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Abstract— This paper presents a data-driven, non-
deterministic model of the dynamics of predator-prey
interactions where the prey accelerates to a speed faster than
the predator speed. The method proposed in this work predicts
the probability of prey survival after a given number of
approaches. The work presented here makes no assumptions
about the form of the probability density function (PDF)
of model parameters such as escape time, sensing range,
strike distance, and strike success rate. It may therefore use
empirical PDFs, i.e., those collected in biological experiments,
for calculating the probability of capture. This allows for an
investigation of parameters that are the most important to
prey survival. A case study of the predation of larval zebrafish
by adult zebrafish demonstrates the proposed technique.

I. INTRODUCTION

The interaction between predator and prey is of interest to
biological and engineering research [1]. The prey’s survival
may depend on features such as sensing range and escape
speed, and improving these features is of evolutionary sig-
nificance. It is therefore important to be able to identify the
crucial factors that determine prey survival.

This manuscript presents a non-deterministic hybrid sys-
tem model of predator-prey interaction. We provide a formal
method to calculate the probability of prey capture on a
single approach from a predator and the probability of sur-
vival after multiple approaches. Measured probability density
functions (PDFs) for the predator parameters (such as strike
range, maximum speed, and the success rate of strikes) and
the prey parameters (such as sensing range, maximum speed,
and escape time) are used to calculate the prey survival
probability. Additionally, altering the distributions for these
parameters to perform a sensitivity analysis identifies the
most critical components to survival.

In many predator-prey relationships, the predator is faster
but less agile than the prey [2]. The model presented here
considers predator-prey interactions where the prey escapes
by accelerating to a speed that is faster than the predator
speed. The model includes the possibility of many repeated
approaches by the predator until the prey is captured.
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Understanding the dynamics of predator-prey interaction
is a rich field of study. Various types of pursuit and evasion
strategies for predation have been modeled and examined at
length [3]–[5]. The dynamics of a single predator pursuing
many prey (i.e., a herd or school) have been extensively
examined and modeled [6]–[8], as well as swarming behavior
with one target and many pursuers [9], [10].

Predator-prey relationships that include randomness also
have a strong foundation in research. An individual-based
dynamic model for schooling fish that includes stochastic
elements predicts behavioral responses to a predator [11]. A
predator-prey model that includes stochastic process noise in
the dynamics of the players as well as their measurements
provides formal solutions for the dynamics [12]. Leslie and
Gower studied the populations dynamics of a predator-prey
system with stochastic components to the birth and death
rate of the species [13].

To relate individual player dynamics to population sizes,
Oremland and Laubenbacher developed a method to gener-
alize the local predator-prey interactions to the population
dynamics of each species [14]. In practical research on a
specific species, data-driven modeling methods combined
with experimental work identify key features of predation by
the exotic shrimp species Dikerogammarus villosus [15]. In
contrast to the work herein, where the prey is faster than the
predator, Li examined the case where the predator is faster
than a more agile prey [2]. To the authors’ knowledge, there
exists no prior work that develops a non-deterministic hybrid
system model of predator-prey interaction permitting data-
driven analysis to determine the key factors of prey survival.

To calculate the probability of capture on the approach of
a predator, a one-dimensional hybrid system model of the
dynamics is presented. The continuous part of the hybrid
system describes the approach of the predator and the escape
behavior of the prey, whereas the discrete part handles the
switching of parameters between repeated approaches. We
identify the conditions necessary for prey capture and apply
tools from probability theory to derive an equation for the
probability of capture on approach. To find which parameters
in the model have the most influence on prey survival,
we present two techniques. The first relies on altering the
experimentally determined probability densities, whereas the
second technique uses the partial derivatives of the minimum
distance between predator and prey with respect to the
expected values of the parameters.

The contributions of this paper are (1) a one-dimensional,
non-deterministic hybrid system model of the dynamics of
the predator-prey interaction; (2) a non-dimensional analysis
of the assumption that the minimum distance between preda-



tor and prey occurs before the prey has reached its maximum
speed; (3) a data-driven equation accepting empirical prob-
ability density functions of predator and prey parameters to
calculate the probability of prey capture; and (4) two tech-
niques to interrogate experimentally gathered probabilities to
identify model parameters most important to prey survival.
These techniques allow researchers to investigate key factors
of survival by observing predator-prey interactions, and may
have implications for pursuit behavior in robotic systems.
The techniques developed here are demonstrated on a case
study of the predation of larval zebrafish by adult zebrafish.
The one-dimensional predator-prey model here is a precursor
to a more general pursuit model in two or three dimensions.

The paper proceeds as follows. Section II provides techni-
cal background in probability theory and hybrid systems, and
describes the case-study data used throughout to demonstrate
the use of the model. Section III presents the dynamical
model used in this work and a non-dimensional analysis
of the key assumption that the minimum distance between
predator and prey occurs before the prey has reached its
maximum speed. Section IV derives the equation used to
calculate the probability of capture on approach by the
predator. Section V presents two techniques that investigate
predator/prey parameters to identify which parameters in the
model are most important to prey survival and Section VI
summarizes the results and describes ongoing work.

II. BACKGROUND

A. Probability Theory and Hybrid Systems

Developing the techniques used in this manuscript requires
tools from probability theory [16]. The probability that a
random variable X has value less than x is described by
the cumulative distribution function FX (x) = P(X ≤ x). The
probability density function of the same random variable
describes how often values occur and is given by fX (x) =
dFX (x)/dx. Many techniques and toolboxes exist for fitting
probability density functions to a data set [17], [18].

The expected value of a random variable X with proba-
bility density fX (x) is [16]

E[X ] =
∫

∞

−∞

x fX (x)dx. (1)

The expected value of a function Y = h(X) of random
variable X with probability density fX (x) is [16]

E[Y ] =
∫

∞

−∞

h(x) fX (x)dx. (2)

The probability that random variable X is less than random
variable Y is [16]

P(X ≤ Y ) =

∞ y∫∫
−∞−∞

fXY (x,y)dxdy, (3)

where fXY (x,y) is the joint probability density function of X
and Y . If X and Y are independent random variables, then
[16]

fXY (x,y) = fX (x) fY (y), (4)

otherwise the joint probability density must account for
cross-correlation between the two random variables. The
probability density function for the random variable Z given
by Z = c1X +c2Y, where c1 and c2 are known scalar values,
is [16]

fZ(z) =
1
| c1 |

∫
∞

−∞

fX

(
1
c1

z− c2

c1
y
)

fY (y)dy. (5)

If two events A and B are independent, then the probability
of both A and B occurring at the same time is [16]

P(A∩B) = P(A)P(B). (6)

Lemma 1: The expected value of a function

h(X ,Y ) =

{
g(Y ) if X ≤ Y,
0 otherwise

of independent random variables X and Y with probability
density functions fX (y) and fY (y) is

E[h(X ,Y )] =
∫

∞

−∞

g(y) fY (y)
(∫ y

−∞

fX (x)dx
)

dy.

Lemma 1 can be proven by using the bivariate extension of
(2), the independence of X and Y with (4), and (3). It is used
in Section IV to determine the probability of capture.

The dynamic model of the predator-prey interaction pre-
sented in Section III is an example of a hybrid system. A
hybrid system is a dynamical system that has a combination
of continuous- and discrete-time behavior [19], [20]. Hybrid
systems often involve the discrete switching between sets of
dynamics, such as a thermostat, or a discrete jump in states,
such as a bouncing ball. Stochastic hybrid systems are those
that have non-deterministic dynamics or non-deterministic
conditions on the state switching [21]. We refer to the model
developed herein as a non-deterministic hybrid system rather
than a stochastic hybrid system to avoid the connotation of
explicit time-dependence of the random variables. Instead
the parameters are drawn randomly from the corresponding
probability distribution once per approach; each predator-
prey interaction can encompass multiple approaches.

B. Case study

Although the model proposed in this paper is general
to a variety of predator-prey interactions, it was initially
developed to investigate a case study of zebrafish. Zebrafish
adults prey on larvae of the same species under laboratory
conditions [22]. This allows the kinematics of both preda-
tor and prey to be measured with high-speed video over
the entirety of predatory strikes, until the prey is ingested
[23]. Such experiments have established that the predator
targets the prey with a pure pursuit strategy, such that its
heading is directed towards the instantaneous position of
the prey. The larval prey are generally stationary during
the predator’s approach, until initiating an escape response
when the predator is in close proximity [24]. The predator
approaches the prey at a constant speed that is well below
the prey’s maximum escape speed. Within one second of
initiating an escape, the prey ceases swimming and may



Probabilistic
Parameters

s Strike distance of predator
l Sensing distance of prey
η Escape duration of prey

Deterministic
Parameters

U Maximum predator speed
u Maximum prey speed
χ Fraction of η when u is reached

Deterministic
Functions C(s)

Strike probability of success as
a function of strike distance

TABLE I: Parameters of the model. Probabilistic parameters
have probability density functions fS(s), fL(l), and fH(η).

be stimulated to escape again when approached by the
predator. These interactions repeat for as many as twenty
approaches in experiments performed in a relatively small
aquarium [23]. The dynamics of predator-prey interactions
in zebrafish is well-characterized by iterating a model of a
single interaction.

Throughout this manuscript, the developed techniques
are applied to the zebrafish case study. The parameters
presented in Section III were determined experimentally in
a previous work [23] by studying the predation of larval
zebrafish (Danio rerio) by adult and juvenile zebrafish. A
two-dimensional numerical model was described in [23] to
calculate the probability of capture through Monte Carlo
simulations. Here we provide an alternate means to examine
pursuit systems, where the probability of capture can be
determined mathematically as a function of the probability
densities pertaining to the system parameters.

III. HYBRID PURSUIT MODEL

This section presents a one-dimensional model of pure
pursuit predator-prey interactions. We examine a one-
dimensional model in order to develop the data-driven tech-
niques used to analyze dynamical system with probabilistic
parameters. Ongoing work extends to planar pursuit, though
as will be shown, the one-dimensional model presented here
yields the same results as the two-dimensional Monte Carlo
style methods used in the original case study [23]. Among
pursuit strategies [3]–[5], pure pursuit is best represented by
a one-dimensional model since the predator always moves
directly towards the prey and the distance between them is
of prime importance.

The distance between the predator and prey at time t is
r(t). The predator will attempt a strike if r(t) is less than the
strike distance s. The prey begins escape if r(t) is less than its
sensing range l. The prey escapes for η seconds, reaching its
maximum speed u at a fraction χ of its escape time. C(s) is
the probability of a successful strike as a function of strike
distance s and may be experimentally determined. Table I
summarizes the parameters used in the model.

Assume that the predator reaches is maximum speed U
sufficiently far from the prey so that predator acceleration
may be ignored. The prey remains stationary until it detects
the predator, that is, until r(t)≤ l, the sensing distance of the
prey. Once the predator is detected, the prey escapes with a
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Fig. 1: Prey velocity profile after detecting the predator. The
prey escape duration is η ; it reaches its maximum speed at
fraction χ of the escape duration.

sawtooth velocity profile, as shown in Fig. 1. This type of
velocity profile is general to many startle responses seen in
nature where the prey quickly flees only to come to rest again
a short time later [23].

Figure 2 illustrates the hybrid dynamics of this non-
deterministic system for one or more approaches. The ap-
proach number an = n counts the number of times the
prey has begun escaping from the predator. The time since
observation begins is t. The time from when approach an

begins is t(n) = t − t(n)0 , where t(n)0 is the time when an
increments. Additionally, every time an increments, each of
the probabilistic parameters s(n), l(n), and η(n) are redrawn
from their densities, fS(s), fL(l), and fH(η), respectively.
Figure 3 shows a sample trajectory of the dynamics using
case-study data.

Critical to our analysis is finding the minimum distance
r(n) between the predator and prey. When it is clear from
context, the superscript (n) is omitted, e.g., from r(n). As-
sume that the minimum distance occurs during the first leg
of the escape phase, when 0 < t(n) < χη(n), rather than at
the end of the escape cycle, when t(n) = η(n). Proposition 1
states when it is valid to make this assumption.

Proposition 1: Let U∗ = U/u denote the ratio of the
predator speed and the maximum prey speed. If the minimum
distance r occurs while the prey is still accelerating, then
U∗ ≤U∗crit, where

U∗crit =
1−
√

1−χ

χ
. (7)

Proof: Non-dimensionalize the dynamics of a single
approach using

t∗ =
t(n)

η(n)
, r∗ =

r
l(n)

, U∗ =
U
u
, and u∗ =

u
u
= 1.

Only consider the period of time that the prey is escaping
(because the minimum distance never occurs outside of this
period, so long as the prey has non-zero sensing range). The
non-dimensional dynamics are

ṙ∗(t∗) =

{
−U∗+ 1

χ
t∗ for 0 < t∗ < χ

−U∗+ 1
1−χ
− 1

(1−χ) t
∗ for χ < t∗ < 1.

(8)

Integrating the dynamics and letting r∗1 and r∗2 be the distance



Fig. 2: Non-deterministic hybrid system model of predator-
prey interaction. The box represents the discrete dynamics
and the ellipses represent continuous dynamics. Probabilistic
variables are redrawn from their respective PDFs each time
the approach number an is incremented.

on the first and second legs, respectively, yields

r∗1(t
∗) =−U∗t∗+

1
2χ

t∗2 +1

r∗2(t
∗) =

(
−U∗+

1
1−χ

)
t∗− 1

2(1−χ)
t∗2 +

3χ−2
2(χ−1)

,

where the constants of integration were found from the
boundary conditions r∗1(0) = 1 and r∗1(χ) = r∗2(χ). The
minimum r∗ will either occur on the first leg at t∗ = U∗χ
or at the end of the second leg. So the condition on U∗crit
becomes r∗1(U

∗
critχ) = r∗2(1), which implies (7).

Equation (7) defines an upper bound on the ratio of
predator speed to prey speed as a function of χ ∈ [0,1]. The
extremes of this function are of interest. For χ = 0, meaning
the prey reaches its maximum speed instantaneously, the
critical ratio is

lim
χ→0

U∗crit =
1
2
,

using L’Hospital’s Rule [25]. For χ = 1, meaning the prey
reaches its maximum speed at the end of the escape period,
U∗crit = 1. Therefore, in the extremes of χ , the results below
are valid for when the prey speed is greater than twice the
speed of the predator (χ = 0) or when the prey and predator
speeds are equal (χ = 1).

Figure 4 shows three trajectories: one where Prop. 1 is
valid, the limiting case of Prop. 1, and one where Prop.
1 does not hold. For the case-study data, U∗crit = 0.53; the
techniques developed in this paper require U ≤ 0.53 u, which
is met with U∗ = 0.35 [23].

This analysis is independent of the predator and prey
species, allowing the techniques herein to be applied gen-
erally to any predator/prey pair demonstrating pure pursuit
with an escape response. So long as the above condition on
the ratio of the predator and prey maximum speeds is met,
the assumption that r occurs before the prey has reached its

Time, t

D
is

ta
nc

e,
 r

(t
)

Fig. 3: Sample trajectory of dynamics in Fig. 2 using the
zebrafish case-study data. The prey begins escape three times
before a strike occurs at the black ×.

maximum speed is valid.

IV. ANALYSIS OF SURVIVAL PROBABILITY

With the goal to find the minimum distance r on a single
approach, Prop. 1 allows us to consider only the portion
of the dynamics before the prey has reached its maximum
speed. Thus, from Fig. 2, we have

ṙ(t) =−U +
u

χη
t, (9)

r(0) = l,

where we dropped the superscripts on t(n), η(n), and l(n) as
we are considering only a single approach and each approach
is an independent event. Integrating directly, the distance
between predator and prey is

r(t) = l−Ut +
1
2

u
χη

t2.

Setting (9) equal to zero, r achieves a minimum at t =
U(χη/u). Thus we have

r(η , l) =−U2χ

2u
η + l, (10)

which is a linear combination of two random variables: η ,
the prey escape time, and l, the prey sensing distance.

Equation (5) allows us to calculate the equivalent prob-
ability density function of r from fH(η) and fL(l). With
c1 =−U2χ/2u and c2 = 1, the PDF for r is

fR(r) =
2u

U2χ

∫
∞

−∞

fη

(
− 2u

U2χ
r+

2u
U2χ

l
)

fL(l)dl. (11)

The joint probability density function of r and s is fRS(r,s) =
fR(r) fS(s) from (4), assuming the minimum distance and the
strike distance are independent.

For the prey to be captured, two conditions must be met.
First, the minimum distance must be less than the strike
distance. If r is not less than s, then no other point on
the trajectory will be either. This condition states that a
strike will be attempted, though not where the strike will
occur. Second, the strike must be successful. This condition
is given by the function C(s), which gives the probability
of success of a strike at distance s. Thus for the predator-
prey interaction described by the dynamics in Fig. 2, the



Fig. 4: Three trajectories for the non-dimensional dynamics
given in (8). The black circles indicate the minima of each
trajectory on this interval.

probability of capture on approach is

PCoA = E[C(s)], given r ≤ s.

We use this reasoning in Theorem 1 below, which is a direct
consequence of Lemma 1.

Theorem 1: We extend the definition of C(s) to an aux-
iliary function Ĉ(r,s) that takes value C(s), if r ≤ s, and 0,
otherwise. Then PCoA = E[Ĉ(r,s)] and, from Lemma 1, we
have the probability of capture on approach

PCoA =
∫

∞

−∞

C(s) fS(s)
(∫ s

−∞

fR(r)dr
)

ds. (12)

Theorem 1 provides the probability that the prey is cap-
tured on a given approach of the predator. Applying this
equation to the case-study data yields PCoA = 0.07. As a
check, the dynamics given in Fig. 2 were simulated until
the result was invariant to the number of simulations and it
was found that PCoA matched the result from Theorem 1.
For each trial in the simulation, r(t) was integrated using a
first-order Euler method. To calculate PCoA, the total number
of captures was divided by the total number of trials in the
simulation. Figure 5 shows the result of the Monte Carlo
trials, where 100,000 trials were needed to converge to the
output of the single equation (12).

Corollary 1.1: Assuming each approach is an independent
event with (6), the probability that the prey survives after n
approaches is

PSnA(n) = (1−PCoA)
n. (13)

Equation (13) in conjunction with (12) allows experimentally
gathered PDFs of predator-prey parameters to be used to
calculate the odds of prey survival after repeated approaches
by the predator. Note that as n→ ∞, PSnA(n)→ 0 and thus
the prey are always eventually captured.

V. PARAMETER PERTURBATION ANALYSIS

Equations (11) and (12) allow interrogation of experi-
mentally gathered data to find which parameters are most
important in the predator-prey interaction. By shifting the
mean of the probabilistic parameters (or shifting the values
of the deterministic parameters) and recalculating (12) the
most important parameters to prey survival become readily
apparent. Here we apply this technique to the data from the
zebrafish case study [23], which used log-normal probability
densities. A change in the log-normal mean adjusts the
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Fig. 5: Monte Carlo simulation results of the dynamics
in Section III. The dashed line indicates the prediction of
Theorem 1.

expected value of the parameter given by (1) to the desired
percent-change relative to the nominal value.

Figure 6 shows the result of the perturbation analysis.
Increasing sensing range l and maximum escape speed u
increases the probability of survival of the prey. However,
there is a larger increase seen when sensing range is in-
creased rather than escape speed. Increasing escape duration
η decreases probability of survival, likely because it takes
the prey longer to reach its maximum speed. Parameter χ ,
the fraction of the escape time when the prey reaches its
maximum speed, matches the result of varying η almost
exactly because both terms determine the prey’s acceleration
on the first leg of its velocity profile.

When strike distance s is increased, the probability of
survival also increases. In this case study, the decrease in
probability of capture that results from the condition r ≤ s
is outweighed by the decrease in likelihood of a strike
being successful at the increased range (capture probability
C(s) is much lower when striking from a further distance).
Decreasing s decreases prey survival only up until a point
where the trend reverses. The probability densities interact
such that the increased odds of a successful strike at such a
short distance eventually outweigh the chance that the prey
escapes due to sensing the predator before it can strike.

Trend-reversing behavior such as is seen here when strike
distance is varied cannot be predicted from the dynamics of
the non-deterministic hybrid system presented in Fig. 2, as
it depends on the particular parameter PDFs. The ability to
predict behavior of this type is a strength of the data-driven
approach. In this case study, sensing range is pivotal to prey
survival. Especially in the negative changes in l, there is a
much larger decrease in survivability compared to the other
parameters. These results agree with those of a comparable
analysis performed by a Monte Carlo simulation [23].

Next we suggest a second method to discover which
parameters are most important to survival. As seen in Section
IV the minimum distance between predator and prey is
of key importance to determining the survival of the prey.
Particularly, a larger r increases the probability of survival
of the prey, as shown in (12), where as r increases the term
in the parentheses decreases. This decrease in PCoA leads
to a increase in survivability according to (13). We thus
look at the partial derivatives of (10) to see the impact on



-50 0 50
% Change in Parameter

0.90

0.94

0.98
Pr

ob
ab

ili
ty

 o
f 

Su
rv

iv
al

Fig. 6: Probability of suvival PSnA for n = 1 approach, as
the means of the parameter distributions are varied. Sensing
range l is most important to prey survival in this case.

survivability:

∂ r
∂ l

= 1,
∂ r
∂η

=−U2χ

2u
=−0.0049,

∂ r
∂U

=−Uχη

u
=−0.0210,

∂ r
∂u

=
U2χη

2u2 = 0.0036,

and
∂ r
∂ χ

=−U2η

2u
=−0.0073.

The values above were calculated from expected values
(1) from the case-study data [23]. If increasing r improves
survivability as suggested above, these partial derivatives
qualitatively agree with the perturbation analysis shown
in Fig. 6. Lacking from this second technique is a way
to determine the effect of changing strike distance s. To
examine this parameter the full analysis as shown in Fig.
6 is required.

VI. CONCLUSION

This paper describes a data-driven, non-deterministic hy-
brid model for predator-prey interaction and a method to
calculate the probability of prey survival. We present a
one-dimensional dynamics model and determine its key
features to calculate the probability of survival using empir-
ical probability densities of the parameters in the predator-
prey interaction. By non-dimensionalizing the dynamics, we
provide a necessary condition for the key assumption that the
minimum distance between predator and prey occurs before
the prey reaches its max speed. A proposed technique to
interrogate the experimental data determines the most im-
portant parameters for prey survival. The results of applying
these techniques to a case study of the predation of larval
zebrafish by adult zebrafish agree with prior models and
experimental results demonstrating the strategic importance
of early predator detection by the prey [1], [23].

Though this worked was developed with the case study in
mind, it is general to any predator/prey interaction where the
predator exhibits pure pursuit, the prey exhibits an escape
response, and the prey achieves a higher maximum speed
than the predator.

In ongoing work, we seek to relax the assumption that
the minimum distance is achieved before the prey reaches
its max speed. Additionally, we plan to include prey and

predator maximum speeds as random rather than determin-
istic variables. The techniques developed in this paper are
also being extended to a two-dimensional model inspired by
a case study involving predation by bluefish.
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