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ABSTRACT
This paper describes a dynamic controller for rotorcraft landing and hovering in ground effect using feedback con-
trol based on flowfield estimation. The rotor downwash in ground effect is represented using a ring-source potential
flow model selected for real-time use. Experimental verification of the flow model is also presented. A nonlinear
dynamic model of the rotorcraft in ground effect is presented with open-loop analysis and closed-loop control simu-
lation. Experimental results of the open-loop dynamics are presented and the effect of motor dynamics on the overall
dynamics are investigated. Flowfield velocity measurements are assimilated into a grid-based recursive Bayesian filter
to estimate height above ground in both simulation and experiment. Height tracking in ground effect and landing are
implemented with a dynamic linear controller. Experimental validation of the closed-loop controller is ongoing.

INTRODUCTION

Rotorcraft operation in ground effect (IGE) presents substan-
tial challenges for vehicle control, including landing with low-
impact velocity and maintaining near-ground hover in low-
visibility conditions such as brownout (Ref. 1), fog (Ref. 2),
snow or darkness. Safe operation IGE requires a controller
capable of handling uncertainty. Previous authors have de-
veloped landing controllers based on robust or adaptive con-
trol techniques. For example, Serra and Cunha (Ref. 3) adopt
an affine parameter-dependent model that describes the he-
licopter linearized error dynamics for a predefined landing
region and implements H2 feedback control. Mahony and
Hamel (Ref. 4) develop a parametric adaptive controller that
estimates the helicopter aerodynamics onboard and modulates
the motor torque, rather than the collective pitch, during take-
off and landing and takes advantage of the reduced sensitiv-
ity of the control input to aerodynamics effects. Nonaka and
Sugizaki (Ref. 5) implement ground-effect compensation and
integral sliding mode control to suppress the modeling error
of the vehicle dynamics in ground effect. These control tech-
niques often require a system model with empirically fit aero-
dynamic coefficients that are unique to each vehicle.

Safe operation IGE also requires accurate estimation of
the proximity and relative orientation of the ground plane.
Height-estimation methods currently exist for micro aerial ve-
hicles (MAVs) based on ultrasonic, barometric pressure or op-
tical sensors. However, ultrasonic sensors work only for prox-
imity sensing and do not work well for an angled or irregular
ground plane (Ref. 6). Barometric pressure sensors typically
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work well for large height differentials (Ref. 7), but are sen-
sitive to fluctuations in atmospheric pressure, which results in
sensor drift. Likewise, the effectiveness of vision-based sen-
sors is limited in degraded visual environments. This paper
develops a hover and landing controller that uses rotor down-
wash flow-velocity measurements and an aerodynamic model
to estimate the height above ground, thereby providing an ad-
ditional sensing modality for hovering and landing IGE.

Previous authors have quantified ground effect empirically
or through the use of an underlying aerodynamic model. Non-
aka and Sugizaki (Ref. 5) take an empirical approach to mea-
suring the ground effect on rotor thrust as a function of mo-
tor voltage. Mahony and Hamel (Ref. 4) use an approxima-
tion of the down-flow velocity ratio based on a piecewise lin-
ear approximation of Prouty (Ref. 8) to estimate rotor-thrust
variation IGE. Higher fidelity analytical models include pre-
scribed wake vortex modeling (Ref. 9) and free vortex mod-
eling (Ref. 10), which seek to accurately predict the nature
of the rotor wake vortices. Cheeseman and Bennett (Ref. 11)
provide a classic analytical model for ground effect, which we
adopt for this work, based on aerodynamic modeling using
the method of images. The use of an aerodynamic model per-
mits comparison to measurements from sensors such as multi-
component differential-pressure airspeed sensors (Ref. 12).
Lagor et al. (Ref. 13) and DeVries et al. (Ref. 14) have previ-
ously shown that a reduced-order flow model can be rapidly
evaluated within a Bayesian filter to perform estimation and
control tasks in an uncertain flow environment.

Our previous paper (Ref. 15) developed a dynamic con-
troller for hover and landing IGE based on a flow model
for height estimation. Rotorcraft downwash IGE was mod-
eled using potential flow theory. We extended the model of
Cheeseman and Bennett (Ref. 11) using multiple ring sources;
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the mirror images create a ground plane. The reduced-order
model relates the flowfield velocities to height IGE; it is capa-
ble of relatively fast evaluation for control purposes. A nonlin-
ear dynamic model of rotorcraft landing IGE was presented,
assuming a rigid rotor commonly found in MAV rotorcraft
(Ref. 16). Height estimation of rotorcraft IGE using spatially
distributed airspeed measurements was accomplished with a
grid-based recursive Bayesian filter. The Bayesian framework
is capable of fusing data from additional sensing modalities
and for estimation of additional states, such as roll and pitch
relative to the landing platform. The feedback controller was
implemented in simulation to illustrate the theoretical results.

This paper expands on our previous paper by including ex-
perimental verification of parts of the flow modeling, sensing
and control framework. The contributions of this paper are (1)
an improved ring-source potential flow model consistent with
experimental observations; (2) a nonlinear dynamics model
of a compound pendulum heave test stand; (3) experimen-
tal verification of our ring-source potential flow model and
height estimation framework; and (4) experimental results of
the open-loop compound pendulum dynamics.

Flow Estimation and Closed-Loop Control System Archi-
tecture

The control and estimation architecture developed and simu-
lated in this paper is shown in Fig. 1. The flow velocities v
and w, in the radial and vertical axes, respectively, are sim-
ulated using the ring-source potential flow model. The ro-
torcraft dynamics are simulated using a nonlinear state-space
model. Flow measurements ṽ and w̃ are presumed to be cor-
rupted with additive sensor noise. These flow measurements
are used by a grid-based recursive Bayesian filter to estimate
rotorcraft height and a feedback controller seeks to drive the
vehicle to the commanded height.

Fig. 1. Block diagram for closed-loop flow sensing and con-
trol.

Experimental Instrumentation Architecture

Experiments described in this paper were conducted to ver-
ify and implement the theoretical framework presented above.
Fig. 2 shows a block diagram of the experimental instrumen-
tation, which is categorized into three parts: sensing (blue),
estimation and control (green), and actuation (purple). The

Fig. 2. Block diagram for experimental instrumentation.

airspeed probe sets are connected to differential pressure sen-
sors to measure radial and vertical flow pressure. The pres-
sure measurements are collected by a Teensy microcontroller
for filtering and conversion into velocity components. These
velocity measurements are transmitted to the computer for
height estmation and closed-loop control. Finally, the Ar-
duino Nano microcontroller actuates the brushless direct cir-
cuit motor and rotor pair, and the motor speed is measured by
an optical tachometer and transmitted back to the computer.

FLOW MODEL

Cheeseman and Bennett Flow Model IGE

Let R be the rotor radius, vi denote the rotor induced velocity
and h be the rotor height. Cheeseman and Bennett (Ref. 11)
model the rotor downwash impinging on the ground plane
by representing the rotor as a three-dimensional source with
strength s = R2vi/4 and the ground plane as a mirror-image
source to enforce no flow through the ground plane, as shown
in Fig. 3. The sources are separated by a distance 2h.

The velocity potential for the location (x,y,z) in the flow-
field is (Ref. 11)

φ =− s√
x2 + y2 +(z−h)2

− s√
x2 + y2 +(z+h)2

. (1)

Taking the gradient of the velocity potential with respect to
position yields the flow velocity components (Ref. 11).

Although the Cheeseman and Bennett flow model has been
experimentally shown to accurately capture the relationship
between rotor thrust IGE and rotor height (Ref. 11), it repre-
sents the physical flowfield of a rotor IGE with insufficient ac-
curacy for our purposes. As shown in Fig. 3, the flow vectors
just below the rotor plane extend radially outward as opposed
to downward. Since the rotor is modeled as a point source, the
strongest vectors are at the hub and diffuse in strength radially
outward.

Ring-Source Potential Flow Model

Similar to the Cheeseman and Bennett model, we model the
physical flowfield using potential flow theory. However, we
replace the single source of Cheeseman and Bennett radially
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Fig. 3. Cheeseman and Bennett [11] potential flow model
of rotor downwash in ground effect.

outward into ring sources to create a more uniform spatial dis-
tribution of the flowfield sources.

As shown in Fig. 4, the rotor is modeled by ring sources
and the ground plane is modelled by their mirror image to
enforce no flow through the ground plane. Note that ring k = 1
is at the rotor tip and the ring indices move radially inward
with equal radial spacing of R/N. The radial location of each
ring k is

rk = R− (k−1)
R
N

. (2)

Similar to the inflow ratio distribution of a rotor (Ref. 17), the
strength sk of ring k varies with radial location according to

sk =
smax

R
rk, (3)

where the maximum source strength smax is located at the ro-
tor tip r1 =R. We choose the source strengths according to the
total volumetric flow through the rotor disk, similar to Cheese-
man and Bennett. Let A = πR2 denote the rotor disk area. The
strength of each ring source sk represents the volumetric flow
rate per unit length and the total flow rate satisfies

1
2

N

∑
k=1

2πrksk−
1
4
(2πRsmax) = Avi. (4)

Although the ring sources emanate in all directions, only the
bottom half of the emanation should be modeled as the rotor
flow. Additionally, the outer most ring source, which happens
to be the strongest, should only have a quarter of its emana-
tion considered because the emanation outwards and upwards
do not contribute to the rotor flow. Substituting (2) and (3)
into (4) and using arithmetic series along with the sum of a
sequence of squares yields

smax =
6NRvi

2N2 +1
. (5)

The velocity potential of ring source k is (Ref. 18)

φk(r,rk,z) =
−skrkK(M)

π
√

ρ1(r,rk,z)
, (6)

Fig. 4. Schematic of ring-source potential flow model
nomenclature.

where ρ1 = (r+ rk)
2 + z2, r and z are the radial location and

elevation of the query point in the rotor body frame (positive
down), respectively, and M = 4rrk/ρ1. Note that the radial
vk(ρ1,ρ2) and vertical wk(ρ1,ρ2) velocity components of ring
source k are (Ref. 18)

vk =
rksk

2πr
√

ρ1

[
K(M)+

r2− r2
k − z2

ρ2
E(M)

]
(7)

and wk =
skrk− zE(M)

πρ2
√

ρ1
, (8)

where ρ2 = (r− rk)
2 + z2 and K(M) and E(M) are the first

and second complete elliptic integrals respectively. (K(M)
and E(M) are evaluated using the ellipke function in
MATLABr.) The velocity components of the flowfield are
the sum of each ring source and their image ring-source con-
tributions, i.e.,

v(r,z) =
N

∑
k=1

vk(ρ1,ρ2)+
N

∑
k=1

vk(ρ̄1, ρ̄2), (9)

w(r,z) =
N

∑
k=1

wk(ρ1,ρ2)+
N

∑
k=1

wk(ρ̄1, ρ̄2), (10)

where ρ̄1 =(r+rk)
2+(2h−z)2 and ρ̄2 =(r−rk)

2+(2h−z)2.

Fig. 5 shows the flowfield generated by the ring-source
potential flow model, with streamlines and speed distribu-
tion shown for various heights. Speed is denoted by ‖V‖ =√

v2 +w2. The variations in speed distribution with height
serve as an informative tool for the placement of sensors
to measure the flowfield experimentally. The potential flow
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Fig. 5. Flowfield of ring-source potential flow model evaluated at various heights, depicting streamlines and speed dis-
tributions, where speed ‖V‖=

√
v2 +w2.

model is qualitatively similar to the flow visualization model
of the flow below a rotor IGE by Lee et al. (Ref. 19).

Moving from the rotor plane to the ground close to the
rotor hub, the flow decelerates and forms a stagnation re-
gion. The flow deceleration region is easiest to distinguish for
h=1.0R in Fig. 5. In contrast, the flow acceleration region is
where the streamlines change direction from pointing down-
ward to pointing radially outward. As the rotor approaches
the ground, the streamlines are compressed, which is best il-
lustrated for h=0.5R in Fig. 5. Evidently, the flow speed is
the highest in the flow acceleration region for the h=0.5R case
as opposed to the h=2.0R case, since the flow is being com-
pressed more with less space between the rotor plane and the
ground. This effect is analogous to moving a water jet (the
rotor) closer to a wall (the ground plane), since the jet speed
in the flow acceleration region is highest when it is close to
the wall.

Although the rotor downwash IGE as visualized in the
work of Lee et al. (Ref. 19) is not laminar, we model it us-
ing potential flow theory and account for turbulence with pro-
cess noise (see Height and Speed Estimation Section). We
model the mean velocity of the dominant flow and treat the

turbulence and other secondary effects, such as blade tip vor-
tices, as fluctuations away from the mean. Flow velocity com-
ponent measurements Ṽ are collected below the rotor in the
experimental setup. Airspeed measurements of the sort de-
scribed in (Ref. 12) contain two flow velocity components,
radial ṽ and vertical w̃, at each airspeed probe set location and
are collected in an array configuration to sample the flowfield
at multiple spatial locations. Measurement Ṽ corresponds to
either the radial ṽ or the vertical w̃ velocity component. We
assume Ṽ is corrupted by zero-mean Gaussian white noise η

with standard deviation ση and zero mean, resulting in the
measurement model

Ṽ =V +η . (11)

DYNAMICS AND CONTROL

Dynamics of Rotorcraft Operation IGE

Fig. 6 shows the free-body diagram of a rotorcraft in which
the tailrotor counter torque is not shown. Applying Newton’s
second law in the ez direction yields

mḧ = TIGE −mg−b1ḣ, (12)
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Fig. 6. Free-body diagram of rotorcraft in ground effect.

where TIGE is the rotor thrust IGE, m is the mass of the rotor,
ḣ and ḧ are the vertical velocity and acceleration respectively,
g is the gravitational acceleration and b1 is the damping co-
efficient due to aerodynamics or another source. Modeling
the rotor thrust T as a function of rotor rotational speed ω

yields (Ref. 16)

T = kω
2. (13)

The rotor thrust is augmented for ground effect using the
Cheeseman and Bennett model, which captures the essential
characteristic of the relationship between thrust and height
IGE, i.e.,

TIGE =
1

1− R2

16h2

T =
16h2

16h2−R2 T . (14)

Based on experimental data, Leishman (Ref. 17) suggests that
model (14) is valid for 2.0 ≥ h/R ≥0.5. It is assumed hence-
forth that the rotorcraft has landed when h/R =0.5, which is
reasonable since the rotor distance above the landing gear is
typically greater than 0.5R. Thrust IGE (14) is substituted into
(12) to obtain the dynamics of a rotorcraft IGE,

ḧ =
16h2kω2

(16h2−R2)m
−g−b1ḣ. (15)

Linear State Space Form

The state vector Z ∈ R2 is defined as

Z =

[
h
ḣ

]
=

[
z1
z2

]
, (16)

where ḣ is the landing speed. Since the rotor rotational speed
is regulated, we define ν = kω2/m as the control input. The
nonlinear state space form is

Ż =

[
ḣ
ḧ

]
=

[
z2

16z2
1

16z2
1−R2 ν−g

]
. (17)

An equilibrium control input ν∗ is necessary to keep the ro-
torcraft hovering at a corresponding equilibrium height z∗1 (or
to land safely). Solving (17) for the equilibrium condition,
Ż∗ = 0, the equilibrium control input is

ν
∗ = g

16z∗21 −R2

16z∗21
. (18)

Fig. 7. Open-loop dynamics of rotorcraft in ground effect
with constant input ν = ν∗. Initial conditions for height
and speed are (1.5m, 0.25m/s).

Fig. 7 depicts the simulation results of the open-loop nonlin-
ear dynamics for initial height and speed (1.5m and 0.25m/s)
and constant input ν = ν∗.
In order to implement a linear controller for the nonlinear dy-
namics (17), the Jacobian matrices are needed. The Jacobians

A =

[
0 1

−2gR2

z∗1(16z∗21 −R2)
0

]
and B =

[
0

16z∗21
16z∗21 −R2

]
(19)

are the partial derivatives of the right-hand side of (17) with
respect to Z and ν , respectively. The linear system dynamics
are

Ż = AZ +Bν . (20)

Nonlinear Dynamics with Linear Observer-based Feed-
back Control

The state space system (17) in control affine form is

Ż = f (Z)+g(Z)ν , (21)

where

f (Z) =
[

z2
−g

]
and g(Z) =

[
0

16z2
1

16z2
1−R2

]
. (22)

Fig. 7 shows that the constant-input open-loop nonlinear sys-
tem with ν = ν∗ oscillates about the equilibirum point, which
implies that feedback control is needed to asymptotically sta-
bilize z1 to the desired height. A linear controller to be used
with the nonlinear system dynamics is

ν = ν
∗+∆ν , (23)
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Fig. 8. Closed-loop dynamics of rotorcraft in ground effect
with full-state feedback, Ẑ = Z using the linear controller
(23).

where ∆ν = −K(Ẑ − Z∗), K = [K1 K2] and Ẑ =
[ẑ1 ẑ2]

T denotes the estimated states. The closed-loop dy-
namics with the linear output-feedback controller (23) are

Ż =

[
z2
−g

]
+

[
0

16z2
1

16z2
1−R2

]
(ν∗+∆ν), (24)

i.e.,

Ż=

[
z2

−g+ 16z2
1

16z2
1−R2

(
g 16z∗21 −R2

16z∗21
−K1(ẑ1− z∗1)−K2ẑ2

)]. (25)

Figure 8 compares the nonlinear closed-loop dynamics
(25) to the linear closed-loop dynamics (20), using linear con-
troller (23). The simulation is implemented using full-state
feedback, Ẑ = Z. The optimal gains K are provided by Linear
Quadratic Regulator (LQR) and the Jacobian matrices in (19)
are evaluated at the equlibrium height. Initial conditions for
the height and speed are (1.8m, 0.9m/s) and desired steady-
state conditions are (0.75m, 0m/s).

Dynamics of Compound Pendulum Heave Test Stand

Our experimental setup was constructed as a compound pen-
dulum with one degree of freedom in the heave direction as
shown in Fig. 9. This setup allows the use of journal bear-
ings, which are smoother than linear carriages and rails in a
vertical setup. This setup also has the added benefit of allow-
ing a counterweight to balance the system weight and to re-
duce the motor load. Figure 10 shows the free-body diagram
of the compound pendulum. The lateral (ey) displacement can
be minimized by mounting the setup at the midstroke, i.e., at
a height of 1.25R.

The angular momentum of the compound pendulum is

ho = Ioθ̇ex, (26)

where Io is the moment of inertia about point O, θ is the posi-
tive clockwise angle from vertical and θ̇ is the angular veloc-
ity of the pendulum. The time derivative of the angular mo-
mentum equals the moment about point O. In the ex direction,

Fig. 9. Compound pendulum heave test stand.

Fig. 10. Free body diagram of compound pendulum heave
test stand.
we have

Ioθ̈ = LTIGE sinθ − l1gsinθ(m+M1)+ l2M2gsinθ −b2θ̇ , (27)

where θ̈ is the angular acceleration; l1, l2 and L are the dis-
tances from O to the center of mass, O to counterweight M2
and O to rotor mass m respectively; M1 is the mass of the pen-
dulum setup and b2 is the damping coefficient due to aerody-
namics and/ or friction. In terms of the height h= L2−Lcosθ ,
we have

ḣ = Lθ̇ sinθ , (28)
ḧ = Lθ̇

2 cosθ +Lθ̈ sinθ . (29)

Since the compound pendulum is mounted at midstroke,
we approximate θ ≈ π/2, which implies

h≈ L2, ḣ≈ Lθ̇ and ḧ≈ Lθ̈ . (30)

Likewise, the moment of inertia Io is

Io = mL2 +
1
3

M1(L+ l2)2 +M2l22. (31)
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Substituting (14) and (30) into (27) yields the dynamics of the
compound pendulum heave test stand,

ḧ =
1
Io

[
16h2kω2L2

(16h2−R2)
− l1Lg(m+M1)+ l2LgM2

]
−bḣ, (32)

where b = b2/Io. Note that as the mass of the compound pen-
dulum setup M1 and the counterweight M2 go to zero, the
compound pendulum dynamics (32) reduce to the rotorcraft
IGE dynamics (15).

HEIGHT AND SPEED ESTIMATION

The Bayesian filter (Ref. 14) (Ref. 20) is a probabilistic ap-
proach for estimation that assimilates noisy measurements
into a probability density function (PDF) using nonlinear
system dynamics and observation operators. (The optimal
Bayesian filter for linear systems with linear measurements
and Gaussian noise is the Kalman filter (Ref. 21), whereas a
common Bayesian filter for nonlinear systems with nonlinear
observation and noise models is the particle filter (Ref. 22).)
A grid-based recursive Bayesian filter can be rapidly imple-
mented for a low-dimensional state-space representation of
the rotorcraft downwash with linear parameter estimates and a
nonlinear measurement model.1 It is of note that even though
linear paramater estimates and Gaussian white noise is as-
sumed for our measurement and process noise, these are not
required assumptions for the Bayesian filter.

Estimation Step

The Bayesian framework consists of the estimation and the
prediction step. In the estimation step, the Bayesian filter in
the form of (Ref. 14) estimates the vehicle height based on the
flow-velocity measurements from an array of differential pres-
sure sensors. Grid-based Bayesian estimation is performed
recursively, in which the finite parameter space over height
h is discretized and the PDFs are evaluated on this grid for
each new measurement. Let h be the single state of a one-
dimensional Bayesian filter. Recall that the noisy flow mea-
surement Ṽ is corrupted with zero mean Gaussian noise as in
(11). Let L = {Ṽ1, ...,Ṽm} denote the set of observations from
m sensors. Note that each velocity component measurement
(even at the same location) is treated as a separate measure-
ment. The posterior probability of the state h given the mea-
surements L is (Ref. 14)

P(h|L) = cP(L|h)P(h|L0), (33)

where c is the scaling factor chosen so that P(h|L) has unit
integral over the state space. The likelihood function P(L|h)

1As an alternative, the Unscented Kalman filter (Ref. 23) is
an approximate nonlinear estimator that differs the inevitable
divergence with highly nonlinear systems or measurements
(Ref. 21). The particle filter (Ref. 22) provides high perfor-
mance estimation but requires careful selection of its estima-
tion state vector because it is prone to sample impoverishment
and requires careful tuning.

is the conditional probability of the observations L given the
state h and P(h|L0) represents the prior probability distribu-
tion. During initialization or in the absence of measurements,
the prior probability P(h|L0) is uniform.

We choose a Gaussian likelihood function for the measure-
ments Ṽl , l = 1, ...,m, i.e.,

P(Ṽl |h) =
1√

2πσ
exp
[
− 1

2σ2 (Ṽl−Vl)
2
]

, (34)

where Vl is the flow at height h generated from the flow model
(9) or (10) and σ2 is the measurement variance. The posterior
probability density of the state h is obtained using the joint
measurement likelihood combining the measurements taken
from all m sensors (Ref. 14), i.e.,

P(h|L) = c

(
m

∏
l=1

P(Ṽl |h)

)
P(h|L0). (35)

The estimated height ĥ corresponding to the mode (supre-
mum) of the posterior probability P(h|L) provides the max-
imum likelihood estimate of the flowfield parameters.

Spatial integration over the sensor array is accomplished
by (35), whereas temporal integration is accomplished by as-
signing the posterior of the current time step to be the prior
for the next time step.

Prediction Step

The prediction step consists of shifting and diffusing the prob-
ability mass to account for the vehicle dynamics using the
Chapman-Kolmogorov equation (Ref. 22),

P(h(t +∆t)|L(t))

=
∫

P(h(t +∆t)|h(t))P(h(t)|L(t))dh(t), (36)

where t is the current time step and ∆t is the time step interval.
Numerically, the probability density is shifted along the grid
according to the estimated speed ẑ2. If the estimated speed ẑ2
is positive, we shift the PDF to the right and vice-versa. The
number of grid points to shift is determined by the product of
the estimated speed ẑ2 and time interval. After shifting, the
probability density is normalized to ensure the PDF integrates
to one.

To account for uncertainty in the motion model, the prob-
ability density is diffused with process noise γ by convolution
with a grid-sized Gaussian window whose width is inversely
proportional to the standard deviation of the process noise σγ .
(This step is done with the MATLABr functions gausswin
and convn.)

Simulation Examples

Fig. 11 shows the evolution of the marginal probability den-
sity of estimated height during closed-loop ascent (Fig. 11(a))
and descent (Fig. 11(b)). Fig. 11(a) shows an ascent maneu-
ver from initial normalized height and speed (with respect to
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Fig. 11. Simulations of the closed-loop control system with estimated height using the Bayesian filter framework show the
marginal probability density of normalized height h/R and normalized speed plotted versus time. (a) Ascent maneuver
from initial height and speed of (0.7, 0/s), commanded height of 1.8 and process and measurement noise standard
deviation of (0.1, 0.15/s); (b) descent maneuver from initial height and speed of (1.8, 0.2/s), commanded height of 0.6 and
process measurement noise standard deviation of (0.08,0.1/s); (c) estimated speed using low-pass-filtered (LPF) finite
differencing for ascent maneuver in (a); (d) estimated speed using low-pass-filtered (LPF) finite differencing for descent
maneuver in (b).

R) of (0.7, 0/s) to a commanded height of 1.8 and process and
measurement noise standard deviation of (0.1, 0.15/s). Fig.
11(b) shows a descent maneuver from initial height and speed
of (1.8, 0.2/s) to a commanded height of 0.6 and process and
measurement noise standard deviation of (0.08, 0.1/s). Fig
11(c) and (d) show the estimated speeds using the low-pass-
filtered finite-differencing method (37) for ascent in (a) and
descent in (b), respectively.

These manuevers are simulated using the closed-loop dynam-
ics (25). The estimated height ẑ1 is evaluated recursively by
the one-dimensional Bayesian filter. The estimated height ẑ2
is evaluated from ẑ1 by finite differencing, i.e.,

ẑ2,p = α ẑ2,p−1 +(1−α)
ẑ1,p− ẑ1,p−1

∆t
, (37)

where 0 < α < 1, the index p indicates the current time step
and ∆t is the time interval between each simulation step. Eq.
(37) is a low-pass-filter that removes most of the effects of
noise. Process noise γ , which is Gaussian white noise with
standard deviation σγ and zero mean, is added to (25) in the
filter.

Fig. 11(a) and (b) show that the initial height estimation
error is large because the prior PDF is uniformly distributed.

As the Bayesian filter assimilates measurements over time, the
marginal probability density peaks and the estimated height
converges to the actual height. As more measurements are
taken, the filter narrows the probability density. Note that Fig.
11(a) has a bigger spread throughout its probability density
distribution than Fig. 11(b), due to the higher noise variances.

Fig. 11(c) and (d) show that the initial speed estimates are
relatively large as the difference between succesive height es-
timations is also relatively large. This effect is influenced by
the Bayesian filter initiation and also the controller, which is
driving the system to the comanded height. As the system
reaches steady state at about 4s, the speed estimates begin to
more closely track the actual speed. (The first-order speed
estimation could be improved by using a higher-order estima-
tion method.)

EXPERIMENTAL RESULTS

Two heave test stands were built for experimental verification
of the flow-sensing and control framework. Fig. 12 shows
the static-height test stand to collect measurements of radial
v and vertical w velocity components. The measurements are
streamed in real time to a computer and compared to the ring-
source models (9) and (10) to generate a static-height esti-

8



mate. Fig. 9 shows the compound pendulum heave test stand
used to verify the dynamics and closed-loop control.

Fig. 12. Static-height test stand.

Table 1. Experimental Equipment.
Equipment Model & Make
Brushless Direct Circuit Motor 850Kv AC2830-358
Differential Pressure Sensors Honeywell

HSCDRRN001NDAA3
Direct Circuit Power Supply Mastech HY3030E
Electronic Speed Controller eRC Rapid Drive 25A
Modular Aluminum Profiles MakerBeam & 8020
Microcontroller: Cortex-M4 Teensy 3.1

Data Acquisition
Microcontroller: ATmega328

Motor Speed Arduino Nano
Optical Tachometer Neiko 20713A
Remote Control Radio Spektrum DX6i
Rotor HobbyKing 14X4.7

Carbon Fiber
Scale Ohaus Valor 100

Table 1 lists the make and model of the experimental
equipment. Fig. 13 shows the instrumentation setup, whh
is common to both test stands. Note that the Remote Control
(RC) radio is used for manual motor-speed control, whereas
the Arduino Nano microcontroller is used for automatic speed
control.

An airspeed probe set that is capable of measuring the ra-
dial and vertical velocity components consists of two pairs of
tubes. Each pair is connected to a differential pressure sen-
sor (Ref. 12). The pressure sensors are connected via an ana-
log interface to the Teensy 3.1 Microcontroller for Data Ac-
quisition (DAQ). Since the pressure measurements are rela-
tively noisy and the pressure sensor and DAQ microcontroller
are capable of higher data rates than the estimation and control
loop in the computer, a Moving Average Filter (MAF) is im-
plemented on the pressure measurements to generate velocity

Fig. 13. Test stand instrumentation.

measurements Ṽ . The MAF implementation is

Ṽ =
p
J

J

∑
j=1

P̃j, (38)

where P̃j is the instantaneous measurement from the differen-
tial pressure sensor, J is the number of datapoints to average
over and p is the conversion factor from differential pressure
to velocity (Ref. 12).

The actuation of the experimental setup consists of a
Brushless Direct Circuit (BLDC) motor and Electronic Speed
Controller (ESC) pair. Speed-control input requires Pulse
Width Modulation (PWM) square wave signals with variable
timescales, which are generated by the RC receiver or Ar-
duino Nano microcontroller.

Fig. 14. Comparison between ring-source potential flow
models (9), (10) and experimental results of radial v and
vertical w velocity components for various radial loca-
tions. Normalized height z/R = 0.75, normalized sensor
location (z/R)sensor= 0.18, rotational speed ω=2538 RPM,
induced velocity IGE vi,IGE = 4.34m/s.

Verification of Flow Model and Height Estimation Frame-
work

Fig. 14 compares the measured radial and vertical velocity
components with the flow model at normalized height z/R

9



Fig. 15. Static height estimation at normalized height
z/R=0.75 for verification of ring-source potential flow
models (9) and (10) using measured radial v and ver-
tical w velocity components. Normalized sensor loca-
tion (r/R,z/R)sensor= (0.75,0.18), rotational speed ω=2538
RPM, induced velocity IGE vi,IGE = 4.34m/s.

Fig. 16. Rotor Thrust Test Setup.

= 0.75, with the sensors placed 0.18R away from the rotor
plane, motor rotational speed of 2538 RPM and induced ve-
locity IGE vi,IGE of 4.34 m/s. The induced velocity IGE is the
average of vertical velocities close to the rotor plane across
multiple radial locations and, in this case, zsensor/R= 0.05.

The radial velocity crosses over from positive to negative
at r/R=0.75, which represents suction toward the rotor hub.
The model does not predict this outcome due to the geometry
of the ring sources because inward flow at opposite sides of
the same ring cancel out and radial velocity is always outward
and positive. Furthermore, the radial flow is also influenced
by turbulence and the tip vortices of each rotor blade, whereas
the flow model captures only the mean velocity. The flow
model underpredicts the vertical velocity component, which
is likely because the induced velocity is an average rather than
local value.

Fig. 15 shows the static height-estimation results at nor-
malized height z/R = 0.75 and normalized sensor locations at
(r,z)sensor/R = (0.75, 0.18). The difference between the es-
timated height and the actual height has 13.8% mean error.
Observed that the vertical velocity is relatively stable and the
estimation errors are primarily caused by fluctuations in the

Fig. 17. Thrust T and rotational speed ω relationship out
of Ground Effect, comparing a curve fit and model (13)
against experimental results.

Fig. 18. Normalized height z/R and rotational speed ω at
steady-state in Ground Effect.

radial velocity.

Open-Loop and Motor Dynamics

Fig. 16 shows the thrust test setup used to measure the rela-
tionship between rotor thrust T and rotational speed ω OGE.
The motor-ESC pair is mounted on the test stand, which is
coupled with the scale. The DC Power Supply powers the
motor-ESC pair and the Remote Control (RC) receiver con-
trols the motor rotational speed. The rotor is mounted so that
the thrust vector points downwards into the scale. This ar-
rangement is primarily to facilitate operation OGE such that
the ground does not impinge on the rotor downwash.

Fig. 17 shows the relationship between thrust and rota-
tional speed OGE. The thrust model (13), including only sec-
ond order terms (ω2), is compared with experimental results
and a curve-fit approach of both first and second order terms
(ω and ω2). The thrust model fits the experimental results
well on the lower rotational speeds and slightly overpredicts
thrust on higher rotational speeds, whereas the curve-fit ap-
proach does the opposite. Since we are operating in the lower
rotational speed regions around 3000–4000 RPM, as shown
later in Fig. 18, the choice of the thrust model is justified.
Note that ignoring the first order term also simplifies the dy-
namics (15).
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Fig. 19. Normalized height z/R versus time in Ground Ef-
fect for various rotor rotational speeds starting from rest.

Fig. 18 shows the steady-state open-loop dynamics of the
compound-pendulum heave test stand by plotting the relation-
ship between normalized height z/R and rotational speed ω at
steady-state. The height was measured by a Qualisys Motion
Capture setup. The compound-pendulum heave test stand is
at rest at z/R = 0.5 and reaches its maximum height at z/R =
2.35. The plot depicts a highly nonlinear relationship with the
height rising slowly at first up to 3447 RPM. From 3500 to
3865 RPM, each incremental increase in rotational speed re-
sults in a significant increase in height. The steep slope of this
curve is a characteristic of the ESC-motor combination and
a change of this combination could result in a more gradual
response.

Fig. 19 shows the open-loop normalized height for various
rotor rotational speeds starting from rest. There is a general
trend of a steep increase in the height corresponding to the
commanded input and the height decreases to the steady-state
value. As the rotational speed increases, it takes longer before
the motor-ESC pair converges to the steady-state height. The
increased settling time as rotational speed increases is due to
the large difference between commanded rotational speed and
rest. A smaller rotational speed difference will decrease the
settling time.

At lower rotational speeds, the dynamics seem to be over-
damped. At higher rotational speeds, oscillations of the dy-
namics model (32) are evident. The delayed convergence
to steady-state height and height oscillations suggest that the
motor-ESC dynamics introduce a time constant τ . The motor-
ESC dynamics are modeled as (Ref. 24)

τω̇ +ω = fmot(u), (39)

where ω̇ is the rotational acceleration and fmot is the nonlinear
rotational speed response as a function of the PWM command
input u. In ongoing work, the closed-loop controller combines
(39) with the compound-pendulum test stand dynamics (32).

CONCLUSIONS

This paper describes a dynamic controller for rotorcraft land-
ing and hovering in ground effect. A ring-source flow model
for the rotor downwash IGE developed using potential flow

theory captures the essential characteristics of the relation-
ship between flow velocity and height. The reduced-order
flow model used for fast evaluation of the flowfield in a recur-
sive control loop has been experimentally validated. A non-
linear dynamic model of rotorcraft landing IGE allows for the
study of the open-loop dynamics and facilitates the design of
a closed-loop controller. Both the steady-state and transient
open-loop dynamics of the compound-pendulum heave test
setup are experimentally investigated; a model of the motor
dynamics is proposed. The height of the rotorcraft IGE is ex-
perimentally estimated with a grid-based recursive Bayesian
filter using the three-dimensional flow model, nonlinear dy-
namic model and differential pressure probe measurements.
Finally, flow-estimation-based closed-loop control is imple-
mented in simulation, demonstrating that height estimation
and control is possible using only flow sensors. Experimental
validation of the closed-loop system is ongoing.
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