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Abstract— This paper presents a path-planning control for
an intermittently actuated oceanographic vehicle in a time-
invariant flow field based on Lagrangian measurement data.
The oceanographic focus is an idealized ocean-eddy system
represented by two point vortices. We partition the model of the
underlying flow into distinct invariant regions (in a co-rotating
frame) and use this geometry to plan informative vehicle tours.
Driving along the invariant-set boundaries increases the overall
empirical observability of the flow field parameters. We validate
the importance of invariant sets and set boundaries using
the local unobservability index. To tour the boundaries of
invariant sets, a novel control law drives the vehicle to a desired
streamline value; another controller is based on the idea of
inserting a virtual cylinder into the flow. Numerical experiments
in the two-vortex system show the proposed Boundary-Touring
Algorithm yields planned paths with high observability of the
flow field parameters as compared to random drifter orbits.

I. INTRODUCTION

Due to strong ocean-atmosphere coupling, improved un-
derstanding of the ocean through informative measurements
may lead to better predictions in atmospheric climate vari-
ations on a wide range of time scales [1],[2]. Targeted
observations are needed to cope with the ocean vastness and
the corresponding sparsity of subsurface measurements. Al-
though the Argo system (a global array of drifting platforms
that capture temperature, current, and salinity data on vertical
dives [2]) already provides subsurface measurements, these
measurements are incredibly sparse—only 3,750 floats in
361,900,000 square kilometers of ocean [2],[3]. Observation
sparsity motivates the need for sampling with long-endurance
autonomous vehicles like underwater drifters (passive vehi-
cles that operate at constant depth) and ocean gliders (steered
vehicles that operate at variable depths) [4],[5],[6] in the
design of the next global ocean observing system. While
the benefits of underwater gliders for adaptive sampling
have been established [4], there exists no comprehensive
framework that takes advantage of ocean-current forecasts
for autonomous and coordinated path planning of multiple,
minimally actuated vehicles.
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A path-planning framework for autonomous oceano-
graphic vehicles should address transport barriers formed
by coherent structures. Coherent structures in strong flows
such as ocean eddies and gyres create (almost) invariant sets
or entrained regions; a vehicle cannot leave the set without
exerting control. There are many techniques for identifying
coherent structures in flows [7]. For example, Lagrangian
Coherent Structures (LCS) are calculated by finding the local
maxima in a Finite Time Lyapunov Exponent (FTLE) field
[8]. Another approach uses the stochastic Frobenius-Perron
operator to examine the transition probabilities between spa-
tially discretized cells [7]. Methods also exist for quantifying
the uncertainty of such structures [9].

We examine the invariant sets created by an idealized
point-vortex model, identified through the stable and unstable
manifolds associated with saddle points in the flow. Two
point vortices with the same-signed circulation strength co-
rotate in relative equilbrium. When viewed in a co-rotating
frame, the flow is time-invariant and six invariant sets are
visible. The two-vortex system is the focus of this paper
because it represents an idealized model of a pair of ocean
eddies, and it is a natural extension of prior works on
observability-based path planning in a uniform flow [10] and
in the presence of a single, stationary point vortex [11].

Coherent structures are also important for long-endurance
path planning [12], coverage and sampling [13], and under-
standing ocean transport processes in general [6]. Mallory
et al. [14] used the geometric structure of a flow field
partitioned along LCS boundaries along with a distributed
hybrid-control strategy to maintain a desired distribution of
sampling platforms across multiple invariant regions. Other
prior works have examined energy [12] and time-optimality
[15] of path planning for point-to-point navigation of a self-
propelled vehicle using stochastic-optimization and level-set
methods.

For extended-duration, ocean sampling missions, the as-
sumption made in prior works that a vehicle is continu-
ously self-propelled may not hold. For example, sampling
platforms such as drifters passively advect with the flow.
Salman et al. [16] investigated Lagrangian data assimilation
using flow geometry to optimize drifter launch locations. In
this paper, hypothetical vehicles use intermittent actuation
to navigate like gliders, while spending most of the time
drifting.

We propose sampling a two-vortex system along invari-
ant set boundaries to improve the overall observability of
the flow field parameters. We motivate this proposal using
tools from nonlinear systems theory including the empirical



observability Gramian. Krener and Ide [17] previously ap-
plied empirical observability to Lagrangian and Euler sensor
deployment in a point-vortex flow. We extend their analysis
of drifter launch location to consider the observability of
complete orbits within invariant sets. Applying tools for the-
oretical hydrodynamics, including the Milne-Thomson circle
theorem [18], we create guidance vector fields for vehicles
to transition between adjacent boundaries by deforming flow
streamlines around a virtual cylinder. We also create a novel
control law for driving a vehicle to a desired streamline
value. Using these control laws, we propose a boundary-
sampling algorithm to generate vehicle tours through a two-
vortex system with infrequent actuation.

The contributions of this paper are (1) a control law for
guiding a vehicle to a specified streamline value of a time-
invariant flow field; (2) a novel guidance strategy based on
the deformation of flow streamlines around a virtual cylinder;
and (3) a path-planning framework that guides a vehicle to
actuate between boundaries of invariant sets for improved
observability of a two-vortex system. Comparison of the
overall empirical observability shows that a guided vehicle
achieves higher empirical observability of the flow field
parameters than any drifting vehicle (as determined through
a Monte Carlo sampling of drifter deployment locations),
without the need for launch optimization.

The outline of the paper is as follows. Section II provides
background on invariant sets in a time-invariant flow field
and introduces empirical observability analysis. Section III
describes one control law for guiding an autonomous vehicle
to a specified streamline value and another for guiding
a vehicle around a saddle point location using a virtual
cylinder. Section VI presents a numerical implementation
of the path-planning algorithm, demonstrating the efficacy
of this method by comparing a guided vehicle to drifting
vehicles. Section V summarizes the paper and describes
ongoing research.

II. INVARIANT SETS AND OBSERVABILITY

A. Invariant sets in a two-vortex flow

For two-dimensional incompressible flow, the flow-field
velocities vx and vy are conveniently expressed in terms of
the stream function ψ(x, y, t) by [19]

vx =
∂ψ

∂y
(x, y, t) and vy = −∂ψ

∂x
(x, y, t). (1)

If the flow is time-invariant, then ψ = ψ(x, y). We make
the correspondence z = x+ iy between the two-dimensional
(x, y) plane and the complex plane for compactness, so that
ψ = ψ(z, z). (The overbar denotes conjugation.)

A point vortex is a mathematical construct in potential flow
theory in which all vorticity (two times the angular velocity)
of the surrounding fluid is concentrated in a singularity at its
center [19]. In this way, the flow field is irrotational (free of
vorticity) everywhere except at the center of the point vortex.
The irrotational flow field permits convenient mathematical
manipulation due to its linearity and the existence of a
potential function for the flow velocity. For two point vortices

located at z1, z2 with circulation strengths γ1, γ2, the flow
field is generated by the stream function [19]

ψ(z, z) = − 1

2π
(γ1 log|z − z1|+ γ2 log|z − z2|) . (2)

A vehicle that drifts passively with the flow has dynamics
described by [19]

ż = ẋ+ iẏ =
∂ψ

∂y
− i∂ψ

∂x
= −2i

∂ψ

∂z̄
, (3)

where we use the definition of the complex partial-derivative
operator

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (4)

Since two vortices with same-signed circulation strength
co-rotate at an angular rate of ω = γ1+γ2

2π|z1−z2|2 [19], it is
often advantageous to consider the dynamics in a co-rotating
frame, under the change of variables z = ξei(ωt+φ) + zcv ,
where φ is an initial phase angle and zcv is the center of
vorticity (center of the rotating frame). The dynamics of a
drifting vehicle become

ξ̇ = −2i
∂ψ

∂ξ
− iωξ = −2i

∂ψR

∂ξ
, (5)

where the co-rotating frame stream function is

ψR = ψ +
ω

2
|ξ|2. (6)

The streamlines associated with ψR are shown in Fig. 1(a),
along with the fixed points of the flow. We numerically
implement a Rankine vortex, in which the flow speed is
scaled linearly down to zero close to the center to handle
the singularity there.

In the study of transport in dynamical systems (see,
e.g., [20]), it is convenient to enumerate naturally occurring
invariant regions of the differentiable manifold on which the
dynamical system evolves. More precisely, let M denote
the differentiable manifold in the phase space of the system
dynamics. Let region Ri, i = 1, . . . , Nr, be a connected
subset of M with boundaries consisting of the boundaries
of M (possibly at infinity) and/or segments of stable and
unstable manifolds of the system dynamics [20]. M is then
the union of the invariant regions [20], i.e., M =

⋃Nr

i=1Ri.
A key hypothesis of this paper is that driving a vehicle
along the boundaries of multiple invariant regions provides
valuable information for flow field estimation that may be
unobtainable by drifting trajectories that are confined to
individual regions of the flow.

Fig. 1(c) and 1(d) show examples of invariant regions
induced by two co-rotating vortices of equal and unequal
strength, respectively. These figures were generated by the
following procedure for region delineation based on flow-
field geometry. First, identify fixed points in the flow field.
For the two-vortex problem, fixed point locations are de-
termined analytically (see, e.g., [19]). In the case of flow
fields for which there is an associated stream function, the
fixed points are either centers or saddles. The second step is
to determine the stable and unstable manifolds of the saddle



Fig. 1: (a) The two-vortex system in a co-rotating frame.
Blue lines are streamlines of the flow and black lines are
separatices. Red markers indicate the vortex singularities,
green circles are centers, and green diamonds are saddle
points. (b) Log of the unobservability index for orbits in
the two-vortex system. (c)-(d) Invariant regions of the flow
field around a pair of co-rotating vortices with equal strength
and unequal strength, respectively.

fixed points. When a stream function is available, the stream-
function values of the stable and unstable manifolds are the
stream-function values of the corresponding saddle points.
Other methods exist for calculating the stable and unstable
manifolds of a hyperbolic trajectory [21], however, these are
beyond the scope of this paper.

B. Empirical observability

In linear systems theory, if the observability Gramian
Wo(t0, t1) is nonsingular on the time interval [t0, t1], then
one can infer the initial state of the system from the output
over this interval [17]. The observability Gramian for lin-
ear systems provides a boolean answer to the question of
observability. For the nonlinear system

Ẋ = f(t,X) with Y = h(t,X), (7)

where X ∈ Rn and Y ∈ Rm, Krener and Ide [17] construct
an empirical observability Gramian Wo(t0, t1) ∈ Rnxn
based on output correlations that result from perturbing
the initial state of the system. Empirical observability is a
local, linear approximation to nonlinear observability under
perturbation of the n parameters or initial state entries that
need to be inferred. Wo(t0, t1) is given by its (i, j)th entries
[11],[17]

Wo(i, j) =
1

4εiεj

∫ t1

t0

[
Y +i(τ)− Y −i(τ)

]T × (8)[
Y +j(τ)− Y −j(τ)

]
dτ, for i, j = 1, . . . , N,

where Y ±i(τ) is the output at time τ that results from initial
condition X±i(t0) = Z(t0)±εiei, which has been perturbed
along the direction of the ei unit vector. The reciprocal of

the smallest singular value of Wo(t0, t1) provides a measure
of how difficult it is to infer the initial state by observing the
output on the interval [t0, t1] [17]. This measure is called the
(local) unobservability index ν , 1/σmin.

We utilize the unobservability index ν to quantify the
informativeness of various orbits in the two-vortex system
by letting

X=(Re(z), Im(z),Re(z1), Im(z1), γ1,Re(z2), Im(z2), γ2)T,

where zi and γi are the inertial location and circulation
strength of vortex i = 1, 2. The unobservability index is cal-
culated by considering perturbations of flow field parameters
z1, γ1, z2, and γ2. Lagrangian measurements of the vehicle
positions are taken, i.e., Y = [Re(z), Im(z)]T .

Orbits are of interest, both for drifting vehicles on ex-
tended deployments and for vehicles that actuate infre-
quently. Krener and Ide [17] examined the unobservability
index over one period of the two-vortex system to assess
launch locations for Lagrangian drifters. We have extended
this analysis to closed orbits in the following manner. We
first performed a grid-based unobservability analysis similar
to [17], with a longer time horizon that ensures all of the
drifters in the domain achieve a full orbit. (The integration
time was 24π, permitting approximately one period for
the longest-duration orbit and more than one period for
other orbits.) For each orbit considered, we assigned to the
curve the average value of the unobservability index from
the grid-based analysis. The grid-based analysis provides
an estimate of the best launch location, whereas the orbit
averages provide estimates from which dependence on the
initial conditions has been removed. Fig. 1(b) presents the
results of this calculation for 1000 orbits from random initial
conditions selected from a uniform distribution over the
domain. The least informative orbits in the two-vortex system
occur near the center fixed points in regions 2 and 3. Fig.
1(b) shows that the most informative orbits occur very close
to the separating boundaries between invariant sets. This
observation motivates the sampling algorithm in Section IV.

III. NAVIGATION OF SET BOUNDARIES

A. Driving to a desired streamline value

To plan a vehicle’s path within a flow field, consider an
actuated vehicle that moves according to the sum of the drift
vector field (generated by a time-invariant stream function)
and a control vector field, i.e.,

ż = −2i
∂ψ

∂z

∣∣∣∣
z

+ u. (9)

(For the co-rotating frame, replace ψ with ψR, z with
ξ, and u with uR.) These dynamics are intended only to
generate trajectories that will be tracked by onboard, lower-
level controllers. Vehicle-specific dynamic constraints (e.g.,
limitations on speed or turning control) are beyond the scope
of this paper. We include a saturation sat(u;umax) as a
placeholder for such physical limitations.

Suppose we seek to drive the vehicle (i.e., design a path)
to a desired stream function value ψdes

R in the co-rotating



frame. The following proposition provides a control uR that
asymptotically drives ψR to ψdes

R , provided ∂ψR

∂ξ
6= 0, which

we ensure later.
Proposition 1: For a vehicle with dynamics (9) in a flow

given by stream function ψR, the control law

uR = −K
(
ψR − ψdes

R

) ∂ψR

∂ξ

|∂ψR

∂ξ
|2

(10)

drives the vehicle to the streamline corresponding to ψdes
R ,

provided that ∂ψR

∂ξ
6= 0.

Proof: Let V , 1
2 (ψR−ψdes

R )2 be a candidate Lyapunov
function. Along trajectories of the closed-loop dynamics1,

V̇ =
(
ψR − ψdesR

)〈
2
∂ψR

∂ξ
, ξ̇

〉
= −2K

(
ψR − ψdesR

)2 ≤ 0.

Invoking the invariance principle [22] shows that all tra-
jectories converge to the largest invariant set for which
V̇ = 0. The invariance condition ψR − ψdes

R ≡ 0 implies
that ψR = ψdes

R in this set.
Note that for a planar flow defined by a stream function,

only center and saddle fixed points are possible. A center
fixed point is either a local minimum or maximum of
ψR. If the vehicle begins near (but not on) a center and
ψdes
R represents a streamline away from the vehicle and the

center, then the coefficient −K(ψR − ψdes
R )/|∂ψR

∂ξ
|2 of the

gradient ∂ψR

∂ξ
is negative for a local maximum and positive

for a local minimum; in either case, uR always drives the
vehicle outward from the center. Saddle points are avoided
by introducing virtual cylinders in Section IV that prevent
vehicle intrusion.

The control effort under (10) is zero when ψR = ψdes
R ,

which implies the vehicle acts as a drifter when the desired
streamline is reached. All calculations in this paper are
performed in the inertial frame, because observability calcu-
lations require parameter perturbations that affect the rotation
rate ω. The frame transformation is u(z) = uR(ξ(z)) ∂ξ∂z , and
control law (10) described in the inertial frame using (6) is

u=−K
(
ψ(z)−ω

2
|z−zcv|2−ψdes

R

) ∂ψ
∂z + ω

2 (z−zcv)
|∂ψ∂z + ω

2 (z−zcv)|2
. (11)

B. Virtual cylinders for saddle avoidance

If the flow field is described using a complex potential
w(z), then according to the Milne-Thomson circle theorem
[18], the complex potential that would result after placing a
cylinder of radius a at the origin is

W (z) = w(z) + w

(
a2

z

)
. (12)

(w
(
a2

z

)
is found by forming the complex conjugate w(z)

and subsequently replacing z everywhere with a2

z [18].)
Proposition 2 (Circle theorem using the stream function):

Given a flow described by stream function ψ(z), the stream

1〈a, b〉 = Re(ab) denotes the inner product of complex scalars a and b.

function that results after placing a cylinder of radius a in
the flow at the origin is

Ψ = ψ (z)− ψ
(
a2

z

)
. (13)

Proof: w(z) may be expressed as w(z) = φ(z, z)+
iψ(z, z), where ψ is the streamfunction. The velocity po-
tential and stream function are real-valued, but they may be
expressed as functions of z and z, i.e.,

Φ+iΨ=(φ(z, z)+iψ(z, z))+

(
φ

(
a2

z
,
a2

z

)
− iψ

(
a2

z
,
a2

z

))
.

Suppressing conjugate arguments2 implies (13).
Corollary 1 (Circle theorem for an off-origin cylinder):

Given a flow described by stream function ψ(z), the stream
function that results after placing a cylinder of radius a at
location c in the flow field is

Ψ(z) = ψ(z)− ψ
(

a2

z − c
+ c

)
. (14)

Proof: Consider the change of coordinates, ẑ = z − c.
Define ψc(ẑ) to be the stream function in terms of ẑ, i.e.,
ψc(ẑ) = ψ(ẑ + c). Applying the circle theorem to ψc yields

Ψc(ẑ) = ψc(ẑ)− ψc
(
a2

ẑ

)
= ψ(ẑ + c)− ψ

(
a2

ẑ
+ c

)
.

Returning to z coordinates with Ψ(z)=Ψc(z−c) yields (14).

Fig. 2(a) shows how the virtual streamlines are deformed
by inserting a virtual cylinder into a two-vortex flow at ξc.
Note that for this cylinder size and location, the invariant
regions of the flow are preserved, i.e., a vehicle following
these guidance streamlines would not switch sets. To allow
for additional flexibility in streamline deformation, we in-
clude circulation κ so that the stream function becomes

ΨR(ξ) = ψR(ξ)−ψR
(

a2

ξ − ξc
+ ξc

)
+κ log

|ξ − ξc|
a

. (15)

The inclusion of circulation κ is equivalent to spinning the
cylinder at a rate of κ

2πa2 [18]. Fig. 2(b) and 2(c) show the
guidance streamlines now cross boundaries near the cylinder.

When the vehicle is sufficiently close to the cylinder (i.e.,
within activation radius ra = 2a), the cylinder control is
engaged. The cylinder-control input to the vehicle is the
combination of the flow associated with the guidance stream
function ΨR minus the actual flow, i.e.,

uR = −2i

(
∂ΨR

∂ξ
− ∂ψR

∂ξ

)
. (16)

Fig. 2(d) shows the parameters associated with the
cylinder-control law used to navigate saddles. The locations
of the region boundary intersections with the activation area
are maintained for each cylinder. The vehicle avoids flow
stagnation points on the surface of the cylinder and turns
right or left by choosing the sign of κ accordingly. (Positive
(resp. negative) κ corresponds to counterclockwise (resp.

2We suppress conjugate arguments for notational simplicity. w(z) is
analytic and does not depend on z, but ψ can depend on z and z.



Fig. 2: (a) Guidance streamlines after addition of virtual
cylinder; (b)-(c) guidance streamlines for a virtual cylinder
with counter-clockwise and clockwise circulation, respec-
tively. (d) Geometry of the cylinder-control law at a saddle
point. Black lines represent the separating boundaries in the
actual flow field. Red circles represent stagnation points.

clockwise) circulation, which generates a left (resp. right)
turn.) As shown in Fig. 2(d), the vehicle calculates the angle
between qi and qf , which are the initial and final intersection
points used in the cylinder control. The qf point is selected
to be either ql or qr, for a left or right turn. The cylinder
control is active until the angle between qi and the vehicle
exceeds one half of the angle between qi and qf , ensuring
the vehicle has steered away from the saddle.

IV. BOUNDARY-TOURING ALGORITHM

This section presents a numerical algorithm for touring the
invariant set boundaries of a known two-vortex system, with
an idealized sampling vehicle. The vehicle is modeled as a
Lagrangian sensor, i.e., it advects with the flow, collecting
measurements of its own position subject to infrequent
actuation. The algorithm drives the vehicle around a tour,
which is a planned path along region boundaries.

The Boundary-Touring Algorithm (BTA) assumes the ve-
hicle has a region map based on the partitioning described
in Section II. The region map yields a connected region
graph that is useful for tour design. The undirected region
graph G = (V,E) is constructed with the region labels as
the vertices, so that the vertex set is V = {1, . . . ,M} and
the edge set E consists of all separating boundaries. Only
adjacent regions produce edges; two regions are adjacent if
they share a boundary, excluding pairs that share only a point.
The values of the stream function ψi,j between regions i,j
are stored as a symmetric adjacency matrix A, known to the
vehicle, where ai,j = ψi,j if vertices i,j have an edge in
E and ai,j = 0 otherwise. Each vehicle also maintains a
list of predetermined virtual-cylinder locations (in the co-
rotating frame) and of locations of boundary intersection

(a) (1, 2, 4, 5, 4, 6, 4, 3, 1) (b) (1, 2, 4, 5, 4, 2, 1)

Fig. 3: Region graphs and tours for the two-vortex system.

TABLE I: Boundary-Touring Algorithm

1 Identify invariant sets (regions) D = {R1, . . . ,RM} and
construct region graph G = (V,E,A).

2 Get current region: k = getRegion(z,D).
3 Generate tour T (G)← (Rk,Rj , . . . ,Rk) to visit a desired

subset of vertices, starting at k.
4 Get next region n in tour T .
5 while 1 do

Converge to streamline
6 Set ψdes = ψk,n until encountering a cylinder activation area.

Cylinder interaction
7 Set qi = qk,j to be the closest intersection point of the

separating boundary and activation area;
8 Select qf =qk,n to visit next region n if available, else turn to

visit another cylinder;
9 Select sign of circulation κ based on turn direction;

10 while |6 (qi, ξ)| < 1
2
| 6 (qi, qf )| do

11 uR = −2i
(
∂ΨR

∂ξ
− ∂ψR

∂ξ

)
.

12 uR = 0.
13 Get current region: k = getRegion(z,D).
14 if k = n then
15 Get next region n in tour T .

16 Repeat: Go to line 5.

points for each cylinder’s activation area (see Fig. 2(d)). For
an estimated flow, these locations are based on the best-guess
parameter values and may be refined iteratively.

A vehicle tour is a cycle in the graph (i.e., a path that
begins and ends at the same vertex) that passes through a
subset of the vertices. A vehicle is able to query its current
region using its location and the region map. A vehicle visits
a region when it briefly enters it during boundary switching
near a saddle point. Fig. 3(a) and 3(b) show the region graph
for a two-vortex system and two possible sampling tours.
The tour in Fig. 3(a) visits all of the boundaries, whereas
the tour in Fig. 3(b) visits only a subset of the boundaries.
For equal-strength vortices, γ1 = γ2, the tour in Fig. 3(b)
may be sufficient for high observability due to symmetries in
the flow field. Determining a sufficient tour for observability
purposes is the subject of ongoing work.

Table I presents the overall approach to boundary touring.
There are two main subroutines: (1) streamline convergence
and (2) cylinder interaction. As long as sampling is required,
the vehicle cycles through tour T as follows. First it con-
verges to the streamline associated with a boundary. When
a vehicle encounters a cylinder activation area, it uses the
cylinder control to avoid a saddle point. Fig. 4(a) illustrates
the BTA for the two-vortex system from an initial location
in region 1, for the tour T = (1, 2, 4, 5, 4, 2, 1). Fig. 4(b)
presents the control cost for this portion of the tour relative
to the maximum flow speed the vehicle may encounter in
the domain. (The maximum is well-defined due to the use of
Rankine vortices.) Note infrequent actuation occurs and |u|
is negligible (defined here to be |u| < 0.005 max(|vx+ivy|))



Fig. 4: (a) A vehicle performing the BTA for tour (1, 2, 4,
5, 4, 2, 1). Yellow circles indicate cylinder activation areas,
and magenta circles are virtual cylinders. (b) The associated
control cost for this portion of the simulation.

TABLE II: Unobservability indices for Wo(0, 24π). (Note:
lower is better.)

N Minimum Mean Maximum

Gridded analysis 10000 1.95× 10−4 18.62 4.86× 103

Orbit analysis 1000 1.26× 10−2 17.07 564.67

Tour (1,2,4,5,4,6,4,3,1) 100 1.57× 10−4 0.0045 0.0390

Tour (1,2,4,5,4,2,1) 100 8.46× 10−5 0.0043 0.0388

for large portions of the tour. For example, the vehicle in Fig.
4(a) spent 79.1% of its time drifting.

To assess the performance of the BTA, we compare a
controlled vehicle to a drifting vehicle by calculating the
empirical observability along each trajectory. The empirical
observability Gramian [17] is defined for system (7) along
candidate trajectories. For a controlled trajectory, we calcu-
late Wo(0, 24π) by taking u(t) (found in simulation of the
vehicle tour) as a known function of time. The controlled
vehicle tour in Fig. 4(a) yields an unobservability index of
1.42×10−2 (high observability) for the same time horizon
used for the drifter orbit evaluation of Fig. 1(b).

A comparison of the grid-based observability analysis, the
orbit-averaged analysis, and the BTA for two candidate tours
is shown in Table II. For each tour, 100 random (uniformly
distributed) initial conditions in region 1 were selected. Both
tours produced trajectories that are more observable than the
best drifter trajectories. The mean controlled values were also
more observable than the mean drifting values, which implies
the BTA can yield trajectories with high observability, with-
out launch optimization and with infrequent actuation. The
BTA is also amenable to online re-planning for estimated
flow fields, whereas drifter launch optimization is not.

V. CONCLUSIONS AND ONGOING WORK
This work describes a principled approach for touring

invariant set boundaries of a two-vortex flow field using
infrequent actuation. The transition of the vehicle between
boundaries is accomplished using a novel streamline control
law and the inclusion of a virtual cylinder that creates guid-
ance vectors from virtual streamlines. The cylinder appears
in the flow in front of the vehicle at locations of saddle
points. In a numerical experiment, the boundary sampling
algorithm achieves high empirical observability of the flow
field parameters without the need for launch optimization. In

ongoing work, we aim to extend this research to understand
the relative benefits of tours that do not visit all boundaries
and to understand the roles that multiple vehicles may play
in boundary coverage.
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