in a strong Rankine vortex. In

Figure 3.9(c) the reference center is c0 = 0 with circle radius |ω0|−1 = rmax, whereas

Figure 3.9(d) has quadrifolium lobe length a = 20 and prescribes center c0 = 0. The

Rankine vortex is parameterized by rmax = 30, vmax = 1.2, and µ = 0.8.

To guarantee particle convergence to a formation with coincident centers at a desired

distance from the origin, augment the potential function (3.63) with the multi-vehicle

formation center term 1
2〈c,Lc〉. Consider the potential

S =
1

2
〈c,Lc〉+

n∑

k=1

1

2
ak0(|ck| − |c0|)2, (3.76)

where ak0 = 1 if the kth particle is informed of |c0| and zero otherwise. We have the
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Figure 3.9: Simulation of n = 10 particles with (a,c) circular and (b,d) quadrifolium

steering control in a random flowfield and Rankine vortex.

following result.

Corollary 2. The particle model (3.12) with (3.6) and control

νk = sat(κ(sk +K(〈eiγk ,Lkc〉+ 〈rk, eiγk〉(1− |c0||ck|−1)); νmax), K > 0 (3.77)

stabilizes the set of feasible formations with with curvature function κ whose center has

distance |c0| from the origin.
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Proof. The time derivative of (3.76) along solutions of (3.12) is

V̇ =
n∑

k=1

[
〈eiγk ,Lkc〉+ ak0(1− |ck|−1|c0|)〈rk, eiγk〉

]
(sk − κ−1νk). (3.78)

For νk < νmax, substituting (3.77) into (3.78) gives

V̇ = −
n∑

k=1

K
[
〈eiγk ,Lkc〉+ (1− |ck|−1|c0|)〈rk, eiγk〉

]2 ≤ 0. (3.79)

Equation (3.79) implies that the vehicles converge to the largest invariant set Λ for which

[
〈eiγk ,Lkc〉+ ak0(1− |c0||ck|−1)〈rk, eiγk〉

]
= 0 (3.80)

For particles in which ak0 = 0 the quantity Lkc = 0 only when ck = cj for all pairs

j, k [14]. For particles in which ak0 = 1 the largest invariant set satisfying (3.80) occurs

when c = 1c0 with |c0| specified. Following the proof of Corollary 1, when νk = νmax,

Ṡ < 0 since νmax > maxk,t|κ(γk(t))sk(t)|. Variation of (3.76) about the critical points

not satisfying c = 1c0 shows that motion about these points is unstable since Ṡ ≤ 0. By

the invariance principle [116] solutions converge to Λ, which contains the desired set of

feasible formations c = 1c0 where |c0| is specified.

Figure 3.10(a) illustrates simulation of the control algorithm (3.77) with n = 10

particles in the random flowfield with |ω0|−1 = 20, K = 0.1, a1,0 = a2,0 = a3,0 = 1,

and a4,0 = a5,0 = a6,0 = 0. Similar to Figure 3.9(a), the particles converge to a circular

formation. The circle center lies a distance |c0| = 50 from the origin with circle center

azimuth dictated by the initial conditions of the vehicles. The possible circular formation

center positions are denoted by the dashed line.

An alternative to circular and folium trajectories that achieves good sampling den-

sity and is feasible in a strong Rankine vortex is a spirograph trajectory. The spirograph

family of formations combines the advantages of circular and folia formations in that they
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generally align with the vortex while criss-crossing the radius of maximum wind. For a

given rate of rotation Ω, circle radius |ω0|−1, and radius of circle center |c0|, the feasibility

of the resulting formation can be analyzed using Theorem 2. We extend Corollaries 1 and

2 to motion with respect to the rotating reference frame B using the particle dynamics

(3.30) and feasibility analysis of Theorem 2. By applying the control (3.71) to the equa-

tions of motion (3.30), the particles will converge to a formation with a desired center,

assuming the formation center is feasible in the rotating frame.

Figures 3.10(b) and 3.10(c) illustrate a simulation of the steering control (3.71)

used in the equations of motion (3.30) for n = 10 particles. The formation parameters

are Ω = 0.0125 rad/s, |ω0|−1 = 40, and |c0| = 30 (Ω̂ = 1.57, |ω̂0|−1 = 4/3 and ˆ|c0| = 1).

Note from Figure 3.7(b) that this parameter set corresponds to a feasible formation as

required. Figure 3.10(c) illustrates that a circular formation with respect to a rotating

reference frame produces a spirograph formation in an inertial reference frame, shown in

Figure 3.10(b). By manipulating Ω̂, ω̂0, and ˆ|c0|, spirograph trajectories can be made to

concentrate radial and azimuthal sampling densities to areas of interest within the vortex.

This technique potentially provides superior sampling coverage as compared to the circular

and quadrifolium formations of Figures 3.9(c) and 3.9(d).
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Figure 3.10: (a) Circular formation with specified circle center distance |c0| = 50. Spiro-

graph formation produced by utilizing circular control with respect to rotating frame with

flow; viewed in (b) an inertial reference frame and (c) a rotating reference frame.

76



Chapter 4: Extension to Three-Dimensional Particle Motion in an Unknown Time-

invariant Shear Flow

This chapter extends the planar control algorithms to three dimensions and ad-

dresses how a multi-vehicle system may utilize vertical variation of wind as a means of

maintaining coordination via altitude control. Previous works have utilized steering and

flow-relative speed control to design decentralized multi-vehicle control algorithms that

guide vehicles to sampling formations with a desired inter-vehicle spacing in a spatially-

varying flowfield [15], [115]. However, to maximize endurance in many applications the

vehicle speed relative to the flow is often assumed to be fixed. This chapter shows how

total horizontal speed can be controlled indirectly by utilizing knowledge of the flowfield’s

vertical windspeed profile while maintaining a fixed flow-relative speed. Changing altitude

to achieve the desired total horizontal speed enables inter-vehicle spacing to be regulated

while simultaneously maximizing vehicle endurance. We finish this chapter by demon-

strating the control coupled with recursive Bayesian estimation, where the Bayesian filter

provides estimates of the flow for use in the control algorithm.

This chapter builds upon the two-dimensional results of the previous sections and

provides (1) conditions for feasibility of a speed-regulated, three-dimensional trajectory

with respect to the vehicle model in a shear flow; (2) decentralized control algorithms

that steer vehicles to feasible equal-speed parallel formations and equal-speed circular

formations in which vehicles are equally spaced in a spatially varying shear flow; and (3)
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an implementation of the decentralized control laws using the estimated wind field based

on a recursive Bayesian filter that assimilates noisy flow measurements. The control

strategies are simulated on a realistic aircraft model to verify performance even when the

simplifying assumptions of the aircraft model do not hold.

4.1 Three-Dimensional Vehicle Motion in a Shear Flow

This section extends the two-dimensional vehicle model to three dimensions, fol-

lowing Beard and McLain [29]. The two dimensional flow models are augmented to three

dimensions by assuming the flowspeed changes with altitude. Simplifying assumptions are

made to facilitate the design of theoretically justified steering and climb-rate controls that

guide a set of vehicles to desired formations. Consider n unmanned aircraft in which the

kth vehicle’s position with respect to a ground-fixed inertial reference frame is represented

by the vector ~rk = [xk yk z1,k]
T , where xk, yk ∈ R and z1,k ∈ R+ for all k = 1, . . . , n,

and the velocity by ~̇rk = [ẋk ẏk ż1,k]
T . (The dual subscript z1,k represents the altitude of

the kth vehicle and is used to clarify presentation of the second-order altitude dynamics

that follow.) The position of the kth vehicle in the horizontal plane is rk = xk + iyk ∈C

and the altitude z1,k ∈ R+, as shown in Figure 4.1(a). In the absence of flow, the kth

vehicle’s horizontal velocity has magnitude vk and orientation θk = tan−1(ẏk/ẋk), such

that ṙk = vke
iθk . Assume each vehicle is equipped with a heading-angle autopilot [29] that

controls the rate of change θ̇k of its horizontal flow-relative velocity orientation via the

control u1,k, which is bounded by a turn-rate constraint |u1,k| ≤ u1,max, where u1,max > 0.

The rate of change of the vehicle’s flow-relative airspeed is v̇k = (Tk/mk−Dk/mk−

g sin(tan−1(ż1,k/vk))) cos(tan−1(ż1,k/vk)), where Tk, mk, Dk, and tan−1(ż1,k/vk) are the

vehicle’s thrust, mass, drag, and flight path angle, and g represents the acceleration due
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Figure 4.1: (a) Vehicle position in three dimensions; (b) flow-relative and total horizontal

velocity orientation; and (c) total horizontal velocity of the kth vehicle.

to gravity [29]. The effects of flow velocity on flow-relative vehicle airspeed are assumed

negligible, [138] because the horizontal spatial gradients are small. (Note that the scale of

the horizontal and vertical motions typical of an environmental-sampling application differ

by several orders of magnitude.) If the kth aircraft’s horizontal velocity is much larger

than its rate of climb so that vk ≈ (v2
k + ż2

1,k)
1/2 and the vertical motion is regulated by an

altitude-hold autopilot, [28], [29] then the altitude obeys z̈1,k = −αz ż1,k + αh(zck − z1,k),

where zck is the commanded altitude, αz > 0, and αh > 0. Setting ż1,k = z2,k and

zck = (u2,k + αzz2,k + αhz1,k)/αh, where u2,k is the vertical acceleration control, yields the

(flow-free) equations of motion

ṙk = vke
iθk

θ̇k = u1,k

ż1,k = z2,k

ż2,k = u2,k

v̇k =
(
T
m − D

m − g sin
(

tan−1(
z2,k
vk

)
))

cos(tan−1(
z2,k
vk

)).

(4.1)

The climb rate of the kth aircraft satisfies |z2,k| ≤ z2,max with z2,max > 0, which
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implies

u2,k =





0, z2,k > z2,max

u2,k −z2,max ≤ z2,k ≤ z2,max

0, z2,k < −z2,max.

(4.2)

Assume the required rate of climb/descent is small compared to the horizontal speed

maintained by the aircraft, which implies the flight path angle tan−1(z2,k/vk) is negligible.

Moreover, balancing the thrust and drag forces at equilibrium speed v0,k implies v̇k = 0

in (4.1) and vk=v0,k is constant [28], [139].

The constant flow-relative speed model is augmented by including a time-invariant

(moderate strength) flow fk whose magnitude varies with altitude. A wind model such

as this can adequately represent many environmental systems of interest. For example,

a hurricane exhibits vertical variation of wind at low altitudes [140]. The flow model

assumes the flow is separable into horizontal and vertical terms, i.e.,

fk = f(rk, z1,k) = fvert(z1,k)fhor(rk) ∈ C, (4.3)

where fhor(rk) ∈ C characterizes the dependence of horizontal flow direction on position

rk, given by the flow models in Section 3.1.3. The function fvert(z1,k) ∈ R+ describes

the (smooth) dependence of the flow magnitude on altitude and is assumed to have the

form [141]

fvert,k = Vref
ln(z1,k/h0)
ln(href/h0) ,

(4.4)

where Vref is the reference windspeed at reference altitude href and h0 is a shaping pa-

rameter of the vertical gradient. Figure 4.1 shows the wind speed given by (4.4) plotted

versus altitude, normalized by the Vref , where href = 1 km. Assuming the flow-relative

speed of the kth vehicle is greater than the maximum flowspeed, i.e., v0,k > |fk| for all rk
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Figure 4.2: The wind shear model (4.4) is shown normalized by Wref .

and z1,k, implies each vehicle can maintain forward progress over ground at any altitude.

At low altitudes, the model (4.4) is comparable with experimental hurricane data taken

from 357 eyewall profiles from 17 hurricanes [140]. Note that in (4.4) the windspeed is

monotonically increasing; for shear flows that have a local maximum, the model (4.4) is

only valid for altitudes up to the altitude corresponding to the maximum wind speed.

In the presence of flowfield fk, each vehicle’s horizontal velocity is represented by

the vector sum of its horizontal velocity relative to the flow and the flow velocity relative

to the ground [15], [29]. The equations of motion of the kth vehicle become [15]

ṙk = vke
iθk + fk

θ̇k = u1,k

ż1,k = z2,k

ż2,k = u2,k,

(4.5)

where v̇k = 0 because the vehicle’s flow-relative speed is assumed to be constant.

Control design motivates derivation of the time rate of change of the total hor-
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izontal velocity with respect to the control variables u1,k and u2,k in order to develop

mappings between the control of the total and flow-relative velocities, respectively. Using

the magnitude and direction of the total horizontal velocity [15] sk , |vkeiθk + fk| and

γk , arg(vke
iθk + fk), respectively, the kth vehicle state as xk , [rk, z1,k, z2,k, γk, sk]

T .

Note from Figure 4.1(b) and 4.1(c) that

sk cos γk = vk cos θk + 〈fk, 1〉 (4.6)

sk sin γk = vk sin θk + 〈fk, i〉. (4.7)

Taking the time derivative of (4.6) and (4.7) assuming v̇k = 0 gives

ṡk cos γk − skγ̇k sin γk = −θ̇kvk sin θk + 〈ḟk, 1〉 (4.8)

ṡk sin γk + skγ̇k cos γk = θ̇kvk cos θk + 〈ḟk, i〉, (4.9)

where ḟk = ∂fk
∂rk

ṙk + ∂fk
∂z1,k

z2,k. Solving for ṡk in (4.8) and substituting the result into (4.9)

to solve for γ̇k yields [15]

γ̇k = (1− s−1
k 〈fk, eiγk〉)u1,k + 〈∂fk∂rk

eiγk , ieiγk〉+ s−1
k 〈 ∂fk∂z1,k

, ieiγk〉z2,k , νk, (4.10)

where νk is the effective steering control of the total horizontal velocity orientation in-

cluding a vertical velocity term. Solving (4.10) for u1,k with respect to νk yields the

transformation from absolute steering control νk to flow-relative steering control

u1,k =
νk−〈

∂fk
∂rk

eiγk ,ieiγk 〉−s−1
k 〈

∂fk
∂z1,k

,ieiγk 〉z2,k

(1−s−1
k 〈fk,e

iγk 〉) . (4.11)

Note, the transformation (4.11) is well defined in moderate flowfields [15]. Similarly,
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solving (4.9) for γ̇k, substituting the result into (4.8), and using (4.11) to solve for ṡk gives

ṡk = sk〈
∂fk
∂rk

eiγk , eiγk〉+
〈fk, ieiγk〉(νk−〈∂fk∂rk

eiγk , ieiγk〉)
(1−s−1

k 〈fk, eiγk〉)︸ ︷︷ ︸
,A(xk)

+


〈 ∂fk

∂z1,k
, eiγk〉−

〈fk, ieiγk〉〈 ∂fk∂z1,k
, ieiγk〉

sk − 〈fk, eiγk〉




︸ ︷︷ ︸
,B(xk)

z2,k,

(4.12)

where A(xk) and B(xk) are nonlinear functions of xk. Let ξk , A(xk) + B(xk)z2,k. The

equations of motion for a vehicle subject to steering and altitude control become

ṙk = ske
iγk

γ̇k = νk

ż1,k = z2,k

ż2,k = u2,k

ṡk = ξk.

(4.13)

Note that if B(xk) 6= 0 along a desired horizontal trajectory, the desired climb rate

is

zd2,k = B−1(xk)(ξk −A(xk)). (4.14)

The equations of motion that facilitate the design of the total horizontal steering νk and

speed ξk controls are thus

ṙk = ske
iγk

γ̇k = νk

ṡk = ξk.

(4.15)

Equation (4.15) represents the motion equations for which feedback controls νk and ξk

will be derived. To implement the horizontal steering and speed controls νk and ξk, one

calculates u1,k using (4.10) and zd2,k using (4.14). The next step is to design u2,k to ensure

convergence of z2,k to zd2,k, provided B(xk) 6= 0.
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4.2 Trajectory Feasibility Under Altitude Control

Even though altitude control is utilized as a means of maintaining a desired horizon-

tal speed along a trajectory, not all speed-regulated trajectories are feasible. The following

result defines conditions for feasible constant-speed trajectories using altitude control; it

does not account for a vehicle’s turn-rate constraints in the horizontal plane, which has

been addressed previously [23].

Theorem 5. Trajectory L traversed with desired speed s0 is feasible under the vehicle

model (4.5) in a moderate flowfield of the form (4.3) if, for all rk ∈ L, B(xk) 6= 0 and

there exists an altitude z1,k such that the quantity

s0 cosφk ±
√
v2

0,k − s2
0 sin2 φk, (4.16)

is real, positive, and less than v0,k, where φk = γk − arg(fk).

Proof. For a vehicle to travel along horizontal trajectory L with desired speed s0, the

flow at every point along the curve must be such that the vehicle can maintain total

horizontal velocity s0e
iγk tangent to L. With the flowfield fk given by (4.3), the angle

φk , γk − arg(fk) between s0e
iγk and fk, shown in Figure 4.1(c) depends only on the

horizontal position rk and not on the altitude z1,k. The flow-relative horizontal velocity

vke
iθk must satisfy the triangle equality such that s0e

iγk = v0,ke
iθk + fk. The law of

cosines implies v2
0,k = s2

0 + |fk|2 − 2s0|fk| cosφk, which, when solved for |fk|, gives |fk| =

s0 cosφk ± (v2
0,k − s2

0 sin2 φk)
1/2. If, for all rk ∈ L, there exists a z1,k such that |fk| is real

and positive, the trajectory L can be traversed with horizontal speed s0 and is therefore

feasible. Since fk is continuous in space, the desired z1,k is continuous along L (assuming

sufficiently large climb-rate saturation z2,max) and can be achieved if B(xk) 6= 0.
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Figure 4.3: Feasibility regions for (a) straight trajectories in a uniform shear flow and

(c) circular trajectories in a Rankine vortex with vertical wind shear. (b),(d) Three-

dimensional trajectories corresponding to black dots in (a),(c), respectively. White regions

in (a,c) are feasible formations and gray are not.

Theorem 5 is illustrated in Figure 4.3 for straight and circular trajectories at con-

stant speed. To understand Figure 4.3(a), consider a straight trajectory in a uniform

flowfield (3.33) with vertical wind shear given by (4.4). The trajectory is characterized by

its (constant) velocity orientation γk = γ0 and magnitude sk = s0. Figure 4.3(a) shows

the results of a feasibility analysis over the space of trajectory orientations and speeds

in a flowfield parameterized by Wref = 25.7 m/s, h0 = 12, and href = 1 km, where

v0,k = 25.7 m/s is consistent with the cruise speed of the Aerosonde platform [142]. White
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areas indicate that the trajectory characterized by the point in parameter space (s0, γ0)

is feasible, whereas gray areas indicate it is infeasible. The blue dot corresponds to the

orientation and velocity of the trajectory in Figure 4.3(b), which maintains a constant

speed s0 = 30 m/s with orientation γ0 = 7π/4. The flow is plotted at three altitudes to

illustrate how flow speed changes with vertical position. The black cone represents the

velocity orientation of a vehicle on the trajectory.

Figures 4.3(c) and (d) depict a constant-speed, counter-clockwise circular trajec-

tory in a Rankine vortex (3.34) with vertical wind shear. The vertical shear is given by

(4.4) with shear parameters Wref = 25.7 m/s, h0 = 12, and href = 1 km. Figure 4.3(c)

illustrates a planar representation of the feasibility of circular trajectories with radius

|ω0|−1 = 20.1 km and constant speed sd = 1.66v0,k m/s, where v0,k = 25.7 m/s is con-

sistent with the cruise speed of the Aerosonde platform [142]. A representative feasible

trajectory is shown by the blue circle, centered at c = (1/3)rmax + 0i km (the center is

represented by the black dot). A constant-speed circular formation whose center lies in

the white area is feasible, whereas one centered in a gray area is infeasible. The Rankine

vortex is parameterized by rmax = 20.1 km and µ = 0.6, consistent with a small tropical

storm [49] and is plotted over the feasibility map in Figure 4.3(c). The corresponding

three-dimensional trajectory that maintains sd = 1.66v0,k m/s (shown in Figure 4.3(d)) is

found by solving (4.4) for z1,k such that |fk| satisfies (4.16). The three dimensional tra-

jectory is plotted over horizontal slices of the flow at equal interval altitudes; a horizontal

projection of the trajectory is also shown. Note that maintaining constant total horizontal

speed requires altitude variation, which is emphasized by exaggerating the scale difference

between the vertical and horizontal axes of the figure.
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4.3 Altitude-Induced Speed Control for Motion Coordination

Here we extend the two-dimensional control algorithms to stabilize feasible parallel,

circular, and symmetric circular formations in a flowfield with wind shear. In a parallel

formation, the orientation of each vehicle’s total horizontal velocity is the same. In a

circular formation, each vehicle rotates about the same fixed point; a symmetric circular

formation is a circular formation with equal inter-vehicle spacing around the circle. Such

formations are key motion primitives for environmental sampling networks [143].

4.3.1 Parallel-Formation Control with Speed Regulation

This section derives a decentralized control algorithm that stabilizes the feasible

set of equal-speed parallel formations, even for vehicles traveling at different flow-relative

speeds. Vehicles achieve equal horizontal velocity by converging to a desired altitude-

rate control, rather than changing their flow-relative speed, which can reduce vehicle

endurance. If the vehicles have the same flow-relative speed, then the steady-state altitudes

are identical; otherwise the steady-state altitudes may differ.

The steering control for parallel motion is provided by 3.55, whereas the horizontal

speed of the kth vehicle is controlled using the vertical acceleration u2,k. However, u2,k

does not appear explicitly in the time derivative of sk. This motivates derivation of a speed

control ξk, which gives a desired climb rate profile zd2,k given by (4.14), and the design

of u2,k such that z2,k converges to zd2,k. To design ξk, consider the positive semi-definite

potential function

Vs =
1

2

n∑

k=1

(s0 − sk)2 ≥ 0, (4.17)

with equality occurring only when sk = s0 for all k ∈ {1, . . . , n} and feasible constant
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reference speed s0 > 0. The time derivative of (4.17) along solutions of (4.13) is

V̇s = −
n∑

k=1

(s0 − sk)ξk, (4.18)

implying that the speed control

ξk = Ksp(s0 − sk), Ksp > 0, (4.19)

gives V̇s ≤ 0 with equality occurring only when sk=s0 for all k∈{1, . . . , n}. The steering

and speed control analysis implies the following result.

Theorem 6. Consider a uniform flowfield of the form (4.3) with wind shear (4.4). The

model (4.15) with speed control (4.19) and turn-rate control (3.55) where ak0 = 1 for at

least one vehicle, asymptotically stabilizes the set of feasible parallel formations in which

sk = s0 and γk = γ0 for all k ∈ {1, . . . , n}.

Proof. Consider the potential function formed by the sum of (3.54) and (4.17) that is

positive definite and proper in the space of relative orientations γj−γk and speeds s0−sk,

whose time derivative under controls (3.55) and (4.19) is

U̇s = U̇ + V̇s = −∑n
k=1

([
1
n〈pγ , ieiγk〉+ ak0 sin(γ0 − γk)

]2
+Ksp(s0 − sk)2

)
≤ 0.

(4.20)

By the invariance principle [116, p. 126-128], (4.20) ensures solutions converge to the

largest invariant set Λ for which U̇s = 0. From (4.20), the set Λ contains solutions of

(4.15) for which

0 =
[

1
n〈pγ , ieiγk〉+ ak0 sin(γ0 − γk)

]

s0 = sk,

(4.21)

for all k ∈ {1, . . . , n}. For ak0 = 0 the first equality in (4.21) is satisfied only when

γk = γj for all {k, j} ∈ {1, . . . , n} [15]. For ak0 = 1, the first equality is satisfied only if
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γk = γj = γ0, implying that all vehicles converge to the set γ0 = γk for all k ∈ {1, . . . , n}.

The second equality in (4.21) is satisfied only when sk = s0 for all k ∈ {1, . . . , n}.

Theorem 6 stabilizes vehicle speeds to a feasible reference value s0, assuming each

vehicle has knowledge of this value. This assumption is relaxed in the following result, in

which a subset of vehicles obtain knowledge of s0 by implementing a consensus algorithm

[144].

Corollary 3. Consider a uniform flowfield of the form (4.3) with shear model (4.4). The

model (4.15) with turn-rate control (3.55) and speed control

ξk = Ksp


ak0(s0 − sk) +

1

n

n∑

j=1

(sj − sk)


 , Ksp > 0, (4.22)

where ak0 is non-zero for at least one vehicle, steers vehicles to the set of feasible parallel

formations in which sk = s0 and γk = γ0 for all k ∈ {1, . . . , n}.

Proof. Following the proof of Theorem 6, use of the potential function (3.54) shows that

the turn-rate control (3.55) steers horizontal vehicle velocity orientations to an invariant

set Λ that includes γk = γ0 for all k ∈ {1, . . . , n}. The speed of the kth vehicle with

control (4.22) obeys

ṡk = Ksp


ak0(s0−sk) +

n∑

j=1

(sj−sk)


 . (4.23)

Equation (4.23) represents a constant-reference consensus algorithm on a directed span-

ning tree with reference s0. It follows from [145, Thm 3.1] that sk converges to s0 for all

k ∈ {1, . . . , n}.

The model (4.15) assumes kinematic control of sk through use of the desired climb

rate (4.14). Since the dynamic model (4.13) is a second-order chain of integrators, define
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the error variable λk , zd2,k − z2,k and consider

Vλ =
1

2

n∑

k=1

λ2
k, (4.24)

whose derivative is V̇λ =
∑n

k=1(żd2,k − u2,k)λk. Note that the quantity żd2,k may contain

second-order spatial derivatives of the flow that are difficult to approximate in a realistic

application. This potential difficulty motivates use of the proportional control

u2,k = Kλλk, Kλ > 0, (4.25)

giving

V̇λ =
n∑

k=1

(żd2,k −Kλλk)λk, (4.26)

and the following result.

Proposition 1. Consider a uniform flowfield of the form (4.3) with wind shear (4.4).

The model (4.5) with steering control (4.11) with (3.55), where ak0 = 1 for at least one

vehicle, and vertical acceleration control (4.25) where λk = zd2,k − z2,k and zd2,k is given by

(4.14) and (4.22), has climb rate error λk bounded by |λk| ≤ z2,max/Kλ.

Proof. Equation (4.26) gives the time derivative of (4.24) under control (4.25). Since the

vertical acceleration is bounded, feasible zd2,k satisfy |żd2,k| ≤ z2,max, implying V̇λ ≤ 0 for

all |λk| ≥ z2,max/Kλ, which can be made arbitrarily small by increasing Kλ. Therefore,

solutions of (4.5) have vertical acceleration errors satisfying |λk| ≤ z2,max/Kλ.

Figure 4.4 illustrates simulations of the equations of motion (4.5) with control pro-

vided by Corollary 3 and Proposition 1, n = 6 vehicles, and Ksp = Kγ = Kλ = 0.1 in a

uniform flowfield. The flowfield with vertical shear is given by (4.3) with fhor(rk) = ψ = 1

yielding the flowfield parameterization Ω = (ψ,Wref , h0), where Wref = 25.7 m/s and

h0 = 12. The reference values γ0 = π/4 radians and s0 = 1.4v0,k m/s, where v0,k = 25.7
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Figure 4.4: Illustration of vehicle (a) trajectories, (b) altitudes, and (c) total horizontal

speeds when flow-relative speeds are not equal.

m/s, are chosen to be consistent with the feasibility analysis of Section 4.2. Flow-relative

vehicle speeds are randomly chosen from the interval v0,k ∈ [25, 28] m/s. Note that non-

identical vehicles reach consensus on total horizontal speed by autonomously converging

to different altitudes.

4.3.2 Circular-Formation Control with Speed Regulation

A symmetric circular formation is a circular formation in which vehicles are spaced

evenly about the circle. This section describes the design of distributed steering and

altitude controls to stabilize the set of symmetric circular formations in a non-uniform

flowfield with vertical shear, which was previously not possible in even uniform flows. In

order to maintain uniform spacing around the horizontal projection of the formation, the

vehicles regulate their total horizontal speed using altitude control rather than adjusting

their flow-relative speed, which is fixed. This control technique is illustrated on an idealized

hurricane model.

Vehicles are steered to a common reference center c0 by adopting the steering control

(3.71). The control algorithm (3.71) is extended to stabilize symmetric circular formations
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in a non-uniform flowfield by regulating vehicle speed using altitude control. The progress

of the kth vehicle around the circular formation is represented by a phase variable ψk [15],

[16]. When sk is constant, the phase of the kth vehicle satisfies ψk = γk, in which case

the period of rotation is T = 2π/(ω0sk).

This paper seeks to coordinate vehicle phases using an (m,n)-pattern potential,

where n is divisible by m, which is minimized by any arrangement of m uniformly spaced

clusters of n/m vehicles [14]. The so-called splay formation corresponds to m = n in

which each cluster contains one vehicle. Let U(ψ) be a rotationally symmetric phase

potential that, by construction, is positive definite in the reduced space of relative vehicle

phases [15], [16], [14]. (For an overview of rotationally symmetric phase potentials see

Sepulchre et al. [14]) By definition, stable critical points of the potential function satisfy

U̇(ψ) = 0 and
∑n

k=1 ∂U(ψ)/∂ψk = 0 and occur only in the desired (m,n)-pattern; all

other critical points are unstable [15]. Addition of the phase potential forms the composite

potential [15]

Sc(r,γ) = Sm(r,γ) + T
2πU(ψ), (4.27)

where Sm is given by (3.72). Note Sc(r,γ) is positive definite in the reduced space of

relative circle centers and relative phases. Using (3.73), the time derivative of (4.27)

is [15]

Ṡc =

n∑

k=1

(
sk〈eiγk , Pkc〉+ ak0sk〈eiγk , ck − c0〉 −

∂U

∂ψk

)(
1− (ω0sk)

−1νk
)
. (4.28)

Choosing the steering control

νk = ω0sk

[
1 +Kγ

(
sk〈eiγk , Pkc〉+ ak0sk〈eiγk , ck − c0〉 − ∂U

∂ψk

)]
, (4.29)

yields Ṡc ≤ 0. Combining the circular phase potential function (4.27) with the horizontal

speed potential function (4.17) yields the following result.
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Theorem 7. Let s0 > 0 be a feasible constant reference speed. Consider the vehicle model

(4.15) with flowfield (4.3) and shear model (4.4). The speed control

ξk = Ksp(s0 − sk), Ksp > 0, (4.30)

and steering control νk given by (4.29) stabilize the set of feasible symmetric circular

formations centered at c0 with radius |ω0|−1
, in which vehicle separation is determined by

the critical points of U(ψ) and sk = s0 for all k ∈ {1, . . . , n}.

Proof. Consider the potential function V = Sc+Vs ≥ 0 formed by (4.27) and (4.17), which

is positive definite and proper in the co-dimension two space of relative circle centers,

relative phases, and (absolute) speeds. The time derivative of V along solutions of (4.15)

is given by the sum of (4.28) and (4.18), respectively, which are negative semi-definite

under control [15] (4.29) and (4.19). According to the invariance principle [116, p. 126-

128], vehicles converge to the largest invariant set Λ for which V̇ = 0. From (4.28) and

(4.18), the invariant set Λ contains solutions of (4.13) for which

sk〈eiγk , Pkc〉+ ak0sk〈eiγk , ck − c0〉 − ∂U
∂ψk

= 0, (4.31)

and sk = s0 for all k ∈ {1, . . . , n}. The set of circular formations centered at c0 with

radius |ω0|−1 and vehicle spacing dictated by the minima of U(ψ) is the only stable set of

isolated equilibrium points in (4.31); all other isolated equilibria are unstable [14, Theorem

6]. Therefore, the only stable equilibrium points for which V̇ ≡ 0 is the set of circular

formations centered at c0 with radius |ω0|−1, vehicle spacing dictated by the stable critical

points of U(ψ), and vehicle speed sk = s0 for all k ∈ {1, . . . , n}.

Relaxing the assumption that all vehicles have knowledge of the reference speed s0

in Theorem 7 and instead using a consensus algorithm to reach agreement on a common

reference speed gives the following result.

93



Corollary 4. Let s0 > 0 be a feasible constant reference speed. Consider the vehicle model

(4.15) in flowfield (4.3) with wind shear (4.4). The speed control (4.22) and steering control

νk given by (4.29), where ak0 is nonzero for at least one vehicle, stabilize vehicle motion

to the set of feasible circular formations centered at c0 with radius |ω0|−1 in which vehicle

separation is determined by the critical points of U(ψ) and sk = s0 for all k ∈ {1, . . . , n}.

Proof. With control (4.22) the dynamics of the kth vehicle’s speed represent a constant-

reference consensus algorithm on a directed spanning tree where the reference signal is

s0. It follows from [145, Thm 3.1] that sk converges to s0, for all k ∈ {1, . . . , n}. With

sk = s0 for all k = 1, . . . , n, equation (4.28) is negative semi-definite under steering control

(4.11) with νk given by (4.29). By the invariance principle [116, p.126-128], it follows that

vehicles are steered to the set of symmetric circular formations centered at c0 with radius

|ω0|−1 and vehicle spacing dictated by the minima of U(ψ) [14, Theorem 6].

The steering and speed controls of Theorem 7 and Corollary 4 are extended to the

dynamic vehicle model (4.5) using the transformations (4.11) and (4.14) to calculate u1,k

and zd2,k. The following result guarantees a bounded climb-rate error for the equal-speed

symmetric circular steering controls of Theorem 7 and Corollary 4.

Proposition 2. Consider a flowfield of the form (4.3) with wind shear (4.4). The model

(4.5) with steering control (4.11) with (4.29), where ak0 = 1 for at least one vehicle, and

vertical acceleration control (4.25) where λk = zd2,k − z2,k, zd2,k is given by (4.14), and ξk

by (4.22) has climb rate error λk bounded by |λk| ≤ z2,max/Kλ.

Proof. Equation (4.26) gives the time derivative of (4.24) under control (4.25). Since

the climb rate is bounded, feasible zd2,k satisfy |żd2,k| ≤ z2,max, implying V̇λ ≤ 0 for all

|λk| ≥ z2,max/Kλ, which can be made arbitrarily small by increasing Kλ. Therefore,
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solutions of (4.5) have climb rate errors satisfying |λk| ≤ z2,max/Kλ.

To achieve a formation with equal inter-vehicle separation, consider an (m,n)-phase

potential of the form [15]

Um,n(γ) =
m∑

j=1

KjUj ,

where Kj > 0 for j = (1, . . . ,m− 1), Km < 0, and [15]

Uj(ψ) =
n

2
|pjγ |2, where pjγ ,

1

jn

n∑

l=1

eijψl .

Choosing m = n stabilizes the splay formation of n evenly spaced vehicles [14], [15].

Figure 4.5(a) depicts the feasibility of a constant-speed, counter-clockwise circular

trajectory in an idealized hurricane model with vertical wind shear. The flowfield is given

by (4.3), where fhor(rk) is a Rankine vortex characterized by (3.34). The vertical shear is

given by (4.4) with shear parameters Vref = 25.7 m/s, h0 = 12, and href = 1 km. Figure

4.5(b) relaxes the zero flight-path angle and constant flow-relative velocity assumptions

and illustrates simulation of the aircraft model (4.1) in a Rankine vortex. The drag, thrust,

and mass of the vehicle are modeled after the Aerosonde unmanned aircraft, assuming

nominal cruise speed v0,k = 25.7 m/s at zero flight-path angle [29], [142]. The control is

calculated using the results of Corollary 4 and Proposition 2 with n = 6 vehicles, centered

at c0 = 6.7 km, with control gains Kγ = 10−4, Ksp = 1, Kλ = 1.5, and ak0 = 1 for three

vehicles. Figure 4.5(a) overlays the converged vehicle formation over the two-dimensional

feasibility map of Figure 4.3(c). Note that c0 lies in the feasible region and that the

vehicles are equally spaced along the formation. The Rankine vortex is parameterized by

rmax = 20.1 km and µ = 0.6, consistent with a small1 tropical storm [49] and is plotted

1A small storm is chosen since it represents a situation in which the largest vertical variation is required

compared to the horizontal distance covered, implying that larger flight path angles will occur compared

to those encountered in vortices spanning greater horizontal distances.
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Figure 4.5: (a) Feasibility of circular formations, illustration of equations of motion (4.1),

Corollary 4 and Theorem 2 with n = 6 vehicles in a Rankine vortex: (b) formation in

three-dimensional space and (c) total horizontal speeds versus time.

over the feasibility map in Figure 4.5(a). Figure 4.5(b) shows transient vehicle trajectories

in light blue and the final splay formation centered at c0 with the desired radius in dark

blue. Vehicle positions and velocity orientations are represented by black cones. The

vertical axis in Figure 4.5(b) is given in meters and the horizontal axes are in kilometers

to emphasize the vertical variations made by each vehicle. The resulting horizontal speed

plotted versus time is shown in Figure 4.5(c).

The final simulation of Chapter 5 relaxes the zero flight path angle and constant

flow-relative velocity assumptions. We also assume the flowfield is unknown and simulate

use of the aircraft model (4.1) in a Rankine vortex. The flowfield model is parameter-

ized by Ω = (25.7 m/s, 12, 20.1 km, 0.6) with href = 1 km and contains random flow

perturbations with a standard deviation 1 m/s in the vertical direction and 2 m/s in

the horizontal directions. A dynamic feedback control algorithm based on Corollary 4

and Proposition 2 is implemented by replacing the known flowfield with a flowfield esti-

mate generated by the recursive Bayesian filter presented in Chapter 2. In this case the

probability density function is 4-dimensional and produces flowfield parameter estimates
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Ω̂ = (Ŵref , ĥ0, r̂max, µ̂), which represent the reference windspeed, the shaping parameter

of the vertical shear, the radius of maximum wind, and the exponential decay constant of

the Rankine vortex, respectively. The probability density function is initialized uniformly,

all initial estimates are zero, and measurements are collected in three minute intervals.

The flowfield parameters are time-invariant, implying that the integral in (2.22) is simply

the prior probability density p(Ω(t−∆t)|A(t−∆t)). Each vehicle collects noisy measure-

ments of the flow β̃k = f(rk, zk; Ω) +ηk and assimilates measurements with the likelihood

function2

p(α̃k(t)|Ω) = 1√
2π|Σ| exp[−1

2 [f(rk, zk; Ω)− β̃k(t)]∗Σ−1[f(rk, zk; Ω)− β̃k(t)]], (4.32)

where Σ = diag(σ2
u, σ

2
v) is a matrix of variances of the measurement noise ηk. Figures

4.6(a) and 4.6(b) show the three-dimensional vehicle trajectories and projections on the

horizontal plane, respectively, plotted over the (noise-free) Rankine model. Note that

the vehicles converge to the splay formation even with the zero flight path angle and

constant flow-relative velocity assumptions relaxed as well as random perturbations in the

flow model included. Marginal probability densities3 of the flowfield parameters rmax, µ,

Wref , and h0 are plotted versus time in Figures 4.6(c)–(f). The color scale denotes the

probability density where red corresponds to high probability density and blue indicates

the opposite. The magenta lines correspond to flowfield parameter estimates over time,

whereas the dashed white lines correspond to the true flowfield parameters. Note that the

estimated flowfield parameters converge to the true flow parameters.

2The notation a∗ represents the complex conjugate of a.
3The marginal probability density is achieved by summing a multi-dimensional probability density over

a set of dimensions.
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Figure 4.6: Simulation illustrating Corollary 4 with n = 6 vehicles in a Rankine vortex

with additive noise, dynamic flow-relative speed, and recursive Bayesian estimation of the

flowfield: (a,b) three and two-dimensional vehicle trajectories; (c–f) marginal probability

densities of estimated flowfield parameters.
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Chapter 5: Application: Hurricane Sampling

Throughout this chapter we consider the challenge of sampling within a tropical

cyclone using a group of unmanned aircraft. This problem is motivated by recent results

utilizing the Aerosonde platform for low altitude sampling of tropical cyclones [146]. Figure

5.1 shows the sampling trajectory taken by an Aerosonde unmanned aircraft as it collected

local flow velocity measurements within tropical storm Ophelia in 2005 [146]. Note as the

aircraft enters the stronger winds of the cyclone, the sampling trajectory takes on the shape

of a semi-circle or an arc of the spirograph trajectory. This motivates use of the multi-

vehicle control algorithms of Chapter 3 that steer a group of sampling vehicles to feasible

circular and spirograph formations. Without loss of generality we consider the family of

circular formations throughout this chapter. We use measures of flowfield observability to

optimize the parameters that characterize the sampling formation.

5.1 Control Objective and Background

The general control problem we address here is the optimization of an observer-based

feedback controller using observability measures as a design metric. We use measures of

flowfield observability to optimize the parameters characterizing the position and shape

of the multi-vehicle sampling trajectory. Recall in Chapter 3 that in a Rankine vortex a

circular formation is parameterized by the radial position of the circle center |c0| and the

radius of the circle |ω−1
0 |, forming the circular formation parameter set χ , (|c0|, |ω−1

0 |), as
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(a) (b)

Figure 5.1: (a) The blue trajectory denotes the flight path of the Aerosonde platform. (b)

Aerosonde flight trajectory superimposed over radar measurements. Photo source: [146].

shown in Figure 5.2(a). Figure 5.2(b) illustrates simulation of the control (3.77) steering a

single vehicle to three candidate sampling trajectories characterized by χ1 = (2, 10), χ2 =

(24, 13), and χ3 = (35, 20), respectively, in a moderate Rankine vortex. The objective

of this chapter is to steer a multi-vehicle system to the formation χ∗ that maximizes

(minimizes) measures of flowfield observability (unobservability).

Figure 5.3 shows a block diagram of the sampling mission objective. Vehicles gather

noisy measurements of the flowfield parameterized by Ω. A recursive Bayesian filter

assimilates the measurements, producing an estimate of the flow. The resulting estimate is

incorporated into an optimization routine that chooses the parameters χ∗ steering vehicles

to a formation that best observes the flowfield.

For simplicity, we assume a fleet of n planer sampling vehicles with dynamics gov-

erned by (3.12). Each vehicle collects local measurements of an unknown, time-invariant

flowfield characterized by G parameters Ω ∈ RG and is steered by a decentralized feedback

controller parameterized by Q control parameters χ ∈ RQ. (Q = 2 for the circular family

100



Re(r)

Im(r)

c0i

c0j

∣∣ω−1
0

∣∣
i

∣∣ω−1
0

∣∣
j

χi = (|c0i |,
∣∣ω−1

0

∣∣
i
)

χj = (|c0j |,
∣∣ω−1

0

∣∣
j
)

f = f(r;Ω)

(a)

−50 −30 −10 10 30 50

−50

−30

−10

10

30

50

Re(r)

Im
(r

)

(b)

Figure 5.2: The goal of the sampling mission is to steer the vehicles to the parameterized

sampling formation that optimizes flowfield observability. (a) Parameterized family of

circular formations; (b) simulation of one vehicle steered to three different parameterized

circular formations in a moderate Rankine vortex.

of formations.) In the notation of Chapter 2, the overall nonlinear system is1

ẋ = h(x; Ω) +

P∑

k=1

gk

(
x, uk(x, Ω̂;χ))

)
(5.1)

β = q(x; Ω), (5.2)

where x = [r,θ]T ∈ C2n is a state vector containing the positions r and velocity orienta-

tions θ of all n vehicles. The drift and control vector fields are correspond to the vehicle

kinematics in (3.12). The dynamic output feedback control uk(x, Ω̂;χ) is a function of the

vehicle states x augmented by the estimated flowfield parameters Ω̂ ∈ RG and parameter-

ized by χ ∈ RQ. The drift vector field h(·) represents the uncontrolled vehicle dynamics,

1We introduce the notation g(a, b;α, β) to represent a function g(·) that depends on the state variables

a, b and the parameters α and β. We use bold fonts to represent either a column matrix, e.g., state variables

z = [z1 z2 ... zN ]T , or a set of parameters, e.g., Ω = (Ω1,Ω2, . . . ,ΩG).

101



Vehicle Dynamics
Flow 

Measurement

Recursive 
Bayesian Filter

Multi-vehicle 
Control

Observability 
Optimization

x
+

Noise

Ω̂χ∗ β̃
u

β

Flowfield

Ω

Figure 5.3: Vehicles collect noisy, local measurements of the flow, which are used to

generate a flowfield estimate. The estimated flow is used to optimize the multi-vehicle

sampling formation.

which are affected by the flow and therefore depend on the true flowfield parameters Ω.

The output vector β is composed of flowfield measurements such that

β = f(r; Ω) ∈ Cn, (5.3)

where f(r) ∈ Rn is a vector of flowfield measurements collected at vehicle positions r.

An observer is implemented to provide estimates of the flowfield parameters Ω̂ from

noisy measurements. The observer dynamics are

˙̂
Ω = Φ(x, Ω̂, β̃), (5.4)

where β̃ = β + η are measurements corrupted by noise η. The function Φ(·) represents

the observer dynamics which, for example, may represent the update equations to the

recursive Bayesian filter (2.22) or the particle filter (2.27). Here we implement (5.4) in

discrete time using the recursive Bayesian filter formulation of Section 2.4 with likelihood

function (4.32). The goal is to optimize the control parameters χ using the flowfield

estimates Ω̂ such that the resulting measurements improve observability of Ω̂.

Throughout this chapter we consider the idealized, time-invariant hurricane model
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(3.34) known as the Rankine vortex. Recall from (3.34), the Rankine vortex is char-

acterized by radially symmetric flow whose flowspeed increases linearly to the maxi-

mum flowspeed vmax at the radius of maximum wind rmax, and decays exponentially

outside rmax with radial decay constant µ. Thus, the flowfield is parameterized by

Ω = (rmax, vmax, µ) ∈ R3.

5.2 Observability Analysis of Sampling Formation Parameterizations

This section analyzes the observability of the time-invariant flowfield parameters Ω

given local measurements of the flow gathered by a single vehicle whose sampling formation

is characterized by the formation parameters χ. For brevity and simplicity of presentation,

we consider the circular sampling formation parameterized by the distance of the circle

center from the vortex center |c0| (since the flowfield is radially symmetric) and the radius

of the circular formation |ω0|−1, i.e. χ = (|c0|, |ω0|−1) ∈ R2. However, the analysis is

extensible to any of the parameterized sampling formations of Chapter 3.

For simplicity we consider a time-invariant flowfield, however, the empirical observ-

ability Gramian (2.15) is capable of assessing the observability of time-varying flowfield

parameters, which enriches the problem by introducing a spatiotemporal sampling com-

ponent in which formations must target measurements in both space and time. Targeting

temporal measurements is the subject of ongoing work.

As outlined in Chapter 2, the empirical observability Gramian maps the input-

to-state and state-to-output behavior of a nonlinear system more accurately than the

observability Gramian found by linearization [127] and is defined by (2.15). In this ap-

plication we assess the observability of the Rankine flowfield parameters Ω. To perform

this analysis, we augment the vehicle dynamics (5.1) with the (time-invariant) flowfield
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parameter states Ω and perform perturbations only on the flowfield parameter states.

Following (2.15), the empirical observability Gramian WO ∈ R3×3 is a Hermitian matrix

that captures the sensitivity of measurements to perturbations in the flow, where the

measurements are dictated by the formation parameters χ.

Calculating the empirical observability Gramian via integration of (5.1) with particle

dynamics (3.2) reveals the input-output observability of the flowfield parameters Ω =

(rmax, vmax, µ) over a given particle trajectory. The steering control input νk(x;χ) given

by (3.77) dictates the sampling trajectory and is designed to stabilize candidate sampling

formations. The perturbation size is chosen to be a fixed percentage of the nominal state

size. For example, a 20% perturbation for rmax = 30 is ε1 = 6.

In a known flowfield, a set of sampling parameters χ produces a corresponding un-

observability index ξ(χ) calculated from (2.20), and the empirical observability Gramian

(2.15). The optimal trajectory is found by optimizing over the space of sampling param-

eters

χ∗ = argmin ξ(χ). (5.5)

Since this optimization technique iterates over the low-dimensional sampling parameter

space, rather than the space of all possible sampling trajectories, it can be computed

rapidly even by an exhaustive search.

Figure 5.4 shows analysis of circular trajectory optimization in the Rankine vortex

(3.34). Here, the sampling parameter space χ = (|c0|, 10) is the set of circular formation

center distances |c0| from the origin, assuming circular formations of radius |ω0|−1 = 10.

Figure 5.4(a) shows the log of the unobservability index as a function of the sampling

parameter |c0|. Figure 5.4(b) shows four sampling trajectories corresponding to the red

data points of Figure 5.4(a). In each case, the initial position of the vehicle is located
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Figure 5.4: (a) Unobservability index versus distance of circular sampling formation from

vortex origin. (b) An illustration of candidate sampling formations. The red circle centers

at y = 40 and y = 60 correspond to the red data points of (a).

on the desired circle to eliminate the effect of transient behavior on the unobservability

analysis. The flowfield parameters are Ω = (30, 0.6, 0.8). rmax is shown by the dashed

line in both figures. Notice that the unobservability is minimized by traveling in a circle

with |c0|∗ = 28. For |c0| < 20 = rmax−|ω0|−1 the unobservability index is infinite because

the flowfield parameter µ, corresponding to the decay in flowspeed outside of rmax, is

unobservable, i.e. σmin = 0. For |c0| > 40 the parameters are less observable because the

flow strength decreases exponentially outside the radius of maximum wind.

The analysis illustrated in Figure 5.4 reveals that the unobservability is significantly

decreased by crossing rmax, which is intuitive since this spatial region contains contribu-

tions from all flow parameters in the observations. Measurements obtained by sampling

only inside rmax fail to capture perturbations in the decay constant µ and measurements

obtained by sampling only outside rmax have more difficulty identifying the correct com-

bination of rmax and vmax. Extending this analysis to circular formations of varying
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Figure 5.5: Pattern subsets associated with a circular sampling formation in a Rankine

vortex. The dashed line represents rmax. Only pattern subset 2 (PS2) crosses the radius

of maximum wind.

position and radius (χ = (|c0|), |ω0|−1), one expects pattern subsets to emerge within the

parameter space, dictated by crossing of rmax.

Figure 5.5 shows four pattern subsets of the sampling parameter space we expect

to provide significantly different observability. Pattern subset #1 (PS1) contains circular

trajectories that lie entirely inside rmax, whereas PS2 trajectories cross rmax. PS3 lies

entirely outside rmax and PS4 contains rmax. Since the Rankine vortex model is radially

symmetric, the circle centers are depicted as being constrained to the y-axis, without loss

of generality.

Figure 5.6 shows the results of unobservability analysis over χ = (|c0|, |ω0|−1), in

which the parameter-space boundaries of the pattern subsets are evident. The flowfield

is parameterized by Ω = (30, 0.6, 0.8). Figure 5.6(a) depicts example trajectories from

within each subset as well as the subset boundaries, which we calculate analytically by

considering the geometry of Figure 5.5. Figure 5.6(b) shows the unobservability index

over the parameter space. In both figures |c0| and |ω0|−1 are normalized by rmax.

Note that, as predicted, areas of low unobservability correspond to trajectories cross-

ing rmax (PS2), whereas highly unobservable trajectories remain entirely inside (PS1) or
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Figure 5.6: Observability of a Rankine vortex characterized by Ω = (30, 0.6, 0.8) using a

circular sampling pattern. (a) Pattern subsets over the parameter space χ = (|c0|, |ω0|−1)

normalized by rmax; (b) the unobservability index ξ(χ) with minimum denoted by the

white dot.

outside (PS4) rmax. Trajectories in pattern subset (PS3) are less observable than (PS2),

but more observable than (PS1) and (PS4). The minimum of the unobservability index

is denoted by the white dot in Figure 5.6(b), along with a scaled image of the optimal

trajectory, which is a small circular formation centered near rmax. Note that Figure 5.6

corresponds to the flowfield parameters Ω = (30, 0.6, 0.8). In general, varying vmax and µ

produces slight changes in the minimum of the unobservability index but has little effect

on the pattern subset structure. rmax defines the pattern subsets and is therefore the

dominant parameter driving the pattern subset structure.

5.3 Observability-based Adaptive Sampling Framework in an Estimated Flowfield

In this section we combine the results of Sections 5.1 and 5.2 in an optimal sampling

algorithm and provide numerical simulations of vehicles traveling in both moderate and
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strong Rankine vortices. We use the recursive Bayesian filter to estimate the flowfield

parameters, which are utilized to calculate vehicle steering controls and determine optimal

sampling parameters over time interval Topt. The multi-vehicle control algorithm (3.77) is

implemented using the flowfield estimate and the optimal sampling parameters, such that

vehicles are steered to trajectories with optimal observability.

The sampling algorithm proceeds as follows. First, the probability density function

for the flowfield parameters Ω is initialized either uniformly within known bounds or from

a known prior distribution. The maximum of the probability density function corresponds

to the initial flowfield parameters Ω̂(0) upon which the initial flowfield estimate f̂k =

f(rk; Ω̂(0)) is based. The initial flowfield parameter estimate is utilized to calculate WO(χ)

using (2.15) over a time horizon Topt and sampling parameters χ. (Note that in this step

the transient behavior of the vehicles as they converge to the formation χ is taken into

account and can significantly affect the unobservability index; the initial positions of each

particle are used to calculate (2.15).) The choice of Topt depends on the expected accuracy

of the flowfield estimate. For instance, one may choose Topt to be relatively short initially

since the vehicles have yet to collect measurements. In this work, we assume a constant

horizon time.

The optimal sampling parameters χ∗ over Topt found using (5.5) are implemented

in the control algorithm (3.6), with νk = νk(r, f̂k;χ
∗), where νk is given by (3.77). The

control steers vehicles to a circular formation parameterized by χ∗. Each particle travels

with closed-loop feedback control collecting noisy measurements β̃k(t) and using the flow-

field estimate f̂k = f(rk; Ω̂(t)) in its decentralized control. After time Topt has elapsed,

the process is repeated on Topt intervals to update the set of optimal sampling parame-

ters χ∗ from the new flowfield parameter estimate Ω̂(t) until the mission completes. An
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Table 1 Observability-based Sampling Algorithm.

Inputs: Probability density p(Ω̂(t)|β̃(0)) and initial flowfield estimate Ω̂(0); initial control

parameters χ(0)∗ and initial vehicle positions; time interval Topt and Tfinal.

for t ≤ Tfinal do

1: Generate flowfield using estimated parameters, f̂k(t) = ~f(rk(t); Ω̂(t)) for k = 1, . . . , n

vehicles.

2: Use the estimated flowfield and the current optimal sampling parameters to calculate the

steering control νk(t) = ν(r, f̂k(t);χ∗).

3: Update the flowfield parameter estimate by assimilating measurements, so that

Ω̂(t)= sup p(Ω̂(t)|A(t)).

if t mod Topt = 0 then

4: Find the optimal sampling parameters over the observability iteration time using the

current particle positions and current flowfield parameter estimate,

χ∗ = argmin ξ(χ; Ω̂(t), Topt).

end if

5: Set t = t+ ∆t

end for

overview of the sampling algorithm is shown in Table 1. Figure 5.7 shows the general

block diagram in Figure 5.3, including the observability optimization block as well as

added feedback connections where state and estimate information is shared. In Figure 5.7

the flow measurement and vehicle dynamics blocks from Figure 5.3 are merged.

Though the adaptive algorithm of Table 1 steers vehicles to formations improving

observability, stability of the algorithm is inherently dependent on both convergence of the

flowfield estimates to the true values and the choice of the optimization horizon time. Poor

flowfield estimates may cause the vehicles to diverge from the desired formation or cause

the observability optimization to steer the vehicles to optimal formations with respect to
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Figure 5.7: A schematic diagram of the observability-based sampling algorithm. A re-

cursive Bayesian filter provides flowfield parameter estimates Ω̂. The estimated flowfield

parameters are used to calculate optimal control parameters χ∗ that characterize the

multi-vehicle sampling formation.

an incorrectly estimated flowfield.

Proving stability of the recursive filter is dependent both on the magnitude of noise

present in the measurements as well as the trajectories traversed by the vehicles, which

is a difficult problem worthy of future research. In addition to stability of the filtering

algorithm, one must choose the horizon time Topt such that the vehicles have sufficient

time to achieve the formation or run the risk of never overcoming transient behavior.

If one assumes the flowfield is known, several works have addressed the stability

of formations with time-varying centers and radial parameters. Peterson [42] and Paley

[23], [147] established asymptotic stability of circular formations with time-varying circle

center positions in a uniform flowfield. Similarly, Arranz et al. [148], [21], [17] established

stability conditions that, when met, prove convergence of multi-vehicle motion to circular

formations with time-varying circle center position and radius in a flow-free setting. The

adaptive algorithm is similar to previous work in that the circle center position and radius
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vary in time; however, the algorithm differs in that step inputs to the formation parameters

are applied rather than the continuously differentiable formation inputs of the previous

work. We leave it to future work to establish stability of the algorithm in terms of the

optimization horizon time.

5.4 Simulation Results and Analysis

This section illustrates simulations of the adaptive sampling algorithm in a Rankine

vortex. Without loss of generality, we consider a collection of n = 5 vehicles sampling in

a Rankine vortex parameterized by rmax = 30 and µ = 0.8 for all simulations. Sections

5.4.1 and 5.4.2 consider a moderate flowfield with vmax = 0.6 to evaluate the adaptive

sampling algorithm in flows where all formation parameters are feasible, whereas Section

5.4.3 considers a strong flow characterized by vmax = 1.2. The duration of each sampling

mission was 1350 time units with observability iteration occurring every Topt = 150 time

units, resulting in nine iterations of the observability-optimization routine.

5.4.1 Optimization of Formation Position

We begin by optimizing over the parameter |c0| dictating the distance of the circle

center from the origin of the vortex, assuming |ω0|−1 = 10 is the fixed circle radius such

that χ = (|c0|, 10). Figure 5.8 illustrates simulation of the observability-based sampling

algorithm estimating the unknown flowfield parameters Ω = (rmax, vmax, µ) of the Rankine

vortex model (3.34). The probability density function was initialized uniformly over the

parameter space rmax ∈ [0, 100], vmax ∈ [0, 1], and µ ∈ [0, 1], and the initial flowfield

parameter estimate was selected randomly from the parameter space.

Figure 5.8(a) shows the vehicle trajectories over the course of the simulation. Fig-
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Figure 5.8: Simulation results of the adaptive sampling algorithm optimizing the circle

center distance |c0| for fixed circle radius |ω0|−1 = 10 using estimates of the flowfield. (a)

Vehicle trajectories; (b) circle center position and observability analysis; (c)-(e) marginal

probability densities of the recursive Bayesian filter.

ure 5.8(b) shows the optimal formation parameter |c0| plotted for each iteration of the

observability optimization procedure, normalized by the radius of maximum wind rmax.

The solid black line shows the optimal circle center distance after each iteration, whereas

the dashed black line corresponds to a formation centered at rmax. The underlying color

plot illustrates log of the unobservability index for all circle center positions after each it-

eration. Note that the circle center distance reaches a steady-state value of |c0| = 0.9rmax

after four iterations of the unobservability optimization.
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Figures 5.8(c), 5.8(d), and 5.8(e) show marginal probability densities2 of the flowfield

parameters rmax, vmax, and µ versus time. In each figure the solid white line corresponds

to the ground truth parameters, whereas the dashed magenta line corresponds to the

estimate. Note that the estimate from the recursive Bayesian filter converges around the

true flowfield parameters.

Note in Figure 5.8 that after a few iterations the circle center is attracted toward

formations that cross radius of maximum wind, consistent with the analysis of Figure

5.4. To further investigate the attractive properties of the rmax in the adaptive sampling

algorithm, Figure 5.9 illustrates the result of four hundred simulations optimizing the

circle center position |c0| with fixed circle radius |ω−1
0 | = 10, normalized by rmax = 30.

In each simulation, we initialize the vehicle positions randomly within the domain. The

blue line denotes the average circle center position over all simulations for each iteration

of the optimization procedure. The shaded gray area denotes one standard deviation of

all simulations at each iteration, whereas the dashed black line indicates |c0| = rmax.

Note that the average observability-optimal circle center position is attracted toward rmax

as predicted by the analysis of Section 5.2 and the standard deviation decreases with

successive iterations of the optimization routine.

5.4.2 Optimization of Formation Position and Radius in a Moderate Flowfield

In this example we optimize over the full parameter space defining the circular

sampling family χ = (|c0|, |ω0|−1) using the adaptive sampling algorithm in Table 1 and

n = 5 vehicles. Figure 5.10 illustrates results of the observability-based adaptive sampling

algorithm. Figure 5.10(a) shows the sampling trajectories taken by each vehicle over

2The marginal probability density is achieved by summing a multi-dimensional probability density over

a set of dimensions.
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Figure 5.9: The average optimal circle center position (blue) plotted versus the iteration

number of the adaptive algorithm over four hundred simulations. Note the circle center

is attracted toward rmax. The gray area denotes one standard deviation of circle center

positions over all simulations.

the course of the sampling mission. Figure 5.10(b) shows marginal probability densities

of rmax, vmax, and µ, respectively. In each figure the solid white line denotes the true

parameter values, whereas the dashed magenta line denotes the parameter estimates over

time.

Figures 5.10(c) and 5.10(d) illustrate the result of nine iterations of the observability

optimization routine. In Figure 5.10(c), each surface illustrates the unobservability index

over the space of circle center positions and circle radii, normalized by the radius of

maximum wind rmax = 30. The solid black line shows the optimal parameter values

over the course of the simulation. The dashed black line denotes rmax projected on the

|ω0|−1 = 0 plane. Figure 5.10(d) shows the circle center distance |c0|, and circle radius

|ω0|−1 over each iteration. In each figure the solid black line denotes the observability-

optimal parameters normalized by rmax, whereas the dashed black line denotes rmax. Note

the algorithm is attracted toward parameters that produce formations crossing rmax, which
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Figure 5.10: Simulation results of the adaptive sampling algorithm optimizing the circle

center distance |c0| and circle radius |ω0|−1 using estimates of the flowfield. The algorithm

is attracted toward formations that cross rmax.

is in agreement with the analysis of Section 5.2.

Performing four hundred simulations of the algorithm, we see a trend similar to Sec-

tion 5.4.1 that the circle center distance |c0| is attracted toward |c0| = rmax. Interestingly,

the radius of the circular formation also tends toward rmax. Figure 5.11(a) illustrates the

optimal circle center distance and radius averaged over four hundred simulations of the

adaptive sampling algorithm (blue line). The gray tube represents one standard deviation

of all simulations, whereas the dashed black line illustrates the radius of maximum wind.
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(a) (b)

Figure 5.11: The optimal circle center position |c0| and radius |ω0|−1 normalized by rmax =

30 and plotted versus the iteration number of the adaptive algorithm over four hundred

simulations. Note the circle center and radius tend toward rmax. The shaded regions

denote one standard deviation of all simulations.

Each quantity is normalized by the radius of maximum wind rmax = 30. Figure 5.11(b)

shows circle center position and circle radius plotted individually versus the iteration num-

ber. Note the circle center distance and formation radius tend toward rmax. Moreover,

the circle radius is biased toward |ω0|−1 < rmax since the standard deviation tends toward

circular formations with radius less than rmax rather than those with larger radii.

5.4.3 Optimization of Formation Position and Radius in a Strong Flowfield

As a final example we simulate the adaptive sampling algorithm of Table 1 in a

Rankine vortex whose maximum flowspeed exceeds that of the vehicle. In this case, a

subset of the sampling parameter space χ becomes infeasible since vehicles cannot maintain

forward progress at all areas in the flow. Therefore, we perform observability analysis over

the space of feasible sampling parameters with respect to the flowfield estimate Ω̂ in the

optimization routine.
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Figure 5.12: Simulation results of the adaptive sampling algorithm optimizing the circle

center distance |c0| and circle radius |ω0|−1 in a strong Rankine vortex. In a strong flowfield

a subset of the sampling parameter space is infeasible, shown by the black regions in the

observability analysis of (c).

Figure 5.12 illustrates simulation results of the observability-based sampling algo-

rithm in a strong Rankine vortex parameterized by Ω = (30, 1.2, 0.8). Figure 5.12(a)

shows the vehicle trajectories over the duration of the sampling algorithm. Figure 5.12(b)

illustrates marginal probability densities of the recursive Bayesian filter. The solid white

line illustrates the true flowfield parameters, whereas the dashed magenta line denotes the

parameter estimates.

Figure 5.12(c) shows the unobservability index plotted over the sampling parameter
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(a) (b) (c)

Figure 5.13: The optimal circle center position |c0| and radius |ω0|−1 normalized by

rmax = 30 and plotted versus the iteration number of the adaptive algorithm over four

hundred simulations. The shaded regions in (a)-(b) denote one standard deviation of all

simulations. (c) A histogram of the optimal sampling parameters χ∗ over all simulations.

set χ = (|c0|, |ω0|−1) for each iteration of the sampling mission. Each surface corresponds

to the unobservability index of the parameter set χ at each iteration. The parameter

combinations shown in black were deemed infeasible based on the estimated flowfield pa-

rameters. Figure 5.12(d) shows the desired circle center offset |c0| and circle radius |ω0|−1

plotted over the sampling mission, normalized by rmax = 30. Note, unlike simulations

in the moderate flow regime, the circle center distance |c0| remains inside rmax in this

simulation.

Figure 5.13 illustrates results of a Monte Carlo simulation over four hundred it-

erations of the adaptive sampling algorithm in the strong Rankine vortex. Analogous to

Figure 5.11, Figures 5.13(a) and 5.13(b) illustrate the mean circle center position and circle

radius with the gray shaded area representing one standard deviation over all simulations.

Note that in the strong flow the average circle center tends toward rmax. Compared to the

moderate flow case, the radius tends to be larger to accommodate feasibility constraints

in the strong flow. Figure 5.13(c) shows a histogram of all iterations of the sampling

algorithm, over all four hundred simulations. The cross-hatched region corresponds to
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infeasible circle center and radius combinations. Since the feasibility analysis is based

on the estimated flowfield parameters, it is possible for the algorithm to select infeasible

elements of the parameter space. Over all simulations, less than five percent of iterations

were infeasible with respect to the true flowfield. Note that the observability analysis is

attracted toward circle centers slightly less than or larger than those that are infeasible.

Many iterations are also attracted toward a circle centered at the vortex origin with radius

equal to rmax, illustrated by the red entry at the parameter space coordinate χ = (0, rmax).

Interestingly, very few iterations correspond to large circle centered at the origin
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Chapter 6: Application: Wake Tracking in Close Formation Flight

As airspaces of the world grow congested with manned and unmanned aircraft,

closely coordinated multi-aircraft formations may provide a method of organizing the sky.

Before such benefits can be realized for autonomous systems, individual vehicles must

have reliable methods to sense other aircraft in the formation. This chapter proposes a

method of sensing using the aerodynamic effects caused by aircraft flying in close proxim-

ity. We consider a two-aircraft leader-follower formation and use nonlinear observability,

estimation, and control techniques of Chapter 2 to enable the follower to estimate the

lead aircraft’s wake and to position itself at a desired location relative to the leader. The

control and estimation designs are applied to instances of close formation flight including

aerial refueling and positioning for increased aerodynamic efficiency.

6.1 Aerodynamic Model of Two-Aircraft in Close Formation

This section develops an aerodynamic model of a follower aircraft flying in a lead

aircraft’s wake, similar to that of Hemati et al. [68] and Pachter et al. [60] Consider two

aircraft in steady level flight through an inviscid, incompressible, irrotational fluid. Let

the reference frame B = (O, b1, b2, b3) with origin O be centered at the leading edge of the

follower aircraft’s wing with basis vectors b1, b2, and b3 as shown in Figure 6.1(a). Assume

the follower aircraft maintains kinematic control of its vertical and horizontal velocities

such that the velocity of frame B with respect to the lead aircraft in steady level flight
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is Vf = Vyb2 + Vzb3 (the b1 component is assumed to be zero). The lead aircraft has

wingspan b and the position of its center of mass is rL = xLb1 + yLb2 + zLb3 relative to

O. Assume |xL| is sufficiently large (greater than two wingspans [60]) such that the wake

of the lead aircraft is adequately represented using potential flow theory as the sum of

two infinite line vortices. The vortices extend horizontally behind the wingtips of the lead

aircraft along the b1 direction with circulation strength ΓL. The Biot-Savart law gives the

following vertical component of the wake [57], [60], [68] at a point (x, y, z) along the b2

axis (x = z = 0) as a function of the lead aircraft position1:

wL(y; ΓL, yL, zL, b) = ΓL(y−yL−b/2)
2π(z2L+(y−yL−b/2)2)

− ΓL(y−yL+b/2)
2π(z2L+(y−yL+b/2)2)

. (6.1)

Note that equation (6.1) is symmetric about zL. This occurrence necessitates use of a

second sensing modality to break the vertical symmetry, which is discussed later. The

aerodynamic signature on the follower aircraft created by the upwash field of the lead

aircraft is used to estimate the position r = (yL, zL) of the leader relative to the follower

and the circulation strength ΓL of the lead aircraft wake. The position estimate r̂ is used

in an optimal controller to steer the follower aircraft to a desired relative position.

To model the flow around the follower aircraft in response to the upwash field of the

lead aircraft, we employ the lifting-line solution, following that of Katz and Plotkin [63, pp.

331–340]. The follower aircraft is represented by a thin, flat, rectangular wing with large

aspect ratio (A > 4) and chord length c as shown in Figure 6.1(b). (Note this method

is capable of modeling more sophisticated wing geometries, including wing sweep and

dihedral [63].) Since the fluid is inviscid, incompressible, and irrotational its motion can

be represented by the gradient of a potential function Φ that satisfies Laplace’s equation

1For simplicity we ignore the sidewash field, assuming sensors mounted flush on the wing surface are

unable to detect sidewash.
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Figure 6.1: Leader and follower aircraft representations. (a) The wake of the lead aircraft

produces an aerodynamic signature on the follower aircraft through its upwash field (blue).

(b) Horseshoe vortices are used to model the flow around a finite, slender wing with large

aspect ratio, A > 4.

[63]

∇2Φ = 0. (6.2)

In addition, at every point on the wing the potential function must satisfy the boundary-

value constraint, which ensures that there is no flow normal to the wing surface. Assuming

the wing is thin, its normal vector ni at any point (xi, yi, zi) on the wing surface is

approximately ni ≈ b3, which implies

∇Φ · b3 = 0, (6.3)

as shown in Figure 6.1(b). To satisfy these constraints, lifting-line theory uses a collection

of line vortices to represent a suitable potential function. D equally spaced horseshoe

vortices are bound to the quarter chord of the wing such that 2D trailing vortices extending

infinitely downstream. The kth bound horseshoe vortex has circulation strength Γk as

shown in Figure 6.1(b). The number D of horseshoe vortices must be chosen large enough

for adequate model fidelity, yet small enough to remain computationally tractable. The
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freestream fluid velocity U∞ has magnitude U∞ and angle of attack α relative to the wing.

(Assume the freestream velocity has zero sideslip and α is small.)

The line vortex is a solution to Laplace’s equation [63] (6.2), implying that the flow

due to the freestream velocity, lead aircraft upwash, and horseshoe vortices must satisfy

the normal flow constraint (6.3). Therefore, (6.3) evaluated at any given point on the

wing must satisfy

whs + wL + Vz + U∞ sinα = 0, (6.4)

where whs is the b3 component of the flow due to the collection of horseshoe vortices, wL

is given by (6.1), Vz is the b3 component of the inertial velocity of the follower aircraft

expressed in frame B, and the fourth term on the left-hand side is the normal component

of the freestream velocity. Note that this model neglects aerodynamic influences due

to aircraft pitching, rolling, and sideslip maneuvers, under the assumption that in close

proximity these motions are negligible in comparison to the aerodynamic effect of vertical

motion. (The inclusion of higher fidelity aircraft dynamics in the aerodynamic model is a

worthy topic for ongoing research.)

The collocation method [63], [64] is used to solve for the horseshoe vortex strengths

Γk that satisfy (6.4). Following Katz and Plotkin [63, pp. 331-334], impose the constraint

(6.4) at D collocation points centered at each horseshoe vortex along the 3/4-chord line,

as shown in Figure 6.1(b). Since the flow at any collocation point is linearly dependent on

the circulation strength Γk of the kth horseshoe vortex, (6.4) applied at the D collocation

points forms a set of D linear algebraic equations with D unknown circulation strengths
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[63] Γk, k = 1 . . . , D




a11 · · · a1D

...
. . .

...

aD1 · · · aDD







Γ1

...

ΓD




= −(Q∞ sinα+ Vz)




1

...

1



−wL, (6.5)

where aij = vij · b3 is the normal component of the flow vij at the ith collocation point

due to the jth horseshoe vortex, Vz is a control variable, and wL is an D × 1 column

matrix formed by evaluating (6.1) at the b2 component of the D collocation points. Since

the horseshoe vortex nearest each collocation point has the largest influence, the solution

is stable [63], which implies that the coefficient matrix is invertible and equation (6.5) can

be solved for the circulation strength distribution Γ1, . . . ,ΓD.

Let Γk = Γ(yk) and ∆y = yk+1−yk, for any k ∈ {1, . . . , D−1}. The circulation

strength distribution Γ(y) = lim∆y→0 Γk is used to calculate measurable quantities that

can be used in the nonlinear wake estimation process. For example, Hemati, Eldredge,

and Speyer [68], [69], [149] assume measurements of the differential pressure coefficient:

∆Cp(x, y) = −4Γ(y)
πU∞c

(
c
x − 1

)1/2
. (6.6)

For consistency, this chapter assumes measurements of differential pressure at the 3/4-

chord line x = 3c/4 at five equally spaced positions along the span of the wing

∆Cp = [∆Cp1 , . . . ,∆Cp5 ]T , (6.7)

as shown by the blue squares in Figure 6.1(b). To break the ±zL symmetry in (6.1),

assume the follower aircraft is outfitted with a simple camera system or range finder that

124



provides a (noise-free) reading of the sign of zL, i.e.,

ζ(t) = sgn(zL(t)) =





1, zL(t) > 0

0, zL(t) = 0

−1 zL(t) < 0.

(6.8)

Let q(Ω) = [∆Cp1 . . .∆Cp5, ζ(t)]T be a 6 × 1 column matrix of five differential

pressure measurements calculated using (6.6) at the collocation points in Figure 6.1(b) and

one relative altitude measurement given by (6.8). The output equation q(Ω) is combined

with the lead aircraft dynamics in frame B to write the state-space form of the input-output

relationship between the wake parameter states and the measurements. In the notation of

Chapter 2, the state vector x = Ω = [yL, zL,ΓL]T ∈ R3 has time derivative with zero drift

term h(x) = 0 and control vector fields g1(x, u1) = [−u1, 0, 0]T , g2(x, u2) = [0,−u2, 0]T ,

where u1 = Vy and u2 = Vz. This gives

ẋ = Ω̇ =




−u1

−u2

0




β = q(Ω).

(6.9)

The model (6.9) is used in subsequent sections to evaluate the observability of the state Ω

given the output equation q(Ω), to design an observer to estimate Ω from noisy output

measurements, and to design an optimal controller for the follower aircraft.

6.2 Observability of Lead Aircraft Wake Parameters

This section assesses the observability of the wake parameters in the aerodynamic

model of Section 6.1. This application seeks to observe the wake parameter states Ω =

[yL, zL,ΓL]T given the output equation q(Ω). Equation (6.6) is dependent on Ω indirectly
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through the circulation strength distribution Γ(y) of the horseshoe vortices, which moti-

vates the need to quantitatively assess the observability of the desired parameters as part

of the implementation of an observer-based controller.

Since the flow model in Section 6.1 is solved numerically, it is justified to pursue

empirical techniques for calculating the observability Gramian of the nonlinear system

[100], [150]. Moreover, by using numerical observability techniques, the analysis can be

extended to higher fidelity state-space realizations of the aerodynamic model that more

accurately capture the aerodynamic effects of the leader aircraft wake.

When applied to the two aircraft aerodynamic model (6.9), the (i, j)th component

of the 3 × 3 empirical observability Gramian WO is given by (2.15) [99] where the three

dimensional state Ω±i = Ω ± εiei produces the six dimensional output β±i = q(Ω±i).

Measures of the observability of a nonlinear system are obtained by applying the unob-

servability index (2.20) and estimation condition (2.21) to WO.

In the context of the formation flight application, observability analysis provides a

method of mapping “blind spots” (for u(t) = 0) or “blind trajectories” (for u(t) 6= 0) in

which the follower aircraft may not be able to estimate the lead aircraft wake parameters

because they are highly unobservable. To analyze the dependence of the unobservability

index and estimation condition on the lead aircraft position, we evaluate the empirical

observability Gramian (2.15) as a function of the stationary lead aircraft position in the

(b2,b3) plane rather than along a predefined leader aircraft trajectory.

For simulation purposes, assume D = 40 horseshoe vortices are used to define the

aircraft wing model. The wing dimensions and flight conditions are modeled after a C-17

aircraft (b = 51.75 meters, A = 7.586) at cruise Q∞ = 230.556 m/s. All quantities are

non-dimensionalized using wingspan and cruise speed, though, so they can be generalized
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Figure 6.2: The log of the (a) unobservability index and (b) estimation condition plotted

versus the lead aircraft wake position.

to other aircraft, including unmanned ones.

At each relative position value r = [yL zL]T , the log of the observability measures

(2.20) and (2.21) are shown in Figure 6.2. Note that the unobservability index in Figure

6.2(a) generally increases with increasing ||r|| and is symmetric in the (b2,b3) plane, which

is expected due to the symmetries of the upwash model (6.1). Interestingly, pockets of

high unobservability (poor observability) extend diagonally outward from the wing tips

of the follower. A large degree of variability in observability is observed between one and

two wingspans from the origin of the (b2,b3) plane. The unobservability index is nearly

seven orders of magnitude larger two wingspans away than at the origin, implying that

one can expect dramatically worse estimation performance as ‖r‖ increases, though this

pattern is not radially symmetric.

It is also interesting to note that the singular value associated with the circulation

strength parameter ΓL is the smallest singular value throughout the majority of the map-

ping in Figure 6.2(a). This implies that ΓL is the least observable state in Ω and will be
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the most difficult to estimate. Also note that the estimation condition in Figure 6.2(b)

is large along diagonals outward from the wingtips, similar to the unobservability index.

This indicates that in these areas the estimation problem is poorly conditioned and the

smallest singular value is the dominant term in the estimation condition metric.

The following section describes the recursive Bayesian filter implementation used to

estimate the lead aircraft parameters. By coupling the recursive estimation scheme with

an observability-based optimal control algorithm, the follower aircraft maintains adequate

observability over its trajectory. This guarantees performance of the filtering scheme

because the estimated states will never become unobservable.

6.3 Bayesian Estimation of Lead Aircraft Wake Parameters

In previous work Hemati, Eldredge, and Speyer [68], [69] compared the performance

of an extended Kalman filter and a particle filter in estimating the lead aircraft wake pa-

rameters [68]. Both nonlinear estimation methods suffered from filter divergence at specific

initial conditions. Due to the fact that there are only a few states and each have a known,

linear time dependence, the grid-based recursive Bayesian estimation scheme of Chapter

2 is selected for this application for its ease of implementation. The filter estimates the

state vectors Ω = [yL zL ΓL]T , from which the differential pressure distribution (6.6) is

reconstructed. The lead aircraft wake model (6.1) has kinematics that are modeled in non-

linear state-space form in (6.9). The recursive Bayesian filter update equation is given by

(2.22), where in this application the motion model p(Ω(t)|Ω(t−∆t)) represents an operator

that updates the probability density function from t−∆t to t, [130, pp. 372-375] assuming

known control inputs u = [Vy, Vz]
T . The motion matrix is Ψ = ∆tdiag([−Vy −Vz 0]T ) and

p(Ω(t)|Ω(t−∆t)) = N (ΨΩ(t−∆t); Σp), where N (ΨΩ(t−∆t); Σp) is normally distributed
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white noise with mean ΨΩ(t−∆t) and variance Σp. At t = 0 the prior probability is as-

sumed to be uniformly distributed in the absence of information other than the parameter

lower and upper bounds.

The likelihood function p(β|Ω) assigns a probability density to a measurement β,

given a state Ω. Suppose the differential pressure measurements are corrupted by additive

noise:

∆C̃p(t) = ∆Cp(t) + ηp(t),

where the noise ηp(t) ∼N (0,Σ2
p) is a 5×1 column matrix in which each element has zero

mean and variance Σ2
p; ∆Cp is given by (6.7). Assume the relative altitude measurement

is also corrupted by zero-mean noise such that ζ̃(t) = ζ(t) + ηζ(t), where ηζ(t) ∼ N (0, σ2
ζ )

has variance σ2
ζ . Multivariate Gaussian likelihood functions are chosen for each point Ω(t)

in the three dimensional state space to fuse contributions from both sensing types, i.e.,

p(β̃(t)|Ω(t)) = p(∆C̃p(t)|Ω(t))p(ζ̃(t)|Ω(t)). (6.10)

The likelihood functions for the differential pressure and relative altitude measurements

are

p(∆C̃p(t)|Ω(t)) = 1√
2π|Σp|

exp
[
−1

2 [∆Cp(Ω(t))−∆C̃p(t)]
TΣ−1

p [∆Cp(Ω(t))−∆C̃p(t)]
]
,

(6.11)

and

p(ζ̃(t)|Ω(t)) = 1√
2πσζ

exp[− 1
2σ2
ζ
(sgn(zL(Ω(t)))−ζ̃(t))2], (6.12)

respectively. The term zL(Ω(t)) in (6.12) represents the zL value associated with the state

Ω(t) and σ2
ζ represents the variance in the relative altitude measurement. The maximum

likelihood estimate Ω̂ is used in the optimal controllers presented in the following section.
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6.4 Observability-based Optimal Control

Section 6.2 showed that the unobservability index ξ = ξ(r) and estimation condition

λ = λ(r) quantify the observability over the space of relative aircraft positions r. The

observability map can be viewed as a cost metric for an optimal control strategy that

steers the follower aircraft to a desired relative position while maintaining observability

along the trajectory. By maintaining observability along a trajectory, the performance of

the estimation scheme is guaranteed, which increases the control algorithm performance

when estimates are used in feedback control. This section presents the control derivation

as an optimal control problem following the optimal control formulations in Chapter 2.

The optimal control problem is posed as follows. Suppose that for aerodynamic

efficiency or aerial refueling purposes the follower aircraft must maintain a desired position

relative to the leader aircraft rdes = [ydes, zdes]
T , assuming the longitudinal separation

between the aircraft xL is held fixed through a separate control strategy not described

here. The kinematics of the lead aircraft position with respect to the follower are given

by (6.9). For simplicity of presentation, we neglect the time-invariant quantity ΓL in (6.9)

and consider only the relative position terms r ⊂ Ω. Thus, the simplified leader aircraft

equations of motion are

ṙ =

2∑

k=1

gk(u) =



−u1

−u2


 , (6.13)

where r = [yL zL]T , g1(u) = [−u1, 0]T , and g2(u) = [0,−u2]T . Equation (6.13) is in the

standard form of the optimal control formulations in Chapter 2, from which the following

sections derive two optimal control algorithms steering the follower aircraft to a desired

relative position.
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6.4.1 Receding-Horizon Optimal Control

The goal is to design a control u(t) that produces a trajectory optimizing observ-

ability from the initial condition r(t0) = [yL(t0), zL(t0)]T at time t0 to the desired position

rdes at time t0 + Tf . Following Section 2.1.2 of Chapter 2, consider the metric (2.6) with

cost function

l(r(t)) = κ ξ(r(t)), (6.14)

where ξ(r) is given by (2.20), R ∈ R2×2, and κ > 0. The terms R and κ are positive

(definite) and constant. The cost function (6.14) is positive semi-definite since ξ(r) ≥ 0 by

definition. Minimizing (2.6) with cost function (6.14) is a constrained nonlinear optimiza-

tion problem whose solution gives the control sequence u(t) that produces the optimal

observability trajectory. An additional constraint ||u(t)| | ≤ umax ensures a bounded

control signal, where umax =
√
V 2
ymax + V 2

zmax . The optimization problem is solved nu-

merically using the GPOPS [117], [118] optimization software in MATLAB and produces

the optimal controls V ∗y and V ∗z .

Figure 6.3 shows optimal trajectories of the lead aircraft for κ = 0, 0.1, 0.3, and

0.8, R = I2×2, and arbitrarily chosen initial and desired conditions r0 = [1.7 −1.7]T

wingspans and rdes = [−1.7 −1.7]T wingspans, respectively. (In this particular appli-

cation ξ(r) � 0 so log ξ(r) is used instead of ξ(r) in the cost function.) Figure 6.3(a)

shows the optimal trajectories for the various values of κ and Figure 6.3(b) shows the

Vz component of the control signal u(t) versus time. The Vy component maintains its

maximum value Vymax = 0.7 wingspans/s for all solutions. Note in Figure 6.3(a) that as

κ increases the trajectory approaches areas of the domain where observability improves,

as depicted by the underlying plot of the unobservability index. Decreasing κ causes the
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Figure 6.3: (a) Optimal trajectory solutions of the cost metric (2.6) with cost function

(6.14) and (b) corresponding Vz component of the control u(t). (c) Optimal trajectory

using level set method (6.15).

trajectory to approach the desired location more directly, but via a route that achieves

larger unobservability.

The control u(t) that minimizes the metric (2.6) with cost function (6.14) produces

the optimal observability trajectory for a given horizon time Tf and initial condition r0.

To incorporate state estimates from the recursive Bayesian filter, this method uses the

estimated lead aircraft states r̂0 as the initial condition in the control calculation and

recalculate the control iteratively in the following sense. At the start of each planning

cycle of duration Te the optimal trajectory to rdes is computed using the estimated initial

condition r̂0 and the follower executes the optimal control V ∗y (t), V ∗z (t) for t ∈ [t0, t0 + Te];

then the cycle repeats. Incorporating observability into the optimal control calculation

ensures the performance of the recursive filter. As the estimates converge, the follower

aircraft approaches the optimal trajectory.
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6.4.2 Optimal Control Using Level Set Methods

The receding-horizon optimal control strategy presented above requires iterative

calculation of the optimal control, which is computationally expensive. It also requires

specification of horizon times that may be too large or infeasible depending on the leader

aircraft’s relative position. An alternative approach incorporates a weighted wavefront

expansion, known as the fast marching method [119], to generate an optimal “cost-to-go”

potential map relative to the desired position. The fast marching method belongs to the

general class of optimal path planning solution algorithms known as level set methods [119]

that produce a cost potential function whose gradient provides the optimal control with

respect to a given cost function. This method does not require iterative calculation of the

control since the potential is calculated over the entire relative position space, making the

control computationally inexpensive compared to the receding-horizon control.

Following the optimal control formulation of Section 2.1.3, the path planning prob-

lem is to find the path L(υ) : [0,∞) → R2 from rdes to any point r0 that minimizes the

observability-based cost metric (2.7) [119], where the cost function l(r) = ξ(r) uses the

unobservability index (2.20) to penalize large values of unobservability along the trajec-

tory.

The fast marching method [119] efficiently computes JWF (r) for the domain around

the leader aircraft [119, pg.86–99]. Figure 6.3(c) shows the cost potential (2.7) with rdes =

(−1.7,−1.7) wingspans. Note that each contour of the potential function indicates the

locus of points that can reach rdes with equal unobservability along the optimal path. The

optimal path from r0 = (1.7,−1.7) wingspans is denoted by the black line and follows the

gradient of the potential function. Note this path planning approach does not incorporate
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time, nor utilize the magnitude of the control in its cost function, and therefore differs

from the paths generated in Figure 6.3(a).

Since the optimal path descends the gradient of JWF (r), an observer-based feedback

control incorporates estimates of the relative position r̂ according to

u = −KWF∇JWF (r̂), (6.15)

where the gain KWF > 0. The constraint |u| ≤ umax limits the control authority. Assum-

ing the desired final location is fixed, the cost potential JWF (r) need be calculated only

once to produce all possible optimal paths.

6.5 Wake Sensing and Control Examples

This section provides numerical simulations of the observability-based optimal con-

trol algorithms from the previous section. The control strategies are applied to two ex-

amples of close formation flight; the first considers a two-aircraft formation in which the

follower aircraft steers itself to a position that, according to Pachter et al., [60] will in-

crease aerodynamic efficiency, whereas the second example simulates the follower aircraft

positioning itself for aerial refueling. Both simulations assume noise Σ = 10−5 units in the

differential pressure coefficient measurements, optimization constant κ = 2, and horizon

time Tf = 5 seconds. The control optimization calculation is iterated every second, i.e.,

Te = 1 second, assuming the recursive Bayesian filter assimilates measurements at 5 Hz.

6.5.1 Formation Flight for Aerodynamic Efficiency

This section incorporates estimates of the leader aircraft position into the control

algorithms of Section 6.4 to steer the two-aircraft model (6.9) into a formation that in-

creases aerodynamic efficiency for the follower aircraft. The desired final orientation
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Figure 6.4: Simulation illustrating formation flight with optimal control algorithms of

Section 6.4. Figures (a)-(c) illustrate the receding horizon optimal control algorithm,

whereas Figures (d)-(f) illustrate the level set method.

rdes = [πb/4 0]T wingspans reduces the induced drag on the follower aircraft, increas-

ing its fuel efficiency [60]. The initial condition is r0 = [−0.8 1.4]T wingspans and the

simulation time is T =3Tf =15 seconds.

Figures 6.4(a)–(c) illustrate the result of simulating the receding-horizon control al-

gorithm. Figure 6.4(a) shows the leader aircraft trajectory (white) and the unobservability

index. The white circle represents the final position of the leader aircraft and the magenta

circle represents the final position estimate. Figures 6.4(b,c) show the marginal probabil-

ity density of the estimated relative position over time. A solid white line represents the
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trajectory of the leader aircraft and a dashed white line shows the trajectory of the state

estimate. Note in Figure 6.4(a) that the leader aircraft is generally steered toward rdes

with deviations from a direct path created by estimation errors in the observability-based

control optimization. Figures 6.4(b,c) show the marginal probability densities converg-

ing to the true aircraft states. Figures 6.4(d)–(f) illustrate the results of simulating the

wavefront-propagation control algorithm. Note in Figures 6.4(a) and 6.4(d), the wavefront-

propagation algorithm steers the vehicle along a route to the desired position with fewer

deviations due to estimation error when compared to the receding-horizon algorithm.

6.5.2 Autonomous Aerial Refueling

In aerial refueling the follower aircraft positions itself to intercept a filling nozzle that

extends outward from the tail of the leader [65]. Therefore, the follower must maintain

a desired relative position rdes = [0 0]T wingspans, where zdes = 0 wingspans is chosen

without loss of generality. The total simulation time is T = 3Tf = 15 seconds and the

horizon time Tf = 5 seconds is chosen to be consistent with the previous example. Note

that this implementation assumes the aerodynamic effects of the filling nozzle on the

follower aircraft are minimal at the sensor positions. Figure 6.5 illustrates simulation

results with the same initial and operating conditions of Section 6.5.1.

Figure 6.5(a) shows the trajectories of the lead aircraft (white) plotted over the

unobservability index for the receding horizon control algorithm. Figures 6.5(b) and 6.5(c)

show the marginal probability densities for the receding horizon control simulation plotted

versus time. Note that in general the control algorithm steers the follower aircraft such

that the leader maintains the desired position rdes. Prior to t = 5 seconds the error in the

yL estimate causes the control algorithm to steer the vehicle with less control authority
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Figure 6.5: Simulation illustrating aerial refuel positioning with observability-based opti-

mal control. (a)–(c) Leader aircraft position trajectory and marginal probability densities

using receding-horizon method. (d)–(f) Trajectory and marginal probability densities us-

ing level set method.

in the yL direction as shown in Figures 6.5(a) and 6.5(b). After t = 5 seconds the

estimates improve and the controller steers the follower to rdes along a path that increases

observability.

Figures 6.5(d) illustrates the trajectory of the leader aircraft plotted over the unob-

servability index for the wavefront-propagation control algorithm, whereas Figures 6.5(e)

and 6.5(f) show the marginal probability densities of the relative position estimates plot-

ted versus time. Comparing Figures 6.5(a) and 6.5(d), note the receding-horizon method

has less control authority in the yL direction due to the estimation error. Initial errors in
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the position cause the wavefront-propagation control to steer the follower aircraft to the

desired position with slight deviations toward unobservable regions. In these simulations

the wavefront propagation technique produced a trajectory causing the recursive Bayesian

filter to converge twice as fast as the receding horizon method, which was common in most

simulations. Over many simulations, we also found that the performance of estimating yL

and zL may be decoupled from estimation of ΓL in the fact that even when the estimate

of ΓL converged slowly, the estimate of (yL, zL) appeared to remain unaffected.
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Chapter 7: Application: Bio-inspired Flow Sensing and Feedback Control

This chapter applies tools from observability, estimation, and control toward dis-

tributed flow sensing and autonomous control of a bio-inspired underwater vehicle. The

goal of the application is to steer an underwater vehicle to rheotactic and station-holding

behavior in an unknown flowfield. Rheotaxis is the tendency of fish to orient upstream in

an oncoming flow, whereas station-holding is the tendency of fish to hold position behind

an upstream obstacle. Tools from observability are used to (1) derive a sensor placement

strategy that increases observability of a uniform flowfield and (2) analyze a sensor con-

figuration’s ability to observe vortices in its vicinity. Grid-based recursive Bayesian and

particle filtering techniques are used to estimate important properties of the flow used in

feedback control. Control of the vehicle position and orientation is accomplished using

Lyapunov-based techniques.

7.1 Fluid and Vehicle Modeling

This section describes a two-dimensional model of fluid flow past a streamlined body

or foil. Using elementary potential functions, this section models the flow around a disk

in the complex plane, which is mapped to flow around a foil using conformal mapping

[151]. The flow models developed in this section are used in Sections 7.2 and 7.6 to design

and implement estimation and control strategies for bio-inspired behavior. Section 7.1.1

describes a model of a foil in the presence of a uniform flowfield without obstacles. Section
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7.1.2 augments the uniform flow model by including a bluff body upstream at moderate to

high Reynolds numbers and Section 7.1.3 models the characteristic wake at low Reynolds

numbers. At moderate to high Reynolds numbers (Re & 104) the obstacle produces a

turbulent wake [152], [4], whereas at lower Reynolds numbers (40 < Re . 103) the wake

is modeled by a collection of vortices with alternating circulation, known as a Karman

vortex street [152], [153], [76].

7.1.1 Obstacle-free Flow Model

Consider a point ξ ∈ C in the complex plane. The coordinate transformation [151]

z = ξ +
c20
ξ ∈ C, (7.1)

maps shapes according to the transformation variable c0 ∈ R. In particular ξ = Reiθ + ξ0,

where θ∈ [0, 2π) rad, defines a disk with radius R offset along the real axis by ξ0 ∈ R [151].

Choosing c0 = R− |ξ0| maps the disk to a symmetric, streamlined foil as shown in Figure

7.1. Note, the foil shape is defined by the transformation (7.1) and the parameters (R, ξ0).

(When ξ0 ∈ C, the mapping produces a non-symmetric, cambered foil.)

Using (7.1), one can model the flow around a disk in the complex plane and map the

result to the corresponding flow around a foil. Assuming an inviscid, incompressible, and

irrotational fluid, which is justified at low flowspeeds where flow separation and viscous

effects are minimal [151], the flow around a disk is represented by a sum of elementary

potential functions corresponding to a uniform flow, a doublet, and a vortex located at

the center of the disk [151], [152]. Let U > 0 be the freestream speed of the uniform flow,

α ∈ [0, 2π) rad denote the angle of attack of the body relative to the free stream flow, and

Γdisk ∈ R denote the circulation of the vortex. (Note the potential flow approximation

is valid only for small angles of attack, so assume α ∈ [−15◦, 15◦] to be consistent with
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Figure 7.1: Simulated flowfield around (a) a disk and (b) a foil with (R, ξ0) = (4.35,−1.5)

cm at angle of attack α = 10◦ and free stream flowspeed U = 0.2 m/s.

symmetric foils at low Reynolds numbers [154].) The velocity potential is [151], [152]

Wuni (ξ) = U(ξ − ξ0)e−iα + R2

ξ−ξ0Ue
iα − iΓdisk

2π ln (ξ − ξ0) . (7.2)

The final term on the right-hand side of (7.2) represents the potential due to a vortex

centered at ξ0 that enforces flow stagnation at the trailing edge of the foil [151].

For any velocity potential function W the conjugate flow f∗ = u − iv at ξ is the

gradient of (7.2), i.e., [151]

f∗ (ξ) = ∂W
∂ξ ,

(7.3)

and the conjugate flow around the foil is [151]

f∗(z) = ∂W
∂ξ

(
∂z
∂ξ

)−1
. (7.4)

For any velocity potential corresponding to flow around the foil, the Kutta condition

[151], [152] stipulates that the flow must be continuous around the foil, which implies that

the flow must stagnate at the foil’s trailing edge. This condition determines the vortex

circulation Γdisk in (7.2) by enforcing f∗(z) = 0 in (7.4) at ξ = Rei0 + ξ0; solving for Γdisk
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yields Γdisk = −4πRU sinα [151], [152]. For a known body shape (R, ξ0), the uniform

flowfield (7.4) is parameterized by Ωuni = (U,α). Equation (7.3) with velocity potential

(7.2) generates the streamlines and flowspeed illustrated in Figure 7.1(a).

Note that (7.4) provides the flow around the foil in ξ-plane coordinates rather than

in z coordinates. The inverse Joukowski mapping [76]

ξ = ξx + iξy = 1
2(z ±

√
z2 − 4c2

0), (7.5)

yields z coordinates. This work considers only the root corresponding to points outside

the disk to calculate the conjugate flow f∗ in z coordinates, as shown in Figure 7.1(b).

The figure also shows how the angle of attack α of the body reference frame B attached to

the foil is measured relative to the lab-fixed reference frame I aligned with the upstream

direction.

7.1.2 Flow Model in the Presence of an Obstacle at Moderate and High Reynolds

Number

This section augments the uniform flow model by including the wake behind an ob-

stacle. At relatively high flowspeeds (equivalently Reynolds numbers) the wake becomes

turbulent and is characterized by an envelope of turbulent water downstream of the obsta-

cle [4]. The flow field is a solution to the two dimensional Navier-Stokes equation, which

can not be solved in real time but often admits simplified approximations [155]. Many

authors have used potential theory to approximate the obstacle wake structure by includ-

ing a combination of elementary potential functions such as sources and sinks [156], [157].

To address this issue while maintaining simplicity in the model, approximate the flow by

modeling the obstacle and its associated wake as a point source located at the center of

the true obstacle position.
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Let zobs = xobs + iyobs denote the position of the obstacle in the z-plane, where xobs

is the upstream component and yobs denotes the cross-stream component relative to the

foil (at α = 0) [4]. This method generates an obstacle commonly referred to as a Rankine

half body [4], [152]. The inverse Joukowski mapping (7.5) gives the obstacle position

relative to the cylinder in ξ coordinates, denoted by ξobs. Following the Milne-Thomson

Circle Theorem [158], we ensure there is no normal flow through the surface of the disk

by including a mirror source term found by evaluating the conjugate of the elementary

source potential at R2/ξ∗, where ξ∗ represents the complex conjugate of ξ. Let d be the

obstacle diameter. Augmenting the uniform flow potential (7.2) with the point source and

mirror term gives the obstacle potential function

Wobs(ξ) = Wuni + d
2 ln(ξ − ξobs) + d

2 ln(R
2

ξ − ξ∗obs). (7.6)

Equation (7.4) with velocity potential (7.6) provides the conjugate flow relative to the foil

in ξ coordinates, which is converted to z coordinates using (7.5). Note that the wake model

is characterized by four parameters, i.e., Ωobs = (U,α, zobs, d). Figure 7.2(a) illustrates the

flowfield model (7.6) for a cylindrical obstacle with diameter d = 5 cm. The obstacle is

superimposed over the source strength location and its position zobs = xobs+ iyobs relative

to the foil is shown. Note the streamlines curving outward around the obstacle surface.

7.1.3 Flow Model in the Presence of an Obstacle at Low Reynolds Number

At low flowspeeds the wake behind the obstacle is characterized by a series of vor-

tices shed with opposite circulation strength, known as a Karman vortex street. This

section models the vortex street by injecting a series of vortices with alternating circu-

lation strength behind a virtual obstacle [76]. Let zvk denote the position of the center

of a vortex with circulation strength Γk in the z-plane, corresponding to the position ξvk
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outside the disk in the ξ-plane. We model the presence of a vortex near the streamlined

body using the sum of three vortex potential functions [76], [159]; one at ξvk represents

the external vortex, and two mirror vortices inside the disk ensure there is no normal flow

through the body surface (while also enforcing the Kutta condition). The first mirror

vortex is centered at ξ0 + R2/(ξ∗vk − ξ0) and has circulation −Γk. The second vortex is

located at ξ0 with circulation Γk to satisfy the Kutta condition. Thus, the potential flow

contribution due to nv vortices near a disk is [159], [160]

Wvort =

nv∑

k=1

iΓk
2π

[
log(ξ − ξ0) + log(ξ − ξvk)− log(ξ − ξ0 −

R2

ξ∗vk − ξ0
)

]
. (7.7)

The flow potential (7.7) augments the uniform flow potential (7.2) to produce the Karman

vortex potential function

WKar (ξ) = Wuni +Wvort, (7.8)

whose flow velocity at any point outside the streamlined body in z coordinates is found

using (7.4) and (7.5). The Karman vortex street flowfield is thus characterized by the

(2 + 2nv)-dimensional set of parameters

ΩKar = (U,α, zv1 , . . . , zvnv ,Γv1 , . . . ,Γvnv ),

corresponding to the free stream flow parameters and the vortex position and circulation

strengths (zvk ,Γk), where k = 1, . . . , nv.

Let St ≈ 0.22 be the Strouhal number and U denote the free stream flowspeed.

Assuming a cylindrical obstacle of diameter d at position zobs = xobs+ iyobs relative to the

foil, vortices are shed from the cross-stream edges of the obstacle at a constant frequency

ω = St(U/d) sec−1 [155]. Once shed from the obstacle, each vortex convects through the

fluid according to Routh’s rule [100], [161], which provides the velocity of each vortex
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Figure 7.2: Simulated flow field around a foil with an upstream obstacle at (a) moderate

and (b) low Reynolds number.

resulting from all other flow entities. Let Wk,Kar be the complex potential due to to all

elements except the kth vortex in the ξ-domain. According to Routh’s rule, the conjugate

velocity at the kth vortex position is1 [161]

g∗(zvk ; zv) =

(
∂Wk,kar

∂ξ

∣∣∣ξvk +
c20

ξvk (ξ2vk
−c20)

)(
∂z
∂ξ

−1
) ∣∣

ξv,k , (7.9)

where zv = [zv1 , . . . , zvnv ]T is an nv×1 vector of vortex positions and (7.5) transforms the

equation into z-coordinates. The velocity of the kth vortex is [161]

żvk = g(zvk ; zv). (7.10)

Figure 7.2(b) shows a simulated Karman vortex street created using the velocity

potential function (7.8) by shedding vortices from the cross-stream edges of the obstacle.

The vortices are convected according to (7.10). A representation of the obstacle generating

the vortices is shown in gray. The position of the kth vortex at the instant it is shed is

zvk(tk,shed) = zobs±id/2, where d is the diameter of the obstacle. The cross-stream position

yobs of the obstacle is estimated in Section 7.6 using noisy local flow measurements taken

around the fish body to accomplish station-holding in low Reynolds number flows.

1The notation g(a; Ω) represents a function g(·) evaluated at a that depends on the variables Ω.
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7.2 State-Space Model

This section uses the flow models of the previous section to derive state-space rep-

resentations of the foil motion and corresponding sensor measurements in an underwater

environment, consistent with the notation of Chapter 2. Assume the foil is connected to

a robotic gantry system capable of kinematic control of its cross-stream position y and

orientation α relative to the oncoming flow. Let y ∈ R be the cross-stream position of

the streamlined body relative to a lab-fixed reference frame I aligned with the flow and

α ∈ R describe the orientation of the body frame B with respect to I, as shown in Figure

7.1(b). Let x = [y, α]T ∈ R2. The kinematic-control assumption results in the equations

of motion

ẋ =



ẏ

α̇


 =



u1

u2


 , (7.11)

where u1 and u2 are the cross-stream velocity and angular velocity control inputs, respec-

tively.

Assume the foil is outfitted with Nf flow sensors located at zfi ∈ C, i = 1, . . . , Nf

with sensor length l ∈ R and Np pressure sensors located at zpj , j = 1, . . . , Np. The flow

velocity at each sensor position is given by the conjugate of the flow models (7.4), (7.6),

or (7.8) evaluated at the sensor location. Assume that the ith flow sensor measures the

square of the component of the flow normal to the sensor at its tip |fn(zfi)|2, i.e.

fn(zi) = 〈f(zi; Ω), en〉, (7.12)

where en represents the complex unit vector normal to the body surface at zi. (Section

7.3 assumes each sensor measures the total flow f(zi) rather than the component normal

to the sensor orientation in order to simplify the analytical derivation of the observability

146



Gramian.)

Each pressure sensor measures the local pressure given by Bernoulli’s equation [152]

P (zpj ; Ω) = C − 1
2ρ|f(zpj ; Ω)|2, (7.13)

where ρ is the density of water and C is a constant. To eliminate dependence on the con-

stant C, the measurement model uses the difference in pressure between two measurement

locations ∆Pi,j = P (zpi ; Ω)− P (zpj ; Ω), analogously to the canal neuromast architecture

in fish. The measurement equations are

β1 = |fn(zf1 ; Ω)|2

...

βNf = |fn(zfNf ; Ω)|2

βNf+1 = ∆P1,2

...

βNf+Nm = ∆PNp−1,Np ,

(7.14)

whereNm =
Np!

2!(Np−2)! is the number of unique pressure-sensor pairs. Let z =
[
z1 . . . zNf+Np

]T

and β =
[
β1 . . . βNf+Nm

]T
be Ni × 1 vectors of the measurement positions and square of

flow velocity components, respectively. Combining the motion model (7.11) with the mea-

surement model (7.14) under the assumption that the vehicle moves quasi-statically in a

uniform flow (7.4) gives the nonlinear state-space model

ẏ = u1

α̇ = u2

β = q(z; Ωuni),

(7.15)

where q(·) ∈ C(Nf+Nm)×1 represents the total measurement function in (7.14). For a

known body shape (R, ξ0), the (uniform) flowfield (7.4) is parameterized by the two-

dimensional parameter space Ωuni = (U,α).
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Section 7.3 uses measures of observability to derive an optimal placement strategy

for an array of flow velocity censors. This method is easily applied to pressure sensor

placement as well and is addressed in [78]. By assimilating measurements collected at the

sensor locations z, one can reconstruct the flowfield by estimating Ωuni.

In the presence of an upstream obstacle, the flow is modeled by (7.6) when the free

stream flow corresponds to a high Reynolds number and (7.8) for flow with a low Reynolds

number. At higher Reynolds number the wake is approximated by a source with position

zobs relative to the foil. The kinematics of the obstacle relative to the body frame B,

assuming α(t) = 0 ∀t for simplicity, are given by the state-space model

ẏobs = −u1

β = q(z; Ωobs).

(7.16)

For flow at low Reynolds number, the Karman vortex street model (7.8) is parameterized

by the free stream flowspeed U , the angle of attack α, and the positions and circulation

strengths (zvk ,Γi) of the vortices relative to the streamlined body, such that ΩKar =

(U,α, zv1 , . . . , zvnv ,Γ1, . . . ,Γnv) has dimension 2+2nv. Augmenting the state-space model

(7.11) with a vector of vortex positions zv = [zv1 , . . . , zvnv ]T and assuming α(t) = 0 similar

to (7.16) gives

ẏobs = −u1

żv = g(zv)

β = q(z; ΩKar).

(7.17)

The following section presents a strategy to optimize the positions of flow velocity

sensors z in order to maximize flowfield observability [78], [111]. Section 7.4.2 assesses the

observability of vortices given a sensor configuration.

148



7.3 Sensor Placement Optimization

This section presents a sensor placement strategy that optimizes measures of uni-

form flowfield observability. To optimize the array configuration with respect to flowfield

parameter observability, this section assumes the vehicle’s nominal operating environment

is in a uniform stream free of obstacles, corresponding to (7.4) with potential function

(7.2). Section 7.3.1 calculates the optimal placement of a single sensor based on the un-

observability index (2.20) measure of the empirical observability Gramian (2.15). Section

7.3.2 suggests a sensor-placement strategy for an Nf -sensor configuration based on the

observation that the multi-sensor empirical observability Gramian is the sum of the ob-

servability Gramians produced by each sensor. Placement of pressure sensors for optimal

flowfield observability is addressed in [78].

7.3.1 Placement Optimization for a Single Sensor

A first step in solving the sensor placement problem for a uniform and steady flow-

field parameterized by Ωuni = (U,α) ∈ R2 is to consider a single flow sensor placed at

zi extending a fixed distance from the body that measures the flow2 f(zi). Optimization

of the placement of a single sensor is motivated by noting that the inner product used

to calculate WO(i, j) in (2.15) is a linear operator, implying that in this application the

empirical observability Gramian for an Nf -sensor configuration is the sum of the empirical

observability Gramians produced by each sensor, i.e.,

WO(i, j; z) =

Nf∑

k=1

WO(i, j; zk), (7.18)

2The analysis presented here is easily extensible to the measurement model (7.14); however, for sim-

plicity of the analytical derivation, assume measurement of the total flow.
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where WO is found from (2.15). Consequently, the results of single sensor optimization

are directly applicable to the design of a multi-sensor configuration in Section 7.3.2.

Envisioning hair sensors that protrude outside the boundary layer, the empirical

observability Gramian from a single measurement at z1 is calculated using (2.15), where

β = funi(z1) assumes the sensor measures the total flow at position zi. The flow funi(z1)

is given by (7.4) with potential function (7.2). The elements of the 2×2 empirical observ-

ability Gramian are

WO(1, 1) = (a1 cosα+ a2 sinα)2 + (b1 cosα+ b2 sinα)2

WO(1, 2) = WO(2, 1) = U sin εα
εα

[(a1 cosα+ a2 sinα)(a2 cosα− a1 sinα)

+(b1 cosα+ b2 sinα)(b2 cosα− b1 sinα)]

WO(2, 2) = U2 sin2 εα
ε2α

[
(a2 cosα− a1 sinα)2 + (b2 cosα− b1 sinα)2

]

(7.19)

where

a1 = m1 −m1m2 +m5m3

a2 = m1m4 −m1m3 −m5m2 +m5 −m5m6

b1 = m5 −m5m2 +m1m3

b2 = m5m4 −m5m3 −m1m2 +m1m6 −m1

(7.20)

are coefficients dependent on sensor placement and εU , εα are perturbations to the nominal

parameter state Ω. The coefficients m1, . . . ,m6 are a function of the sensor position z1

mapped to ξ-coordinates using (7.5) and the Joukowski mapping parameters (R, ξ0, c0)

m1 =
(ξ2x+ξ2y)2−c20(ξ2x−ξ2y)

(ξ2x−ξ2y−c20)2+4ξ2xξ
2
y

m2 =
(R+|ξ0|)2(ξ2x−ξ2y+2ξx|ξ0|+|ξ0|2)

(ξ2x−ξ2y+2ξx|ξ0|+|ξ0|2)2+(2ξxξy+2ξy |ξ0|)2

m3 =
2(R+|ξ0|)2(ξxξy+ξy |ξ0|)

(ξ2x−ξ2y+2ξx|ξ0|+|ξ0|2)2+(2ξxξy+2ξy |ξ0|)2

m4 =
2(R+|ξ0|)ξy

(ξx+|ξ0|)2+ξ2y

m5 =
−2c20ξxξy

(ξ2x−ξ2y−c20)2+4ξ2xξ
2
y

m6 = 2(R+|ξ0|)(ξx+|ξ0|)
(ξx+|ξ0|)2+ξ2y

.

(7.21)
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Figure 7.3: Optimality metrics of the empirical observability Gramian plotted versus the

polar angle of the sensor position near the fish body for Ω = (0.15 m/s, 10 deg). Of

all the metrics, the leading edge and the point of maximum flowspeed provide the most

observability.

Due to the linear dependence of the flowfield model (7.4) on the parameter U and

the definition of the empirical observability Gramian (2.15), the perturbation value εU

does not appear in (7.19). The first element WO(1, 1) corresponds to the square of the

flow magnitude divided by the square of U . This element corresponds to a perturbation

in the free stream velocity parameter U and is therefore maximum at the point of max-

imum flowspeed around the foil. Likewise, WO(2, 2) corresponds to perturbations in the

angle of attack. Maximizing these elements individually corresponds to maximizing the

observability of the free stream velocity parameter U or the angle of attack α, respectively.

We calculate the empirical observability Gramian (7.19) as a function of the sensor

location and evaluate the observability metrics described in Section 2.3.2 for the param-

eters Ωuni, assuming the sensor protrudes 1 cm from the body. Figure 7.3 shows the log

of each dimensionless scoring metric plotted versus the polar angle arg(z1) of the sensor

placement, assuming Ω = (0.15 m/s, 10◦). Figure 7.4(a) shows streamlines of the flow
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Figure 7.4: (a) Sensor placement showing the optimal locations of freestream parameter

observability U (blue) and remaining optimality metrics (red). (b) Optimal polar angle

of Freestream observability sensor U plotted for −15◦ ≤ α ≤ 15◦.

around a foil parameterized by R = 4.35 cm and ξ0 = −1.5 cm. The possible sensor

placement positions are shown by the black line around the foil, where sensor positions

are restricted to polar angles in the range
[
π
6 ,

11π
6

]
to avoid the cusp near the trailing edge.

(In practice, one may assume a propulsive mechanism near the trailing edge will create

significant turbulent flow structures in its vicinity that are not captured in the uniform

flow model.)

Note in Figures 7.3 and 7.4(a) that there are two primary sensor locations of in-

terest, one at or near the nose of the foil (red metrics) and one in a region of high

flowspeed (blue). Optimization of the free stream flow observability corresponding to

element WO(1, 1) (shown in blue in Figure 7.3) places the sensor at the location of the

maximum flowspeed, illustrated by the blue circle in Figure 7.4(a). The extrema of the

remaining optimality metrics including the angle of attack element WO(2, 2), unobserv-

ability index, trace, determinant, and the trace of the inverse (red) lie on or near the tip

of the body (arg(zk) = 180◦), indicating that sensors placed in this region of the body
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maximize the independence between the angle of attack α and flowspeed U and optimally

observe the angle of attack parameter [98]. The red circle in Figure 7.4(a) denotes the

optimal position for the angle of attack element WO(2, 2).

Performing the observability analysis for nominal flowspeeds U ∈ [0.01, .6] m/s and

angle of attack α ∈ [−15◦, 15◦] indicates how sensor placement varies with Ωuni. Since

the flow (7.2) is linearly dependent on U , the observability of the freestream parameter U

increases with U at any zk or α but does not change the position of the optimal location.

Figure 7.4(b) shows the optimal polar angle of the sensor for varying angles of attack

and fixed velocity parameter U = 0.15 m/s when optimizing over the freestream velocity

element U of the observability Gramian, WO(1, 1). Note the optimal sensor placement

varies with α to follow the point of maximum flowspeed a fixed distance from the foil.

The optimal placement with respect to the remaining metrics lies within ±5◦ of the tip of

the body for all angles of attack and flowspeeds.

7.3.2 Optimization of a Multi-Sensor Configuration

Motivated by the single sensor placement results, this section considers the opti-

mization of a multi-sensor configuration. Assume the flowfield parameters Ωuni lie within

a predefined range and each of the Nf sensors are placed a fixed distance 1 cm from the

body. Under these assumptions the empirical observability Gramian from measurements

at z = [z1, . . . , zNf ]T is given by (7.18).

A desirable configuration optimizes observability over a range of the parameter space

Ωuni, assuming the flowfield model is valid for angles of attack α ∈ [−15◦, 15◦]. At any

given α a desirable configuration is one in which at least one sensor is optimally placed.

This motivates choosing a configuration (assuming Nf is odd) in which Nf − 1 sensors
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Figure 7.5: Optimized sensor configurations for three fish-like foil shapes parameterized

by R = 4.35 cm and ξ0 = −0.75,−1.5, and −2.25 cm, respectively.

are placed symmetrically about the body with the polar angle of each sensor optimizing

at angles of attack in 15◦/Nf intervals. A single sensor is placed at the tip of the body

to optimize the remaining metrics. This sensor configuration therefore satisfies all of the

optimality criterion along equal intervals of the flowfield parameter space Ωuni. Figure 7.5

shows the optimized sensor configuration scheme for Nf = 9 sensors and three streamlined

bodies parameterized by R = 4.35 cm and ξ0 = −0.75, −1.5, and −2.25 cm, respectively.

The performance of the optimal sensor configuration is analyzed by comparing per-

fect knowledge of the flow parameters to the likelihood function achieved by assimilating

measurements over the array. Consider the likelihood function

p(β|Ωuni) =
1√

2πσuσv

Nf∏

k=1

exp

[
−1

2

(
Re(f(zk; Ωuni)−βk)2

σ2
u

+
Im(f(zk; Ωuni)−βk)2

σ2
v

)]
,

(7.22)

achieved by assimilating measurements of the flow velocity f(zk; Ωuni) at sensor position

zk. Equation (7.22) assigns a probability density to element of the parameter space Ωuni

given measurements over the array, where Ω̂uni corresponds to the element in parameter

space with the highest probability density (i.e. the mode). Perfect statistical knowledge

of the flow parameters corresponds to a Kronecker delta function where p(β|Ωuni) = 1
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Figure 7.6: Histogram of KL divergence for 10000 random sensor configurations. The KL

divergence of the observability-based optimal configuration is denoted by the dashed red

line.

when Ω̂uni = Ωuni and zero elsewhere.

The Kullback-Liebler divergence (KL divergence) is a non-symmetric scaler measure

of the information lost when a probability density function ζ(·) is used to represent a

probability density φ(·) and is defined for discrete distributions by [162]

KL(φ||ζ) =
∑

j

ln

(
φj
ζj

)
φj , (7.23)

where φj represents the jth element of the probability density φ. The KL divergence is

commonly denoted as the distance between two probability distributions; however, since

the measure is non-symmetric note that it is not a true distance metric by definition.

To compare performance, this setting calculates the KL divergence between the

likelihood function achieved by assimilating measurements over the array, and a likeli-

hood function given by the Kronecker delta function centered on the flowfield parameters

generating the measurements, which represents perfect knowledge of the flow parameters.

Thus, the KL divergence provides a metric to compare the performance of candidate sen-

sor configurations. It measures the distance of the posterior probability density function

from perfect statistical knowledge of the flow parameters for a given sensor configuration.

Figure 7.6 shows a histogram illustrating results of a Monte Carlo simulation com-
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paring the KL divergence of 10000 candidate sensor array configurations to the observability-

based optimal sensor placement strategy. Each candidate array is composed of Nf = 9

sensors selected randomly around the foil, assuming each sensor protrudes 1 cm from the

body and foil parameters R = 4.35 cm and ξ0 = −1.5 cm. The probability density func-

tion is calculated by assimilating a noise-free measurement from each sensor, where the

measurements are generated using (7.2) with free stream flow parameters U = 0.3 m/s and

α = 10◦. Each bin represents the number of random configurations with KL divergence

within ±0.03 of the bin’s center; the KL divergence resulting from the observability-based

optimal placement strategy is denoted by the dashed red line. Note that although the

optimal placement strategy does not place sensor directly at the optimal position for ob-

serving the free stream flow parameter U , the optimal configuration outperforms 99.97%

of the random configurations, indicating that one can expect improved estimation per-

formance with the observability-optimized sensor configuration over a range of angles of

attack.

7.4 Flow Sensing and Feedback Control for Bio-inspired Behavior

This section designs flow sensing and feedback control algorithms steering a vehi-

cle to bio-inspired motion primitives. We consider two primary behaviors, rheotaxis and

station-holding, which are valuable motion primitives for unmanned underwater vehicle

operation. For rheotaxis and station-holding at high Reynolds number, we use a recursive

Bayesian framework to estimate the flowfield parameters Ω needed for feedback control.

A particle filter is used for station-holding at low Reynolds number. Assume the vehicle

is outfitted with a multi-modal artificial lateral line producing the measurements (7.14).

Here, the spatial configuration of the sensor array is modeled after the experimental pro-
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totype presented in Section 7.5.

7.4.1 Multi-Modal Flow Estimation and Control for Rheotaxis

Rheotaxis occurs when a fish orients itself upstream. This behavior falls within

the broader control objective of maintaining a desired angle of attack with respect to

a uniform oncoming flow. The vehicle kinematics and measurements follow the state-

space model (7.15), where without loss of generality we neglect the arbitrary cross-stream

position y. Since the uniform flowfield model (7.2) has a low dimensional parameterization

Ωuni = (U,α) ∈ R2 with linear kinematics in the angle of attack parameter, the recursive

Bayesian filter is used for its simplicity of implementation.

For recursive Bayesian estimation of the uniform flowfield model (7.2), incorporate

the flowfield parameters Ωuni into the Bayesian filter formulation (2.22), assuming time

step ∆t. Discrete time temporal integration of the probability density function is accom-

plished in using the motion matrix Ψ = ∆tdiag([0, u2]T ) such that p(Ω(t)|Ω(t−∆t)) =

N (ΨΩ(t − ∆t); Σp), where N (ΨΩ(t−∆t); Σp) is normally distributed white noise with

mean ΨΩ(t−∆t) and variance Σp.

For each point Ω in the G-dimensional state space, we choose a multivariate Gaus-

sian likelihood function for the flow measurements β̃k, k = 1, . . . , Nf ,

p(β̃k|Ω) = 1√
2πσfk

exp

[
− 1

2σ2
fk

(
|fn(zfk ; Ω)|2 − β̃k

)2
]
, (7.24)

and for the pressure difference measurements β̃j , j=Nf+1, . . . , Nf +Nm,

p(β̃j |Ω) = 1√
2πσpj

exp

[
− 1

2σ2
pj

(
∆Pj(Ω)− β̃j

)2
]
, (7.25)

respectively. Assuming that the measurements are taken from Nf + Nm sensors, the

posterior probability density of the parameter estimate Ω is obtained using the joint
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Figure 7.7: Assimilation of spatially distributed velocity and pressure measurements. (a)

Likelihood function from eight flow sensor measurements; (b) likelihood function from six

pressure difference measurements; and (c) the resulting posterior probability density. The

ground truth parameter values are shown by the white circle.

measurement likelihood combining both flow and pressure difference measurements as

follows:

p(Ω|A) = κ



Nf+Nm∏

k=1

p(β̃k|Ω)


 p(Ω|A0), (7.26)

where p(β̃k|Ω) is given by (7.24) for k = 1, . . . , Nf and (7.25) for k = Nf +1, . . . , Nf +Nm.

The point Ω̂ in the parameter space corresponding to the maximum (mode) of the posterior

probability p(Ω|A) provides the maximum likelihood estimate of the flowfield parameters.

Figure 7.7 illustrates the likelihood and posterior probability density functions cor-

responding to assimilation of flowspeed and pressure difference measurements at one time

instant, assuming the uniform flow parameters Ωuni = (0.3 m/s, 10◦) and a uniform prior

distribution. Figure 7.7(a) shows the likelihood function resulting after assimilating eight

flow sensor measurements, where σfk = 0.01 m/s for sensors k = 1, . . . , 8. Figure 7.7(b)

illustrates the likelihood function resulting from assimilation of six pressure difference mea-

surements (from four pressure sensors), where σpj = 0.2 kPa for all j = 1, . . . , 6 pressure

differences.
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A key benefit of the Bayesian approach is its ability to fuse data from multiple

sensing modalities. Figure 7.7(c) shows the posterior probability density resulting from

combined flow and pressure sensing, whose likelihood functions are shown in Figures 7.7(a)

and 7.7(b), respectively. The white circle corresponds to the true flowfield parameters.

Note in Figures 7.7(a) and 7.7(b) that the flow velocity and pressure difference measure-

ments are complementary in the following sense. At least at this angle of attack, the flow

velocity measurements tend to reduce uncertainty in the flowspeed, whereas the pressure

difference measurements tend to reduce uncertainty in the angle of attack. Fusing the two

modalities results in a tighter probability density around the true flowfield parameters

than would be obtained from either one alone.

The KL divergence between the likelihood functions achieved by assimilating flow

velocity and pressure difference measurements provides further analysis of the complemen-

tarity between each modality for estimation of the uniform flowfield parameters. Since

the KL divergence is a non symmetric measure, we use the symmetrized KL divergence

KLsym(pflow, ppress) = 1
2 (KL (pflow||ppress) + KL (ppress||pflow)) , (7.27)

between the likelihood function pflow produced by the flow velocity sensors and the likeli-

hood function ppress from the pressure difference measurements, where KL (pflow||ppress) is

calculated using 7.23. Figure 7.8 illustrates the symmetrized KL divergence between the

likelihood functions after assimilating measurements at varying free stream flowspeeds

U and angles of attack α. Note that at flowspeeds below U < 0.3 m/s the modalities

provide similar information about the flow parameters, whereas at flowspeeds U > 0.3

m/s the likelihood functions provide complementary information, implying that at higher

flowspeeds and angles of attack the dual-modality system will perform better than either

modality alone.

159



Freestream Flowspeed (m/s)

A
n

g
le

 o
f 

A
tt

a
c
k
 (

d
e

g
)

 

 

0 0.2 0.4 0.6
−15

−10

−5

0

5

10

15

S
y
m

m
e

tr
iz

e
d

 K
L

 D
iv

e
rg

e
n

c
e

0

0.5

1

1.5

2

2.5

Figure 7.8: The symmetrized KL divergence measures the amount of redundant informa-

tion provided by the flow velocity and pressure difference likelihood functions. Small values

of the symmetrized KL divergence imply the modalities provide redundant information,

whereas large values imply each modality contributes unique information.

By employing recursive Bayesian filtering with an optimized sensor placement con-

figuration the flowfield can be estimated even in the presence of measurement noise. We

use the estimated angle of attack to stabilize the vehicle about a desired orientation αdes.

Rheotaxis corresponds to αdes = 0, when the body orients upstream. Assuming the mo-

tion of the body is governed by (7.11) and the cross-stream position is held fixed (i.e.,

u1 = 0), the control u2 = u2(Ω̂uni) is designed using feedback of the parameter estimates

Ω̂uni = (Û , α̂) [111].

Suppose the estimated angle of attack can be modeled as α̂ = α + ψ, where the

perturbation |ψ| ≤ ζ is bounded [111]. Using a proportional control [111]

u2(t) = Kα(αdes − α̂), K > 0, (7.28)

gives the closed-loop equation

α̇ = Kα(αdes − (α+ ψ)). (7.29)
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Figure 7.9: Simulation of the dynamic feedback control (7.28). (a,b) The initial and final

orientation of the streamlined body; (c,d) marginal probability densities of the recursive

Bayesian filter.

The Lyapunov function V = (α − αdes)2/2 reveals that if ψ = 0 and α̇des = 0, then the

quantity α − αdes = 0 is exponentially stable (see, e.g. [116, p. 114]). For ψ 6= 0, α(t) is

uniformly, ultimately bounded for |ψ| ≤ ζ with ultimate bound |α(t)−αdes| ≤ ζ/Kα [116,

p. 347]. That is, by increasing Kα the steady-state error α− αdes decreases.

Figure 7.9 shows a first-order, discrete-time simulation of the closed-loop control

(7.29) using time step dt = 0.1 seconds. Eight velocity sensors measure the square of

the local flow velocity normal to the sensor and four pressure sensors measure six pair-

wise pressure differences. The pressure sensors are denoted by red circles and the flow
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velocity sensors by protruding black lines, as shown in Figures 7.9(a) and 7.9(b). This

sensor configuration corresponds to the experimental sensor positions that are presented

in Section 7.5. The estimated angle of attack α̂ is provided by the recursive Bayesian

filter (2.22) and the control gain is Kα = 1. We assume the flow sensors are corrupted

by white noise with σfk = 0.02 m/s and the pressure sensors by σpj = 0.08 kPa. The

Bayesian filter is implemented with the motion matrix Ψ = ∆tdiag([0 u2]T ) and process

noise Σp = diag([0.025 (m/s)2, 0.05 (rad/s)2]).

Figures 7.9(a) and 7.9(b) show the initial and final orientation of the foil, respec-

tively; Figures 7.9(c) and 7.9(d) show the marginal probability densities of the angle of

attack α and freestream velocity parameter U . The actual flowspeed U = 0.3 m/s and an-

gle of attack are depicted by the solid white lines; the parameter estimates are represented

by a dashed magenta line. The desired angle of attack αdes is illustrated by the dashed

white line. Note that the control (7.28) orients the body toward α = 0 with estimation

errors causing small deviations from zero angle of attack, consistent with the boundedness

analysis above.

7.4.2 Multi-Modal Flow Estimation and Control for Station-Holding

In the presence of an obstacle the flowfield is approximated by (7.16) at high

Reynolds number and (7.17) at lower Reynolds number. We approach the obstacle estima-

tion problem separately, using the recursive Bayesian approach for the low-dimensionally

parameterized flow model at high Reynolds number and a particle filter for the high-

dimensional vortex model at low Reynolds number. The resulting estimate of the obstacle

position is used in a proportional controller to enable station-holding. In both scenarios

the free stream flowspeed and upstream position of the obstacle are known and the angle
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of attack is fixed at α = 0. These assumptions are justified in that a typical underwater

mission could start in a uniform flow, in which case the results of Section 7.4.1 can be

used to estimate the free stream parameters prior to approaching the obstacle.

In a high Reynolds number flow, the model (7.6) is parameterized by Ωobs =

(U,α, zobs, d). Since the free stream flowspeed, angle of attack, and upstream obstacle po-

sition are assumed known, we estimate a subset of the obstacle parameters Ωobs = (yobs, d)

using the recursive Bayesian filter.

For station-holding control, the angle of attack is fixed (i.e., α = 0, u2 = 0) and the

control u1 = u1(Ω̂obs) is designed using feedback of the estimated cross-stream obstacle

position ŷobs. Similar to the rheotactic control, suppose the estimated cross-stream posi-

tion of the obstacle can be modeled as ŷobs = yobs + ψ, where the perturbation |ψ| ≤ ζ is

bounded. The proportional control

u1(t) = Ksŷobs, Ks > 0, (7.30)

gives the closed-loop equation for cross-stream obstacle position relative to the streamlined

body (7.16), (7.17)

ẏobs = −Ks(yobs + ψ). (7.31)

Lyapunov analysis reveals that yobs(t) is exponentially stable for ψ = 0 and uniformly,

ultimately bounded for |ψ| ≤ ζ with bound |y(t)| ≤ ζ/Ks [116, p. 347].

Figure 7.10 shows a first-order, discrete-time simulation of the closed-loop control

(7.30) using time step dt = 0.1 seconds. The free stream flowspeed is U = 0.2 m/s.

We assume the same sensor configuration and noise characteristics as Section 7.4.1 with

control gain Ks = 1. The Bayesian filter is implemented with the motion matrix Ψ =

∆tdiag([0 u1]T ) and process noise Σp = diag([1, 1]) (cm/s)2. Figures 7.10(a) and 7.10(b)

show the initial and final position of the streamlined body relative to the obstacle, which is
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Figure 7.10: Simulation of the dynamic control (7.30). (a,b) The initial and final position

of the foil; (c,d) marginal probability densities of the recursive Bayesian filter.

illustrated by the black circle. Figures 7.10(c) and 7.10(d) show the marginal probability

densities of the obstacle position yobs and diameter d. The actual obstacle position and

diameter are depicted by the solid white lines; the parameter estimates are represented by a

dashed magenta line. The position corresponding to station-holding yobs = 0 is illustrated

by the dashed white line. Flow sensor positions are denoted by black lines protruding from

the body in Figures 7.10(a) and 7.10(b), whereas pressure sensor positions are denoted by

red circles. Note that the control (7.30) steers the foil toward yobs = 0 with estimation

errors causing small deviations from yobs = 0, consistent with the boundedness analysis

above. The recursive Bayesian filter also accurately estimates the obstacle diameter, as
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shown in Figure 7.10(d).

At low Reynolds number, the parameter space of the flowfield model (7.17) asso-

ciated with the Karman vortex street is defined by the vortex positions zv, circulation

strengths Γv, and free stream flow parameters (U,α). Because of the high dimensionality

and nonlinear dynamics of this parameter space, the grid-based recursive Bayesian filter

becomes computationally intractable, motivating the need for an alternative nonlinear es-

timation scheme for estimation of flowfield parameters ΩKar. Recall from Section 7.1.3,

the Karman vortex street model (7.17) convects vortices through the flow; each vortex is

injected into the flow from a cross-stream edge of the upstream obstacle. By estimating

the vortex positions, one can reconstruct the position and diameter of the obstacle.

The success of this filtering algorithm is predicated on sensing the presence of a

vortex from measurements collected by the artificial lateral line. The unobservability

index provides a useful tool for quantifying the observability of the vortex near the foil.

We calculate the empirical observability Gramian formed by assuming a single stationary

vortex in the model (7.17). Under this assumption the empirical observability Gramian

WO(zv,Γv) ∈ R3×3 is formed by perturbing the vortex position zv and circulation strength

Γv. Evaluating WO for zv in the vicinity of the foil reveals the observability of a vortex

for a given sensor configuration.

Figure 7.11 illustrates the unobservability index of the empirical observability Gramian

for vortex positions near the foil. The foil is shown in solid black, where the black lines rep-

resent the flow velocity sensors and the red circles represent the pressure sensor positions.

Note since the vortex circulation decays with distance, the unobservability index increases

radially from the foil. Interestingly, symmetric areas of higher unobservability protrude

diagonally toward the front and rear shoulders of the foil, indicating decreased vortex
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Figure 7.11: The unobservability index of a single vortex plotted around the vicinity of the

foil. Areas of large unobservability index indicate “blind spots” where the measurements

have difficulty observing the vortex.

observability in these areas. Since the unobservability is smallest near the foil, one can

expect better estimation performance as a vortex approaches and decreasing performance

after the vortex passes its point of closest approach.

By assuming that vortices move in approximately straight lines when not in the

immediate vicinity of the foil, i.e. by ignoring Routh’s rule [76], the cross-stream position

of the vortex can be approximated as a function of the obstacle position and diameter,

which allows one to minimize and transform the number of estimated parameters in ΩKar

to those needed for feedback control. Consider the Karman vortex street model (7.17).

When the foil has sufficient stream-wise separation from the obstacle, the vortex street is

characterized by vortices of opposite circulation strength in an alternating pattern [76].

The cross-stream position of the jth vortex is approximately yvj ≈ yobs + sign(Γj)d/2,

giving the position of the jth vortex

zvj ≈ xvj + i(yobs + sign(Γj)d/2), (7.32)
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where xvj (0) = xobs. Substituting (7.32) into (7.17) yields a simplified model of vortex

motion in terms of the cross-stream position of the obstacle.

We further simplify the model by assuming that the sensor array measures the

presence of only a single vortex. This assumption is justified by noting that the flowspeed

generated by a single vortex is inversely proportional to the distance from the vortex

center, implying that in a Karman vortex street the component of the measurements

produced by the closest vortex to the sensor array will dominate the signal. Under this

assumption, the equations of motion of the obstacle shedding a single vortex relative to

the foil are

ẏobs = −u1

ẋv = Re (g(xv + i(yobs + sign(Γv)d/2)))

Γ̇v = 0

ḋ = 0

β = q(z;U, xv,Γv, yobs, d).

(7.33)

The equations of motion in (7.33) represent the simplified kinematics of the Karman

vortex street model (7.17) by assuming vortices convect in straight downstream lines and

have sufficient stream-wise separation relative to the foil length such that only one vortex

is in the foil’s immediate vicinity. The particle filtering algorithm uses (7.33) to estimate

the parameters (yobs, d) representing the cross-stream position and diameter of the vortex-

generating obstacle.

Particle filtering has been used previously for bio-inspired flowfield estimation [83]

and is well suited for this estimation problem because of its ability to incorporate nonlin-

ear vortex dynamics, parameter constraints, and (possibly) nonlinear measurement noise

models. Figure 7.12 illustrates simulation results of the station-holding control (7.30) us-

ing obstacle position estimates generated by the particle filter. The filtering algorithm
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uses five hundred particles and assumes flow and pressure difference measurements follow-

ing (7.14). In the simulation, the particles are integrated in time using equation (7.33),

whereas the actual vortex advection and measurements are simulated using (7.17). Vor-

tices are shed from the obstacle at a rate of 0.75 Hz, consistent with a free stream flowspeed

of 0.2 m/s according to the Strouhal formula ω = St(U/d) [155]. The particle filter as-

sumes process noise with variance 0.05 m/s in the vortex motion, and measurement noise

of σf = 0.03 m/s for the flow velocity sensors and σp = 0.08 kPa for the pressure difference

measurements.

Figure 7.12(a) illustrates the component of each particle corresponding to the vortex

position as a blue circle. The estimated vortex position is a magenta circle and the

corresponding obstacle position and diameter estimate are illustrated by the gray half-

circle. The actual vortices are represented by small black squares. The black half-circle

illustrates the actual cylinder position. Figure 7.12(b) shows the estimated cross-stream

position and diameter of the obstacle plotted versus time. Note that although the particle

filter assumes there is one vortex in its vicinity, the estimation and control algorithm can

perform station-holding when there are multiple simulated vortices near the foil. However,

because the width of the foil and the obstacle are similar, vortices are deflected around

the foil, breaking the linear motion assumption. This causes the particle filter to slightly

over estimate the diameter of the obstacle, as illustrated in Figure 7.12(b).

7.5 Experimental Testbed for Flow Sensing and Control

This section describes the experimental hardware and software architecture for

demonstrating the bio-inspired sensing, estimation, and control algorithms. Section 7.5.1

presents the IPMC sensor and foil design and fabrication. Section 7.5.2 describes the flow
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Figure 7.12: Simulation of closed-loop control for station-holding at low Reynolds number.

(a) illustration of the estimation algorithm at t = 8 seconds. (b) True and estimated cross

stream position and diameter of the obstacle.

tank hardware and gantry system for controlling the streamlined body motion. Section

7.5.3 presents experimental data indicating that the IPMC sensors measure the square of

the component of the flow normal to the sensor at its location. Section 7.5.4 presents a

novel calibration strategy that employs the pressure sensors to calibrate the IPMC sensors

at multiple angles of attack and flowspeeds.

7.5.1 IPMC Flow Sensors

Ionic polymer-metal composites (IPMCs) are an important class of electroactive

polymers (EAPs) with built-in actuation and sensing capabilities [163], [164]. An IPMC

sample typically consists of a thin ion-exchange membrane (e.g., Nafion), chemically plated

with a noble metal as electrodes on both surfaces. IPMCs have inherent sensing properties:

an applied force or deformation on an IPMC beam yields a detectable electrical signal (typ-

ically open-circuit voltage or short-circuit current) across the electrodes [165]. The direct

mechanosensory property and inherent polarity of IPMCs are essential to the construction
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of an artificial lateral line system and the collection of flow information [87], [166].

The IPMC sensors described here are fabricated with the traditional impregnation-

reduction ion-exchange process [167]. Nafion-1110 (254 µm) films from Dupont are first

roughened with fine sandpapers and the resulting residues on the film are removed with

an ultrasonic cleaner. After the initial cleaning each film undergoes a two-step boiling

procedure, first for thirty minutes in dilute 2 wt% hydrochloric acid to remove ions and

impurities, then for thirty minutes in deionized (DI) water to remove the acid and swell

the films. Following the boiling procedure, each film is immersed in a platinum complex

solution ([Pt(NH3)4]Cl2) for more than twelve hours to allow platinum ions to completely

diffuse into the Nafion films through the ion-exchange process. Then, each film is rinsed

with de-ionized water and immersed in a water bath at 40◦C. The water is gradually

heated to 60◦C while 2 ml of sodium borohydride solution (5 wt% NaBH4 aq) is added to

the solution every thirty minutes to act as a reducing agent and complete the platinum

deposition process. Finally, we cut each film into beam-shaped samples measuring 20 mm

long and 2.5 mm wide, and solder two electric wire connectors to the platinum electrodes.

To prevent corrosion and maintain consistent sensing properties, we encapsulate

each IPMC sensor with thick parylene (25 µm) in a parylene coater (PDS2035, Specialty

Coating System, Inc.), where parylene C was deposited conformally on each sensor under

a low pressure of 30 mTorr [168]. Although this process extends each sensor’s useful life,

the low-pressure parylene coating process dries the material, which inhibits operation.

To counteract the drying effect, we soak each encapsulated IPMC sensor in a hot water

bath of 80◦C for sufficient time to reach proper operating levels of ionic hydration. A

custom-built circuit box conditions the IPMC sensor signals, providing up to 20 channels

of two-tier amplification and noise-reduction. The sensing signals of IPMCs, in the form
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(a) (b) (c)

Figure 7.13: Modular design of robotic foil. An array of eight IPMC sensors are installed

below an array of four pressure sensors.

of short-circuit current, are first converted into voltage signals and then amplified.

We designed and constructed a robotic fish prototype outfitted with eight IPMC

sensors and four embedded pressure sensors [169], [165]. The robot prototype is a 3D-

printed 2D-airfoil shape characterized by Joukowski mapping parameters (R, ξ0, c0) =

(4.35,−1.5, 2.85) cm and extruded in the vertical direction, as shown in Figure 7.13.

The streamlined body is designed using a modular approach to (1) enable convenient

installation and replacement of both IPMC and pressure sensors, (2) maintain flexibility

in the number and placement of sensors around the body, and (3) ensure a compact

structure appropriate for its operating environment. The body has ten clamping blocks

on each side, providing twenty sensor mounting slots for IPMC sensors, as shown in

Figure 7.13(b). Each IPMC sensor clamps into a block with its wires routed inside the

body. Above the IPMC sensor blocks, the body has nine slots for mounting the pressure

sensors, as shown in Figure 7.13(a).

The pressure sensors are mounted above the IPMC sensor block to minimize fluid
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effects created by the longer IPMC sensors, which protrude into the flow. There are four

pairs of symmetric slots and an additional slot at the nose of the body. We use four

Millar Instruments (SPR-524) Mikro-Tip Catheter Pressure Transducers encased in an

open ended delrin sheath using Teflon tape. The sensors are mounted in the forward-

most symmetric slots, as shown in Figure 7.13(b) [78]. When mounted in this fashion the

pressure sensors measure the static pressure, which enables analysis using the potential

flow model in Section 7.1. The extra slots allow flexibility in the sensor configuration and

provide the opportunity to expand the sensor array for future experiments. This compact

design maintains the smooth surface of the body while providing enough clamping force

to hold all the sensors, as shown in Figure 7.13(c).

7.5.2 Instrumentation, Control Hardware, and Flowfield Generation

Eight IPMC sensors are placed around the front of the prototype to measure the

flowfield subject to manufacturing design constraints. The polar angles of the sensors are

±84.9◦, ±105.6◦, ±130.7◦, and ±161.0◦ measured with respect to the origin defined in

Section 7.1.1. The sensor length direction is normal to the body surface and each sensor

is mounted such that it responds to the two-dimensional flow (z-plane) tangential to the

body surface at the mount point. Similarly, the polar angles of the four pressure sensors are

±156.3◦ and ±170.7◦, respectively. IPMC sensor signals are passed through the custom-

designed amplifier and pressure signals are amplified via two PCU-2000 Pressure Control

Units (Millar Instruments). The amplified signals are measured and processed using a

National Instruments NI USB-6225 data acquisition board and LabVIEW software. Sensor

measurements are assimilated into the recursive Bayesian filter by incorporating Matlab

functionality within the LabVIEW software interface.
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We generate a uniform flowfield using a 185 L flow tank manufactured by Loligo

Systems (SW10275, modified) with an enclosed test section measuring 25 × 25 × 87.5

cm. The test section of the flow tank is calibrated using a Hack FH950 portable flow

meter [78]. The vehicle’s orientation and cross-stream position are controlled using an

overhead gantry system, elevated using a custom made 80/20 support structure. An

LS-100-18-H linear lead screw table (Anaheim Automation, Inc.) coupled with a stepper

motor (STM23Q-XAE, Applied Motion Products, Inc.) controls cross-stream motion and

a second (STM23Q-XAE) rotary stepper motor attached to the linear screw table controls

orientation. Each stepper motor takes commands from LabVIEW via an RS-232 serial

connection. The drives contain built-in motion controllers that accept high-level ASCII

text commands, most notably feed-to-length and jog commands for control of motor po-

sition or angular velocity. The stepper motors contain integrated encoders that can be

queried directly from LabVIEW [78].

7.5.3 IPMC Flow Sensor Analysis

IPMC sensors produce measurements whose magnitudes are proportional to the

amplitude of vibration. The structural and electro-mechanical modeling of an IPMC

sensor subjected to pressure distributions created by a moving fluid remains the subject of

ongoing work. This motivates the need to better understand basic components of the flow

captured by each IPMC sensor measurement. This section presents experimental results

suggesting that the standard deviation of the magnitude of each IPMC measurement

closely corresponds to the component of the flow normal to the beam, evaluated at the

tip of the sensor.

By collecting data at varying angles of attack and flowspeeds, we find a strong
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correlation between the amplitude of the AC signal measured by each sensor and the

square of the component of flow velocity normal to the sensor evaluated at the sensor

tip, as generated using the potential flow model (7.2). Figure 7.14(a) shows the result

of fitting the standard deviation χ(zfk ; Ωuni) of measurements collected by the sensor

with polar angle 130.7◦ (k = 3) for twenty seconds at flowspeeds U ∈ [0, 0.6] m/s and

angles of attack α ∈ [−30◦, 30◦] to the potential flow model (green). Calibration data are

collected for 20 seconds at 500 Hz for each flowspeed and angle of attack combination. The

standard deviation χ(zk; Ωuni) of each 20 second data collection at M different flowspeed

and angle of attack combinations was calculated to generate the gray surface shown in

Figure 7.14(a). Note that while each sensor’s performance varies due to the manufacturing

process, the sensors used here can generally detect flowspeeds as low as about 0.07 m/s

when compared to measurements in still water.

The flowfield estimation algorithm requires a mapping between the sensor mea-

surements (in µA) and the potential flow measured at the sensor location (in m/s). To

accomplish this mapping we compute optimal fitting coefficients (ak, bk) to the potential

model by minimizing the fitting metric

Jk =
M∑

j=1

‖(akχj(zk;Uj , αj) + bk)− |fn(zk;Uj , αj)|2‖, (7.34)

for sensors k = 1, . . . , 8 and flow condition combinations j = 1, . . . ,M . The gray surface

in Figure 7.14(a) shows the fitted standard deviation measurements corresponding to the

sensor with polar angle 130.7◦. The average error in each sensor over all flowspeeds and

angles of attack is shown in Figure 7.14(b) (green), where each error bar is plotted at

the sensor position. The error resulting from measurements of the square of the normal

component of the flow (green) are plotted along with the average error assuming mea-

surements of the square of the total flowspeed (blue) for comparison. Note that the two
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measurement assumptions have similar average error for all sensors. Use of the normal

component of the flow is justified under the assumption that deflection of an IPMC sensor

is primarily due to fluid motion normal to the sensor face, thereby enabling this calibra-

tion strategy to accommodate measurement models incorporating higher fidelity sensor

deflection dynamics in the future.

Note that Figure 7.14(a) shows one of the poorest model fits, yet the general struc-

ture still follows the trend of the potential flow model. Also note that the areas of the

flowspace (U,α) corresponding to the largest disagreement between the measured and the-

oretical data lie at higher angles of attack where unmodeled flow separation and viscous

effects are likely. This effect is the primary cause of the larger average error for sensors

near the front of the foil as compared to those toward the rear of the foil in Figure 7.14(b).

Computing the calibration coefficients for each sensor as described above requires

external references of the angle of attack and flowspeed. Prior work has shown that

assimilating pressure difference measurements provides accurate estimation of flowspeed

but often incorrectly estimates the angle of attack [78]. However, using simple pressure

differencing in the control [78], [79] and selecting non-symmetric sensor pairs, the vehicle

can be steered to a fixed angle of attack relative to the free stream flow velocity. Thus,

by estimating the flowspeed at fixed, analytically derived angles of attack, the calibration

procedure can be completed without a priori knowledge of the flow condition.

7.5.4 Pressure Array IPMC Sensor Calibration: Bootstrapping

The IPMC sensor array is a valuable sensing modality for underwater operation.

However, since the electromechanical properties of these sensors are not well understood, a

calibration procedure is required to associate a sensor measurement with a local flowspeed
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Figure 7.14: (a) Calibration result fitting the standard deviation of IPMC measurements

(gray) to the normal component of the flow (blue) for sensor located at polar angle 130.7◦.

(b) Average fit error for each sensor over all flow parameter combinations. The green

error bars denote average error resulting from measurements of the total flow at the sensor

tip, whereas the blue error bars represent the error resulting from measurements of the

component of flow normal to the sensor.

measurement. This section presents a novel calibration procedure that utilizes the pressure

sensor array to calibrate the IPMC sensor array without external position or orientation

references. The procedure leverages the ability of pressure sensors to provide accurate

estimation of the free stream flowspeed and utilizes pressure differencing control to steer

the vehicle toward an orientation with zero pressure difference based on a chosen pair of

sensors, as illustrated in Figure 7.15. We use a proportional feedback controller based on

the pressure difference ∆Pij = P (zpi ; Ωuni) − P (zpj ; Ωuni) such that the steering control

u2 is [78]

u2 = −Kp∆Pij , Kp > 0, (7.35)

where i and j correspond to sensors placed on opposite sides of the body. Figure 7.15(a)

shows three sensor pairing combinations used in the calibration process denoted by the
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Figure 7.15: (a) Sensor pair combinations for the bootstrapping calibration procedure.

(b) Pressure difference as a function of angle of attack for the pressure sensor pairings.

blue pairing (zp1 , zp4), the green pairing (zp1 , zp3), and the red pairing (zp2 , zp3). The cor-

responding pressure differences are plotted versus the angle of attack in Figure 7.15(b) for

free stream flowspeed U = 0.17 m/s. The solid colored lines correspond to pressure differ-

ences based on potential flow theory, whereas the dashed lines correspond to experimental

pressure differences. The shaded region of the experimental data curves correspond to one

standard deviation of the measured differences. Note, due to flow separation, unmodeled

viscous effects, and three-dimensional flow effects [78], the experimental pressure differ-

ences are less than the theoretically predicted differences at high angles of attack, resulting

in larger angles of zero pressure difference for non-symmetric sensor pairs. The estimated

flowspeeds and analytically derived angles of zero pressure difference in Figure 7.15(b)

provide flow conditions from which the IPMC sensor calibration procedure in equation

(7.34) calculates the required calibration coefficients.

The calibration procedure is as follows. The body is placed in an unknown uniform

flow condition. The steering control (7.35) calculates the angular rate using pressure dif-
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ferences between a symmetric pair of pressure sensors. Choosing a symmetric pair steers

the vehicle to zero angle of attack. Meanwhile, the recursive Bayesian filter assimilates

distributed pressure difference measurements and produces an estimate of the free stream

flowspeed. After sufficient settling time, we collect 500 samples from each IPMC sensor

and compute the standard deviation from each sensor’s samples. Recording the estimated

flowspeed, zero angle of attack, and standard deviation from each of the Nf = 8 IPMC

sensors comprises sufficient data for all eight IPMC sensors at one flow condition combi-

nation in equation (7.34). Next, a pair of pressure sensors is chosen to stabilize a non-zero

angle of attack, which we calculate analytically using the uniform potential flow model.

Following a similar estimation and data collection process, one generates an additional

flow condition for equation (7.34). Repeating the process for all remaining non-symmetric

sensor pairs completes data collection for a given flowspeed. We then change the free

stream flowspeed and repeat the estimation and data collection procedure to produce a

sufficient number of data points to calculate the optimal coefficients (ak, bk) in equation

(7.34) for all k = 1, . . . , Nf IPMC sensors. This work considers three pressure sensor pair

combinations corresponding to the pressure sensors located on the surface of the foil with

polar angles (156.3◦,−156.3◦), (170.7◦,−156.3◦), and (156.3◦,−170.7◦) whose analytical

zero pressure differences correspond to 0◦, 5.1◦, and −5.1◦ angles of attack, respectively.

7.6 Experimental Results

This section presents experimental results demonstrating the rheotaxis and station-

holding results of Sections 7.4.1 and 7.4.2 using the hardware described in Section 7.5.

178



7.6.1 Experimental Demonstration of Rheotactic Control

This section uses the estimated flowfield parameters from the recursive Bayesian

filter in a dynamic feedback controller that stabilizes the vehicle about a desired angle of

attack αdes. The calibration procedure of Section 7.5.4 enables use of each IPMC sensor

measurement as a measurement of the square of the normal component of the flow at

the sensor location. Assimilating the IPMC flow measurements and pressure difference

measurements into the recursive Bayesian filter provides an estimate of the free stream

flowspeed and angle of attack of the body over time. The estimated angle of attack is

used in the feedback control algorithm (7.28) to steer the vehicle toward a desired angle

of attack. We assume pressure and IPMC measurement variances of σ2
p = .08 kPa and

σ2
IPMC = 0.03 m/s, respectively. The controller gain is K = 0.2 and the control and

estimation loop runs at ∼5 Hz.

Figure 7.16 illustrates experimental results of the flowfield estimation and control

for rheotaxis under step inputs to the desired angle of attack. Figure 7.16(a) illustrates

the marginal probability density of the angle of attack estimation plotted versus time for

a 75 second experiment. The dashed white line corresponds to the desired angle of attack

αdes versus time, whereas the magenta and solid white lines correspond to the estimated

α̂ and actual α angles of attack, respectively. Note that the recursive Bayesian filter

converges to the actual angle of attack and the control algorithm steers the vehicle to

the desired orientation. Figure 7.16(b) shows the marginal probability density of the free

stream flowspeed estimation versus time along with the actual (solid white) and estimated

(dashed magenta) flowspeed.
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(a) (b)

Figure 7.16: Experimental implementation of estimation and control for rheotaxis. (a)

Marginal probability density of angle of attack plotted versus time. (b) Marginal proba-

bility density of free stream flowspeed estimation plotted versus time.

7.6.2 Experimental Demonstration of Station-holding Control

This section presents experimental results of the station-holding control following

Section 7.4.2. Figure 7.17 illustrates experimental results of the flowfield estimation and

control algorithms for station-holding using the potential flow model (7.4) with velocity

potential (7.6) and cross-stream control (7.30). An obstacle with diameter d = 5.08 cm

was centered 5.08 cm upstream of the foil. To account for the significant model error,

assume measurement noise σfk = 0.1 m/s and σpj = 0.2 kPa for the calibrated IPMC and

pressure difference measurements, respectively. The free stream flowspeed is U = 0.25

m/s.

Figure 7.17(a) shows the marginal probability density of the estimated cross-stream

position yobs. The solid white line corresponds to the actual cross-stream position, whereas

the dashed white and magenta lines correspond to the desired and estimated cross-stream

positions, respectively. The initial cross-stream position was −5.5 cm. Note that al-

though the filter shows steady-state estimation error, when coupled with feedback control
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the algorithm steers the foil such that it maintains its position within one centimeter po-

sition error. The potential flow model (7.6) shows significant deviation from experimental

measurements for almost all sensors, which can introduce estimation error or even filter

divergence. However, since potential flow theory captures the large scale effects of the

wake, the distributed nature of the array and multi-modal functionality of the artificial

lateral line overcomes the model error when estimating the cross-stream position of the

obstacle.

Figure 7.17(b) shows the marginal probability density of the estimated obstacle

diameter. The estimated diameter is illustrated by the dashed magenta line, whereas

the actual obstacle diameter is illustrated by the solid white line. Note that due to un-

modeled viscous and boundary layer effects, the recursive filter significantly overestimates

the diameter of the obstacle. This may be attributed to flow separation occurring further

upstream on the obstacle than in the potential flow model, which causes the measurements

to emulate a larger obstacle than predicted by the theoretical model.
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Figure 7.17: Experimental implementation of station-holding estimation and control.

Marginal probability density of (a) cross-stream position and (b) diameter of obstacle

plotted versus time with actual (solid white) and estimated (dashed magenta) quantities.

The dashed white line shows yobs = 0 corresponding to when the foil lies directly behind

the obstacle.
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Chapter 8: Conclusions and Suggestions for Future Work

8.1 Summary of Contributions

This dissertation describes an observability-based framework for optimizing the con-

trol of a multi-agent system tasked with sensing a flowfield. By improving a multi-sensor

system’s ability to observe a flowfield, the performance of a flowfield estimation scheme in-

creases. Indeed flowfield observability is important for applications such as environmental

sampling in hurricanes, wake sensing for formation flight, and bio-inspired sensing, where

estimates of flow properties are required in feedback control.

A main advantage of using the observability framework is that it is independent

of the specific estimation strategy used and therefore applies to any estimation appli-

cation. This dissertation derives dynamic, nonlinear output feedback control strategies

incorporating both flowfield estimates and measures of flowfield observability to optimize

closed-loop control for flowfield sensing. Numerical simulations illustrate the value of the

nonlinear control strategies for hurricane sampling with multiple unmanned aircraft, wake

sensing to formation flight of two aircraft, and bio-inspired, hydrodynamic sensing for

feedback control of a robotic underwater vehicle with a multi-modal artificial lateral line.

In each application the observability-based optimization framework serves as a useful tool

for experimental design.

Sections 8.1.1–8.1.3 review the contributions of the observability-based control and
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sensing framework in the context of the three applications presented in this dissertation.

Section 8.2 describes ongoing work and proposes areas for future research.

8.1.1 Environmental Sampling with Multi-vehicle Systems

A strong flow presents challenges to controlling multiple autonomous vehicles to

a desired formation. The presence of strong flows limits the authority of the vehicle to

completely dictate its inertial direction of travel, making path planning and collective

formation control algorithms more difficult to design. However, this dissertation uses fea-

sibility analysis and Lyapunov-based control to design decentralized multi-vehicle control

algorithms driving particles to desired feasible formations in strong flowfields. We uti-

lize an idealized vehicle model consisting of identical unit-speed Newtonian particles with

gyroscopic steering control in a flowfield whose magnitude can exceed unity. We provide

feasibility criteria for trajectories in a flowfield, and derive steering control algorithms that

stabilize vehicle trajectories to straight lines, circles, a family of non-convex curves called

folia, and spirographs. Using the curvature control, decentralized multi-vehicle control al-

gorithms stabilize parallel, circular, folia, or spirograph formations with specified position

of the formation in an inertial reference frame.

This dissertation not only expands the applicability of multi-vehicle control to strong

flowfields, but also derives control algorithms to steer vehicles to non-convex patterns,

namely the quadrifolium and the spirograph. These formations may produce better data

in environmental sampling missions than those currently in use. Coupled with kinematic

constraints analyzing the feasibility of families of sampling trajectories, the control algo-

rithms derived in this dissertation can be used to provide vital information for multi-vehicle

sampling missions by allowing researchers to choose from various families of formations
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based on both the goals of the sampling mission and the feasibility of the sampling tra-

jectories.

Chapter 4 addresses how a flowfield with vertical shear can be exploited as a means of

controlling vehicle speed via altitude regulation. We present a three-dimensional model of

self-propelled particle motion in which each particle moves at constant speed relative to the

flow in the horizontal plane and controls its climb rate. Decentralized multi-vehicle control

algorithms are derived to stabilize feasible parallel formations with equal horizontal speed

and circular formations with equal particle spacing. In addition, a recursive Bayesian filter

framework allows estimation of parameters defining and unknown flowfield; the resulting

flowfield estimates are utilized in the control algorithms.

Using the multi-vehicle control algorithms of Chapter 3, Chapter 5 presents an

adaptive, observability-based, multi-vehicle sampling algorithm that maximizes the ob-

servability of an estimated flowfield. The algorithm steers vehicles to optimal sampling

trajectories selected from a parameterized family of candidate sampling formations. The

observability of the parameters characterizing the flowfield are evaluated along candidate

formations using measures of the empirical observability Gramian. Optimal flowfield ob-

servability is achieved by minimizing the unobservability index, which is the reciprocal of

the smallest singular value of the empirical observability Gramian. A recursive Bayesian

filter provides estimates of the flow to the steering control algorithm, enabling operation

in an unknown flowfield. Numerical simulations of the adaptive algorithm in a Rankine

vortex suggest that for circular sampling formations the algorithm is attracted to forma-

tions that cross the radius of maximum wind, specifically formations where the center of

the circular formation is near the radius of maximum wind.
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8.1.2 Wake Sensing for Formation Flight

Aircraft may operate in close proximity to increase flight endurance, particularly for

aerial refueling and for reducing induced drag. To perform these tasks autonomously, an

unmanned aircraft must estimate its position relative to other aircraft in the formation.

This dissertation addresses how measurements of the aerodynamic effects caused by flying

in close proximity can be used to estimate the relative positions of two aircraft in formation

flight.

Chapter 6 uses lifting-line theory to model a two-aircraft formation and derives

observability-based optimal control strategies that steer the follower aircraft to a desired

relative position. The follower aircraft collects noisy measurements of the aerodynamic sig-

nature created by the leader’s wake. We assess the observability of the leader aircraft using

measures of the empirical observability Gramian and implement a recursive Bayesian filter

to estimate the leader aircraft’s wake parameters. Receding-horizon and level set methods

of optimal control use the unobservability index as a cost metric and incorporate estimates

of the leader’s position provided by the Bayesian filter. The resulting trajectories avoid

regions prone to degraded estimation performance, thus improving the feedback control.

Numerical simulations of formation flight and aerial refueling applications illustrate that

the proposed control algorithms successfully steer the vehicle to a desired relative position

while simultaneously estimating the wake parameters.

8.1.3 Bio-inspired Flow Sensing and Feedback Control

Toward bio-inspired flow sensing and control, this dissertation describes the design

and implementation of a multi-modal artificial lateral line for flow sensing and feedback

control of an underwater vehicle. Tools from potential flow theory are used to model the
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flow around a foil in a uniform flow and in the presence of an upstream obstacle. Using the

fluid model, we derive a measurement model consisting of local flow velocity and pressure

difference measurements inspired by the superficial and canal neuromasts of the fish lateral

line.

The uniform flow model is characterized by the free stream flowspeed and angle of at-

tack of the foil relative to the oncoming flow. This dissertation derives observability-based

sensor placement strategies for maximizing observability of the uniform flow parameters.

Analysis of multiple measures of the empirical observability Gramian reveal two optimal

sensor locations, one at the nose optimally observes the angle of attack and one at the point

of maximum flowspeed optimally observes the free stream flowspeed. We incorporate the

single sensor results to optimize a multi-sensor configuration by exploiting linearity of the

Hermitian empirical observability Gramian. The proposed placement, in which one sensor

is located at the nose of the foil and the remaining sensors are distributed around the foil

to optimally observe the free stream flowspeed at varying angles of attack, outperforms

99.9% of random sensor configurations at estimating the flow parameters. Performance is

assessed using the KL divergence, which measures the distance of the posterior probability

density function of the recursive Bayesian filter from perfect statistical knowledge of the

flow parameters.

Chapter 7 designs theoretically justified Bayesian filtering strategies based on the

flow and measurement models to estimate properties of the flow for use in feedback control.

The recursive Bayesian filter highlights the complementary nature of flow velocity and

pressure difference measurements for estimating the flowspeed and angle of attack of a foil

in a uniform flowfield. In addition, we present a recursive Bayesian filter for estimating the

cross-stream position of an obstacle in a moderate to high Reynolds number environment
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where the wake of the obstacle is turbulent, as well as a particle filtering algorithm for

estimating the cross-stream position by sensing the presence of vortices shed from the

obstacle in the low Reynolds number regime. The estimated flow properties motivate

the design of feedback control strategies to steer an underwater vehicle for bio-inspired

behaviors including (positive) rheotaxis (the tendency to orient upstream) and station-

holding (the tendency to hold position behind an upstream obstacle). Lyapunov-based

techniques justify the derivation of control algorithms steering the vehicle to a desired angle

of attack or cross-stream position behind an obstacle using estimated flow properties in

feedback control.

This dissertation also presents experimental results demonstrating bio-inspired hy-

drodynamic sensing and control algorithms on a robotic prototype outfitted with a multi-

modal artificial lateral line. We demonstrate autonomous rheotaxis and station-holding

behaviors using a robotic foil outfitted with an array of distributed pressure and ionic-

polymer metal composite (IPMC) sensors. Potential flow models show a correlation be-

tween the standard deviation of measurements from an IPMC sensor and the square of the

component of flow normal to the sensor. Using this result, we derive a novel bootstrap-

ping calibration strategy leveraging the strengths of pressure difference measurements to

generate calibration coefficients for the IPMC sensors and demonstrate performance of the

multi-modal system. Incorporating bio-inspired sensing and control strategies like those

presented in this dissertation may one day allow underwater vehicles to operate in dark,

murky, and cluttered environments where traditional sensing modalities are hindered.
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8.2 Ongoing Work and Suggestions for Future Research

8.2.1 Ongoing Work

This dissertation uses tools from observability to optimize sampling in multi-agent

systems, specifically for improving estimation of flowfields. Increasing observability results

in improved estimation performance, which applies to any estimation strategy (particle

filter, grid-based recursive Bayesian filter, Kalman filter, etc.). However, challenges re-

main in proving a direct correspondence between observability and estimator performance.

Though Chapter 2 shows observability has a relation to estimation performance through

the Fisher-information matrix, it applies only to time-invariant parameter estimation ap-

plications. A time-varying equivalent remains to be shown.

In general, observability is dependent on the state-space realization of the model,

implying that observability analysis may reveal different results for alternate state-space

realizations of the same model. Moreover, computation of the empirical observability

Gramian suffers from the curse of dimensionality; for high-dimensional state-spaces, ob-

servability analysis can be computationally expensive, necessitating new, more efficient

computational and analysis techniques. Tools from principal component analysis [170]

may prove valuable for assessing the observability of more realistic infinite dimensional

flowfield models by decomposing the model into a finite number of principal modes that

capture the dominant flow dynamics.

Also note that this dissertation considers observability of time-invariant parameters

defining a flowfield, rather than dynamic parameters. Considering time-varying states in

the observability analysis introduces a temporal component to the coordinated sampling

problem, weighting measurements in both space and time, rather than just space. This
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is particularly applicable to environmental sampling where time-varying flows introduce

temporal weighting to the sampling trajectories and wake sensing where vehicle velocities

significantly affect the structure of the wake and therefore its observability.

The following paragraphs address ongoing work specific to each of the three appli-

cations presented in this dissertation. Section 8.2.2 proposes areas for future research.

Environmental and Hurricane Sampling

There are a number of directions the adaptive sampling algorithm can be expanded.

At the multi-vehicle control level, future research seeks to derive control algorithms sta-

bilizing a wider set of sampling formations in strong flows and continues investigation

of general flowfield properties that dictate the feasibility and convergence properties of

multi-vehicle formations. Additionally, experimental validation of the strong flow multi-

vehicle control algorithms would lend further credence to the applicability of this control

framework in real applications.

The adaptive sampling algorithm used observability as a metric to optimize the sam-

pling formation, but many other metrics may prove useful. For example, the algorithm

optimizes the sampling formation parameters using the estimated flowfield parameters,

not accounting for uncertainty in the estimate. Future algorithms could incorporate un-

certainty by scaling the size of the perturbations in the empirical observability Gramian

based on the uncertainty of the flowfield states in the estimator. Other possible avenues for

optimization could include information criteria [171], [172] or minimizing the uncertainty

in a forecast model [52], [173].

Wake Sensing for Formation Flight

For close formation flight, observability measures served as a cost metric for deriving

optimal control algorithms that steer a follower aircraft to a position relative to the leader.
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We use infinite line vortices to represent the wing-tip vortices shed from the lead aircraft

and lifting-line theory to represent the wing of the follower aircraft. This approach provides

a basic model for assessing the feasibility of wake estimation and control that has been

used throughout the literature [68], [60], [149], but realistic aerodynamics of two aircraft

in formation are significantly more rich. A higher fidelity model must incorporate time-

varying, unsteady fluid dynamics that produce a complex wake structure. In proximities

within half a wingspan, the trailing vortices of the lead aircraft can be dispersed by

the presence of the follower, which is unmodeled in the analysis of this dissertation. In

addition, we ignore effects created by additional structural components (fuselage, elevator,

rudder, etc.) in the aerodynamic model as well as the effect of relative velocities on the

observability of the wake.

The optimal control algorithms used to derive observability maximizing trajectories

use simplified kinematics of the relative motion of the aircraft. We assume the follower

aircraft kinematically controls its velocity relative to the leader and neglect longitudinal

motion between the vehicles, assuming the leader remains a fixed distance ahead of the

follower at all times. A high fidelity six degree-of-freedom motion model including elevator,

aileron, and rudder dynamics can facilitate derivation of more realistic optimal control

strategies that incorporate observability measures and are robust to model uncertainty and

wind disturbances that are likely in the highly unsteady aerodynamic regime associated

with close formation flight.

Bio-inspired Control and Hydrodynamic Sensing

The bio-inspired flow sensing and control work of Chapter 7 can be expanded in a

few areas. Section 7.4.2 presents a particle filtering strategy for estimating the position of

an obstacle in flows with Reynolds number corresponding to the existence of a Karman
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vortex street. Experimentally, we did not detect the presence of vortices in the range of

Reynolds numbers corresponding to the Karman vortex street regime. This may be due

to unmodeled hydrodynamic and electromechanical interactions between the vortices and

sensors that mask the signature created by a passing vortex or dissipate the oncoming

vortices as they approach the sensor array. In ongoing work, we seek to adapt the ex-

perimental procedure and sensor configuration in order to detect the presence of vortices

shed from an upstream obstacle. Current work employs dye injection techniques to visu-

alize vortex shedding and quantify their sensor signature on the artificial lateral line. In

addition, continued refinement of the fabrication and manufacturing process of the IPMC

sensors can miniaturize each sensor while maintaining or improving the robustness and

signal-to-noise characteristics of the array.

Potential flow models provide a first step toward analytical derivation of sensor

placement strategies and model-based flowfield estimation, but represent highly ideal-

ized models of real underwater flow environments. Because the empirical observability

Gramian requires only the ability to simulate a system, future work could expand the sen-

sor placement problem to high fidelity, three-dimensional flowfield and vehicle models and

weigh tradeoffs between different sensing modalities incorporated into the artificial lateral

line. By analyzing three-dimensional fluid models with fish-shaped bodies, observability

analysis may explain the spatial distributions of superficial and canal neuromast sensory

systems on various fish species.

8.2.2 Suggestions for Future Research

Modality-based Optimization for Multi-vehicle Sampling:

In current surveillance and environmental monitoring applications, autonomous and
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remotely piloted vehicles are typically outfitted with a single sensing modality such as a

camera [45], [29] or flow velocity sensor [9]. As the cost, size, and power requirements

of multi-modal sensing systems enable operation on fleets of autonomous and remotely

piloted vehicles, scientists will receive unprecedented data from dynamical processes in

our environment. Before such systems can be implemented effectively, there exists a need

to coordinate sampling trajectories of vehicles in the fleet to autonomously execute their

mission while optimizing trajectories specific to each agent’s sensing capability.

Future sampling missions may contain a fleet of heterogenous vehicles, each outfitted

with sensing capabilities specialized for a given task. Optimizing the sampling performance

of such a fleet of vehicles will require development of new feedback algorithms. Particular

attention must be focused on (1) coordination of vehicles with heterogenous dynamics and

(2) optimization of spatiotemporal sampling of vehicles with mixed sensing capabilities.

For example, while monitoring extreme weather like hurricanes, manned assets must fly

at altitudes above 5000 ft and typically collect wind, temperature, and pressure data, as

shown in Figure 8.1. Simultaneously, weather satellites pass over the storm collecting

data in the electromagnetic spectrum. In the future, high altitude unmanned aircraft may

autonomously fly over the storm gathering radar and precipitation data [2], while smaller

unmanned aircraft collect windspeed, pressure, and temperature data in the lower altitudes

where the thermodynamic interactions of the air-sea interface take place. Additionally,

ocean drifters [174] and controlled gliders [8] may operate at and under the ocean surface

collecting further data. This fleet has sensing agents with constrained dynamics (satellites

and drifters) and controllable agents (UAVs, manned aircraft, and underwater gliders)

whose trajectories can be coordinated to complement the spatiotemporal sampling density

of the constrained sensors. Coordinated control can exploit specific sensing capabilities
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Figure 8.1: A fleet of sampling vehicles can improve hurricane forecasts by coordinating

motion to (1) target measurements specific to their sensing capability, and (2) provide

continuous coverage of the sampling domain. Photo credit [175].

allowing the fleet to better capture dynamical processes within the storm.

Sensing and Actuation in Bio-inspired Systems:

Chapter 7 derives sensing and steering strategies for bio-inspired behavior, assum-

ing quasistatic motion so the foil’s movements have minimal effect on the surrounding

fluid behavior. This assumption allowed derivation of an optimal placement strategy for

observing properties of the flow. However, observation of a flowfield can be improved both

by configuring a sensor array and steering the vehicle to optimally capture fluid dynamical

effects. Figure 8.2(a) illustrates two methods for observing a flowfield with an array of

sensors. Figure 8.2 illustrates the problem addressed in Chapter 7, where the goal is to

optimize the configuration of the sensing array on the body of the vehicle. Figure 8.2(b)

illustrates how one may actuate the vehicle in order to better observe the surrounding
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Figure 8.2: An array of sensors can observe a flowfield by (a) optimally placing sensors

on the vehicle and (b) optimally actuating the vehicle to capture significant flow charac-

teristics, such as (c) an optimized slalom pattern for observing the Karman vortex street.

flow. An example of how actuation may better observe the flow is shown in Figure 8.2(c),

where the underwater vehicle may slalom within the Karman vortex street at optimal

spatial amplitudes Ay and frequencies ωy in order to better observe the wake model.

In reality, a underwater vehicle’s interaction with the flow is never passive. Even

minute actuation can induce flow separation, vortex shedding, or similar fluid dynamic

effects. Recent studies have separately addressed biomimetic actuation [176], [177], [178],

[179] or sensing [180], [79], [149], [181], [182], [183] for robotic underwater platforms, but

very few have addressed both. In recent work combining the two research areas, Phelan

et al. [184] designed a robotic fin to investigate sensorimotor control in fish. The ribs of

the fin were outfitted with strain gauges to detect propulsive forces and pressure sensors

were mounted at the flank of the fin to detect flows during actuation [185]. However, this

work studied sensory systems for prediction of propulsive forces generating fish motion,
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rather than exploring the effect of actuation on sensing externally generated hydrodynamic

phenomena.

The effects of self-actuation on bio-inspired sensing are not well understood. The

Mexican blind cavefish exhibits repeated kick and glide cycles in its swimming locomotion

that is thought to correspond to a propulsion phase (kick) followed by a sensing phase

(glide) where the lateral line detects the animal’s nearby surroundings [186]. Does this

behavior suggest that actuation blinds the fish to external hydrodynamic phenomena

during the kick phase, requiring the animal to glide in order to regain lateral line sensing

ability, or does the fish induce fluid motion during the kick phase to produce a scannable

flowfield for lateral line sensing? Conversely, trout exhibit Karman gaiting, a continuous

sinusoidal-like motion in which the fish slaloms between vortices shed by an upstream

obstacle [187], [75]. This behavior might suggest that the animal can sense external

hydrodynamic structures during continuous actuation, rather than in cyclic fashion like

the blind cavefish in still water.

A future research direction might seek to understand the effects of actuation on

sensing ability in flexible robotic systems. By modeling the hydrodynamic and body

interactions during actuation, one can better understand the effect of self-induced fluid

motion on sensing of external hydrodynamic structures with an artificial lateral line. This

research will require the use of high fidelity unsteady fluid dynamic models and flexible

body dynamics to accurately model flow phenomena that alter response characteristics

of the artificial lateral line during propulsive actuation. With a better understanding

of the coupling between actuation and sensing, experimental vehicles can be designed to

utilize sensorimotor advantages of both biomimetic actuation and sensing. Such work may

enhance the performance and autonomy of unmanned underwater vehicles by broadening
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the flow regimes in which they can safely operate.
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