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Abstract— Dynamical systems described by ordinary and
stochastic differential equations can be analyzed through the
eigen-decomposition of the Perron-Frobenius (PF) and Koop-
man transfer operators. While the Koopman operator may
be approximated by data-driven techniques, e.g., Extended
Dynamic Mode Decomposition (EDMD), the approximation of
the PF operator uses a single-pass Monte Carlo approach
in Ulam’s method, which requires a sufficiently long time
step. This paper proposes a finite-dimensional approximation
technique for the PF operator that uses multi-pass Monte Carlo
data to pose and solve a constrained EDMD-like least-squares
problem to approximate the PF operator on a finite-dimensional
basis. The basis functions used to project the PF operator
are the characteristic functions of the state-space partitions.
The results are analyzed theoretically and illustrated using
deterministic and time-homogeneous stochastic systems.

Index Terms— Estimation, stochastic systems, optimization.

I. INTRODUCTION

The operator-theoretic approach to dynamical systems
deals with the evolution of measurable maps under the
system dynamics. The two main candidates of this approach
are the Koopman operator and its dual, the Perron-Frobenius
operator. While the Koopman operator is useful in studying
observables, the Perron-Frobenius (PF) operator acts on the
space of densities. Hence the PF operator is important
when dealing with uncertainties in the system, especially
when the likelihood of the state is given in the form of
a probability density function under a suitable absolutely
continuous probability measure. Formally, the PF operator
is an infinite-dimensional operator operating on the space of
L1 functions.

The PF operator is used extensively to analyze the global
behavior of dynamical systems, especially for fluid dynamics
[1], and to estimate almost-invariant sets with efficient tool-
boxes like GAIO [2]. The PF operator, being able to transport
density in a dynamical system, is also important in recursive
estimation problems. The approximated PF operator can be
used to transport density with less computational effort than
solving a partial differential equation. Hence an accurate
and efficient approximation technique of the PF operator is
needed.
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As the PF operator operates on infinite-dimensional
spaces, it is customary to project it onto the span of suitable
basis functions to approximate their dominant actions in
finite dimensions. This projection is usually accomplished by
Galerkin methods using a weak approximation of the operand
functions [3], [4].

One technique to approximate the PF operator is Ulam’s
method [5], where the chosen basis functions are the char-
acteristic functions of grids spanning the state space. The PF
operator is reduced to a Markov state transition matrix and
approximated by one-pass Monte Carlo simulation of a large
number of initial conditions. However, this method requires
that the time step of the simulation be sufficiently long [5]
to avoid degeneracy. This limitation poses a difficulty when
using the approximated PF operator for estimation, because
precise density transport over small time intervals may be
necessary to accommodate frequent observations. To enable
PF approximation for a short time step, a multi-pass approach
is necessary.

Multi-pass data-driven approaches, e.g., Dynamic Mode
Decomposition (DMD), are ubiquitous for the approximation
of the Koopman operator, the adjoint of the PF operator. ([6]
describes the relationship between DMD and the Koopman
operator; [7] demonstrates the use of DMD on experimental
fluid flow data; and [8] extends mean ergodic theorem using
Laplace averages to construct Koopman eigenfunctions.)
The Extended DMD (EDMD) [9] uses a time series of
the observable data to approximate the eigenvalues of the
Koopman operator on a finite-dimensional basis set chosen
from a dictionary of appropriate functions.

EDMD solves an unconstrained least-squares problem to
approximate the Koopman operator in the form of a matrix.
[10] proposes a structured version of EDMD that takes the
positivity of the Koopman operator into account to generate
a more accurate estimate of the Koopman eigenfunctions. To
replicate this approach for the PF operator, two challenges
need to be addressed. Unlike Koopman, the PF operator is
Markov and, hence preserves measure. Moreover, the PF
operator operates on densities, which implies it is not directly
observable, so it must be approximated from a time series
of Monte Carlo simulations.

The manuscript combines Ulam’s method and constrained
EDMD to remove the problem of long time steps in Ulam’s
method and to incorporate the accuracy of EDMD. The basis
functions are chosen as the characteristic functions of the
grids over the state space. It is shown analytically that the
PF operator projected onto this basis constructs a Markov
chain, and its eigenfunctions can be approximated from the



eigenvectors of the resultant stochastic matrix. The results
are derived for both deterministic and time-homogeneous
stochastic systems.

The contribution of this work is to develop the relationship
between Ulam’s method and EDMD for the approximation
of the PF operator along dynamics governed by both ordinary
and time-homogeneous stochastic differential equations. The
new approximation technique for the PF operator solves a
constrained optimization problem, unlike the unconstrained
problem in EDMD. We demonstrate the performance of the
proposed technique for several linear and nonlinear systems.
Unlike Ulam’s method, the proposed method utilizes multi-
pass Monte Carlo data in order to support short time steps
and hence can be effectively used for density transport in a
recursive estimation algorithm.

The manuscript is organized as follows. Section II gives a
brief description of the PF operator for deterministic and
stochastic systems. Section III defines the weak approxi-
mation of the PF operator, summarizes Galerkin projection
methods, and describes the proposed Constrained Ulam
Dynamic Mode Decomposition (CU-DMD). It also gives
the theoretical justification of the weak approximation and
its role in approximating the PF eigenfunctions. Section IV
illustrates the performance of CU-DMD on three test cases.
Section V summarizes the paper and our ongoing work.

II. PERRON-FROBENIUS OPERATOR

Historically, transfer operators like the Perron-Frobenius
(PF) operator are used in ergodic theory to study measure-
theoretic characterization. The PF operator is described
below in the context of both deterministic and stochastic
systems.

A. Deterministic Systems

Let X ⊂ Rd be a compact manifold and f : X→ X be a
smooth time-invariant vector field. Consider the autonomous
time-invariant ODE

ẋ = f(x). (1)

Let φf : R × X → X be the flow map of the ODE (1),
i.e., φf (t, x0) is a solution of the ODE (1) with the initial
condition x(0) = x0.

Definition 1: A semigroup of operator Pτ : τ ≥ 0 is said
to be the Perron-Frobenius (PF) operator if Pτ : L1(X) →
L1(X) is defined by [5]

Pτρ(·) = ρ ◦ φf (−τ, ·)|det(Dxφf (−τ, ·))|, (2)

where Dx denotes the Jacobian with respect to the space
variable x. If ρ(·) is a probability density function (PDF)
with respect to an absolutely continuous probability measure
ν, then Pτρ is another PDF with respect to the absolutely
continuous probability measure ν ◦ φ(−τ, ·). Specifically,∫

B

Pτρdν =

∫
φf (−τ,B)

ρdν, (3)

for any ν-measurable set B [11]. The PF operator translates
a probability density function with time according to the flow

of the dynamics. It can be shown that the generator of this
semigroup Pτρ is given by −∇ · (ρf) [5].

Now suppose we define a time-varying PDF ρ̃(t, x) ,
Ptρ(x). Then it can be shown that ρ̃(t, x) satisfies the PDE
[5]

∂ρ̃

∂t
= −∇ · (ρ̃f) (4)

ρ̃(0, x) = ρ(x). (5)

B. Stochastic Systems

Let X and f be defined as before. Let g : X → X be
another smooth time-invariant vector field. Let (X,B(X),P)
be a probability triple with an absolutely continuous proba-
bility measure P. Consider the following time-homogeneous
Itô stochastic differential equation

dxt = f(xt)dt+ g(xt)dwt, t > 0, (6)

where xt ∈ X is a random process and wt, t > 0, is a
standard Wiener process. The stochastic dynamics (6) arise
when there is process noise in the system defined by the ODE
(1). The process noise enters the system as the diffusion term
g(xt) in the Itô SDE. Here a flow map, being another random
process, is difficult to define, but nonetheless the probability
density may still be translated with a linear operator defined
in terms of the transition density function.

Definition 2: The transition density function pτ : X×X→
R+ is defined as [11]

P[xt+τ ∈ B|xt = x] =

∫
B

pτ (x,m)dm, ∀B ∈ B(X). (7)

The transition density function is the infinite-dimensional
counterpart of the transition matrix entries for a Markov
chain. Now we can define the stochastic PF operator.

Definition 3: Let ρ ∈ L1(X) be a probability density func-
tion. The Perron-Frobenius semigroup of operator Pτ , τ >
0, is defined as Pτ : L1(X)→ L1(X) [11], such that

Pτρ(·) =

∫
X

pτ (m, ·)ρ(m)dm. (8)

The PF operator Pτ as defined here is also a linear
operator and Pτρ has an infinitesimal generator −∇·(ρf)+
1

2
∇2(g2ρ) [11].

III. NUMERICAL ESTIMATION OF THE
PERRON-FROBENIUS OPERATOR

To obtain an explicit numerical estimate of the infinite-
dimensional PF operator, we need to project it onto a suitable
finite-dimensional basis of functions. As the PF operators for
a specific dynamics also form a semigroup, we need to fix a
time step size to extract one representative of the semigroup.
The latter amounts to the discretization of the dynamics,
generally performed using Galerkin methods employed by
converting the operator equations (2) and (8) into a weakly
approximated form, usually a Markov chain.



A. Weak Approximation

The weak approximation of the operator equation (2)
or (8) is done by projecting it on a suitable set of basis
functions. Here, the basis functions are chosen to be a
family of characteristic functions of a partition of the state
space, scaled accordingly by their Lebesgue measure. Let
D = {Bi : i = 1, . . . ,M} be a partition of the state space
X, usually a set of fine grids. The basis function ψi is taken
to be ψi , χBi , where

χBi(x) =

{
1, if x ∈ Bi
0, otherwise.

The basis functions {ψ1, . . . , ψM} are orthogonal. Now
define a projection πM : L1(X)→ sp{ψi, . . . ψM} to project
ρ onto the span of these basis functions by

πMρ =

M∑
i=1

(
1

m(Bi)

∫
Bi

ρ dm

)
ψi =

M∑
i=1

pi

m(Bi)
ψi, (9)

where m(·) is the Lebesgue measure on Rd and pi ,∫
Bi
ρ dm are the weights of basis function ψi. Since the

choice of basis is done before approximation, the projected
density ρ is usually expressed as a vector p = (p1, . . . , pn).
This projection in turns restricts the infinite-dimensional
operator Pτ to a stochastic matrix Pτ given by

Pτ,ij = P[φf (t, x) ∈ Bj |x ∈ Bi]

=
P[φf (t, x) ∈ Bj , x ∈ Bi]

P[x ∈ Bi]
=

m(Bi ∩ φf (−τ,Bj))
m(Bi)

,

(10)

for deterministic system (2) where φf (−τ,Bj) ,
{φf (−τ, x) : x ∈ Bj}. In the last equality, the measure
is changed to a standard Lebesgue measure, assuming we
sample from a uniform distribution at t = 0 when computing
Pτ,ij .

For stochastic system (8), since the flow map is a random
process, the Pτ matrix is given by

Pτ,ij = P[xt+τ ∈ Bj |xt ∈ Bi]
= P[xτ ∈ Bj |x0 ∈ Bi] , time homogeneity of (6)

=
P[xτ ∈ Bj , x0 ∈ Bi]

P[x0 ∈ Bi]
=

kP[xτ ∈ Bj , x0 ∈ Bi]
m(Bi)

,

(11)
where k > 0 is the normalization factor such that the
probability P[x0 ∈ Bi] = m(Bi)

k corresponds to a uniform
initial distribution.

With this formulation, the approximation of the PF op-
erator is equivalent to the approximation of Pτ . The weak
approximation, in effect, turns the PDF ρ into a Probability
Mass Function (PMF) on each grid Bi, and the operator (2)
becomes a Markov state transition equation [5]

pτ = p0Pτ , (12)

where pτ and p0 are the projection of Pτρ and ρ, respec-

tively. Note that p0 and pτ are valid PMF since Pτ is a
stochastic matrix. To see this, consider the projection of the
transformed ρ, i.e.,

πMPτρ = πMPτ
(
M∑
i=1

pi

m(Bi)
ψi

)
=

M∑
i=1

pi

m(Bi)
πM (Pτψi) .

(13)

Now, since {ψ1, . . . , ψM} are orthogonal,

πM (Pτψi) =

M∑
j=1

wij
m(Bj)

ψj , (14)

where the coefficients wij are given by

wij =
∫
X P

τ (ψi(x))ψj(x)dx
=

∫
X P

τ (χBi(x))χBj (x)dx
=

∫
Bj
Pτ (χBi(x))dx.

(15)

For deterministic system (1), the coefficients are

wij =
∫
Bj
Pτ (χBi(x))dx

=
∫
φF (−τ,Bj) χBi(x)dx, from (3)

= m(Bi ∩ φf (−τ,Bj)).

Therefore,

πMPτρ =

M∑
i=1

pi

m(Bi)

M∑
j=1

m(Bi ∩ φf (−τ,Bj))
m(Bj)

ψj

=

M∑
j=1

1

m(Bj)

M∑
i=1

piPτ,ijψj , (16)

where Pτ,ij =
m(Bi ∩ φf (−τ,Bj))

m(Bi)
from (10).

For stochastic system (6)

wij =
∫
Bj
Pτ (χBi(x))dx

=
∫
Bj

∫
X pτ (y, x)χBi(y)dydx, from (8)

=
∫
X
∫
Bj
pτ (y, x)dxχBi(y)dy,

by Fubini’s theorem
=

∫
X P[xt+τ ∈ Bj |xt = y]χBi(y)dy, from (7)

=
∫
X P[xτ ∈ Bj |x0 = y]χBi(y)dy,

by time-homogeneity of (6)
=

∫
Bi

P[xτ ∈ Bj |x0 = y]kdP(y)

= kP[xτ ∈ Bj , x0 ∈ Bi].

The uniform change of measure dy = kdP(y) with nor-
malization factor k > 0 results from the fact that initial
distribution (i.e., the distribution of x0) is uniform. Hence,
for the stochastic system,

πMPτρ =

M∑
i=1

pi

m(Bi)

M∑
j=1

kP[xτ ∈ Bj , x0 ∈ Bi]
m(Bj)

ψj

=

M∑
j=1

1

m(Bj)

M∑
i=1

piPτ,ijψj , (17)

which is the same as (16) and differs only in the definition



of Pτ,ij =
kP[xτ ∈ Bj , x0 ∈ Bi]

m(Bi)
from (11).

Now define
M∑
i=1

piPτ,ij = pjτ , and pτ = (p1τ , . . . , p
M
τ ),

which implies

πMPτρ =

M∑
j=1

pjτ
m(Bj)

ψj (18)

pτ = pPτ . (19)

Theorem 1: If (λ, ϕ) is an eigenvalue-eigenfunction pair
of Pτ , λ is also an eigenvalue of Pτ with an left eigenvector

p such that πMϕ =
M∑
j=1

pj

m(Bj)
ψj

Proof: Since λ is an eigenvalue of Pτ with the eigenfunction
ϕ, then

Pτϕ = λϕ. (20)

Now let the projection of ϕ on sp{ψ1, . . . , ψM} be

πMϕ =

M∑
j=1

pj

m(Bj)
ψj , (21)

with appropriate coefficient vector p. Then

πMPτϕ = λπMϕ =

M∑
j=1

λpj

m(Bj)
ψi (22)

since projection is a linear operation. But, from (16) or (17),

πMPτϕ =

M∑
j=1

M∑
i=1

piPτ,ij

m(Bj)
ψj . (23)

Since {ψ1, . . . , ψM} are linearly independent, from (22) and

(23), λpj =
M∑
i=1

piPτ,ij , ∀ j = 1, . . . ,M , i.e., pPτ = λp.

Hence λ is an eigenvalue of Pτ with (left) eigenvector p. �
The converse of Theorem 1 is, in general, not true.

However, if we restrict the PF operator to the span of the
basis functions, then the converse also holds.

Theorem 2: If (λ,p) is an eigenvalue-(left) eigenvector
pair of Pτ , then λ is also an eigenvalue of the restricted

operator πMPτ with eigenfunction ϕ ,
M∑
i=1

pi

m(Bi)
ψi.

Proof: Since (λ,p) is an eigenvalue-(left) eigenvector pair
of Pτ ,

pPτ = λp. (24)

Now from Eq. (18),

πMPτϕ =

M∑
j=1

pjτ
m(Bj)

ψj and pτ = pPτ .

But since pPτ , i.e., pτ = λp, we get

πMPτϕ =

M∑
j=1

λpj

m(Bj)
ψj = λ

M∑
j=1

pj

m(Bj)
ψj = λϕ. (25)

Therefore λ is also an eigenvalue of the restricted operator

πMPτ with eigenfunction ϕ. �

B. Contstrained Ulam Dynamic Mode Decomposition

Ulam’s method uses a Monte Carlo approach to numeri-
cally estimate the Markov state transition matrix Pτ . Within
each Bi, a set of N test points xi,1, . . . , xi,N are defined and
numerically integrated to obtain φf (τ, xi,k), k = 1, . . . , n,
i.e., their final positions along the trajectories of the ODE
(1) or the SDE (6). The estimated Pτ is given by [5]

Pτ,ij ≈
#{k : xi,k ∈ Bi, φf (τ, xi,k) ∈ Bj}

N
. (26)

The choice of τ is important and depends on the resolution
of the partition D in this method. If the resolution is coarse,
i.e., too few grid-cells (M is small), and τ is also small, then
many of the test points will not leave their original grid cell
Bi, and the estimated Pτ will be close to the identity matrix.

Extended Dynamic Mode Decomposition (EDMD) [9] is a
method to extract the modes of a complex dynamical system
by solving a least-squares problem. EDMD estimates the
eigenvalues and eigenfunctions of the Koopman Operator
[12], the dual of the PF operator, which operates on the space
of L∞ observables. The Koopman semigroup of operator
Kt : L∞(X)→ L∞(X) is defined as

(Ktϕ)(·) = ϕ ◦ φf (t, ·). (27)

If we fix the time step t = τ , then the ODE (1) becomes an
iterative map x((k+ 1)τ) = φf (τ, x(kτ)), and we can drop
τ and define φf (τ, x) , F (x). The discrete-time dynamics
become

xk+1 = F (xk). (28)

The time-discretized version of Koopman operator is
Kτϕ(·) = ϕ ◦F (·). In EDMD, just like Ulam’s method, the
infinite-dimensional operator Kτ is projected onto a finite-
dimensional basis in L∞(X) to represent it as a matrix
K. Let {ψ1, . . . , ψM} be the basis functions and, like in
Ulam’s method, we define πM : L∞(X) → sp{ψi, . . . ψM}
to project ϕ onto the span of these basis functions. Then

ϕ(x) =

M∑
i=1

aiψi(x) (29)

Kτϕ(x) =

M∑
i=1

biψi(x) + r, (30)

with residue r. Now, since ϕ is an observable, we can observe
{ϕ(x0), . . . ϕ(xn+1)} for any n > 0, where xi are from the
discretized dynamics (28). So we can estimate the matrix K
by the least-squares formulation

K = Ψ†x0
Ψx1

, (31)

where Ψx0,ij = ψi(xj) and ΨX1,ij = ψi(xj+1), i =
1, . . . ,M , and j = 0, . . . , n.

In the same light, the weak approximation of the PF oper-
ator can be thought of as projecting onto the basis function

ψi =
1

m(Bi)
χBi . Since the basis functions are related to the



density of states, and cannot be readily observed, we need
the help of Monte Carlo simulation.

Let p0, . . . ,pn+1 be n+2 subsequent PMF resulting from
the operation of Pτ on the initial density ρ projected on the
sp{ψ1, . . . , ψM}. We know from (12) that pk+1 = pkPτ .
Define

Ψ0 = [pT0 , . . . ,p
T
n ]T , Ψ1 = [pT1 , . . . ,p

T
n+1]T . (32)

Therefore, from the Markov relation, Ψ1 = PτΨ0, we have

Pτ ≈ Ψ1Ψ†0. (33)

But since we cannot observe directly the values of
p0, . . . ,pn+1, we need to estimate them from Monte Carlo
sampling. For this, we start from a uniform distribution
of N particles in each of the M grids at t = 0. Then
we successively integrate them forward for time interval τ
to get their position at t = τ . The number of particles
in Bi will change from N to some value di1, where the
subscript 1 represents the first time step. Similarly we go
on integrating for n more successive time steps to get the
number of particles in each grid dij for each time step j. Let

dj = (d1j , . . . , d
M
j ). Then empirically p̂j ,

1

MN
dj ≈ pj

for j = 0, . . . , n+ 1. Now, define empirical data matrices

Ψ̂0 = [p̂T0 , . . . , p̂
T
n ]T , Ψ̂1 = [p̂T1 . . . . , p̂

T
n+1]T . (34)

Next find Pτ that minimizes the error between Ψ̂1 and Ψ̂0Pτ ,
using a constrained least-squares formulation:

minimize
Pτ

∥∥∥Ψ̂1 − Ψ̂0Pτ

∥∥∥
F

subject to Pτ,ij ≥ 0, i, j ∈ {1, . . . ,M}
M∑
j=1

Pτ,ij = 1, i ∈ {1, . . . ,M}.

(35)

The problem (35) is a convex quadratic programming
problem and yields a unique minimum that can be solved
using gradient-descent or interior point methods. Unlike
Ulam’s method, this method is a multi-pass approach, which
gives more accuracy with short time steps. It also has a
distinct advantage over Ulam’s method in stochastic systems,
since there a very small increment in Wiener noise with a
short time step. By solving for Pτ and exploiting Theorem
2, we can approximate the eigenvalues and eigenfunctions of
the infinite-dimensional operator Pτ . Henceforth we refer to
the problem (35) as Constrained Ulam DMD (CU-DMD).

IV. NUMERICAL SIMULATIONS

CU-DMD is demonstrated on three different dynamical
systems. First, consider a second-order linear system:

ẋ = Ax, (36)

where x ∈ R2 and A =

[
0 1
−a −b

]
. The parameters a = 0.5

and b = 0.1 are chosen to produce damped oscillations.
We have chosen time step τ = 0.1 and a 40-by-40 grid,
i.e., a total of 1600 grid-cells. For this system, if λ1,2
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Fig. 1: Second-order linear system (36): (a) dominant spectra and
(b) eigenfunction corresponding to λ = 0.89 + i0.06 (red circle).
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Fig. 2: Van der Pol system (37): (a) dominant spectra with unity
eigenvalue circled and (b) the corresponding eigenfunction.

are the eigenvalues of exp(τA) with left eigenvectors w1,2,
then λ′ = kλ1 + lλ2 for k, l ∈ R is a Koopman eigen-
value with eigenfunction φ(x) = (w∗1x)k(w∗2x)l [6], [13].
Moreover φ(x) is also a PF eigenfunction with eigenvalue
λ = −λ′ − tr(A) [14], if |λ| ≤ 1. In this case λ2 =
λ1 and tr(A) = −0.1. Choosing (k, l) = (−0.8, 0) and
(k, l) = (−0.4,−0.3) so that |λ| < 1 produces two PF
eigenvalues. Table I compares the exact eigenfunctions with
those computed by CU-DMD using the error averaged over
the state space. CU-DMD outperforms Ulam’s method for
time step τ = 0.1. Moreover, the dominant 200 eigenvalues
and the approximated eigenfunction corresponding to λ =
0.89− i0.06 are shown in Fig. 1.

TABLE I: Error comparison for linear system (36)

PF Eigenvalue Error
Ulam’s method CU-DMD

0.89± i0.06 0.45 0.11
0.79± i0.05 0.51 0.14

Next, consider the (scaled) Van der Pol oscillator system:

ẋ1 = x2
ẋ2 = m(c− x21)x2 − x1.

(37)

where m = 2 and c = 0.2. The time step is τ = 0.1 and
the grid is 40-by-40. The approximate spectra of the 100
dominant eigenvalues and the eigenfunction corresponding
to λ = 1 are shown in Fig. 2. The eigenfunction traces out
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Fig. 3: The stochastic Van der Pol system (37) with noise (38):
(a) dominant spectra with unity eigenvalue circled and (b) the
corresponding eigenfunction.

Fig. 4: The stochastic double-gyre system (39) approximated eigen-
function corresponding to unity eigenvalue.

a limit cycle, as expected.
To demonstrate CU-DMD for a stochastic system, we

chose a time-homogeneous Itô stochastic differential equa-
tion of the form

dxt = f(xt)dt+
√

2σdwt, t > 0, (38)

where dwt is the standard Wiener increment and σ =
0.1 is the variance parameter. The drift field f(x) is the
deterministic Van der Pol system (37). The dominant spectra
and the eigenfunction corresponding to the unity eigenvalue
for the stochastic Van der Pol system are shown in the Fig.
3; the eigenfunction is not entirely concentrated on the limit-
cycle due to the diffusion term. Diffusive behavior is also
demonstrated using a double gyre system [5] corrupted with
a Wiener noise. Here the drift field is

f(x) =

−πa sin
(πx1
s

)
cos
(πx2
s

)
− µx1

−πa cos
(πx1
s

)
sin
(πx2
s

)
− µx2

 , (39)

where a = 0.2, s = 1, and µ = 0.1. For the deterministic
double-gyre system, the eigenfunction corresponding to unity
is singular (concentrated on the stable equilibria) and not
shown here due to space constraint. For the stochastic case,
the eigenfunction spreads out from the stable equilibria as
illustrated in Fig. 4.

V. CONCLUSION

This paper provides a new approximation method for
computing eigenvalues and eigenfunctions of the Perron-
Frobenius (PF) operator by combining the accuracy of

Extended Dynamic Mode Decomposition and the Galerkin
projection used in Ulam’s method. The CU-DMD algorithm
successfully approximates the PF operator and its eigenfunc-
tions for smaller time steps than Ulam’s Method. CU-DMD
utilizes time-series data from Monte Carlo simulations and
constrained quadratic programming to generate a Markov
state-transition matrix to approximate the PF operator. The
analytical justifications for the Galerkin projection and the
eigenfunction approximation from the basis functions are
provided. The algorithm is demonstrated on several non-
linear systems with and without diffusive Wiener noise,
and captures the modes of the system reasonably well.
Potential future work includes the convergence proof for the
approximation in the Hilbert space of the transfer operators.
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