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ABSTRACT

The cislunar regime is of increasing interest to the space industry due to its value for applications such as astron-
omy, interplanetary mission staging, lunar exploration and communications, and Earth orbit insertion. The research
described here is specific to the Earth-Moon system and determines advantageous formations for interferometric imag-
ing of other spacecraft in the cislunar regime for space domain awareness and spacecraft characterization applications
based on metrics for imaging and object tracking as well as an instability metric to approximate the control cost for
the proposed formation. Previous research related to this topic describes a continuous feedback control algorithm that
maintains a formation of satellites in motion that is bounded relative to a halo orbit in the Sun-Earth/Moon system
and shows image reconstruction and (u,v) plane coverage for interferometric satellite configurations for astronomy
applications [7].

1. INTRODUCTION

The National Cislunar Science & Technology Strategy published by the White House Office of Science & Technology
Policy in November 2022 states: “The United States should advance Cislunar [space situational awareness (SSA)] by
initially identifying an architecture that optimizes terrestrial, Lunar-based, and space-based sensors, then leveraging
existing ground-based sensors and developing new ground-based sensors as needed... In-space tests should leverage
orbits available in Cislunar space that can potentially enhance SSA capabilities.”[2] The Cislunar Security National
Technical Vision published by the Johns Hopkins Applied Physics Laboratory in November 2022 states: “Challenges
to cislunar SSA include the need for highly accurate object observations at large distances and through obscuration,
exclusion zones, and periods when the target object may be unlit (via various sensor phenomenologies); sufficiently
detailed dynamic modeling (maintaining nonlinearities); and appropriate algorithms (filters) for combining expecta-
tion with observation and incorporating domain knowledge to produce successful predictions of future object states.
Tracking cislunar objects will require a paradigm change when compared to tracking objects in lower Earth orbits.”[15]

Objects near the Moon are approximately ten times farther from the Earth than the farthest objects being tracked in tra-
ditional space domain awareness efforts, i.e., objects in geosynchronous Earth orbits. Due to these large distances, new
space-based sensing strategies must be considered for cislunar space domain awareness and particularly for spacecraft
characterization, which may require better resolution than any single optical telescope can offer, including exquisite
and expensive sensors like the Hubble Space Telescope. Interferometric sensing strategies using multiple smaller and
less expensive sensors promise resolution equivalent to what could be produced by a single telescope the size of the
largest baseline, or distance between sensors, in the spatial direction of that baseline.

Relative motion control has never been attempted near Earth-Moon Lagrange points, and a formation flight design
for interferometric imaging of resident space objects in the cislunar regime would enable novel and highly capable
sensing at large distances for cislunar space domain awareness and other missions. Trajectories in three-body dynamics
must be identified numerically because no comprehensive analytical solution exists for the three-body equations of
motion, whereas analytical solutions to the two-body equations of motion do exist and are used in the development of
rendezvous algorithms. Although dynamics become nearly linear when satellites are in close proximity in Earth orbit,
even at these close distances the dynamics near Lagrange points remain highly nonlinear, requiring a departure from
two-body relative motion models and two-body algorithms for proximity operations. Algorithms like the well-known
Hill-Clohessy-Wiltshire equations for two-body relative dynamics can be used to control relative motion in most Earth
orbits, but solutions for relative motion in three-body dynamics are very specific to the chosen reference orbit (where



options can include Lyapunov orbits in the plane of the Moon’s orbit about the Earth, Lissajous quasi-periodic orbits,
halo orbits, distant retrograde orbits, and others).

Significant previous research has been published on the topic of formation flying in two-body Keplerian dynamics and
specifically Earth orbits, but research on the topic of formation flying near Lagrange points in three-body systems is
more limited. Previous research related to the topic of formation flight near Lagrange points includes [7] and [12],
which show image reconstruction and (u,v) plane coverage for interferometric satellite configurations for astronomy
applications and describe a continuous feedback control algorithm that maintains a formation of satellites in motion
that is bounded relative to a halo orbit in the Sun-Earth/Moon system. The research described in this manuscript
is specific to the Earth-Moon system and determines advantageous formations for interferometric imaging of other
spacecraft in the cislunar regime for space domain awareness, tracking, and spacecraft characterization applications
based on a metric for coverage of the (u,v) plane, a geometric plane defined for the analysis and processing of inter-
ferometric observations, as well as a tracking custody metric and an instability metric to approximate the control cost
for the proposed formation.

In order to study high-performing satellite formations for the purpose of interferometric characterization of cislunar
objects, we begin by choosing initial conditions and propagating trajectories for a satellite formation about a reference
Lyapunov (in-plane) orbit about Earth-Moon Lagrange point L2, as well as choosing initial conditions and propagating
a trajectory for a target object in an in-plane orbit about Earth-Moon Lagrange point L4. We then develop algorithms
for transforming these relative motions into the (u,v) plane and plotting those results. We then produce a metric for
(u,v) plane coverage to aid in the choice of the initial conditions of the interferometer formation. We compare the
results for this metric to the tracking custody that can be maintained with the simulated interferometric measurements,
and we show the trade of improvements in resolution and tracking custody against the increased control effort required
to maintain the formation, according to our control effort approximation.

The contributions of this paper are (1) a metric for (u,v) plane coverage for an interferometer collecting astrometric
measurements from cislunar space against objects elsewhere in cislunar space, (2) a metric for tracking custody that
uses the resolution of the simulated interferometer in a batch least squares estimator and propagates the resulting
estimated target object state, (3) a metric which approximates the control effort required to maintain the formation,
and (4) analysis of the performance of a series of formations of 4–16 satellites about a reference Earth-Moon L2 orbit
against the (u,v) plane coverage, custody, and control effort metrics.

The organization of this paper is as follows. Section 2 introduces the Circular Restricted Three-Body Problem
(CR3BP), the simplified dynamic system in which the cislunar trajectories studied in this research are developed,
and interferometry as a measurement method, including the van Cittert-Zernike theorem which provides the basis for
this measurement method and defines the (u,v) plane. Section 3 describes the methodology used in this research,
which aims to develop metrics to optimize observer spacecraft formations near Earth-Moon Lagrange points enabling
interferometric imaging of distant spacecraft in the cislunar system, for the ultimate goal of cislunar space domain
awareness and tracking. Section 4 shows (u,v) plane coverage, tracking custody, and control effort results for various
observer formations about Earth-Moon Lagrange point L2, observing a spacecraft which orbits L4. Section 5 describes
concepts for future work and extensions of this research.

2. BACKGROUND

The goal of this research is to assess the value of various formations near a Lagrange point in the Earth-Moon system
(cislunar space) for the application of interferometric collections against another object in cislunar space, based both
on the contribution that the interferometric measurements made by the formation can be expected to add to a cislunar
object tracking capability and on the control effort that may be required to maintain the formation of satellites on their
desired relative trajectories. The resolution of the measurement produced by an interferometric satellite array is largely
determined by the corresponding coverage of the (u,v) plane, which is derived based on the motion of the satellites
in physical space [7]. Concepts that underpin this research thus include cislunar dynamics and relative motion in the
Circular Restricted Three-Body Problem as well as interferometry as a measurement method.

2.1 Relative Motion in the Circular Restricted Three-Body Problem

Motion within the Earth-Moon system may be approximated using the dynamics of the Circular Restricted Three-
Body Problem (CR3BP), in which the motion of a spacecraft with negligible mass is modeled under the influence of



the gravitation of two primaries approximated as point masses in circular orbits about their barycenter [10]. A solution
in the CR3BP can be one of four types [4]: an equilibrium point, a periodic orbit (Lyapunov or halo), a quasi-periodic
orbit (Lissajous), and chaotic motion.

At equilibrium points in the CR3BP (known as Lagrange or libration points), gravitational forces and rotational ac-
celerations are balanced [16]. At stable equilibrium points (Earth-Moon L4 and L5), perturbations cause oscillations
about the equilibrium point, whereas at unstable equilibrium points (Earth-Moon L1, L2, L3), perturbations cause drift
away from the equilibrium point. However, if initial conditions are restricted such that only the non-divergent mode is
allowed, the coupled motion in the xy plane is bounded and periodic about these collinear Lagrange points [10]. The
planar periodic orbits surrounding L1, L2, and L3 are called Lyapunov orbits, and their three-dimensional counterparts
are called halo and Lissajous orbits [10]. For the purpose of this research, periodic trajectories are generated according
to [5]. For further discussion of the dynamics of the CR3BP, see [3].

Relative motion control has never been attempted near Earth-Moon Lagrange points, and a formation flight design
for interferometric imaging of resident space objects in the cislunar regime would enable novel and highly capable
sensing at large distances for cislunar space domain awareness and other missions. Suppose that two spacecraft exist
near Earth-Moon Lagrange point L2 and have initial conditions chosen to avoid exciting the divergent mode of the
linearized equations of motion about the collinear Lagrange point. In other words, for the linearized equations of
motion, a solution to the equations can be made to contain only the oscillatory modes with the following choice of
initial conditions [17]:
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is a non-oscillatory poles-nulling factor, ωxy is the nondimensional frequency of the in-plane
oscillatory mode, and ωz is the nondimensional frequency of the out-of-plane oscillatory mode. Values for k, ωxy, and
ωz are calculated as follows:
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The parameter U with a double-lettered subscript indicates the second derivative of pseudopotential U with respect to
that lettered variable, i.e.,:
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Out-of-plane initial conditions are arbitary because out-of-plane motion is oscillatory. Equation (1) does not produce
initial conditions that avoid exciting the divergent mode if higher-order terms in U are retained, but these initial
conditions suffice for initial formation design, particularly when initial conditions are close to the Lagrange point [17].
Note the error discovered in the β1 equation and corrected here in Equation (2): the ω term is not squared in [6] and
is missing from this equation in [17].

With the initial conditions described above, the solution to the linearized equations of motion is [17]:
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Subscript 0 refers to a value at time t = t0, and can be rewritten as a pair of decoupled matrix equations of similar form
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By comparing Equation (5) as t evolves, relative motion equations can be found as follows [17]:[
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Equation (6) produces elliptical motion with amplitude defined by the initial conditions ∆x0, ∆y0, ∆z0 and can thus
be used to determine the initial conditions that will produce some desired relative motion between a pair of satellites
over time. Since these equations reflect a linearized solution, they offer an aid to finding initial conditions but produce
trajectories that ultimately diverge from both the CR3BP dynamic propagation and any higher-fidelity dynamic prop-
agation over time. Thus in reality, control effort will be required to maintain a formation’s motion along the desired
solution obtained from these linearized results.

2.2 Interferometry

Fig. 1: A depiction of the architecture of an interferometric imaging system, inspired by a similar figure in [7]. The
target object is emitting or reflecting light of frequency λ from the origin of the (x,y) plane. The formation is at
distance z from the target. The positions of the satellites in the formation are projected into the (ξ ,η) plane so that the
spatial frequencies (points in the (u,v) plane) sampled by the interferometer can be calculated.

The van Cittert–Zernike theorem [21], named after physicists Pieter Hendrik van Cittert and Frits Zernike, is a formula
that states that under certain conditions the Fourier transform of the intensity distribution function of a distant, incoher-
ent source is equal to its complex visibility, providing the basis for interferometric imaging. The theorem implies that
if the value of the complex mutual coherence function is known at every point in the (u,v) plane, a two-dimensional
Fourier transform may be used to create an image [12]. The van Cittert-Zernike result provides an equation for the
image of a source [7]:

I(x,y)≈
∫

u

∫
v

µ(u,v)ei2π(ux+vy)dvdu, (7)



(a) Original image. (b) 50 measurements. (c) 200 measurements. (d) 3200 measurements.

Fig. 2: Simulated interferometric reconstruction of an image of 800× 800 pixels based on randomly selected points
on the (u,v) plane.

where µ(u,v) is the complex mutual coherence function. The (u,v) plane, the plane of spatial frequencies sampled by
an interferometer that are input to the mutual coherence function µ , is a function of the position of the interferometer,
its baselines, the wavelength sampled by the interferometer, and the target coordinates. Depicted in Fig. 1, the (u,v)
plane is defined by [7]

u =
η1 −η2

zλ

v =
ξ1 −ξ2

zλ
,

(8)

where λ represents the wavelength of light emitted or reflected by the target and collected by the interferometer.
Based on Equation (8), it is clear that the image of the source depends on u and v, which depend on the locations of
the satellites in (ξ ,η) space. If all points in (u,v) space (all spatial frequencies) can be sampled, then the complete
image can be reconstructed by the interferometer. In the case of an interferometer with two telescopes of diameter D
and separated by a baseline vector B defined in the (ξ ,η) plane, the (u,v) plane consists of a low-frequency peak of
extent ±D/λ and two high-frequency peaks of extent ±D/λ and located at ±B/λ [14]. The interferometer acts thus
as a high-frequency band pass filter, allowing it to reach information at a resolution of 1.22λ/|B|, outperforming a
single telescope of diameter D with resolution 1.22λ/D. An interferometer consisting of n telescopes produces n(n−1)

2

baselines and thus samples n(n−1)
2 frequencies in the Fourier transform of the brightness distribution of the object [14].

Given that the (u,v) plane coverage defines the sampling of the Fourier transform of the object brightness distribution,
sparse sampling of the (u,v) plane is a common concern for interferometry as compared to single-dish observations.
Sparse sampling results in lower signal-to-noise ratio (lower sensitivity). According to [1], “noise magnitude is in-
versely proportional to the square root of the collection area of the telescopes. Thus, the noise can be reduced by
increasing the collection area of the telescopes. However, note that costs (and other possible issues such as fuel usage)
often dictate the size of the telescopes that can be put in space.” Also introduced in [1] is the helpful notion of image
formation by a multi-spacecraft interferometric imaging system being analogous to “‘painting’ of a big disk by a num-
ber of smaller ‘coverage disks’ or ‘paintbrushes”’, a notion which emphasizes the importance of (u,v) coverage for
interferometers. Fig. 2, which shows an improving image reconstruction as a function of increasing numbers of ran-
domly sampled (u,v) points against a digital original image, further exemplifies the importance of abundant sampling
of the spatial frequencies in the (u,v) plane defined against a particular source. Because the interferometry application
studied in this research is tracking a distant object in cislunar space, the details of that object need not be resolved,
but the interferometer does need to sample enough spatial frequencies to precisely identify the angular location of the
object on the celestial sphere as input to a state estimation algorithm used to track the object.

Interferometers can be optimized for various types of measurement, resulting in various (u,v) plane coverage metrics.
For example, interferometers can be used for visibility measurements (detecting the size of an object), astrometry
(detecting the position of an object), and imaging (detecting the structural details of an object). Long baselines measure
information about the small-scale structure of the source but are insensitive to large-scale structure; conversely, short
baselines measure information about the large-scale structure of the source but are insensitive to small-scale structure.
In order to precisely measure the position of a target object (astrometry), baselines B should be as long as possible



without actually resolving the target [13]. Thus, in order to optimize the placement of telescope elements in an
interferometer for a particular type of measurement against a target, some characteristics of the target must be estimated
in advance of the measurement.

For a multiple-element array, the best choice of spacing is to create uniform sampling of the (u,v) plane. The uniform
sampling of spatial frequencies helps avoid degeneracies or aliasing in image reconstruction [19]. As the target and
individual telescopes in the interferometer move due to natural or forced-motion dynamics, baseline length and orien-
tation change, resulting in measurements over different spatial frequencies and directions, filling in the (u,v) plane for
better image synthesis.

A specific description of space-based interferometry is provided by [8]: “Interferometric imaging is performed by
measuring the mutual intensity ... that results from the collection and subsequent interference of two electric field
measurements of a target made at two different observation points. While moving relative to each other, the satellites
collect and transmit these measurements, which are later combined at a central node using precise knowledge of their
locations and timing of data collection. A least squares error estimate of the image can be reconstructed given the
mutual intensity measurements, parameters of the optical system, and the physical configuration of the observatory.”
A benefit to flying a space-based optical long-baseline interferometer is that it removes the requirement for ground-
based interferometers to rapidly and constantly monitor atmospheric effects, but an obstacle for a space-based free-
flying interferometer performing direct detection (homodyne) interferometry is the requirement for extremely precise
relative position control, within a wavelength of the sampled light [9][18]. According to [9], while less sensitive than
direct detection interferometry, heterodyne interferometry allows this requirement for precise position control to be
safely neglected in favor of precise position and timing knowledge among interferometer elements, allowing for the
use of a “widely dispersed, loosely organized ‘swarm’ of functionally identical spacecraft-borne optics” to perform the
desired mission based on the use of a “precise metrology system and large-scale, parallel signal processing to perform
interferometric imaging without the requirement of precise inter-spacecraft positioning and alignment control.”

3. METHODOLOGY

In order to study the interferometric result that would be produced by a particular formation of satellites near Earth-
Moon L2, we begin by choosing an epoch and initial conditions for a target orbiting Earth-Moon L4. The simulation
begins at midnight UTC on October 15, 2022. Non-dimensionalized initial conditions for the target object in the
Earth-Moon rotating frame with origin at the barycenter are: x = 0.7274, y =

√
3

2 , z = 0, ẋ = 0.1306, ẏ = −0.2562,
ż = 0, based on initial conditions provided by [5]. Fig. 3 shows the motion of the formation reference trajectory and
of the target object for four days.

We then choose the initial conditions for a reference or “leader” orbit for the formation orbiting Earth-Moon L2. Non-
dimensionalized initial conditions for the nominal EML2 orbit in the Earth-Moon rotating frame with origin at the
barycenter are: x = 1.2200, y = 0, z = 0, ẋ = 0, ẏ =−0.4275, ż = 0, based on initial conditions provided by [5].

To analyze the (u,v) plane coverage of a particular satellite formation, coordinates of the satellites relative to the
position along the reference L2 orbit in the synodic (Earth-Moon rotating) frame are first transformed to the inertial
frame and then projected into a plane perpendicular to the line-of-sight to the target. Coordinates in this perpendicular
plane are (ξ ,η), and coordinates on the (u,v) plane derived from coordinates in this perpendicular plane are:

ui(t) =
η j −ηk

zλ

vi(t) =
ξ j −ξk

zλ
,

(9)

Here, numerical subscripts j and k indicate that position elements are associated with a particular spacecraft. Nu-
merical subscripts i take values between 1 and 2 j!

( j−2)!2! because two points in the (u,v) plane are measured for each
baseline, and there are as many baselines as pairs of spacecraft in the interferometer formation [11].

Fig. 4a shows a polar plot of the interferometric resolution produced over four days by a formation of four satellites
with initial conditions ∆x0 =±30 meters, ∆y0 =±30 meters and ∆z0 =±30 meters at wavelength λ = 780 nanometers
against a 4-meter spherical target orbiting EML4. Similarly, Fig. 4b shows a polar plot of the interferometric resolution



Fig. 3: Four days of motion, shown in the rotating frame, of the formation reference trajectory about Earth-Moon L2
and the target satellite trajectory about Earth-Moon L4. Both trajectories are planar in the rotating Earth-Moon frame.
The Earth and Moon are shown in the appropriate positions along the x axis.

produced over four days by a formation of four satellites with initial conditions ∆x0 = ±225 meters, ∆y0 = ±225
meters and ∆z0 = ±225 meters with the same target reflecting the same wavelength of light. Fig. 4c shows a plot of
the resolution produced by a formation of eight satellites, and Fig. 4d shows a plot of the resolution produced by a
formation of 16 satellites. (See Tab. 1 for further details about the initial conditions of these formations.) We show
resolution in meters rather than traditional (u,v) plane coverage in the Fourier domain to improve intuition about these
results for the particular tracking custody application addressed in this research. Because the amplitude associated with
(ui,vi) is equal to the amplitude associated with (−ui,−vi), one measurement by a pair of satellites (one baseline) in an
interferometer produces two points on the (u,v) plane, resulting in the symmetries apparent in these polar plots [11].
Figs. 4a – 4d demonstrate the improved resolution offered by longer baselines, giving rise to the improved custody
result shown in Fig. 5.

As previously discussed, a goal for a formation of satellites performing interferometry in order to produce astrometric
observations (unresolved imagery used for precisely measuring the position of a target object rather than the structural
details) is to maintain baselines which produce angular resolution very similar to the anticipated target object angular
size. The following scalar metric (where P represents a distribution of points) describes the percentage of (u,v)
plane points that are covered by the formation but are unnecessary for the desired measurement (where a lower value
represents a better result):

c =
∫ ∫

|Pideal −Pf ormation|dxdy (10)

While Pideal could be defined in many ways, we choose to define Pideal as an annulus with the smaller concentric circle
defined by the minimum baseline which will produce a measurement of the target object, which is assumed to be a
certain size. The resolution of an interferometer in radians can be calculated as 1.22λ/|B|, and the angular extent of
a distant object in radians can be calculated as arcsin( l

z ). When the target angular size is smaller than the resolution
of the interferometer, the target is not visible to the interferometer. On the other hand, if the target angular size is
very much larger than the resolution of the interferometer, we begin to resolve structural details rather than precise
position information. In the examples studied for this analysis, we use a spherical target object of diameter four
meters. For the interferometer to produce a resolution small enough to detect the target object, a pair of its satellites
must create a minimum baseline size of Bmin = 1.22λ

arcsin( l
z )

. Because our goal is not to resolve the structural details of

the distant target, we define the diameter of the larger concentric circle of the annulus to be a maximum baseline
size defined by Bmax =

1.22λ

arcsin(0.125 l
z )

. For our examples we use wavelength λ = 780 nanometers, which represents the

boundary between visible and near-infrared radiation. For distance z, we use an average distance between the reference



(a) Formation of short baselines: 4 spacecraft. (b) Formation of long baselines: 4 spacecraft.

(c) Formation of medium baselines: 8 spacecraft. (d) Formation of a variety of baselines: 16 spacecraft.

Fig. 4: Interferometric resolution against a four-meter spherical distant target produced over four days of formation
propagation.



EML2 orbit, which is the center of the formation comprising the interferometer, and the target orbiting EML4 for the
duration of the measurement collection. The minimum baseline (the inner concentric circle of Pideal), produced as
described above for an interferometer orbiting EML2 and observing a 4-meter spherical target orbiting EML4 at 780
nm wavelength, is 98 meters, while the maximum baseline (the outer concentric circle of Pideal) is 783 meters.

In order to compare the scalar metric described above to a quantitative space object tracking custody result, we first
check that the baselines are large enough to resolve the target object and cover points in each quadrant of a polar
plot of the (u,v) plane. Next we calculate the average resolution for the baselines produced by the given formation
for four days. We then use this average resolution as the standard deviation for the production of simulated noisy
angular measurements of the target space object orbiting Earth-Moon L4 from the interferometer orbiting Earth-
Moon L2. We produce a batch least squares estimate of the target trajectory using hourly simulated noisy angular
measurements with batch size four days. (In this case, we assume that this interferometer is used for precise tracking
custody of objects in the cislunar regime and not for new object discovery, search, or initial orbit determination. Thus
the interferometer described here must initially be cued by another observer to point at the target object.) We then
propagate the estimated and actual target trajectories for one period of the target’s EML4 orbit, and we produce a
root-sum-squared (RSS) position error at that time. This RSS position error is the metric we use to analyze tracking
custody for a given interferometer formation.

Because common impulsive station-keeping methods for collinear Lagrange point orbits involve maneuvers that occur
twice per orbit period, control effort for a particular satellite in the formation can be approximated by calculating the
difference between the actual and desired distance of the satellite from the reference trajectory after half the reference
period has elapsed. The desired distance from the reference trajectory after half the reference period has elapsed is
defined as equal to the initial distance of the satellite from the reference trajectory at the start of the simulation. The
sum of these differences between actual and desired position for all satellites in the formation is used as a metric for
the control effort required for a particular formation.

4. (u,v) PLANE COVERAGE AND TRACKING CUSTODY RESULTS FOR FORMATIONS ABOUT
EARTH-MOON LAGRANGE POINT L2

Tab. 1 provides descriptions of four different formations: 1) a formation of four satellites which produce short base-
lines, 2) a formation of four satellites which produce long baselines, 3) a formation of eight satellites which produce
medium baselines, and 4) a formation of 16 satellites with relative motion at a variety of scales, ranging from the small
to medium to large scales used in the previous three formations described here.

Fig. 5 shows the (u,v) plane coverage, custody, and control effort results for the formations described in Tab. 1.
This figure shows that custody results generally improve as the proposed (u,v) plane coverage metric improves. The
formation of four satellites with long baselines is an exception in that its (u,v) plane coverage result is not as favorable
as the (u,v) plane coverage result for the medium or variety formation, but its custody result is better than the custody
result for either the medium or variety formation. This exception can be explained by the fact that the (u,v) coverage
metric we have chosen rewards the sampling of a greater number of points in the (u,v) plane (which can be produced
with a greater number of satellites in the formation) as long as these points are within Pideal , while the custody metric
rewards longer baselines which produce a smaller average resolution for input to the batch least squares estimator.

Our chosen approximation for control effort demonstrates that formations which produce longer baselines are expected
to require greater control effort. In fact, this metric indicates that the medium formation of eight satellites would not
require significantly more total control effort than the formation of four satellites with long baselines.

All formations contributing interferometric observations to a cislunar object tracking mission provide dramatically
better tracking custody than a single 20 cm telescope.

5. CONCLUSION

This research has shown in simulation the contribution that a formation of satellites performing optical interferometry
from an EML2 orbit can bring to tracking custody of a target object orbiting EML4 and provides an approximation of
the required control effort for such a formation. All formations are shown to provide orders of magnitude improvement
in tracking custody over the observations offered by a single 20 cm telescope. The metrics used in this research



Fig. 5: (u,v) plane coverage, custody, and control effort metric results. Lower values are better for all results. For
comparison against the custody results, the RSS position error produced in the same manner from the resolution of a
single 20 cm telescope on the nominal EML2 orbit is 756 km.

furnish a method for performing trades, in the early design stage of a flight mission, of the approximate formation
control effort, which correlates to formation lifetime, against the formation’s contribution to a cislunar object tracking
mission.

Future work on this topic includes studying target objects orbiting Lagrange points other than EML4, as well as
consideration of Earth and Moon keep-out zones which would be required for optical and infrared instruments. Future
research could also include the development of a control scheme to maintain the desired satellite formation, including
an exploration of low-thrust continuous control schemes to minimize control effort. Development of a formation
control scheme, regardless of engine type, would also motivate recreating the trajectories in a higher-fidelity dynamics
model to understand how acceleration other than Earth and Moon gravitational effects changes the stationkeeping
requirement.

Further advice on (u,v) distribution for individual elements in an interferometer is offered in [20]: “The concept of a
pseudo-random array is introduced as an array whose large-scale average distribution matches an idealized continuous
antenna distribution... Pseudo-random arrays provide a benchmark against which proposed configurations can be
compared... The principal advantage of complete coverage is that there are no gaps or holes in the (u,v) coverage,
[but] placement of the antennas with a detectable pattern is likely to worsen the PSF... The formulas in this paper
can aid in making the tradeoff between the size and number of antennas during the initial conceptual design of an
interferometer array... The optimal configuration will depend upon the science goals for an array but the concepts and
results derived here should make it easier to investigate the many options.” Future work could include establishing
comparisons between the (u,v) plane coverage that is produced by satellites in a formation about an Earth-Moon
Lagrange point to a uniform random distribution of points in the (u,v) plane.
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APPENDIX A

Table 1: Initial conditions for four formations.

Formation Description Initial Conditions (m)
Short baselines (4 satellites) ∆x0 = 30, ∆y0 = 30, ∆z0 = 30

∆x0 =−30, ∆y0 =−30, ∆z0 =−30
∆x0 = 30, ∆y0 = 30, ∆z0 =−30

∆x0 =−30, ∆y0 =−30, ∆z0 = 30
Long baselines (4 satellites) ∆x0 = 225, ∆y0 = 225, ∆z0 = 225

∆x0 =−225, ∆y0 =−225, ∆z0 =−225
∆x0 = 225, ∆y0 = 225, ∆z0 =−225

∆x0 =−225, ∆y0 =−225, ∆z0 = 225
Medium baselines (8 satellites) ∆x0 = 95, ∆y0 = 95, ∆z0 = 95

∆x0 =−95, ∆y0 =−95, ∆z0 =−95
∆x0 = 95, ∆y0 = 95, ∆z0 =−95

∆x0 =−95, ∆y0 =−95, ∆z0 = 95
∆x0 = 160, ∆y0 = 160, ∆z0 = 160

∆x0 =−160, ∆y0 =−160, ∆z0 =−160
∆x0 = 160, ∆y0 = 160, ∆z0 =−160

∆x0 =−160, ∆y0 =−160, ∆z0 = 160
Variety baselines (16 satellites) ∆x0 = 30, ∆y0 = 30, ∆z0 = 30

∆x0 =−30, ∆y0 =−30, ∆z0 =−30
∆x0 = 30, ∆y0 = 30, ∆z0 =−30

∆x0 =−30, ∆y0 =−30, ∆z0 = 30
∆x0 = 95, ∆y0 = 95, ∆z0 = 95

∆x0 =−95, ∆y0 =−95, ∆z0 =−95
∆x0 = 95, ∆y0 = 95, ∆z0 =−95

∆x0 =−95, ∆y0 =−95, ∆z0 = 95
∆x0 = 160, ∆y0 = 160, ∆z0 = 160

∆x0 =−160, ∆y0 =−160, ∆z0 =−160
∆x0 = 160, ∆y0 = 160, ∆z0 =−160

∆x0 =−160, ∆y0 =−160, ∆z0 = 160
∆x0 = 225, ∆y0 = 225, ∆z0 = 225

∆x0 =−225, ∆y0 =−225, ∆z0 =−225
∆x0 = 225, ∆y0 = 225, ∆z0 =−225

∆x0 =−225, ∆y0 =−225, ∆z0 = 225
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