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Abstract—Inspired by the swarming behavior of male
mosquitoes that aggregate to attract and subsequently pursue
a female mosquito, we study how oscillatory motion in au-
tonomous swarming vehicles helps the success of target capture.
We consider the scenario in which multiple guardians with
limited perceptual range are deployed to protect an area from
an aerial intruder. The intruder becomes a target once it enters
the perceptual range of a guardian and, when a guardian
becomes a pursuer, it speeds up and chases the target. We focus
on the strategy in the swarming phase, when the intruder has
not yet been perceived by any of the guardians. In the parameter
space consisting of the intruder’s speed and guardians’ ability
(i.e., maximum acceleration and perceptual range) we identify
necessary and sufficient conditions for target capture. We
further compare circular and radial swarming motion and
its effect on successful target capture. For the application to
autonomous aerial vehicles, we propose a control algorithm
that achieves swarming motion while also avoiding collisions.
The theoretical results are demonstrated by experiments with
a swarm of quadrotors.

I. Introduction
The problem of pursuit has been studied in the context

of missile guidance, robot control, animal behavior, and so
on. Two ways we consider to categorize the existing work
are by the objective (target intercept or capture/tracking)
and by the strategy of the pursuer (cooperative or not). For
missile guidance application, the goal of the pursuit is target
intercept, where the pursuer aims to collide into the target [1].
Target intercept is also considered in pursuit-evasion games,
where pursuit and evasion strategies have been studied with
game-theoretic approaches [2][3]. A less aggressive pursuit
scenario considered for the application to autonomous robots
is target capture, where a pursuer seeks to approach and
stay close to the target without colliding with it. A path-
planning algorithm to capture a ground vehicle with a UAV
is proposed in [4]. Strategies to encircle a target with a team
of pursuers are proposed in [5][6]. In the work cited above,
[2][5][6] describe cooperative strategies, whereas [1][4] are
for a single pursuer.

Wild swarms of malarial mosquitoes [7][8] show an inter-
esting combination of these categories. Male mosquitoes ag-
gregate and form mating swarms to attract female mosquitoes
that fly faster than the males. In this stage, which we call
the swarming phase, male mosquitoes cooperate with one
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another to increase the chance of encounter with a female.
When the female enters the swarm and the distance to one
of the males becomes small (a close encounter), it triggers
the male’s pursuit behavior. In the pursuit phase, males
compete against each other to capture the female. Therefore,
their behavior is a combination of cooperative swarming and
individual pursuit.

After the pursuit phase, the male and female exhibit
coupling flight during which they fly in approximately the
same direction while their separation distance oscillates—as
though they are connected by a damped spring with zero
rest length [9]. For a male to achieve this flight, simply
intercepting a female is insufficient; he also has to align his
velocity with the female. For this reason, the objective of
the mosquito pursuit is a combination of target capture and
intercept. Since the female flies faster than a swarming male,
velocity alignment requires favorable initial conditions for the
male, i.e., its initial velocity should be relatively aligned with
female. This observation motivates our investigation below
of swarming rather than static guardians.

Although the pursuit law that governs the motion of
mosquitoes in the pursuit phase is an interesting topic, we
focus on the swarming phase in this work. (See [10] for
our previous work on pursuit.) A key characteristic of insect
swarms is their unpolarized oscillatory motion [8], in contrast
to fish schools [11], bird flocks [12], and formation controls
inspired by those animals [13][14]. The oscillatory motion
and the interactions between males have been previously
studied [15], and it was suggested that this motion may
increase the sensitivity to external stimuli, for example, to
respond quickly to a female that enters the swarm [9][16].

Inspired by the mosquito behavior, we study how swarm-
ing motion may be useful in a scenario where multiple
pursuers wait for a target that comes from an unknown
direction at an unknown time. The goal of the pursuers
is to capture the target, so simply blocking the target by
constructing a wall-like formation will not achieve the goal.
Instead, the pursuer has to align its velocity with the target.

The difficulty of achieving target capture depends on the
capability of the pursuer (such as perceptual range and
maximum acceleration) relative to the target’s speed. We
explore this parameter space to identify when the swarming
motion is necessary for the pursuers’ success. We further
study what kind of swarming motion will increase the
probability of successful pursuit. In addition, experiments
using a small quadrotor testbed were conducted to validate
the theoretical results. The experiments also highlight some
of the challenges of real-life implementation, which improve
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Fig. 1. Illustration of the swarming and pursuit scenario. In the swarming phase, an intruder (red) is approaching the protected region (green). The
guardians (with static formation here for clarity) are deployed to wait for the intruder. Once the intruder enters the perceptual range, the guardian turns
into a pursuer and pursues the target.

our swarming algorithm.
The contributions of this work are (1) identification of

necessary and sufficient conditions related to guaranteed
target capture; (2) analysis of how swarming behavior helps
the pursuer’s response to the target; (3) a control law that
achieves swarming motion while also avoiding collisions;
and (4) experimental demonstration of the control-theoretic
results. The problem studied in this work can be applied to
a situation where multiple vehicles are deployed to enforce a
no-fly zone, for the application to drone countermeasures, or
for convoy protection. The results of this work may provide
a guideline in selecting the capabilities of the vehicles for
such applications, and also provide a methodology to fully
utilize those capabilities.

The paper outline is as follows. Section II formulates
the problem. Section III presents the theoretical results.
Section IV introduces the quadrotor testbed and describes
the experimental results. Section V summarizes the paper
and ongoing and future work.

II. Problem Formulation

Consider a planar system of point particles with unit mass
representing N guardians and an intruder. The intruder seeks
to pass through a protected region that is known to the
guardians (see Fig. 1). However, the timing and the direction
of the intruder trajectory is unknown. Once the intruder
enters the perceptual range of the guardians, the roles of
the agents change—the intruder becomes a target and the
guardian becomes a pursuer. The goal of the pursuer is to
capture the target (i.e., approach the target and stay close to
it). Note that we do not distinguish between target capture
before or after the intrusion.

We consider the case where the protected region is suffi-
ciently small so that it can be approximated as a point O. Let
O to be the origin of the inertial frame; r i , vi , and ai denote
the position, velocity, and acceleration of particle i in the
inertial frame. The guardians have second-order dynamics,
i.e., ṙ i = vi and v̇i = ai . To focus on the guardians’ strategy,
we assume that the intruder moves with a constant velocity
‖vT ‖ = vT (we use the subscripts T and P to denote the

intruder/target and guardian/pursuer, respectively). We also
assume the following capabilities of the guardians:
(A1) Each guardian perceives the position and velocity of

all other agents within the range ρa ;
(A2) The identity (intruder or guardian) of the perceived

agent is known only if it comes within the range ρp <
ρa . This information is retained as long as it is in the
range ρa ; and

(A3) The magnitude of the guardian’s acceleration is
bounded according to ‖aP ‖ ≤ umax.

In contrast to target intercept where pursuers aim to collide
into the target, we consider target capture, which we define
as follows.

Definition 1: Let rT /P = rT − rP denote the relative
position of the target with respect to the pursuer. Let rcap > 0
denote the capture threshold. Target capture is successful if
there exists tcap such that ‖rT /P ‖ < rcap, for all t > tcap.
The capture problem is separated into two parts. The first

is the swarming phase in which the guardian does not know
where the intruder is. Once the intruder enters the circle with
radius ρp around the guardian, the pursuit phase starts. From
assumption (A2), the pursuit phase can last as long as the
target is in the range ρa . Therefore, we choose the threshold
in Definition 1 to be rcap = ρa .
Our main focus is on the swarming phase. The success

of target capture depends on how quickly a guardian can
respond (i.e., close the distance and align the velocity) to
the intruder once it is in the perceptual range ρp . If the
response is too slow, then the target will escape from the
range ρa . We seek to find a strategy for how the guardians
should prepare for the intruder to maximize the probability
of target capture.

III. Theoretical Results
A. Limitation of Static Guardian

One possible strategy is to uniformly distribute stationary
guardians around the protected area as in Fig. 1 and have
them wait for the intruder. However, if the intruder is too fast,
the guardian may not react (i.e., speed up) in time to keep
the intruder in perceptual range. We first find the necessary
condition for a static guardian to achieve target capture.



Proposition 1: A guardian who is stationary at the begin-
ning of the pursuit phase never achieves target capture if

umax <
v2T

2(ρp + ρa )
. (1)

Proof: Consider the easiest case for the pursuer: the
target trajectory passes through the pursuer’s position. Let
t f = vT /umax denote the time required for the pursuer to
reach the speed vT . The target escapes if it can travel a
distance longer than vT t f > ρp+ρa+

1
2umaxt2f , which reduces

to (1).
The above condition is given in terms of the intruder’s speed
vT and the guardian’s capability umax, ρa , and ρp . To explore
this parameter space efficiently in the following sections, we
introduce the following two nondimensional parameters:

α =
ρp

ρa
and Γ =

2umax(ρa + ρp )

v2T
. (2)

The first parameter α ∈ (0, 1] describes the ratio between
the two perceptual ranges defined in assumptions (A1) and
(A2). The second parameter Γ describes the ratio between the
guardian’s capability and the intruder’s speed. Noting that Γ
is obtained from the limiting case in (1), a static guardian
will fail to capture a target if Γ < 1.

B. Sufficient Conditions for Target Capture
Next, we derive a sufficient condition for target capture.

Since the condition will be given for the relative velocity
vT /P at the time of close encounter (i.e., the beginning of
the pursuit phase), it applies to any guardian’s strategy in
the swarming phase. Based on this general condition, we
consider two cases: a static swarm and a swarm with a
circling motion.

As a pursuit law, aP = F
(pursuit)
P , following our previous

work on mosquito-inspired swarm model [9], we consider a
force resembling a damped-spring attached to the target, i.e.,

F1
P = crT /P + bvT /P,

where c and b are positive constants. With the constraint

0 < c < umax/ρa, (3)

the spring term alone never exceeds the acceleration limit
umax. In this case, there always exists a scaling factor β ∈
(0, 1] such that

‖crT /P + βbvT /P ‖ ≤ umax. (4)

In this way, the actual pursuit force is saturated as follows:

F
(pursuit)
P = crT /P + βbvT /P, (5)

β =

{
1 if ‖crT /P + bvT /P ‖ < umax,
β∗ otherwise,

where β∗ > 0 satisfies the equality in (4). (The value of β∗
as a function of rT /P , vT /P , c and b can be obtained using
Stewart’s theorem in geometry, but it is omitted for brevity.)
Although mosquitoes exhibit underdamped oscillation [9],
for the application to guardians, a large number for b (i.e.,

Ov ẋ

ẏ
vT (t0)

v0

vP(t0)

Bv0(vT (t0))

Fig. 2. Sufficient condition on the initial velocity for target capture depicted
in the velocity space. Target capture is guaranteed if the pursuer’s velocity
(blue arrow) lies in the red circle at the beginning of the pursuit phase.

over-damped spring) gives a good performance since velocity
alignment is necessary for target capture. (Instability caused
by the time delay also has to be taken into account for the
gain tuning in practice.) However, the following proposition
gives a sufficient condition for target capture, which is
independent of the choice of c and b as long as (3) is
satisfied.

Proposition 2: Consider a pursuer under (5) with the gain
c satisfying (3). Let t0 denote the time when ‖rT /P ‖ = ρp
(i.e., the time when the pursuit phase starts). The target
capture is guaranteed if

‖vT /P (t0)‖ ≤ v0, where v0 = vT
√
Γ(1 − α)/2. (6)

Proof: Consider the energy function V = 1
2 ‖rT /P ‖

2 +
1
2c ‖vT /P ‖

2. Since the target is not accelerating, the time
derivative of V is

cV̇ = crT /P · vT /P + vT /P · (aT − aP )
= crT /P · vT /P − vT /P · (crT /P + βbvT /P )
= −βb‖vT /P ‖2.

Thus, V is nonincreasing for all t > t0. It follows that
1
2
‖rT /P (t)‖2 ≤ V (t) ≤ V (t0) =

1
2
ρ2p +

1
2c
‖vT /P (t0)‖2.

We obtain ‖rT /P (t)‖ ≤ ρa for all t > t0 if the right hand
side of the above inequality is bounded by 1

2 ρ
2
a , i.e.,

1
2
ρ2p +

1
2c
‖vT /P (t0)‖2 ≤

1
2
ρ2a

‖vT /P (t0)‖ ≤

√
c(ρ2a − ρ2p )

Noting that umax
ρa

(ρ2a− ρ
2
p ) = v2T Γ(1−α)/2 from the definition

of Γ and α, the above inequality is equivalent to (6) with the
constraint (3).
If the pursuer’s velocity vP (t0) at the time of close encounter
lies in the circle Bv0 (vT (t0)) ≡ {v |‖v − vT (t0)‖ ≤ v0}

centered at vT (t0) with radius v0 (see Fig. 2), the target
capture is guaranteed. If Γ is sufficiently large that the origin
of the velocity space is included in Bv0 (vT (t0)), even a static
pursuer can guarantee target capture. This case is stated in
the following result.

Corollary 1: Target capture is guaranteed by a pursuer
who is stationary at the beginning of the pursuit phase if
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Fig. 3. Conditions for target capture in the nondimensional parameter
space: R1 is where the static formation never achieves target capture; R2 is
where target capture is guaranteed by circling formation; R3 is where the
static formation guarantees target capture.

the following condition is satisfied:

Γ > 2/(1 − α). (7)

Proof: From Proposition 2 and the discussion above,
the sufficient condition is v0 > vT , which reduces to (7).
One strategy to achieve the velocity alignment derived in

Proposition 2 is to use a circling motion. The target capture
is guaranteed if the circling motion has (i) a radius less than
ρp so that O is always in the perceptual range; (ii) sufficient
speed such that ‖vP ‖ ∈ (vT − v0, vT + v0); and (iii) there are
sufficiently many guardians so that there exists one whose
direction of motion is approximately aligned with vT when
the intruder passes through O. Assuming (iii) is true, the
conditions (i) and (ii) give the following result.

Corollary 2: Assuming that there are sufficiently many
guardians so that there always exists one whose direction of
motion is approximately aligned with vT , a circular motion
in the swarming phase guarantees target capture if√

Γ

2

(√
α

1 + α
+
√
1 − α

)
> 1. (8)

Proof: Given the smallest required speed vT−v0 and the
acceleration bound umax, the radius of the circular orbit has
to be greater than (vT − v0)2/umax to be able to counteract
the centripetal acceleration. From condition (i), the radius
also has to be smaller than ρp . Therefore, the condition is
ρp > (vT − v0)2/umax, which is equivalent to (8).
The analysis on the required number of guardians for condi-
tion (iii) alone to hold is omitted due to page constraints.

The necessary and sufficient conditions (1), (7) and (8) are
summarized in Fig. 3. Region R1 is where a static swarm
fails to achieve target capture. Region R3 is where a static
swarm is guaranteed to achieve target capture, assuming that
the intruder encounters at least one guardian. The region
R2 ∪ R3 is where a circling swarm is guaranteed to achieve
target capture. The circling motion guarantees target capture
with lower Γ as compared to a static swarm. If Γ is below
the red curve in Fig. 3, guardians cannot achieve the desired
circular motion; i.e., either the radius is too large or the speed
is too low. The following section proposes strategies for the

(a)

(b1) (b2) (b3)

RminRmax

vmax

vmin

O

Fig. 4. Effect of initial conditions on the swarming motion. (a) The
definition of vmax and Rmin; (b1) radial motion; (b2) general case; (b3)
circular motion.

guardians so that they can achieve target capture even inside
of the region R1.

C. Swarming Motion and Probability of Target Capture

Consider a single guardian moving around O. A close en-
counter with an intruder occurs with probability Pencounter. At
the time of the close encounter, condition (6) will hold only
with probability Palign. The intruder will be captured if both
of these two events happen for any one of the guardians in
the swarm. (Explicit calculation of the probabilities Pencounter
and Palign is part of ongoing work.) Therefore, the two key
objectives of the swarming motion are to (i) maintain high
density around O where the intruder passes through; and (ii)
maintain high speed that can lie in the circle Bv0 (vT ) defined
after Proposition 2.

Let Pcapture denote the probability that at least one pursuer
captures the target. For the same number N of guardians,
Pcapture may be increased by improving Pencounter and Palign,
as discussed below.

Inspired by the swarming motion of male mosquitoes and
existing work in the literature [8][15], we consider a central
force ai = F (center)

i that generates oscillatory motion of the
pursuers around O, where F (center)

i = −Kcenterr i . Since the
guardian’s acceleration is bounded, the central force on agent
i will be saturated as follows:

F (center)
i =

{
−Kcenterr i if ‖Kcenterr i ‖ ≤ umax,
−umaxr i/‖r i ‖ otherwise. (9)

For simplicity, consider the case where Kcenter is suffi-
ciently large that F (center)

i is always saturated. Depending
on the initial condition, the central force F (center)

i produces
various orbiting motions characterized by the speed vmax and
the distance from the center Rmin ∈ [0, v2max/umax] when the
agent is closest to the center (see Fig. 4-(a)). Two extreme
cases are (i) Rmin = 0, corresponding to a pure radial motion,
and (ii) Rmin = v2max/umax, corresponding to a pure circular
motion. The set (Rmin, vmax) not only affects the shape of
the orbit, but also modulates the speed and the density of the



Fig. 5. Effect of swarming motion on the probability of target capture.
The boundary of the gray region is where the motion is circular.

swarm. Figure 5-(c,d) shows Pcapture obtained from numerical
simulation with N = 12, α = 0.5, and two values of Γ:
0.5 and 0.9. Although Γ is in region R1 for both cases,
target capture is achieved with nonzero probability if the set
(Rmin, vmax) is chosen properly. Although the probability is
higher with larger Γ, the optimal (Rmin, vmax) varies with Γ.
In particular, for Γ = 0.5, circling motion is not optimal; the
probability of capture is maximized for a blended motion in
Fig. 5-(b).

To further investigate how the optimal orbiting motion
varies with Γ and α, two nondimensional parameters de-
scribe the energy and roundness of the orbits. Consider the
following energy function:

E(v, ρ) =
1
2
v2 +U (ρ), (10)

where positive semidefinite function U (ρp ) denotes the po-
tential energy. Since a large Kcenter so that ‖F (center)

i ‖ = umax
is assumed, we choose U (ρ) = umaxρ. Now, consider the
baseline energy E0 = E(vT−v0, ρp ) corresponding to the
circling motion considered in Corollary 2. The nondimen-
sional parameter ε > 0 describes the energy of the given
orbit normalized by the baseline energy, i.e.,

ε ,
E(vmax, Rmin)

E0
=

E(vmax, Rmin)
E(vT − v0, ρp )

. (11)

Remark 1: If Kcenter is sufficiently small so that F (center)
i

is never saturated, then we choose U (ρ) = Kcenter
2 ρ2. For a

general case we can use

U (ρ) =



Kcenter
2 ρ2 if |ρ| < umax/Kcenter,

umax
(
ρ − umax

2Kcenter

)
otherwise.

For the roundness of the orbit, consider the speed required
to achieve a pure circular motion, i.e., v∗max =

√
umaxRmin. The
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Fig. 6. Optimal orbiting motion as a function of system parameters Γ and
α: (a) Pcapture achieved with optimal orbiting motion; (b) optimal energy
ε; (c) optimal roundness ω.

nondimensional parameter ω ∈ [0, 1] defined by

ω ,
v∗max
vmax

=

√
umaxRmin

vmax
(12)

describes the degree of roundness scaled between 0 (pure
radial motion) and 1 (pure circular motion). The level curves
of ε and ω are depicted in Fig. 5-(b).

Remark 2: A point in (vmax, Rmin)-space is mapped to a
unique point in (ε, ω)-space and vice versa through (11) and
(12), except for the origin, which is mapped to the line ε = 0.

Figure 6 shows the optimal values of ε and ω as a function
of the system parameters α and Γ. Figure 6-(b) shows that
the swarm has to increase the energy for small Γ and large α.
Since the energy is increased at the cost of swarm density
(which causes a drop in Pencounter), we see low values of
Pcapture in the corresponding region in Fig. 6-(a). Figure 6-
(c) shows that the pure circular motion is only optimal in the
subset of the (α, Γ)-space.

Consider the case where guardian-vehicles have fixed
values of α and umax, and intruders may have different
speeds vT that are approximately known a priori. For the
guardians to respond optimally to different intruders (i.e.,
different Γ values), the swarm has to be able to change
the orbiting motion between radial and circular. Motivated
by the above observation, a control law that can modulate
the balance between the radial and rotational component of
the swarming motion is considered in the next section. In
addition, collisions between the pursuers, which were ignored
in the above analysis are taken into account for the actual
implementation.

D. Swarming Control Law
We introduced F

(pursuit)
i that generates a pursuit behavior

in (5), and F (center)
i that generates oscillatory motion in (9).



This section introduces additional control terms to maintain
the desired swarming motion in the experimental implemen-
tation. The final form of the control law consists of the
following terms:

ai = (1 − λi )
(
F (center)

i + F
(damp)
i + F

(angular)
i

)
+λiF

(pursuit)
i + F (avoid)

i . (13)

The switching function λi takes the value 0 when i is in the
swarming phase and 1 when i is in the pursuit phase. The
rule for this switching is described in Section II.

We use the following force for collision avoidance:

F (avoid)
i = Kavoid

∑
j ∈S (avoid)

i

r i j

‖r i j ‖2
, (14)

where S(avoid)
i = { j | ‖r i j ‖ < ρavoid,

d
dt ‖r i j ‖ =

ṙ i j ·r i j
‖r i j ‖

< 0}.
Note, latency in the closed-loop system (see Section IV-A)
causes delayed initiation and termination of avoidance. To
alleviate the delay problem, the set S(avoid)

i does not include
the agents that are moving away from i. The damping term
F

(damp)
i is also introduced to avoid instability caused by the

latency, i.e.,

F
(damp)
i =

{
−Kdamp ṙ i if ‖r i ‖ > Rmax,

0 otherwise. (15)

With the dissipation from F
(damp)
i and the disturbance from

F (avoid)
i , the desired orbiting motion may not be maintained

according to the analysis in the previous section. To ensure
the circular component of the swarm, the angular momentum
term F

(angular)
i is introduced:

F
(angular)
i = hdesr⊥i /‖r i ‖

2 − ṙ i, (16)

where r⊥i · r i = 0 and hdes is the desired angular momentum.
The control gain hdes can be used together with Kcenter in
(9) to determine the balance between the radial and circling
motion of the agents.

In the experimental implementation, a radial motion like
Fig. 4-(b1) is difficult to achieve when the vehicle size is
sufficiently large relative to the spatial size of the swarm,
since the risk of collision is high at the center. Also, the
shape of the orbiting motion is distorted due to the force
from collision avoidance. For these reasons, direct extension
of the parameters ε and ω into the swarming algorithm is
challenging, and is a subject of ongoing and future work.

IV. Experimental Testbed and Results
A. Quadrotor Testbed

We conducted experiments using a group of small-size
quadrotors in an indoor motion-capture environment. We
used five BLADE Nano QX, which is a commercially
available quadrotor. The architecture of the experiments is
summarized in Fig. 7. The commands are computed on a
desktop computer and sent to an Arduino Nano via USB
serial communication. The Arduino Nano converts the re-
ceived serial signal into a PPM (Pulse Position Modulation)
command and sends it to the trainer port of a Spektrum DX6

Fig. 7. The architecture of the experimental setup. The red numbers indicate
the approximate time delay from each component. The blue box is duplicated
according to the number of vehicles.

transmitter which sends RF (Radio Frequency) commands to
the vehicle. The OptiTrack motion-capture system tracks the
position and attitude of the vehicle and streams them to the
computer. When it is sent out from the computer, the control
law proposed in Section III-D is converted to a desired stick
input [17].

One limitation of our experimental setup is the time delay
(approximately 170 ms) between the Arduino Nano and the
Nano QX. Another limitation is the size of the test area.
The vehicle dimension is 18.2×18.2×6.4 cm, whereas the
horizontal area of the volume tracked by the motion-capture
system is approximately 3×3 m. To maintain a swarming
motion with sufficiently high speed in this confined area,
collision avoidance is an important consideration.

B. Swarming Phase
First, we show how five vehicles successfully achieve

swarming with the decentralized algorithm proposed in Sec-
tion III-D. Since the sensing is done with motion-capture
system, we simulate the effect of limited perceptual range.
The parameters Kavoid=3.0 and ρavoid=2.0 m were chosen
sufficiently large to achieve collision avoidance. The param-
eter hdes in (16) was varied in real time to modulate the
speed of the vehicles. Although umax defined in (A3) denoted
the limitation of the vehicle in the theoretical analysis, we
vary it as a control parameter for the term F (center)

i in the
experiment. We chose umax = 1 + 0.6|hdes | and Kcenter = 20.
Figure 8-(a) shows a snapshot of the swarming reconstructed
from motion-capture data. The tails show the trajectories
from the last 5 seconds. Figure 8-(b) shows how the absolute
value |hdes | can be used to control the tangential speed of
the vehicles to modulate the balance between the radial and
rotational component of the swarming motion. (The sign of
hdes determines the direction of rotation.)

C. Pursuit Phase
Next, we show the effect of swarming motion on the

success of pursuit. Because of the spatial constraints, we used
one guardian and a fictitious intruder simulated in computer.
The maximum acceleration of the vehicle is approximately
umax = 6.0 ms−2. (Note that this is the limit as is defined in
(A3).) By varying vT , we experimentally tested pursuit with
different values of Γ. For a static guardian with α = 0.67,
where ρa = 0.6 m and ρp = 0.4 m, we simulated the easiest-
case scenario considered in the proof of Proposition 1,
i.e., the case where the intruder’s trajectory passes through
the guardian’s position. Although the theory predicts that
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are obtained from motion-capture system. The animation is available at
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the balance between the radial and rotational motion; (b2) time history of
the radial and tangential speed averaged over five vehicles. The tangential
speed follows the magnitude of hdes
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Fig. 9. Snapshot of the pursuit phase reconstructed from motion-capture
data. The relevant perceptual range changes from ρp to ρa between the
first two figures.

Γ > 1 will enable target capture for this easiest case,
in the experiment, we required Γ > 1.78 (or equivalently
vT < 2.6 ms−1) due to the latency in the system.
For the swarming case, we further increased the intruder’s

speed to vT = 2.9 ms−1, which corresponds to Γ = 1.43.
Although Γ is decreased by 20%, target capture was success-
ful in 6 out of 21 trials, which gives Pcapture = 0.29. (Note
that a static guardian achieve Pcapture = 0 for this value of
Γ.) Figure 9 shows the snapshot of the vehicle transitioning
from swarming to pursuit, and maintaining the target in the
perceptual range.

V. Conclusions

This paper describes a swarming strategy for multiple
guardians to defend a protected zone from an intruder. A
static guardian requires high capability to guarantee target
capture, whereas swarming motion relaxes the requirement.
Using radial oscillatory motion, guardians with arbitrarily
low capability achieve target capture with some probability
by utilizing the velocity alignment that occurs by chance.
Guardians should compromise between the swarm density
and their speed to increase the probability of target capture.

A decentralized control algorithm that achieves collision
avoidance while maintaining a desired circular motion was
proposed and tested with a quadrotor testbed. The algorithm
successfully generated a swarm in the presence of time delay.
The experiment also validated that a swarming motion helps
the guardians to capture the intruder.

In ongoing and future work, we are extending the swarm-
ing algorithm to three dimensions, which involves the avoid-
ance of the downwash from other vehicles. With inspira-
tion from mosquito swarms, we are investigating how the
velocity alignment behavior between the guardians (which
occurs before target detection) will improve the probability
of successful pursuit. We are also studying the case where
there can be multiple intruders that are performing evasive
strategies.
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