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Abstract— This paper describes the use of a bioinspired
array of pressure sensors to estimate and control flow-relative
position using potential flow theory and a recursive Bayesian
filter. Inspired by the lateral-line neuromasts found in fish, the
sensing scheme is validated using off-the-shelf pressure sensors.
First, the strength and location of a stationary spiral vortex
are estimated and closed-loop control of relative position is
demonstrated experimentally. Second, we identify an optimal
path through a Karman vortex street using empirical observ-
ability. Finally, the vorticity and location of the Karman vortex
street is estimated and closed-loop control to the optimal path
is demonstrated experimentally. This work is a precursor to
an autonomous robotic fish sensing the wake of another fish
and/or performing pursuit and schooling behavior.

I. INTRODUCTION

Autonomous underwater navigation in and through com-
plex structures requires a sensing system capable of perceiv-
ing variable flow patterns. Inspiration arises from a fish-
sensing system known as the lateral line, which contains
superficial and canal neuromasts sensitive to flow velocity
and pressure gradients, respectively [1],[2]. Fish use the
lateral line to help locate prey, even in complete darkness
[3]. Bioinspired sensing schemes that use pressure-sensing
modalities have the potential to enable robotic platforms
to estimate the location and strength of circulating flow
structures such as vortices.

This manuscript describes the use of off-the-shelf pressure
sensors to estimate the location of a spiral vortex and
implement (one-dimensional) closed-loop control of its po-
sition relative to a linear sensor array. Additionally, a square
pressure-sensor array in a Karman vortex street is actuated
in the cross-stream direction in order to follow an optimal
path determined by empirical observability. A Karman vortex
street is the pattern of clockwise and counter-clockwise
vortices shed by a blunt body due to flow separation. This
pattern also occurs in the wake of fish as they swim [4], and
is investigated here as a precursor to fish-robot pursuit of
other fish robots and/or schooling behavior.
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In prior work on artificial lateral lines, Lagor et al.
demonstrated estimation of flowspeed and angle of attack
of a fish-shaped body submerged in uniform flow using
commercial pressure sensors [5]. DeVries et al. utilized bi-
modal sensing with traditional pressure sensors combined
with ionic polymer-metal compositites (IPMC) sensors in
order to estimate the location of an upstream obstacle and
orient a fish robot in uniform flow [6]. Fernandez estimated
vortex location using only pressure sensors, but performed no
closed-loop control [7]. Ren and Mohseni use the potential
flow model of a vortex street to examine the effects flow has
on the lateral line of a fish but performed no flow estimation
[8]. Lagor et al. used the local unobservability index to
determine the best paths to tour a two-vortex system [9].
Li and Saimek used pressure sensors on a submerged airfoil
to estimate vortex strength only using a Kalman filter [10].
To the authors’ knowledge, there has been no prior work
on estimating the location of moving vortices with pressure
sensor arrays or optimal-path tracking in a vortex street.

Estimates of the location and strength of a spiral vortex
and a vortex street are formed using pressure measurements
from an artificial lateral line and used in closed-loop control.
The technical approach utilizes tools from potential flow
theory, nonlinear estimation, and nonlinear observability. The
spiral vortex is modeled as an irrotational and incompressible
flow composed of the superposition of a sink and a point
vortex. The Karman vortex street is modeled as two parallel
infinite lines of vortices [11]. Measurement equations output
the predicted pressure reading according to four states (sink
strength, vortex strength, and planar coordinates) in the
spiral vortex case and three states (vortex strength and
planar coordinates) in the Karman vortex street case. All
calculations are performed in a reference frame fixed to
the sensor array. These equations, in conjunction with the
actual sensor readings, are used in a nonlinear recursive
Bayesian framework to estimate the states. For the spiral
vortex, the estimated vortex position is used in a propor-
tional feedback controller that actuates the sensor array to
drive (one component of) the relative position to zero. For
the vortex street, the estimate is used in feedback control
to track an optimal reference trajectory pre-determined by
empirical observability. Traditional observability answers the
question “can the system’s states be recreated from the
measurements?” and often requires taking Lie derivatives of
the system dynamics and evaluating the observability rank
condition. Empirical observability instead gives a measure
of how easily observed a system is and requires only the
ability to simulate the system dynamics [12].



The contributions of this paper are (1) a Bayesian filter
framework using pressure measurements to estimate vortex
strength and location in static and moving patterns including
a stationary spiral vortex and a Karman vortex street; (2)
calculation of an optimal path through a vortex street based
on empirical observability; and (3) closed-loop control of a
sensor array relative to a static spiral vortex and along the
optimally observable path through a vortex street. This work
demonstrates an artificial lateral line sensing variable flow
structures, which has applications in autonomous underwater
navigation in cluttered environments and sensing other fish
or robots in the water.

The paper proceeds as follows. Section II provides techni-
cal background in potential flow theory, nonlinear estimation,
and empirical observability. Section III presents the model of
the sensor array, the corresponding measurement equations,
and empirical observability-based path-planning. Section IV
describes results from the experimental testbeds and Section
V summarizes the paper and ongoing work.

II. BACKGROUND

A. Modeling and Measuring Vortex Flows

Potential flow allows the flow velocity at any point to be
calculated from a single function; it is used here to model
the flow field induced by vortical flow structures. A spiral
vortex, such as that created in a bathtub drain, is represented
as an ideal sink combined with a point vortex. Let z ∈C be
a point in the complex plane. The complex potential of a
spiral vortex Fsv(z) is1 [13]

Fsv(z) =
Λ

2π
log(z− z0)− j

Γ

2π
log(z− z0), (1)

where Λ is the source strength (negative for a sink), Γ is
the vortex strength, and z0 ∈ C is the location of the vortex
center. The velocity field is the conjugate of the gradient of
the complex potential, i.e.,
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(
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)∗
=
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A Karman vortex street in freestream flow with primary
vortex located at z0 = x0 + jy0 in a moving sensor frame
has the potential [11]

Fkvs(z) =Uz+ j
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]
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where γ, a, h, and U are the vortex strength, horizontal
spacing of the vortices, vertical spacing of the vortices, and
freestream speed of the flow, respectively. The velocity field

1To avoid confusion with index j, bold j =
√
−1 is used to indicate the

imaginary number.

is again the conjugate of the gradient of the potential [13]
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The real and imaginary components of this term are the
horizontal and vertical velocities induced by the flow.

The velocities modeled above can be used with Bernoilli’s
equation to calculate the pressure that would be sensed at
a particular location. Let p(z) denote the static pressure
at z, ρ the fluid density, W (z) the velocity at z, g the
gravitational acceleration, and H the elevation. To model the
pressure sensed at z, apply Bernoulli’s principle [14], which
for steady, inviscid, incompressible, irrotational flow, yields
the constant

C = p(z)+
1
2

ρ|W (z)|2+ρgH. (5)

B. Bayesian Estimation and Observability

A Bayesian filter assimilates measurements to estimate
unknown states such as vortex location and strength. Equa-
tions (2), (4), and (5) are used in Section III to model
pressure measurements from the sensors. A recursive, grid-
based Bayesian filter estimates a set X of parameters from
a set Y of measurements [15]. Suppose the measurement
vector is

Y = H (X)+η ,

where H (X) is the (nonlinear) measurement equation and
η is Gaussian sensor noise. In this case, the conditional
probability of measurement Y given state vector X is

π(Y|X) = (6)
1√

(2π)n det(R)
exp
[
− 1

2
(Y−H (X))T R−1(Y−H (X))

]
,

where n is the number of measurements and R ∈Rnxn is the
covariance matrix of the sensor noise. In practice, a discrete
grid may be used to evaluate the measurement equation,
which, for X ∈Rn, implies an n-dimensional grid is needed.
(For a large number of grid points, this calculation may be
computationally intensive.)

Bayesian estimation combines the prior estimate with the
measurement likelihood to form a posterior estimate via
Bayes’ formula,

π(X|Y)posterior = κπ(Y|X)π(X)prior, (7)

where κ is a normalizing factor to ensure the posterior inte-
grates to one. After each time step, the posterior becomes the
prior and the process is repeated with a new measurement.
(A uniform prior is used for the initial time step.)

Observability is a concept that quantifies the ability of
states X to be estimated from measurements Y. Krener and
Ide construct the idea of the empirical observability gramian
Wo in [12]. For the nonlinear system

Ẋ = f (t,X) and Y = H (t,X),



Fig. 1: Illustration of sensor and control system for the spiral
vortex case. Red circles are pressure sensors. The origin of
the sensor frame is the leftmost pressure sensor. The vortex is
located at (x0,y0) in the sensor frame and has sink strength
Λ and vortex strength Γ. The spiral vortex is fixed in the
inertial frame; the array actuates left and right, changing x0.

Wo(i, j) =
1

4ε2

∫ T

0
(Y+i−Y−i)>(Y+ j−Y+ j)dt, (8)

where Y±i is the measurement produced from the state
X±i = X± εei, and εei is a small perturbation along the
ith unit vector in Rn, with i = 1, . . . ,n. The inverse of the
minimum singular value of Wo on a time interval [0,T ] is the
local unobservability index, ν = 1/σmin(Wo). This metric is
dependent on specific experimental conditions such as sensor
placement, sensor number, vortex strength, etc., and therefore
cannot be used to compare observability between different
configurations. However, it is useful for comparing paths
through a field using the same experimental configuration.
The path with the lowest unobservability index will lead to
the best estimate of the parameter space.

III. MODELING AND CONTROL

A. State-Space Modeling

Forming the measurement equations for the spiral vortex
and the vortex street requires understanding the physical
setup in each case. Figure 1 depicts the configuration of the
sensing and control system for the spiral vortex and Figure
2 depicts the configuration of the sensing and control system
for the Karman vortex street. A straight, 30 cm long sensor
array is used for the spiral vortex to provide widely varied
measurements to properly test the estimator. A 6 cm square
sensor array is used for the Karman vortex street to better to
fit the experimental testbed described in Section 4. In both
cases, potential flow theory and Bernouilli’s principle are
used to model the static pressure p(z). In order to remove
the effects of ambient pressure, differences between pairs of
pressure sensors are measured and modeled, analogous to
how canal neuromasts function [16]. From (5), for any two
sensor locations zi and z j, we have

p(zi)+
1
2

ρ|W (zi)|2= p(z j)+
1
2

ρ|W (z j)|2.

Fig. 2: Illustration of sensor and control system for the
Karman vortex street. Red circles are pressure sensors. The
origin of the sensor frame is in the center of the pressure
sensor array. The closest clockwise vortex to the sensor array
is referred to as the primary vortex and has coordinates
(x0,y0) in the sensor frame. Each vortex has strength γ and
the vortex street moves to the right with speed U . Every like-
signed vortex in the street is spaced horizontally by a units.
The two lines of vortices are separated vertically by h units.
The array moves vertically in the cross-stream direction.

The pressure difference, ∆pi j = p(zi)− p(z j), is

∆pi j =
1
2

ρ

[
|W (z j)|2−|W (zi)|2

]
.

Using (2) yields

∆pi j =
ρ(Λ2 +Γ2)

8π2

[
1

|z j− z0|2
− 1
|zi− z0|2

]
(9)

in the spiral vortex case. The equation for the vortex street
case is omitted for space constraints; it is a function of sensor
position, street position, street spacing, and vortex strength.

With the measurement equations formed, the Bayesian fil-
ter framework for these experiments can be put in place. For
nps pressure sensors, there are np = (n2

ps−nps)/2 measure-
ments of pressure differences and the measurement vector
is

Y = [∆p1, . . . , ∆pnp ]
T ∈ Rnp .

Note that there are only n−1 linearly independent pressure
differences. Using redundant measurements in the Bayesian
filter reduces the effect of measurement noise more quickly
at the cost of running fewer times per second. In the spiral
vortex case, the state vector is

Xsv = [ℜ(z0) = x0, ℑ(z0) = y0, Γ, Λ]T ∈ R4.

In the Karman vortex street case, there are six parameters
that uniquely determine the flow field: U (the freestream
flow speed), γ (the strength of each vortex in the street),
a (the horizontal spacing of the vortices), h (the vertical
spacing of the vortices), x0 (the horizontal location of the
vortex street relative to the sensor frame), and y0 (the
vertical location of the vortex street relative to the sensor
frame). Previous work [6], demonstrated the use of arrays
of pressure sensors to estimate the free-stream speed of a
flow. This work assumes that flow speed has already been
determined, and U is assumed to be given. As shown in



the stability analysis in [11], the vertical spacing h of the
vortices is directly proportional to the horizontal spacing a
by h = a 1

π
sinh−1(1) ≈ 0.2805a, so h can be removed from

the parameter space. By using the Strouhal number St, a
can also be treated as given, assuming the diameter of the
upstream obstacle shedding the vortices is known. For low-
frequency vortex shedding, St = f L

U ≈ 0.2, where f is the
frequency of shedding, L is the obstacle diameter, and U is
the flow speed [17]. The frequency can be directly calculated
from a and U , so if the obstacle diameter is known, then a is
as well. Additionally, because the vortices move to the right
with a constant speed U and are repeated to the left and right
infinitely, x0 can instead be represented by a phase angle
φ = 2π

x0
a , φ ∈ [−π, π). In this way, the parameter space is

reduced to only 3 variables, so for the Karman vortex street

Xkvs = [φ , ℑ(z0) = y0, γ]T ∈ R3.

The sensor noise matrix in (6) is

R = diag(Rp . . .Rp︸ ︷︷ ︸
np

),

where Rp is the expected noise variance of the pressure-
difference measurements.

B. Optimal Observable Path

The measurement equation and Bayesian filter framework
enable estimation of the vortex parameters. To determine an
optimal path for the sensor array in the vortex street case,
empirical observability is used. The closed-loop control goal
is to track a reference trajectory y0ref = y0ref(φ), meaning
for any given φ with dynamics φ̇ = 2πU/a, there is a
reference vertical position y0 that should be achieved by
actuating the sensor array2. To choose the path y0ref(φ),
the observability grammian W0 is calculated along sinusoidal
trajectories of varying phase and amplitude. (Only sinusoidal
trajectories were examined because of the structure of the
vortex street.) The local unobservability index is calculated
for each trajectory according to (8). The street spacing,
vortex strength, and sensor configuration match those in the
experiment described in Section IV. Figure 3(a) shows the
local unobservabiltiy index for each trajectory. The minima
on this graph are the paths of the sensor array leading to the
best estimates of the parameters Xkvs. The optimal paths are
shown in Fig. 3(b) in white. These are the paths that bring
the vortices close to the individual pressure sensors, creating
a large pressure difference among the sensor-pairs and hence
a good estimate of the parameters.

For the vortex street experiment described in Section IV,
the black line was chosen for y0ref because it does not bring
the sensors too close to the walls of the test section (indicated
by the blacked dashed lines), does not bring the sensors
directly in contact with the center of a vortex singularity,

2Note that y0 is the position of the vortex street in the sensor frame, so if
the sensor array moves up in the inertial frame, y0 decreases. All calculations
within the estimator and controller are performed in the sensor frame. If the
Karman vortex street never moves in the cross-stream direction, y0 will still
change if the sensor array moves.

(a)

(b)

Fig. 3: (a) Local unobservability index for sinusoidal trajecto-
ries of the form Amplitude∗cos(φ +Phase)−h/2 through the
(φ ,y0) plane. White circles represent minima of the test grid.
Black circles represent the path followed in the experiment.
(b) Instantaneous unobservability index at various points in
the (φ ,y0) plane. White and black curves correspond to
the white and black circles in (a). The dashed black lines
indicate the width of the test section of the experimental
setup described in Section IV.

and has a low unobservability index as compared to the rest
of the field in Fig. 3(a). The chosen path is

y0ref =
h
2

cos(φ)− h
2
, (10)

which takes the center of the sensor array through the center
of each vortex. The reference path has the offset −h/2 to
ensure that the midpoint of the trajectory is centered between
the two parallel lines of vortices in the vortex street.

C. Observer-Based Controller

A proportional feedback controller was chosen for both the
spiral vortex experiment and the vortex street experiment. In
the spiral vortex case, let ksv be the gain and x̂0 the estimate
of the vortex location relative to the sensor array. Consider



Fig. 4: The experimental testbed for the spiral vortex includes
a stepper motor and belt to actuate the sensor array; the spiral
vortex is centered on the drain, like a bath tub.

the proportional-control input velocity

usv =−ksvx̂0. (11)

Assuming velocity is being directly controlled, the closed-
loop system has the continuous dynamics

ẋ0 = usv =−ksvx̂0.

If the estimate error is bounded, this system can be shown
to be pratically stable by Lyapunov’s method [18], i.e.,
error trajectories converge arbitrarily close to the origin (but
never exactly to the origin due to the non-vanishing estimate
uncertainty).

In the Karman vortex street case, let kkvs be the gain, ŷ0 the
estimated cross-stream location of the primary vortex in the
Karman vortex street, and e = ŷ0−y0ref be the error from the
reference trajectory. Again, consider a proportional-control
input velocity

ukvs =−kkvse, (12)

which yields practical stability with directly controlled ve-
locity dynamics in y0.

IV. EXPERIMENTAL RESULTS

A. Experimental Testbeds

Figure 4 shows the first experimental testbed: a 1.2 m
wide, 0.75 m deep water tub used to create a stationary spiral
vortex at its center. Water exits through a drain in the bottom
and is fed to three 75 watt pumps. These pumps redirect
the water back into the tub where it is injected tangentially
to the vortex flow through four pipes. A commercial flow-
rate meter is used to directly calculate the ground truth sink
strength of Λ = 0.0032 m2s−1. The true vortex strength,
Γ ≈ 0.271 m2s−1, is approximated by the line integral of
the tangential velocity around the tub as measured by a
commercial velocity meter.

A carriage sitting above the water translates in one di-
mension on freely spinning wheels laid in aluminum tracks.
Suspended from the carriage is a rake-like structure holding
the pressure sensors under the water’s surface. Four Millar
pressure sensors are evenly spaced over 30 cm. A stepper
motor and timing belt are used to actuate the carriage across

Fig. 5: The experimental testbed for the vortex street uses
a stepper motor and belt to actuate the sensors. A second
stepper motor actuates a flap to create the vortices. An
overhead camera is used to to calculate the ground truth
location of the vortices.

a 100 cm span. The pressure sensors are connected to a
National Instruments data-acquisition board and the data are
read by MATLAB.

Estimation and control occurs as described in Section III;
the control strategy in (11) uses ksv = 0.5s−1. Due to the
large sample size needed from noisy pressure sensors, as
well as the computational resources needed to calculate the
measurement likelihood for the 151x151x25x25 matrix of
possible points in the state space, a continuous-time system
is not possible in the first experiment. Once the control input
usv is calculated, the sensor array is translated at that velocity
for one second before the next data set is taken.

Figure 5 shows the experimental testbed for the Karman
vortex street. A 185 L Loligo flow tank creates a uniform
15 cm/s flow in a 88cm x 25cm x 25cm test section. A
stepper motor controls a black sheet of acrylic that flaps to
create vortices at the desired spacing and frequency. Through
image processing, the strength of each vortex in the street
was determined to be γ ≈ 0.0605 m2s−1. A timing belt and
second stepper motor control the carriage that translates the
pressure sensors in the cross-stream direction. The pressure
sensors are arranged in a 6cm x 6cm square and submerged
under the surface of the water. A camera mounted above
records the experiments in order for the ground truth of the
vortex positions to be extracted after the experiment has been
completed. The estimation, data aquisition, image capture,
control calculation, and stepper motors are all controlled
in real time from a computer running MATLAB. A course
30x30x15 grid of possible points in the (φ ,y0,γ) state space
was used to update the estimate and control at approximately
20 Hz in order to have stable convergence to the reference
trajectory. The velocity of the sensor array was controlled
by the stepper motor using the control law in (12) with
kkvs = 10 s−1. The vortices created by the flapper were
spaced by a = 0.6 m, which corresponds to a hypothetical
upstream obstacle of diameter 12 cm.

B. Observer-based Control Results
Open-loop surveys of the vortex tub were performed to

ensure proper function of the sensors and the Bayesian
filter. Figure 6 shows the survey results from using pressure
sensors. Nineteen measurements were taken as the sensor
array was translated from x0 = 44 cm to x0 = -10 cm.
Observe the symmetry about the x axis that arises from the



Fig. 6: Open-loop survey with np = 4 pressure sensors. The
posterior marginals in the (a) (x0,y0) and (b) (Γ,Λ) planes.
The white markings represent ground truth values.

symmetry of the sensor array. Also see that the posterior
in the (Γ,Λ) plane determines only the magnitude Γ2 +Λ2,
because (9) does not contain Γ or Λ in any other form.

Figure 7 shows the results from a closed-loop control test
in the vortex tub using pressure sensing. The estimation was
successful in calculating the x0 coordinate of the vortex,
somewhat successful in calculating the y0 coordinate, and
not very successful at calculating the Γ2 +Λ2 strength. The
over-estimate of the vortex strength and the vertical distance
to the vortex may also be due to the symmetry of the pressure
sensor array: any given pressure-difference reading could
either be from a weak vortex close by or a strong vortex far
away. A square pressure sensor arrangement was chosen for
the Karman vortex street experiment to avoid measurements
in only one dimension and hence this issue.

Figure 8 shows the vortex street experimental results from
a closed-loop experiment to track the reference trajectory
given in (10). The experiment was successful in actuating
the pressure sensor array to pass through each of the vortices

after an initial period of larger error. The estimate of γ varies
around the ground truth value, which may be explained by
the small grid size along the γ axis in the state space.

Figure 9 shows the errors in the estimates of φ and y0. The
ground truth of y0 matches well with the reference trajectory.

V. CONCLUSION

This paper describes the estimation of vortex flows and
its use in closed-loop control of the flow-relative position of
a sensor array inspired by lateral-line neuromasts. Measure-
ment equations for these sensors use potential flow theory
and Bernoulli’s principle. The measurement equations are
incorporated in a recursive Bayesian filter to estimate the
planar location and strength of both a spiral vortex and
Karman vortex street. Closed-loop control with pressure
sensors successfully actuated the sensor array to the x0
coordinate of the spiral vortex. An optimal path through the
vortex street was determined using a metric based on the
local unobservability index and tracked using closed-loop
control.

In ongoing work, air bearings have been included in the
vortex-street experimental setup. The direct control of the
cross-stream velocity via stepper motor will be replaced with
a fish-like Joukowski airfoil that will be rotated by a servo
motor to create lift in the cross-stream direction. Using tools
from nonlinear control, a feedback controller will take into
account the flow field from the vortex street in order to
slalom through the vortices on the desired trajectory.
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