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Modeling and control of remotely operated underwater vehicles is a challenging

problem that depends greatly on how the dynamics of their thrusters are compen-

sated. In this thesis a novel method for characterizing thruster dynamics using a

six-axis load cell is presented. Multiple dynamic models are characterized with this

test setup. Model-based control design strategies are used to compensate for nonlin-

earities in the dynamics, which include input dead zones and coupling with fluid dy-

namics. Multiple estimation methods are presented to construct an estimate of fluid

velocity which is handled as an unmeasured state. The different models, controllers,

and estimators are comparatively evaluated in closed-loop experiments using the

six-axis load cell to measure thrust tracking performance. Full vehicle simulations

using the experimentally characterized models provide additional opportunities for

comparison of control and estimation strategies. The potential tracking control ben-

efits from the variety of presented thruster dynamics compensation strategies are

evaluated for a remotely operated underwater vehicle with multiple thrusters.
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Chapter 1: Introduction

1.1 Motivation

Remotely operated vehicles (ROVs) are widespread and versatile, being ap-

plicable to deep-sea exploration and mining [1], marine research [2], hull inspec-

tion [3], and wreckage surveying [4]. To accomplish these tasks, ROV control is

typically accomplished through a variety of methods ranging from direct human-in-

the-loop control to autonomous, logic-driven control [5]. Controllers for autonomous

or semi-autonomous operation have been designed through a variety of feedback

frameworks, including feedback linearization [6, 7], robust control [8, 9], and adap-

tive control [9, 10].

Most ROV operations are accomplished by semi-autonomous or full human

control, whereby direct commands from an operator are either processed by a con-

troller or fed directly to individual thrusters [5]. Direct-controlled ROVs typically

have orthogonal thruster configurations that allow for intuitive translations from

commands to thrusts, but such actuator placement can complicate the vehicle de-

sign. As a result, fewer thrusters are often used, thus limiting maneuverability

of the ROV [5]. To maintain generality, this work analyzes an ROV that has a

specific thruster placement configuration to accomplish fully actuated control. An
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auto-stabilizing control system is assumed to process user commands into setpoints.

To improve tracking performance of user-defined trajectories, actuator dynam-

ics are often important factors to take into account for controller design [11–13].

This often involves creating a feedback loop on the thrust output of ROV thrusters,

which is not a directly measurable quantity in practice [14]. Instead, motor dynam-

ics of thrusters are typically modeled by measurable states like propeller speed which

typically can be measured [15]. This means a mathematical model of thrust must

be used based on thruster states to determine what commands must be given to

achieve a desired thrust. A variety of thrust models have been proposed and remain

a common point of research for accurately describing thruster behavior [11, 12,16].

1.2 Relation to State of the Art

To enhance controller performance and reduce limit-cycle behavior for ROVs,

actuator dynamics are typically accounted for in the control design [8, 11, 13, 15,

17–19]. A variety of methods for modeling thrusters for underwater vehicles have

been developed in previous work. A two-state axial flow dynamic model [11, 12,18]

accounts for thrust overshoot but is limited to uni-directional flow characterization.

A two-state rotational flow model [13] has no more model accuracy than the axial

flow model. Lastly, a multi-directional axial flow model [20] requires a large number

of parameters to be identified with extensive system testing. This work initially

expands upon a single-state voltage-driven thruster model presented in [8]. The

system analyzed in this thesis uses an analog voltage signal (throttle) as the control
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input for the thruster dynamics, which also exhibit a dead zone nonlinearity. After

the single-state dynamics are analyzed, the control results are extended to a higher-

order system that accounts for axial fluid velocity.

In previous work, robust and adaptive control techniques have been used for

dead zone compensation in the absence of well-identified model parameters [21,22].

This work utilizes feedback linearization to compensate for nonlinearities in thruster

dynamics, because high-quality propeller speed, thrust, and torque data obtained

from a six-axis Gough-Stewart platform load cell are available [23].

When extended to higher-order models, thruster dynamics become more diffi-

cult to model and compensate in controller designs [8, 18,20,24]. Thrust losses due

to fluid velocity typically can be well modeled but must be estimated without mea-

surements in practical settings [12,14,16,18]. This complication typically prohibits

backstepping designs that could be used for simpler single-state models, and estima-

tion methods also can present issues [25]. An extended Kalman filter (EKF) could

be easily implemented on the nonlinear system, but with limited measurements and

a highly nonlinear model this risks having the filter diverge [26,27]. This work opts

for a nonlinear observer form for estimating axial velocity in hydrodynamic thruster

models that has global convergence guarantees in order to avoid issues presented by

the EKF [18,28].

To identify models for thrusters, often single-axis Bollard pull load cell systems

are used to measure thrust [11, 17, 29, 30]. Such loading systems can be prone to

error and do not offer characterization of other loads like reaction torque, which may

be characterizing in multi-axis loading setups [13,23]. This work uses a six-axis load
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cell oriented in a Gough-Stewart platform design to measure force and moment loads

in multiple directions, which allows versatility in characterization capability [31–34].

Gough-Stewart platform-based load cell designs are well documented and analyzed

systems, and offer capability to resolve forces and moments along principal axes

with great accuracy compared to Bollard systems [31].

1.3 Technical Approach

This work is presented with relevance to the application of ROVs to aquatic

imaging, the primary function of an ROV under development by the National

Geographic Society (NGS) shown in Fig. 1.1. Underwater filmmaking requires

smooth setpoint tracking with human-in-the-loop operations. Reference setpoint at-

titudes and velocities are typically generated through user input and, for complicated

thruster configurations, controllers are capable of effectively tracking commanded

trajectories. This is the framework assumed when addressing control problems in

this work. Often ROVs maintain only active closed-loop control of three or four

degrees of freedom (DOFs), while allowing roll and pitch parameters to be passively

stabilized by relying on the natural stability of the vehicle due to the relative loca-

tions of the centers of gravity and buoyancy [5,7,8,35,36]. However, for the purposes

of deep-sea imaging, it is useful to have full user control of all attitude parameters,

similar to a multi-rotor aerial drone, in order to obtain the desired cinematic effects.

Thruster dynamics are compensated by model-based nonlinear control strate-

gies in this work. This is typically done using at least the propeller angular velocity
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Figure 1.1: Computer rendering of the ROV under development by the National
Geographic Society.

as a state, if not with axial fluid velocity through the thruster as another state.

The angular velocity is typically measurable via tachometers common in thruster

motors, and is also the only directly actuated state. Fluid velocity, in contrast, is

not typically directly measurable outside of experimental settings, and is typically

only indirectly actuated via the thrust output of the thruster. Due to these factors,

estimation methods are necessary to construct an estimate of velocity without direct

measurements of the state for the purposes of compensation of fluid velocity effects

on thrust [14,18,37].

Modeling thruster dynamics and thrust output was completed with a six-

axis load cell setup in a Gough-Stewart platform orientation [23]. Fluid velocity

measurements for hydrodynamic characterization were obtained with an acoustic
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Figure 1.2: Images of Tecnadyne thruster used for testing and modeling in this work.

Doppler velocimeter (ADV). Both the load cell and ADV were utilized in control

experiments to have access to ambient fluid velocity measurements for estimation as

well as thrust measurements for performance evaluation. A Tecnadyne model 280

thruster was used for all characterization and control experiments (see Fig. 1.2).

1.4 Contributions of Thesis

The contributions of this thesis are:

1. A framework for system identification of multiple dynamic thruster models

using a six-axis load cell in a Gough-Stewart platform arrangement. Data

processing methods for the load cell are outlined and models are fit using

optimization techniques. Extensions to the characterization of thrust losses

due to fluid velocity is done with acoustic Doppler velocimeter measurements

in tandem with load cell measurements.
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2. A nonlinear control law for throttle-controlled thruster dynamics with input

dead zones using experimentally obtained parameters. Lyapunov analysis is

used to prove stability of the closed-loop thruster dynamics.

3. Implementation of the feedback-linearizing and dead-zone-compensating thruster

controller for the six degree-of-freedom (DOF) attitude and velocity setpoint

tracking of an ROV with throttle-controlled thruster dynamics.

4. A practical extension of a nonlinear observer previously derived to construct

an estimate of the axial fluid velocity through the propeller duct of a thruster.

The extension includes considerations for noise present in measurements that

were not considered in the design of the original observer. Incorporation of

estimates into the dead-zone-compensating controller is addressed for fluid

velocity compensation.

5. Experimental evaluation of output feedback control methods using the dead-

zone-compensating controller combined with the nonlinear observer, as well as

a variant with noise considerations. Thrust tracking performance is compared

between controller/estimator combinations based off of different dynamic mod-

els.

6. Simulated performance of a full vehicle tracking control scenario using all

controller/estimator/model combinations to evaluate the potential benefits of

compensating for thruster dynamics with varying levels of complexity.
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1.5 Outline of Thesis

The organization of this thesis is as follows. Chapter 2 presents the full six

DOF equations of motion for a rigid-body ROV and a feedback-linearizing thrust

control law to stabilize the setpoint-tracking dynamics of the system. Chapter 3

discusses modeling and control of the rotor-speed dynamics of the thrusters using

a simple dynamic model for nonlinear feedback control. Chapter 4 outlines a more

detailed hydrodynamic model for control purposes as well as presents estimation

methods to determine the values of unmeasured fluid velocity states. Chapter 5

evaluates the closed-loop performance of previously derived controllers and estima-

tors through experiments as well as simulations and comparisons are made between

multiple control strategies. Chapter 6 summarizes the thesis and suggest future

work.
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Chapter 2: Background: Underwater Vehicle Modeling and Control

This chapter aims to provide necessary background information on underwater

vehicle dynamics and control to sufficiently motivate the work in the subsequent

chapters. Section 2.1 presents the equations of motion for a generic underwater

vehicle and necessary parameters to fully describe motion. Section 2.2 presents

a thrust control law to stabilize the closed-loop setpoint-tracking dynamics of an

underwater vehicle. The chosen control law for this system is nonlinear in order

to guarantee global or nearly global stability, but linear control schemes would also

be sufficient. Using such a control law defines a set of desired thrusts that must be

achieved by the system actuators, which motivates the analysis of thruster dynamics

in later chapters.

2.1 Underwater Vehicle Dynamics

The rigid-body dynamics of an underwater vehicle including hydrodynamic

drag and added mass parameters defined in a body-fixed reference frame are typically

expressed in terms of matrices and vectors that group common forces and moments.

The state vector for these equations is x = [x, y, z, φ, θ, ψ, u, v, w, p, q, r]T where x,

y, and z are Earth-fixed position coordinates, φ, θ, and ψ are the 3-2-1 Euler angles
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of roll, pitch, and yaw, respectively, and lastly u, v, w, p, q, and r are the respective

velocities associated with these degrees of freedom expressed relative to the body

frame [36]. It is convenient to separate the states into x = [ηT νT ]T where η

contains the position and orientation terms and ν contains the velocity and angular

rate terms. The matrix terms include: the rotation and transformation matrix

describing linear velocity and attitude rate of the vehicle body-fixed frame relative

to the Earth-fixed frame, J(η), the mass and inertia matrix (including added mass

and inertia parameters), M , the nonlinear Coriolis and centripetal matrix, C(ν), the

diagonal linear and quadratic hydrodynamic drag matrix, D(ν), and the restoring

force and moment vector that combines gravitational and buoyancy effects, g(ν).

Additionally, the external force/moment vector that combines all other effects is

denoted as τ [35]. The equations of motion are then given as [35]

η̇ = J(η)ν (2.1)

M ν̇ =−C(ν)ν −D(ν)ν − g(η) + τ . (2.2)

It is useful to separate the states further into 3-element vectors. Let η = [ηT
1 ηT

2 ]T

and ν = [νT
1 νT

2 ]T for η1 = [x, y, z]T , η2 = [φ, θ, ψ]T , ν1 = [u, v, w]T , and ν2 =

[p, q, r]T . If absolute position or orientation are not relevant, some or all of the

Earth-relative states may be omitted from the full state vector. This work focuses on

stabilization of the setpoint-tracking dynamics, where the Earth-relative coordinates

x, y, and z are not of interest for the purposes of estimation and control. Therefore,

the attitude-only state vector η = η2 will be used for most descriptions of control
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laws in the following sections.

The equations of motion given in (2.1) and (2.2) describe rigid body motion

and kinematics supplemented with added mass, drag, buoyancy, and gravitational

parameters. To describe the reference frame rotation, the 3-2-1 Euler Angle rotation

and transformation matrix J(η) characterizes the attitude and rotation rate of the

body-fixed frame with respect to the Earth-fixed frame, and is given by [35]

J(η) =

J1(η2) 03×3

03×3 J2(η2)

 (2.3)

where the direction cosine matrix J1(η2) is defined as

J1(η2) =


cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 (2.4)

and the angular rate transformation matrix J2(η2) is

J2(η2) =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 . (2.5)

The constant mass and inertia matrix for the equations of motion is typically
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represented as a summation of two distinct matrices [35]

M = MRB +MA (2.6)

where MRB is the rigid body mass and inertia matrix and MA is the hydrodynamic

added mass and inertia matrix. MRB is written as

MRB =

 mI3×3 −mS(rG)

mS(rG) IG

 . (2.7)

Here, m is the full vehicle mass, and rG = [xG, yG, zG]T is the vector describing the

position of the center of mass of the vehicle relative to the body frame (often defined

as the origin of the body frame, i.e., xG = yG = zG = 0). Additionally, IG is the

inertia matrix defined about the center of gravity

IG =


Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

 (2.8)

with the moments of inertia about the body axes Ix, Iy, and Iz as well as products

of inertia Ixy = Iyx, Ixz = Izx, and Iyz = Izy. The skew-symmetric operator S(x) is

defined as

S(λ) =


0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

 (2.9)
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for any 3-element vector λ = [λ1, λ2, λ3]
T . MA is typically given as a diagonal matrix

of the form

MA = − diag{Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ} (2.10)

where the terms Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, and Nṙ are added mass parameters accounting

for the additional mass of water moving with the body, which are typically deter-

mined empirically or with computational fluid dynamics (CFD) [36]. Note that

under common simplifying cases, M may be diagonal. However, this is greatly de-

pendent on the symmetry of the design of the body, as well as neglecting small

off-diagonal terms that may appear in MA.

The Coriolis and centripetal matrix C(ν) combines nonlinear terms from cross

products that arise in the equations of motion. The C(ν) matrix can be represented

as a sum of two matrices [35]

C(ν) = CRB(ν) + CA(ν) (2.11)

where CRB(ν) is the rigid body Coriolis and centripetal matrix given by

CRB(ν) =

 mS(ν2) −mS(ν2)S(rG)

mS(rG)S(ν2) −S(IGν2)

 (2.12)

and the added Coriolis and centripetal matrix CA can be defined based on portions

13



of MA as

CA(ν) =

 03×3 −S(A11ν1 + A12ν2)

−S(A11ν1 + A12ν2) −S(A21ν1 + A22ν2)

 (2.13)

for

MA =

A11 A12

A21 A22

 . (2.14)

The drag matrix D(ν) can represented in multiple ways based on the pre-

ferred hydrodynamic model. The most common representation defines D(ν) as a

summation of both linear and quadratic terms [35]

D(ν) = DL +DQ(ν) (2.15)

where

DL = − diag{Xu, Yv, Zw, Kp,Mq, Nr} (2.16)

and

DQ(ν) = − diag{Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|} (2.17)

with the parameters Xu, Yv, Zw, Kp, Mq, Nr, Xu|u|, Yv|v|, Zw|w|, Kp|p|, Mq|q|, and

Nr|r| determined empirically or through CFD [36].

The effects of restoring forces and moments are typically collected into a single

vector of nonlinear terms g(η) for convenience. As such, this vector combines grav-

itational and buoyancy effects in the body-fixed frame. The vector g(η) is typically
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represented as a combination of rotations and cross products of simple 3-element

vectors [35]

g(η) = −

 fG(η2) + fB(η2)

S(rG)fG(η2) + S(rB)fB(η2)

 (2.18)

where the forces due to gravity fG and buoyancy fG expressed in the body frame

are given by

fG(η2) = J−11 (η2)


0

0

W

 (2.19)

and

fB(η2) = J−11 (η2)


0

0

−B

 (2.20)

with the forces due to gravityW = mg and buoyancy B = ρgV where ρ is the density

of water, g the acceleration due to gravity, and V the volume of displaced water.

Additionally, rB = [xB, yB, zB]T is the position vector of the center of buoyancy

expressed in the body frame. Note that in the body and Earth-centered reference

frames the force due to gravity is applied in the positive z direction.

The last term to define is the external force and moment vector τ which col-

lects external forces and moments from currents, thrusters, and other environmental

factors. This term will be discussed in the following section for the purposes of con-

trol law design.
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2.2 Underwater Vehicle Control

The external force/moment vector is treated as the control input, defined

as [35]

τ = KtT , (2.21)

where Kt is the thruster configuration matrix that describes the orientation of each

thruster and T is the vector of input thrusts.

Let ∆ν = ν − νd and ∆η = η − ηd convert the state-space equations into

error coordinates relative to known reference attitude and velocity setpoints νd and

ηd which are obtainable from user inputs. Also, assume ν̇d is readily known and

continuous. Martin and Whitcomb [6] then define the following feedback-linearizing

control law, assuming perfect knowledge of vehicle states:

T =K−1t [C(ν)ν +D(ν)ν + g(η) +M ν̇d

−M(KP∆ν +KI(η)∆η)],

(2.22)

where Kt is assumed to be invertible (or at least has a pseudo inverse). The NGS

six-thruster ROV is amenable to this framework.

The integral gain matrix KI(η) is a 6×3 matrix varying with vehicle ori-

entation relative to the Earth-fixed frame. The proportional gain matrix KP is

a constant positive-definite symmetric matrix. The control law (2.22) yields the
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closed-loop dynamics [6]

d

dt
(∆η) = J(η)∆ν (2.23)

d

dt
(∆ν) =−KP∆ν −KI(η)∆η, (2.24)

which asymptotically stabilize the origin ∆η = 0 and ∆ν = 0 [6].

The control law (2.22) prescribes a set of thrusts that will stabilize the full

vehicle setpoint-tracking dynamics. It is common to assume thrusters will rapidly

converge to these commanded thrusts using limited knowledge of actuator dynamics,

but in the following sections the stability properties of the actuator dynamics will

be analyzed. Proper knowledge and control of thruster dynamics will be shown to

improve the overall stability properties of the system, and comparison of different

models will be carried out to assess the effectiveness of different control schemes.
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Chapter 3: Simplified Thruster Modeling and Control

The first set of actuator dynamics that will be analyzed is a simplified model

of motor dynamics consisting of a single angular velocity state for a thruster. Such

a model assumes a direct, nonlinear mapping from thrust T to propeller angular

velocity n. Section 3.1 presents the process for system identification using a six-axis

load cell for thrust and torque measurements, then section 3.2 discusses in detail

the identified dynamic model. Lastly section 3.3 derives a control law to stabilize

the actuator dynamics, which is then extended to prove stability of a full vehicle

model when including actuator dynamics. The simplified model is the first in a

set of models for actuator dynamics of underwater vehicles, and will be compared

to subsequent models in terms of accuracy and benefits of control design in later

chapters.

3.1 Experimental Characterization of Model Parameters

3.1.1 Experimental Setup

For system identification of most of the models presented in this and following

chapters, a six-axis load cell in a Gough-Stewart platform design (Fig. 3.1) was used
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to collect thrust and torque output of an ROV thruster [23]. A six-axis load cell

is able to measure forces and moments along three principal axes by utilizing six

individual sensors on each of the six rigid arms. The fixed base and attachment

platform are connected by the rigid arms with attached axial force sensors (9363-

200L-B1-02F, Revere Transducers).

The load cell is configured as two separate plates connected by six legs in a

configuration similar to that found on Gough-Stewart manipulators. Fig. 3.2 shows

the configuration of the load cell. O is the origin of the reference frame of the system

on the fixed upper plate. Forces and moments are applied to the lower platform. It

is assumed that there is only a single axial force along each arm and that friction

forces are negligible at each joint [23].

Equations to transform the static axial forces along each leg into a resultant

force and moment at the origin are well known [34]. Let f = [f1, f2, f3, f4, f5, f6]
T be

Figure 3.1: Load cell used in model characterization.
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Figure 3.2: Diagram of load cell with principal axes and attachment points marked.

the vector of forces detected along each arm, and let F w = [fx, fy, fz,mx,my,mz]
T

the vector of resultant forces fx, fy, fz and moments mx, my, mz relative to the

reference frame of the upper plate. Additionally, let si for i = 1, · · · , 6 be the unit

vectors defining the orientation of each arm relative to the origin. Intuitively, si

should be dependent on the positions of the connection points of each arm to the
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top plate bi and bottom plate pi labeled in Fig. 3.2. This implies the following

relation [23]

si =
pi − bi
||pi − bi||

. (3.1)

It follows then that the relation between f and F w based on static equilibrium

is [23]

F w = Hf (3.2)

for the transformation matrix H given by

H =

 s1 s2 s3 s4 s5 s6

S(b1)s1 S(b2)s2 S(b3)s3 S(b4)s4 S(b5)s5 S(b6)s6

 . (3.3)

A calibration step was required before using the load cell for system identification

of dynamic models. The relation (3.2) is an idealize static model for transforming

forces in a rigid structure, but does not take into account mechanical imperfections.

Unmodeled errors in the load cell measurements were accounted for by generating

an optimal error correction matrix HE which augments the original transformation

matrix H [23]. The augmented transformation matrix HA = H + HE replaces H

in (3.2). HE was determined via optimization routines by minimizing residuals of

a data set of expected and measured forces. The data were collected by attaching

spring scales to the bottom plate in order to apply known loads and measure the

resulting forces. By using the relation (3.2), along with data of detected loads f̃

and knowledge of the applied loads F w, the following cost function was used for
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optimization

J = ||F w −HAf̃ ||. (3.4)

Given that the parameter space for this optimization problem was large, a particle

swarm method was used to improve robustness and avoid local minima.

3.1.2 Experimental Procedure

System characterization was performed in a 1 m3 polyethylene water tank. The

thruster was provided an analog input signal (-5 V to +5V) using an Agilent 33220

function generator. Time series data of throttle, propeller angular velocity readings

(via thruster tachometer), and six load sensor readings were recorded by a data

acquisition module (DAQ, USB-6211, National Instruments). A custom LabVIEW

application recorded the time series data and performed the transformations (3.2)

to provide a time history of the applied forces and moments relative to the load cell

reference frame. A block diagram of the test setup is presented in Fig. 3.3 [23]

The system’s responses to a series of step inputs at varying voltage levels were

recorded to fit both the steady-state and transient responses to models. Steady-

state models for thrust T and torque Q as well as a dynamic model for propeller

angular velocity n were characterized in these experiments. For all data and models,

a Nelder-Mead method of optimization was used to fit the models to the data by

minimizing their residuals, which proved sufficient despite the presence of local min-

ima. Identified model fits are compared to data in Fig. 3.4 for steady-state thrust

and torque relations, as well as in Fig. 3.5 for transient behavior of thrust, torque,
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Figure 3.3: Block diagram of experimental data collection system.

and angular velocity. All data were processed through a low-pass filter to remove

high-frequency noise. The results show good fits in steady-state and modest fits in

transient behavior for thrust and torque despite the well-fit transient behavior in

angular velocity. The identified models are discussed in the next section.

3.2 Simplified Thruster Model

The control law in (2.22) defines a desired set of actuator thrusts that sta-

bilize the closed-loop setpoint-tracking dynamics of the ROV. Using data from the
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Figure 3.4: Steady-state thrust and torque models compared to experimental data.

previous section, thrust can be related to the propeller angular velocity of an ROV

thruster by a quadratic dead zone function [8]

T (n) =



cT1(n|n| − δT1), n|n| ≤ δT1

0, δT1 < n|n| < δT2

cT2(n|n| − δT2), n|n| ≥ δT2,

(3.5)

where n represents propeller angular velocity, the constants cT1, cT2, and δT2 are

positive, and δT1 is negative. In order to determine the desired propeller angular
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Figure 3.5: Step responses of thrust, torque, and rotor speed models compared to
experimental data.

velocity nd for a desired thrust Td, inverting the dead zone function (3.5) yields [8]

nd =



sgn(Td)
√
| Td

cT1
+ δT1|, Td < 0

0, Td = 0

sgn(Td)
√
| Td

cT2
+ δT2|, Td > 0.

(3.6)

The desired propeller angular velocity nd is then usable as a setpoint to be fed

back into a control scheme for the actuator dynamics. Bessa et al. [8] propose the
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following voltage-driven dynamic model for an ROV thruster:

ṅ = −k1n− k2n|n|+ k3u, (3.7)

where u is the input motor voltage and the constants k1, k2, and k3 are posi-

tive. Equation (3.7) is a single-state thruster model that is valid at low propeller

speeds [8].

This work considers an alternate version of (3.7) that, instead of being driven

by a direct motor voltage, is controlled by an analog voltage throttle signal with a

dead zone around zero volts. The new model is [19]

ṅ = −knn− kQQ(n) + γ(u), (3.8)

where Q(n) is the reaction torque on the propeller, and the function γ(u) relates

throttle signal u to motor torque by a linear dead zone function [19]

γ(u) =



cu1(u− δu1), u ≤ δu1

0, δu1 < u < δu2

cu2(u− δu2), u ≥ δu2.

(3.9)

The effects of the nonlinear function (3.9) on (3.8) are presented in Fig. 3.6

by plotting steady-state propeller speed data as a function of the constant throttle

voltages that drive the system to those operating points. A fit based on (3.8) is also
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Figure 3.6: Steady-state propeller angular velocity data.

plotted to validate the accuracy of the model. Note that (3.9) can be inverted as

γ−1(α) =



c−1u1α + δu1, α < 0

0, α = 0

c−1u2α + δu2, α > 0,

(3.10)

for any generic commanded motor torque α.

In (3.8), Q represents the collected inertial and hydrodynamic reaction torque

enacted on the thrusters, which is often a quadratic function of n, and may be
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defined with a dead zone similar to (3.5), i.e.,

Q(n) =



cQ1(n|n| − δQ1), n|n| ≤ δQ1

0, δQ1 < n|n| < δQ2

cQ2(n|n| − δQ2), n|n| ≥ δQ2,

(3.11)

with positive constants cQ1, cQ2, and δQ2, and negative constant δQ1. Identified

values of parameters for the defined models (3.5), (3.8), (3.9), and (3.11) are reported

in Table 3.1.

Table 3.1: Simplified Model Parameter Values

Parameter Value Units

cT1 9.548×10-4 N·s2

cT2 8.248×10-4 N·s2

δT1 -0.032 s-2

δT2 2.187×10-3 s-2

cQ1 1.577×10-5 N·m·s2

cQ2 3.255×10-5 N·m·s2

δQ1 -0.0215 s-2

δQ2 0.0192 s-2

cu1 793.6 (V·s2)-1

cu2 709 (V·s2)-1

δu1 -0.8475 V

δu2 0.9254 V

kn 11.30 s-1

kQ 67.66 (N·m·s2)-1

u̇max 100 V·s-1
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3.3 Feedback Control Strategy

3.3.1 Single-Thruster Control

To drive the dynamics (3.8) to a known setpoint nd, a nonlinear control strat-

egy is necessary. Using the inverse dead zone function (3.10) and feedback lineariza-

tion, a control law that compensates for nonlinearities in the thruster dynamics is

derived. This framework is shown below to exponentially stabilize n = nd.

Theorem 1. Assuming u can change instantaneously, the dynamics (3.8) exponen-

tially stabilize the setpoint ∆n = n− nd = 0 using the control law

u = γ−1(α), (3.12)

where γ−1(α) is defined in (3.10) and

α = ṅd + knn+ kQQ(n)− ku∆n, (3.13)

for ku > 0.

Proof. Consider the scenario where the system is operating under the first condition

in (3.10), i.e., α < 0. Therefore, (3.8) becomes

ṅ =−knn− kQQ(n) + ku1(k
−1
u1 α + δu1 − δu1)

=−knn− kQQ(n) + ṅd + knn+ kQQ(n)− ku∆n

= ṅd − ku∆n,

(3.14)
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which implies

d

dt
(∆n) = −ku∆n. (3.15)

Equation (3.15) is a scalar Hurwitz linear system in error coordinates relative to the

setpoint nd.

The same steps yield identical results for the third condition of (3.10), so

operating on either end of the dead zone yields the system (3.15). In the case that

α = 0, substituting (3.13) into (3.8) yields

ṅ =−knn− kQQ(n)

=−α + ṅd − ku∆n

= ṅd − ku∆n,

(3.16)

which is the same result as (3.15) and therefore completes the proof.

If perfect knowledge of ṅd is not available in practice, a piecewise constant

estimate may be used in its place. The following result is obtained in the presence

of inaccurate estimates of ṅd.

Corollary 1.1. Let δ > 0. Using the estimate ˙̃nd = ṅd + ε, where the estimation

error ε satisfies |ε| < δ, the solution to the closed-loop dynamics (3.15) using the

control law (3.12) is bounded by |∆n| ≤ δ/ku.

Proof. With the estimate ˙̃nd = ṅd + ε, (3.15) becomes

d

dt
(∆n) = −ku∆n+ ε. (3.17)
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Consider the quadratic Lyapunov function

V =
1

2
(∆n)2, (3.18)

whose time-derivative along solutions of (3.17) satisfies

V̇ =−ku(∆n)2 + ∆nε

≤−ku(∆n)2 + |∆n|δ,
(3.19)

which implies the closed-loop dynamics (3.15) converge to |∆n| ≤ δ/ku.

In practice, physical thrusters have a maximum ramp speed, i.e., u cannot

change instantaneously, which limits the convergence rate to the desired setpoint.

This limitation is modeled as a maximum allowable throttle change rate, i.e., u̇max.

Since u cannot change instantaneously, it may pass through the dead zone. The

maximum amount of time the motor spends in the dead zone while transitioning to

a thruster operating point outside the dead zone is [19]

tmax =
δu2 − δu1
u̇max

> 0. (3.20)

During this time, the dynamics (3.8) will be unforced, requiring additional analysis

of the system in this scenario.

Theorem 2. Consider the dynamics (3.8). When u is within the throttle dead zone,

the zero-input dynamics

ṅ = −knn− kQQ(n) (3.21)
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exponentially stabilize the origin n = 0.

Proof. The stability properties of the unforced system (3.21) can be analyzed with

the quadratic Lyapunov function

V =
1

2
n2, (3.22)

which varies according to

V̇ = −knn2 − kQQ(n)n. (3.23)

Equation (3.23) can take one of three forms depending on the value of n. Because

the constants kn and kq are positive, V̇ is negative definite if Q(n)n is positive semi-

definite for all n. According to (3.11), Q(n) either has the same sign as n or is zero

for δQ1 < n|n| < δQ2, because cQ1, cQ2, and δQ2 are all positive and δQ1 is negative.

Q(n)n is therefore positive semi-definite, and V̇ is negative definite for all n. Note

that kan
2 ≤ V ≤ kbn

2 and V̇ ≤ −knn2 for kb > 0.5 > ka > 0, which implies that

the unforced system (3.21) exponentially stabilizes the origin.

The thruster motor operates in the dead zone in one of only three scenarios:

during startup, wind-down, or a transition between forward and reverse thrust. In

all of these scenarios, convergence to zero propeller speed is either advantageous or

inconsequential (as in the case of motor startup). Typically tmax in (3.20) is on the

order of tens of milliseconds, whereas the wind-down time for an ROV thruster was

experimentally observed to be as much as half a second [23]. As a result, crossing
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Figure 3.7: Control simulations driving a thruster to a setpoint nd with consideration
for u̇max.

the throttle dead zone is not predicted to destabilize the physical system during

regular operation. Fig. 3.7 depicts a simulation of the dead-zone-compensating

controller (3.12) successfully driving the actuator dynamics from multiple operating

points of n to a positive setpoint value of nd, taking into account the limitation

|u̇| ≤ u̇max.

3.3.2 Full Vehicle Control

The preceding analysis for a single thruster system can be reasonably extended

to a multi-thruster system with full vehicle dynamics as thruster dynamics are gen-
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erally uncoupled. The systems in (2.1), (2.2), and (3.8) represent the full system

dynamics of the ROV, including rigid-body dynamics and uncoupled actuator dy-

namics for each thruster, i.e.,

ẋ = f(x) + g(u), (3.24)

where x = [ηT νT nT ]T and n is the vector of the (six) thruster states of the ROV.

The vector fields f(x) and g(u) are [19]

f(x) =


J(η)ν

M−1[KtT (n)− C(ν)ν −D(ν)ν − g(η)]

−Knn−KQQ(n)

 , (3.25)

and

g(u) =



0

...

0

γ(u)


(3.26)

where Kn and KQ are diagonal matrices containing the parameters of the dynamics

from (3.8) for each individual thruster. The closed-loop dynamics take the form

d

dt


∆η

∆ν

∆n

 =


J(η)∆ν

−KP∆ν −KI(η)∆η

−Ku∆n

 (3.27)
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where Ku is the diagonal matrix of feedback gains.

Theorem 3. The full closed-loop dynamics for the ROV (3.27) asymptotically sta-

bilize the origin ∆x = x− xd = 0.

Proof. The system (3.27) combines the dynamics in (2.1) and (2.2), which asymp-

totically stabilize the origin ∆ν = 0 and ∆η = 0, with the dynamics of the

thrusters (3.8) which are fully uncoupled and each exponentially stabilize the ori-

gin ∆n = 0. Therefore, because each sub-system is asymptotically stable, the full

closed-loop system asymptotically stabilizes the origin ∆x = 0.

Experimental validation of the control methods outlined in this section as well

as comparisons of simulated performance of these methods applied to a full vehicle

model are discussed in later chapters.
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Chapter 4: Hydrodynamic Thruster Modeling and Control

Newer work in dynamic modeling of underwater vehicle thrusters has focused

on expanding model dimensionality to describe the effects of fluid interaction on

thrust generation. As the focus of controlling actuator dynamics for underwater

vehicles is closing the loop on thrust rather than angular velocity, implementing

model-based control strategies for more accurate models of thrust is a natural next

step in this analysis. The dynamic models presented in previous sections are there-

fore augmented with new states that characterize the time evolution of fluid velocity

and how resulting hydrodynamic forces generate thrust losses [12]. This chapter goes

about describing these models and their uses in actuator control by first outlining

the experimental methods used to characterize them in section 4.1. The new models

are then described in section 4.2. From there, section 4.3 discusses nonlinear estima-

tion methods used to construct estimates of unmeasured states, and then section 4.4

outlines how to use knowledge of the expanded state space to improve previously

discussed feedback control strategies.
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4.1 Experimental Characterization of Model Parameters

4.1.1 Experimental Setup

The process of augmenting the previously discussed actuator dynamics allows

the preservation of previously discussed system identification methods. This eases

further model characterization tasks as the procedure remains mostly unchanged.

The same six-axis load cell could therefore be reused for characterization tests.

However, the previous data collection method and test tank did not allow for fluid

velocity measurements. Therefore a new test tank that did not restrict fluid flow as

well as a flow meter were necessary to make such measurements.

Experimentally, a Nortek Vectrino model ADV was used to collect fluid veloc-

ity time-series measurements at 25 Hz. ADVs are well-documented, reliable devices

for the purpose of fluid model characterization [13, 17]. These measurements were

used for both model characterization and in closed-loop output feedback experi-

ments discussed in following chapters. All experiments were performed in a Loligo

Systems flow tank with a 25 × 25 cm cross section where the thruster drives the

fluid velocity of the tank and force measurements are again obtained by a six-axis

load cell [23]. All other aspects of the experimental setup remain unchanged from

Section 3.1. The experimental setup with the ADV and load cell is depicted in

Fig. 4.1.
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Figure 4.1: Annotated image of experimental setup with load cell and ADV used in
model characterization.

4.1.2 Experimental Procedure

All data were collected as time-series responses to a transient input ramp over

two seconds followed by a constant input over eight seconds to allow the subsequent

steady-state behavior to be captured. For all experiments, data were collected for

axial thrust, torque, propeller angular velocity, and fluid velocity. Data were col-

lected for steady-state inputs ranging from -3 V to +3 V, which is a smaller range
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than previous experiments. This is due to restrictions of the flow tank for turbulent

flow, as higher operating speeds of the thruster induce waves and cavitation that

interfere with sensor measurements and data quality. Additionally, all of the exper-

iments were run for two different flow-sensing scenarios: once for collecting ambient

velocity data at a distance from the thruster duct, and again for axial velocity data

directly in front of the thruster duct. These two data sets were necessary as the

thruster was capable of driving the fluid flow through the tank which in turn directly

affected fluid velocity behavior in front of the thruster duct.

Steady-state relations for thrust and torque were again characterized as well

as dynamic models for propeller angular velocity, axial fluid velocity, and ambient

fluid velocity. Nelder-Mead optimizations were implemented just as before to fit the

models to the data by minimizing residuals. Identified model fits are compared to

data in Fig. 4.2 for all measurement methods in a representative set of experiments.

Each measurement is shown in response to ± 3 V steady-state inputs after a two

second ramp to that operating point. Transients and steady-state behavior were fit

well to the models outlined in the following section.

4.2 Hydrodynamic Thruster Model

A hydrodynamic model of thruster performance is common and well docu-

mented, even though model choices have varied over time [11–13, 16, 18, 38]. Typi-

cally two forms of fluid velocity are accounted for in dynamic modeling: the axial

fluid velocity across the propeller disc v, and the ambient velocity of the surround-

39



0 2 4 6 8
-120

-60

0

60

120

Data

Model

0 2 4 6 8

Time [s]

-120

-60

0

60

120

A
n

g
u

la
r 

V
el

o
ci

ty
 [

ra
d

/s
]

(a)

0 2 4 6 8
-0.4

-0.2

0

0.2

0.4

Data

Model

0 2 4 6 8

Time [s]

-0.4

-0.2

0

0.2

0.4

V
el

o
ci

ty
 [

m
/s

]

(b)

0 2 4 6 8
-16

-8

0

8

16

Data

Model

0 2 4 6 8

Time [s]

-16

-8

0

8

16

T
h

ru
st

 [
N

]

(c)

0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

Data

Model

0 2 4 6 8

Time [s]

-0.2

-0.1

0

0.1

0.2
T

o
rq

u
e 

[N
m

]

(d)

Figure 4.2: Model fit results from system identification procedures done for hydro-
dynamic thruster models. Fits shown for (a) angular velocity, (b) fluid velocity, (c)
thrust, and (d) torque.

ing water U . The interactions between these two velocities and propeller angular

velocity can be modeled both dynamically and via static relations. Healy et al. [11]

propose a two-state dynamic model that combines angular velocity dynamics simi-

lar to (3.8) with axial velocity dynamics driven by the resultant thrust and ambient

velocity that is assumed to be a uniform freestream value:

ṅ=−k1n− k2Q(n, v) + k3u (4.1)

v̇ =−k4(v − U)|v − U |+ k5T (n, v). (4.2)
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The parameters k1, k2, k3, k4, and k5 are positive. It should be noted that regardless

of model, v and U are assumed uniform.

Other work assumes a dynamic model for U which is more representative of the

dynamics for underwater vehicles being propelled by aquatic thrusters [12,16,18,38].

Kim and Chung [16] define v as a linear combination of U and n assuming a steady

flow relationship. To account for more complicated interactions, this work uses a

model first presented by Blanke et al. [12] that includes both fluid velocities in the

state-space:

ṅ=−knn− kQQ(n, v) + γ(u) (4.3)

v̇ =−kvv − kUv|v|(v − kwU) + kTvT (n, v) (4.4)

U̇ =−kUU − kUUU |U |+ kTUT (n, v). (4.5)

Here γ(u) is used to represent a more general input torque function, but in subse-

quent analysis will be assumed to represent the nonlinear dead zone function (3.9).

It should be noted that all coefficients in this model are defined as positive con-

stants. This dynamic model is advantageous for its more general representation of

the fluid velocities, as U can represent the forward speed of a single-thruster vehicle

or the fluid velocity in a flow tank. A diagram depicting all the relevant quantities

in this dynamic system as they relate physically to an aquatic thruster is presented

in Fig 4.3.

An important factor in improving model fidelity is how the mappings for thrust

and torque are defined. Healey et al. [11] as well as Bachmayer et al. [13] both use
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Figure 4.3: Diagram of how physically relevant values in thruster models relate to
the thruster system.

airfoil theory to define physically meaningful mappings for T (n, v) and Q(n, v) based

on sinusoidal lift and drag coefficients:

T (n, v) = L(n, v) cos θ −D(n, v) sin θ (4.6)

Q(n, v) = 0.7R(L(n, v) sin θ +D(n, v) cos θ) (4.7)

L(n, v) = 0.5ρπR2V 2CLmax sin (2(p− θ)) (4.8)

D(n, v) = 0.5ρπR2V 2CDmax(1− cos (2(p− θ))) (4.9)

where

θ = atan2 (v, 0.7Rn) (4.10)

V 2 = v2 + (0.7Rn)2. (4.11)
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The parameters for propeller blade pitch angle p, propeller disc radius R, as well

as maximum lift and drag coefficients CLmax , and CDmax are specific parameters of

the physical system and must be manually measured or experimentally determined,

and ρ represents the density of water [11, 17, 39]. While such rigorous models are

attractive for their ability to accurately describe the physical system, they can overly

complicate practical control strategies, and have demonstrated inconsistencies with

experimentally observed performance [13,17].

In contrast to the detailed and highly nonlinear models (4.6) and (4.7), more

recent work utilizes heuristic models that forgo accuracy to hydrodynamic theory

for more tractable relations of T (n, v) and Q(n, v) [12, 16]. Blanke et al. [12] define

T (n, v) and Q(n, v) as nonlinear mappings based on steady-state data:

T (n, v) = cTnn|n| − cTnv|n|v (4.12)

Q(n, v) = cQnn|n| − cQnv|n|v (4.13)

where cTn , cTnv, c
Q
n , and cQnv are positive. The dependence on v in these equations there-

fore models thrust and torque losses due to fluidic effects [18]. Note that this model

is similar to (3.5) and (3.11) but without considerations for asymmetric behavior

between positive and negative values of n. This makes the model simpler and more

tractable for estimation and control analysis. The equations of motion (4.3), (4.4),

and (4.5) when using these mappings for T (n, v) and Q(n, v) will be referred to as

a hydrodynamic linear (HL) model because of its purely linear dependence on v.

Besides being heuristically defined relations, the models for thrust and torque
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in (4.12) and (4.13) are considered simplified expressions due to their linear de-

pendence on v. More recent work suggests that a quadratic relation with v more

accurately models steady-state behavior and has been verified experimentally [16].

Kim and Chung [16] propose the following model as an improvement on the HL

equations (4.12) and (4.13):

T (n, v) = cTnn|n| − cTnv|n|v − cTv v|v| (4.14)

Q(n, v) = cQnn|n| − cQnv|n|v − cQv v|v| (4.15)

where the additional parameters cTv and cQv are also positive. Including these extra

terms more accurately represents the nonlinear behavior of thrust and torque at

varying values of v, especially when the signs of v and n oppose one another [16].

The model presented in (4.3), (4.4), and (4.5) when using this relation will be referred

to as a hydrodynamic quadratic (HQ) model due to the quadratic dependence on v.

While the HQ expressions (4.14) and (4.15) offer more accurate descriptions

of nonlinearities in thrust and torque behavior due to fluidic effects, the HL model

can still be effective in approximating hydrodynamic losses in these quantities [18].

In addition, the simpler form of (4.12) and (4.13) enables stronger convergence

guarantees for the estimation methods discussed in the next section [18]. Both

hydrodynamic models will be used experimentally and in simulation in the next

chapter to evaluate the performance improvement of model-based control. Table 4.1

reports identified parameters for the aforementioned models. In addition, table 4.2

presents values specific to the two hydrodynamic models for T (n, v) and Q(n, v).
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Table 4.1: Hydrodynamic Model Parameter Values

Parameter Value Units

cu1 725.5 (V·s2)-1

cu2 737.2 (V·s2)-1

δu1 -0.83 V

δu2 0.86 V

kn 13.66 s-1

kQ 1856 (N·m·s2)-1

kv 1.102 s-1

kUv 67.37 m-1

kw 0.89 --

kTv 0.01232 m(N·s2)-1

kU 0.2396 s-1

kUU 1.258 m-1

kTU 4.855×10-3 m(N·s2)-1

Table 4.2: HL & HQ Paramater Values

Parameter HL Value HQ Value Units

cTn 1.467×10-3 1.467×10-3 N·s2

cTnv 0.4146 0.3755 N·s2·m-1

cTv 0 37.71 N·s2·m-2

cQn 2.804×10-6 2.804×10-6 N·m·s2

cQnv 1.296×10-11 9.948×10-12 N·s2

cQv 0 9.975×10-8 N·s2·m-1
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4.3 State Estimation Methods

An important problem for closed-loop control of the hydrodynamic equations

of motion (4.3), (4.4), and (4.5) is gaining knowledge of the axial velocity state

v. While this state can be measured directly in experimental settings, it is typi-

cally not measurable when considering a full vehicle system [8, 18, 39]. Therefore,

estimation methods are required to reconstruct an estimate of v from available mea-

surements [18,39].

Fossen and Blanke [18] propose a Lyapunov-based nonlinear observer design

to reconstruct the unmeasured state v with access to knowledge of the other two

states n and U . With y = U , and ỹ = y − ŷ the observer equations are

˙̂v =−kvv̂ − kUvv̂(|v̂| − kw sgn (n)y) + kTvT (n, v̂) + k11ỹ + |n|k12ỹ (4.16)

˙̂
U =−kU Û − kUU Û |Û |+ kTUT (n, v̂) + k21ỹ + |n|k22ỹ. (4.17)

It is important to note that the presence of measurement noise is not considered for

this form of observer, so optimality is not guaranteed by this estimation method.

It was shown, however, that this observer form guarantees globally exponential

convergence to the true values of v and U for the HL system [18,28]. This is valuable

when considering robustness of estimation methods, as other nonlinear estimators

like the EKF can struggle with divergence in highly nonlinear systems [26,27]. Also

note that estimation of n is not considered here, so when implementing this observer

other estimation methods would be necessary to develop an estimate for this state.

46



It is of interest in current research to consider practical output feedback strate-

gies for the hydrodynamic system (4.3), (4.4), and (4.5) as well as for higher dimen-

sional full vehicle systems. In particular, optimal estimation in the presence of

measurement noise is a vital aspect of modern control design, and would be ad-

vantageous if implemented for the full hydrodynamic system while maintaining the

robustness of the nonlinear observer in (4.16) and (4.17). With this in mind, a

hybrid estimation strategy using both Fossen and Blanke’s nonlinear observer as

well as an EKF is proposed for practical implementation of the observer while in-

troducing some considerations for measurement noise in the estimates. This can be

accomplished by manipulating the linear gains k11 and k21 in the observer equations

as in an EKF.

According to the derivation of the nonlinear observer, global exponential sta-

bility (GES) is maintained as long as the gains satisfy [18,28]

|k11|<
√

2kvβ (4.18)

k21 >
1

2
β − kU (4.19)

for β > 0. If these gains are calculated from a Kalman gain matrix, they will

be optimal for the system in (4.3), (4.4), and (4.5) linearized about n̂, v̂, and Û .

Note that the resulting estimates will be suboptimal due to the nonlinear gains also

present in (4.16) and (4.17) but will remain exponentially convergent to the true

states. If the Kalman gains fall outside of the acceptable range for convergence,

they can be saturated to maintain GES, or remain unaltered to more effectively filter
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noise out of the estimates. The restrictions on gain choice for the observer have been

shown to be fairly conservative, and relaxing them improved some performance in

simulation [18]. Note also that an EKF here can be used to obtain locally optimal

estimates of n as well. Fossen and Blanke’s nonlinear observer and the EKF hybrid

variant will be denoted by the abbreviations NLO and KFNLO respectively in the

next chapter when comparing performance.

Lastly, it is of value to consider how to determine the nominal value of the

ambient velocity U surrounding an individual thruster when incorporated in a multi-

thruster full vehicle system. Consider the simplified assumption that the vector of

ambient velocities for all thrusters U relates to the vehicle state ν by

U = Kvν, (4.20)

then it can be shown that given knowledge of the thruster orientation matrix Kt

the following is true:

Kv = KT
t . (4.21)

Therefore, under this assumption an approximation for the state vector U will be

available if knowledge of ν is available.

4.4 Feedback Control Strategy

Extensions of the hydrodynamic system (4.3), (4.4), and (4.5) to feedback con-

trol strategies are fairly straightforward and amenable to the previously discussed
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control strategy (3.12) [18]. Angular velocity n remains the only directly actu-

ated state, as other states are simply compensated for in conventional controller

designs [18]. To obtain a setpoint nd for feedback control, the HL model has been

shown to yield the following expression [18]:

nd =
cnvv̂ + sgn (Td)

√
(cnvv̂)2 + |4cTnTd|

2cTn
. (4.22)

Similarly, for the HQ model the following holds:

nd =
cnvv̂ + sgn (Td)

√
(cnvv̂)2 + |4cTn (cTv v̂|v̂|+ Td)|

2cTn
. (4.23)

Therefore, the control law (3.12) can be used in feedback control with axial flow

compensation with minimal alteration.

An important change for feedback control of the hydrodynamic system is com-

pensation of axial flow in the feedforward term of (3.12). In particular, knowledge

of Q(n, v) is not available, and in fact Q(n̂, v̂) must be used instead. This can result

in decreased tracking performance if the estimates have not fully converged to the

true states yet. In order to compensate for such model perturbations, the control

law (3.12) can be augmented with an integral term to ensure steady-state tracking

and improve robustness of the control strategy [18,25,40]. Additionally, replacing n̂

with nd in the feedforward portion of the control law can ensure better convergence

to the setpoint as it removes dependence on estimates that may be inaccurate [18].

49



The control law (3.12) then becomes

u= γ−1(α) (4.24)

α = ṅd + knnd + kQQ(nd, v̂)− kP (n̂− nd)− kIσ (4.25)

σ̇ = n̂− nd. (4.26)

Note that this control strategy can be used for both the HL and HQ models.

An extension of the Lyapunov analysis from Chapter 3 yields no further insight

for either the single-thruster or full vehicle system as the dynamics for v and U are

not stabilized but rather compensated. Experimental and simulated closed-loop

performance is discussed in the next chapter using (4.24) as well as the NLO and

KFNLO estimators.
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Chapter 5: Performance Evaluation of Thrust Control

It is of interest to evaluate the setpoint-tracking performance of the control

methods (3.12) and (4.24) with the different models presented in the previous chap-

ters. Many of the dynamic models have been validated experimentally, but have

not been fully evaluated in terms of their improvement of feedback control over the

simplified model (3.8) [8,16–18,39]. In particular, control methods with estimation

using the NLO model (4.16) and (4.17) and the HL model for thrust and torque

have been tested through simulation only for a single-thruster, forward-moving ve-

hicle [18]. Closed-loop control tests also have not been performed for a HQ model

of thrust, therefore it is unclear how much performance benefit is expected when

using these models for model-based control design [16,20].

This chapter aims to thoroughly test and compare output feedback control per-

formance using all the models and estimation methods outlined in previous chapters.

Section 5.1 outlines the methods and findings of single-thruster control experiments

performed in a flow tank, and section 5.2 seeks to further draw comparisons between

control methods based on full vehicle control simulations using a multi-thruster sys-

tem. Both sections compare tracking control results for all models from previous

chapters using the control law (4.24) while also varying the estimation method for
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constructing v̂. The choice of model and estimator (if needed) constitute the in-

dependent variable for the experiments and simulations, while dependent variables

are primarily thrust setpoint tracking for the experiments and vehicle trajectory

setpoint tracking for simulations.

5.1 Experimental Performance of Single-Thruster Control

5.1.1 Experimental Methodology

Experimental comparison of thrust tracking control performance of the output

feedback method in (4.24) using the observer in (4.16) and (4.17) is an essential next

step for improving thruster control design. Multiple scenarios were tested to provide

a variety of comparisons and allow strong conclusions to be drawn on the value of

model-based control accounting for fluidic effects on thrust. The NLO and KFNLO

were both used in output feedback experiments of a single thruster in a flow tank

using the control law (4.24) and compared to the performance of the same control

scheme with estimates provided by an EKF. Additionally, all three output feedback

methods were implemented for both the HL and HQ models of thrust and torque

(i.e. using (4.22) or (4.23) to calculate nd) and an EKF was additionally used to

estimate n for the control law (3.12) using the simplified model (3.8). All scenarios

were compared to a näıve strategy of an open loop test using a lookup table method

of prescribing inputs based on (3.6) and data presented in Fig. 3.6. Additionally, all

models and output feedback methods were tested in tracking three different thrust

setpoint scenarios: a step, triangle wave, and sine wave of desired thrust Td.
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The feedback control experiments were performed in a Loligo Systems flow

tank with a 25×25 cm cross section. The same experimental setup used for system

identification of the hydrodynamic models (see Fig. 4.1) including the six-axis load

cell and ADV were used to implement control methods and collect data of thrust

performance. The ADV was used to provide real-time measurements of ambient

fluid velocity to run the observers while the load cell recorded thrust output in

each scenario that was run. An Arduino Mega was used to provide voltage input

commands to the thruster and obtain sensor measurements from the tachometer

and ADV. The control law and observers were implemented in a Matlab program

that communicated directly with the Arduino. Each control scenario was run with

a 25 Hz sampling frequency for controller and observer iteration. A block diagram

of the general output feedback method is depicted in Fig. 5.1

Figure 5.1: Block diagram of the feedback loop used for experimental output feed-
back tests of the thruster. When using the simplified model for control purposes,
inclusion of v and U is omitted from this framework.
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5.1.2 Discussion of Results

Fossen and Blanke [18] evaluate the performance of output feedback using the

NLO against traditional PI control for a simulated single-thruster system. Findings

suggest steady-state errors are greater for the PI control that does not use the NLO

for output feedback compared to the NLO-based output feedback controller [18].

However, such a conclusion ignores the fact that all models for thruster dynamics

are based on steady-state data of thrust, so any model-based control would achieve

low steady-state tracking errors in practice. In truth, the anticipated benefit of

hydrodynamic compensation in output feedback of thrust is almost exclusively in

the transient behavior of the system. This is the primary focus of evaluating ex-

perimental thruster control methods. Thrust overshoot is anticipated for controllers

that do not account for fluidic effects on thrust [11, 17,39].

Results for the step, triangle wave, and sine wave experiments are presented

in Figs. 5.2, 5.3, and 5.4 respectively. Qualitatively, it appears all scenarios display

similar performance. In fact maximum thrust tracking errors only ever appear to

reach 10% of nominal values. To obtain a more quantitative comparison, root-

mean-square tracking errors (RMSE) for thrust were calculated for all runs and

normalized by the RMSE of the lookup table performance in each tracking scenario.

Additionally, the RMSE was only calculated using the corrected data in the plots

of Figs. 5.2 and 5.3 in order to exclude data corrupted by load cell ringing.

The RMSE for each scenario are presented in Fig. 5.5 for the step, triangle

wave, and sine wave experiments respectively. While results vary between scenarios,
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Figure 5.2: Tracking performance of thrust for the step experimental run.

Figure 5.3: Tracking performance of thrust for the triangle wave experimental run.
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Figure 5.4: Tracking performance of thrust for the sine wave experimental run.

it appears that the EKF-based output feedback methods perform best at minimizing

thrust tracking error compared to the lookup table method. Additionally, smaller

performance gains seem apparent when using the HQ model compared to the HL

model, but all performance improvements are considerably modest compared to the

lookup table as all scenarios perform very similarly.

Fig. 5.6 displays the tracking and estimation performance of the output feed-

back of angular velocity n for the sine wave scenario. All scenarios track setpoints

well, suggesting that the control law (4.24) is overall effective for tracking nd, and

any performance deficiencies in tracking Td would be due to model choice and/or

estimator choice.

To compare estimator performance, Fig. 5.7 presents the time history of ve-

locity estimates v̂ and Û for sine wave scenario as well. Note that noise in the
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Figure 5.5: Thrust Tracking RMSE normalized by the RMSE of the lookup table
method for all control strategies in the test cases for (a) a step, (b) a triangle wave,
and (c) a sine wave.

ADV measurements tends to occur intermittently, which is attributed to turbulence

created by the thruster itself. The EKF tends to resist these spikes in all scenarios

while the NLO and KFNLO fail to do so. While this property of the EKF proves

beneficial in these experiments, and could explain the lower performance of the

NLO and KFNLO in thrust tracking, it also highlights the fact that the EKF can

diverge from the true state if unmodeled perturbations are too great. In contrast,

the NLO and KFNLO would guarantee global convergence to the true values of v

and U . Lastly, it should be noted that no tracking or estimation improvements are
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Figure 5.6: Tracking and estimation performance of angular velocity for the sine
wave experimental run.

observed for the KFNLO over the NLO.

5.2 Simulated Performance of Full Vehicle Control

Simulations of full vehicle dynamics with simplified thruster models have been

performed in previous work [37, 41]. However, multi-thruster systems have not

been simulated with hydrodynamic considerations, nor have output feedback control

methods been evaluated in such simulations. Therefore additional insight on how

output feedback methods compare can be obtained through such simulations.

Full vehicle simulations were performed in two scenarios. First, in section 5.2.1,

an underwater vehicle with actuator dynamics behaving according to (3.8) was simu-

lated to compare the setpoint-tracking performance of a vehicle using the dead-zone-
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Figure 5.7: Estimation performance of axial and ambient velocity for the sine wave
experimental run.

compensating control law (3.12) to one using the open loop lookup table method.

Second, in section 5.2.2, all output feedback methods with all models are simulated

for a vehicle behaving according to the HQ model to compare performance between

model-based controllers using the simplified model against ones using more detailed

models. In all simulations, the full vehicle dynamics (2.1) and (2.2) were used with

the outer loop thrust control law (2.22) defining thrust setpoints for inner loop con-

trol of the thruster dynamics. A block diagram of the full vehicle control scheme is

displayed in Fig. 5.8

5.2.1 Simulations with Simple Thruster Model

Simulations of the system (3.24) were performed with the dead-zone-compensating

controller (3.12) and compared to a lookup table method of actuator dynamics com-

pensation. Tracking performance of the control scheme compares favorably to the
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Figure 5.8: Block diagram of the feedback loop used for simulated output feedback
tests of the ROV. When using the simplified model for control purposes, inclusion
of v is omitted from this framework.

lookup table. Due to the fact that the lookup table method does not account for

actuator dynamics, and therefore assumes rapid convergence to steady-state pro-

peller speed, deficiencies appear in the setpoint-tracking performance of the overall

control scheme.

Fig. 5.9 indicates superior performance of the dead-zone-compensating con-

troller over the lookup-table method. The tracking task involves varying setpoints

in forward velocity, pitch rate, and pitch. Parameter values used in simulation of

the thruster dynamics are reported in Table 3.1.

To further compare performance of the control methods, the tracking RMSE

was calculated for each degree of freedom over the course of the simulation time

period and normalized by the average value of the setpoint of each respective de-

gree of freedom. Normalized RMSE results are presented in Fig. 5.10. The dead-

zone-compensating controller displays comparable tracking performance in linear

velocities when compared to the lookup-table method, but significant improvement

comes in tracking attitude and angular velocity setpoints, with tracking errors be-

ing reduced by as much as 50%. Divergence from the reference setpoint displayed

in the performance of the lookup-table controller is attributed to the trade-off of
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Figure 5.9: Setpoint tracking performance comparison between the proposed dead-
zone-compensating controller and lookup-table-based control for (a) linear forward
velocity, (b) angular pitch velocity, and (c) pitch angle.

tracking forward velocity with the other states, as multiple setpoints were processed

simultaneously.

5.2.2 Simulations with Hydrodynamic Thruster Model

Similar simulation tasks to those in Fig. 5.9 were used to compare output

feedback performance when simulating the motion of an underwater vehicle with a

HQ model of actuator dynamics. Surge speed, pitch rate, and pitch setpoints were

tracked in eight simulations encompassing all estimation methods and all models
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Figure 5.10: Tracking errors for each degree of freedom involved in setpoint tracking.

for control design. Additionally simulated Gaussian noise was included in artificial

measurements to allow further evaluation of estimation methods. All scenarios were

tested with the same measurement noise.

Results presented in Fig. 5.11 suggest tracking control improvements can be

made by using some sort of fluid dynamics compensation in thruster control. Pa-

rameter values used in simulation of the thruster dynamics are reported in Table 3.1

for the simplified and lookup table methods and in Table 4.1 for the other output

feedback methods as well as the ground-truth simulations.

Comparing normalized tracking RMSE again in Fig. 5.12 for the new simula-

tions allows further remarks to be made. First, it appears that use of the EKF in
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Figure 5.11: Setpoint tracking performance comparison between all the proposed
control strategies for (a) linear forward velocity, (b) angular pitch velocity, and (c)
pitch angle.

output feedback promises better performance than any iteration of the NLO. This

is likely due to the local optimality of the EKF, which even appears better than

the KFNLO. In fact, there appears to be no discernible benefit to the KFNLO over

the NLO presumably because the exponential convergence property of the observer

dominates over any filtering that could be performed. Second, linear velocity ap-

pears to be well tracked by all cases, so performance benefits will probably only
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be noticeable in attitude tracking for a physical implementation. Lastly, although

some improvement over the simplified and lookup table scenarios is observed, the HQ

model-based control only slightly outperforms the control using the approximated

HL model. Therefore the tradeoff between model complexity and performance im-

provement appears less justifiable.

Estimation of v is an additional metric available in simulation to compare the

value of the NLO to other estimators. Time-series estimation errors of v for a single

thruster are presented in Fig. 5.13 for all hydrodynamic estimation scenarios, and

the estimation RMSE normalized by the average true value for all thrusters in each

scenario are displayed in Fig. 5.14. The EKF again displays superior performance
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Figure 5.13: Estimation errors of v for an individual thruster in the previous simu-
lations.

over other scenarios, and divergence does not appear an issue in simulation. Al-

though the NLO and KFNLO are valuable for their robustness against divergence,

it appears that the EKF is sufficient for obtaining accurate estimates of v.
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Chapter 6: Conclusion

6.1 Summary of Contributions

The modeling and control of thruster dynamics remains an important aspect of

underwater vehicle control. Compensation for these dynamics in simulations of full

vehicle, multi-thruster implementations suggests notable improvements in tracking

control performance even while experiments suggest minimal improvement for an

individual thruster.

In this work, a novel method of system identification for thruster dynamics

using a six-axis load cell is presented, and thrust and torque data collected with it

are used to characterize a variety of models. The models exhibit good agreement

with collected data in cases when lower-order models were characterized as well as

in the cases of higher-order model characterization. Nonlinear control principles are

used to derive control laws that exponentially stabilize the dynamics in the pres-

ence of strong nonlinearities like input dead zones as well as the nonlinear effects

of reaction torque. Additionally, these control strategies are extended to implemen-

tations that compensate for the effects of fluid dynamics on the thrust output of

the system. To enable such implementations, a variety of estimation methods to

reconstruct an unmeasured fluid velocity state are presented. Practical integration
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of these estimation methods with previously discussed control designs is outlined

to motivate experimental and simulated evaluation of all the models and output

feedback methods.

The discussed control and estimation strategies offer a variety of combinations

for closed-loop output feedback control of a thruster. The availability of such options

warrants comparisons to evaluate the benefits of model-based control that accounts

for fluidic effects over simpler model-based strategies, as well as comparisons between

estimation methods. A nonlinear observer derived by Fossen and Blanke [18] was

compared experimentally to other estimation methods with noise considerations in

output feedback tests with a thruster in a flow tank. These experiments constituted

the first time such a method of fluid compensation was implemented on a physical

testbed.

Simulations of tracking control for a multi-thruster ROV were also used to

evaluate performance benefits from incorporating this observer compared to others.

Both experimentally and in simulations, simplified and hydrodynamic model-based

controllers were used with either the NLO, KFNLO, or EKF to draw a wide range

of comparisons. Experimental results suggest nominally similar thrust tracking per-

formance among all models used for output feedback control design, while the EKF

allows for more optimal estimates of fluid velocity to be obtained compared to the

other estimators. In simulation, control methods that compensate for thruster dy-

namics offer improved tracking performance for a full vehicle over ones that do

not account for some higher-order terms. Additionally, the EKF again allows for

improved performance over the other estimation methods, despite the possibility
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of divergence. However, all control methods can accomplish simulation tasks ad-

equately, suggesting only marginal performance improvements should be expected

when attempting to implement the control methods experimentally on a full ROV.

6.2 Suggestions for Ongoing and Future Work

Extensions of this work could seek to include additional models, improved

testbeds, and further experimental results to provide further insight into the thruster

systems that have been analyzed thus far. An iteration on the six-axis load cell de-

sign would benefit from including structural resonance damping so that reactions to

sudden transient changes in thrust will not cause such intense ringing that would

complicate data collection. Transient behavior of the thruster models would be bet-

ter characterized with such an improvement. Additionally, transient thrust tracking

in closed-loop experiments would be more verifiable with such a setup.

Additional thruster models that assume a steady definition of axial fluid veloc-

ity as a linear combination of propeller angular velocity and ambient fluid velocity

would be useful comparisons to current experiments and simulations [16]. In such a

model, nonlinear estimation considerations would be less necessary due to assumed

knowledge of the unmeasured state v based on the other states. Additionally, Kim

and Chung [16] derive models for thrust generation of thrusters oriented away from

the direction of ambient flow. While these models require the identification of more

parameters, their extension for ROV thruster control would be a natural extension of

the methods outlined in this work, and would serve for another valuable comparison
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case in experiments and simulations.

Lastly, experimental tests with a full vehicle were not addressed and would

be a necessary next step in evaluating all the outlined models and output feedback

methods that have been discussed. Experimental control performance of an ROV

may very well yield different conclusions from simulation results, and additional

thruster models could also be compared on such a testbed for more conclusive results.
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