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Abstract. This paper presents a distributed coordination algorithm for multiple,
buoyancy controlled underwater robots to achieve a moving formation in a shear
flow. This work is motivated by the deployment of a swarm of ocean-going robots
called Driftcam to observe the pelagic scattering layer. Driftcam horizontal mo-
tion is determined by the flow field and the vertical motion is regulated by the
buoyancy control. Pairwise range measurements are available to the Driftcam
network via acoustic transponders. A formation buoyancy controller is designed
using the backstepping method; deviation from the desired formation is measured
by a potential function. Numerical simulations illustrate the efficacy of the con-
trol algorithm and motivate ongoing and future efforts to estimate of the scattering
layer density.
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1 Introduction

The distributed control of multi-agent systems in the ocean is developing rapidly,
motivated by the limitations of individual agents [15, 17], the scale of the spatial area
needing coverage, and redundancy in the case of individual failure [5]. Due to the
ocean’s large-scale spatiotemporal patterns, it is advantageous to send a distributed sen-
sor network for applications such as cooperative mine countermeasures [18] and search
and recovery missions [7,11]. One specific motivation that underpins the results of this
paper is the deployment of ocean-going robots to perform oceanographic observation
of ecosystem processes in the ocean that are critical indicators of climate change.

This paper addresses the problem of coordinating a distributed network of short-
range interacting mobile underwater sensors. Called Driftcam, this robotic sensor is
propelled by ocean currents and is used for counting and measuring organisms in the
pelagic scattering layer using a high-definition low-light camera [16]. Multiple Drift-
cams have the capability to regulate their horizontal separation by adjusting their depth
to take advantage of the vertical variation of flow speed in the ocean. Depth is regulated
using a piston pump engine, which pumps oil into an external bladder that can change
buoyancy by its expandable volume [2].

The pelagic scattering layer is an ecosystem consisting of marine organisms that
undertake diel vertical migrations, swimming into deeper waters during daytime and
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ascending toward the surface at night [4]. Because of the huge biomass involved, the
migrations in the pelagic scattering layer account for the largest daily movement of
biomass on this planet [4]. Although shipboard echosounders can count and measure
specific species [10], they are insufficient to capture a panoramic view of the overall
community structure and behavior [16]. Prior and ongoing work [16] presents a control
strategy for a single Driftcam to track the scattering layer but does not consider how
the flow influences the motion of the Driftcam. Preliminary field results have been ob-
tained for deployments into the scattering layer in the Guaymas Basin of the Gulf of
California, Mexico, showing the utility of the Driftcam system in the field [1–3]. A
Driftcam formation estimates the local concentration of organisms by collecting in situ
observations from discrete locations in the scattering layer. The challenge addressed
in this paper is deriving a control strategy to stabilize a moving formation of multiple
Driftcams with desired horizontal spacing.

Formation control is inspired by collective motion in groups of animals with local
interactions [6]. The primary issue in an engineering application is how to design these
interactions so that the agents converge to the desired group behavior [15]. One option
to measure how the configuration of a swarm differs from the desired formation [12] is
to use a potential function that is minimized by the desired formation. Such a function
is also suitable for the design of a formation controller, since an energy-based repre-
sentation is compatible with a Lyapunov-based control design. Since agent receives in-
formation from its neighbors within communication range, the design of the formation
controller also relies on the communication topology, typically described using graph
theory.

In this paper, the desired formation is achieved by designing a distributed depth
controller. Since Driftcams can only directly regulate their depth, they must rely on the
horizontal current at that depth to move them towards a desired formation [14]. The
horizontal current is modeled as shear flow field whose speed decreases with depth.
Backstepping [8] is invoked to map the controller design to a buoyancy input. The
individual controller for each Driftcam tracks the time-varying reference depth of the
scattering layer and converges to the desired formation using measurements of the range
to its neighbors.

The contributions of this paper are (i) a distributed formation control strategy for a
team of Driftcams in a shear flow based on a potential function that has a stable global
minima when agents are equally spaced; and (ii) a backstepping approach to design a
depth-tracking formation controller while achieving the desired formation. This paper
provides a new perspective on taking advantage of environment flow fields to facil-
itate formation control for long-endurance multi-agent systems with limited onboard
actuation. The result is tested in a simulated environment where a group of agents are
released to achieve a horizontal formation with equal spacing while tracking the time-
varying depth of the scattering layer.

The paper is structured as follows. Section 2 reviews the graph theory that is used
to model the interaction of the group. Section 3 formulates the problem and outlines the
key assumptions. The construction of the potential function is introduced in Section 4
along with the application of the backstepping method. Section 5 shows simulation
results. Related ongoing and future work is summarized in Section 6.
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2 Preliminaries

This section introduces several basic concepts from algebraic graph theory and
robotic control via artificial potential functions. More details can be found in [12].

2.1 Graph theory

A graph G = (V, E) is composed of a set of vertices V = {1, 2, · · · , n} and edges
E ⊆ {(i, j)|i, j ∈ V, i ̸= j}. The interaction graph used in this paper is undirected, i.e.,
(i, j) ∈ E ⇔ (i, j) ∈ E . The set of neighbors of a node i in graph G is thus defined as

Ni = {j ∈ V|(i, j) ∈ E}.

The communication range between two agents is denoted by r. Neighbor j ∈ Ni at
distance dij from agent i in graph G can thus be represented by being within an open
ball with radius r, i.e.,

Ni = {j ∈ V|dij ≤ r}.

Two nodes i, j ∈ G(x) are connected by a path if there exists a sequence of distinct
nodes starting with i and ending with j such that consecutive nodes are neighbors [19].

2.2 Potential function

A smooth collective potential function is constructed as follows [12]. Let Ξ = [ξ1,
ξ2, · · · ]T , i, j ∈ {1, · · · , n}. Then

V (Ξ) = 1
2

n∑
i=1

n∑
j ̸=i,j=1

ψα(∥ξj − ξi∥σ), (1)

where ψα(ξ) is a smooth pairwise attractive/repulsive potential with finite cut-off at
rα = ∥r∥σ and a global minimum at ξ = dα defined as [12]

ψα(ξ) =

∫ ξ

dα

ϕα(s)ds. (2)

The σ-norm of a vector is a map Rm → R+ defined as [12]

∥ξ∥σ = 1
ϵ [
»
1 + ϵ∥ξ∥2 − 1]. (3)

The norm ∥ξ∥σ is used rather than ∥ξ∥ because the latter is not differentiable at z =
0 [12]. The action function ϕα(ξ) is integrated to construct a smooth pairwise potential
with finite cut-off vanishing for all ξ ≥ rα.

In the following, we use

ϕα(ξ) = ρh(ξ/rα)ϕ(ξ − dα) (4)

ϕ(ξ) = 1
2 [(a+ b)σ1(ξ + c) + (a− b)], (5)
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where σ1(ξ) = ξ/
√
1 + z2 and 0 < a ≤ b, c = |a − b|/

√
4ab to guarantee ϕ(0) = 0.

The bump function ρh(ξ) is

ρh(ξ) =


1, ξ ∈ [0, h)
1
2 [1 + cos(π ξ−h

1−h )], ξ ∈ [h, 1]

0 otherwise.
(6)

Remark 1. The bump function ρh(ξ) ensures the function V (ξ) is smooth for any con-
figuration of G.

3 Problem formulation

Driftcam behaves as a submersible buoy drifting in the ocean, unattached to the
ocean floor or a boat; it changes depth by controlling its buoyancy. The vehicle’s ver-
tical motion is subject to hydrodynamic drag proportional to drag coefficient bd [16].
Assume that the drifter’s horizontal velocity is equal to the ocean’s horizontal velocity
at its current location. Let x = [x1, x2, · · · , xn]T and z = [z1, z2, · · · , zn]T represent
the Driftcam horizontal and vertical positions, respectively. The collective dynamics
are [16]

ẋ = v = f(z) (7a)
z̈ = sat(µ, µmax)− bddiag{ż}|ż|, (7b)

where µ = µ(x, z, ż) ∈ Rn represents the difference between the Driftcam’s weighted
buoyancy; diag{ż} is a diagonal matrix with each entry on the diagonal being żi. The
saturation term denotes the drifter’s maximum vertical force µmax. Consider a priori
known shear flow f(z) with constant slope, i.e., f(z) = Az + B,A,B ∈ R. Because
of our choice of reference, this flow model does not produce motion in the vertical
direction and depends continuously on depth [13,14] The scattering layer nominal depth
ζ(t) obeys

ζ̈ = −ω2(ζ − ζ(0)), ω ∈ R.

For Driftcam i, let wi = żi and assume µ < µmax. We have the following dynamics

ẋi = Azi +B (8a)
żi = wi (8b)

ẇi = µi − bdżi|żi| ≜ ui. (8c)

Assume graph G consisting of agents V = {1, 2, . . . , n} and edges E ⊆ {(i, j)|i, j ∈
V, j ̸= i} is initially connected. The goal for an initially connected group of n Drift-
cams with communication range r ∈ R is to converge to a equally spaced formation
tracking the nominal depth ζ(t) of scattering layer. Mathematically, the goal is

∥xi(t)− xj(t)∥ → d, d ∈ R (9a)
zi(t) = zj(t) → ζ(t), ∀ i ∈ Nj , i = 1, · · · , n. (9b)
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4 Technical Approach

A collective potential function is constructed to generate the desired vertical veloc-
ity wi and then backstepping is applied to derive the buoyancy control ui, for all agents
i = 1, · · · , n.

4.1 Construction of potential function

The Driftcam move with the flow in the horizontal direction. Motivated by objec-
tive (9a), a smooth pairwise collective potential is constructed using the horizontal po-
sition differences in the form ∥xj − xi∥σ , i.e.,

V (x) = 1
2

n∑
i=1

n∑
j ̸=i,j=1

ψα(∥xj − xi∥σ). (10)

Remark 2. As shown in (4), if ∥xj − xi∥σ > ∥r∥σ , the corresponding potential for i
and j diminishes. So the second summation in (10) is over the neighbors of agent i.

The following design of wi is proposed:

wi =
∑
j∈Ni

ϕα(∥xj − xi∥σ)nij + fγi (zi, ζ, ζ̇), (11)

where the first term is the gradient of (1) and nij =
xj−xi√

1+ϵ∥xj−xi∥2
. fγi (zi, ζ, ζ̇) is the

navigational feedback given by

fγi (zi, ζ, ζ̇) = −c1(zi − ζ) + ζ̇ , c1 > 0. (12)

Stacking wi, i = {1, · · · , n}, together, we can get

w = −∇V (p) + fγ(z, ζ, ζ̇). (13)

Now consider a moving frame C that is centered at [xc(t), zc(t)]T, the mass center
of all agents, i.e., xc = 1/n

∑n
i=1 xi and zc = 1/n

∑n
i=1 zi. The position of agent i in

C is

pi = xi − xc (14a)
qi = zi − zc. (14b)

It can be shown that V (x) = V (p). The convergence proof needs a decomposition
lemma, following [12].

Lemma 1. Let

[g1, · · · , gn]T = g(q) = −c1q (15a)

h(zc, ζ, ζ̇) = −c1(zc − ζ) + ζ̇. (15b)
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Suppose the navigation feedback fγi (zi, ζ, ζ̇) in (12) is linear, i.e., there exists a decom-
position of fγi (zi, ζ, ζ̇) in the following form:

fγi (zi, ζ, ζ̇) = gi(qi) + h(zc, ζ, ζ̇). (16)

Then, applying (13), system (8a) and (8b) can be decomposed into a second-order sys-
tem,

ṗ = Aq, (17a)
q̇ = −∇V (p) + g(q), (17b)

and another second-order system in frame C,

ẋc = Azc +B, (18a)

żc = h(zc, ζ, ζ̇). (18b)

The system (17) describes the structural dynamics and (18) is the translational dy-
namics [12]. The depth convergence (8b) can be proved by applying feedback controller
(15b) to (18) if c1 > 0. The following theorem shows how (9a) is achieved from (17).

Theorem 1. Consider a group of agents with dynamics (17) and assume the initial
structural energy (10) of those agents is less than (k+1)c∗ with c∗ = ψα(0), k ∈ Z+.
The goal (9a) is achieved asymptotically and at most k distinct pairs of agents collide,
where k = 0 implies collision-free motion.

Proof. The Hamiltonian of the structural dynamics (17) is chosen as a Lyapunov can-
didate function:

H(p, q) = V (p) + 1
2q

T q. (19)

Taking the derivative of (19) along solutions of (17) yields

Ḣ(p, q) = −c1qTq ≤ 0. (20)

By LaSalle’s invariance principle, all solutions converge to the largest invariant set in
E = {(p, q)|Ḣ = 0}. Based on (20), the velocity of all the agents match the velocity of
the moving frame, i.e., q ≡ 0. At the same time, it implies that V (p) converges to the
minimum asymptotically, which implies ∥pj − pi∥σ → dσ ⇔ |xj − xi| → d.

Collision-free motion can be proved by contradiction. Suppose there are at least
k + 1 agents colliding at time t1 ≥ t0, which implies

V (p(t0)) ≥ V (p(t1)) ≥ (k + 1)ψα(0). (21)

However, (21) contradicts the fact that

V (p(t0)) ≤ H(t0) < (k + 1)ψα(0).

Therefore, at most k pairs collide and, when k = 0, there are no colliding pairs.
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To give the initial condition more explicitly, let k = 1. In this case,

V (p(0)) = V (x(0)) = 1
2

n∑
i=1

n∑
j ̸=i,j=1

ψα(∥xj − xi∥σ) ≤ ψα(0),

where

ψα(0) =

∫ 0

dα

ϕα(s)ds = −
∫ dα

0

ρh(s/rα)ϕ(s− dα)ds
a=b
= −a

∫ dα

0

ρh(s/rα)σ1(s− dα)ds

= −a
∫ dα

0

ρh(s/rα)
s−dα√

1+(s−dα)2
ds ≥ δa

∫ dα

0

dα−s√
1+(dα−s)2

ds = δa(
√
1 + dα − 1).

A collision-free formation requires the initial structural energy to satisfy V (x(0)) ≤
δa(

√
1 + dα − 1).

4.2 Backstepping Controller design

Controller design for extended structural dynamics The controller u is designed
through backstepping based on system (17).

Theorem 2. Let y = w − żc. Consider the extended structural dynamics,

ṗ = Aq (22a)
q̇ = y (22b)
ẏ = ν (22c)

under control input

ν = −A∇2V (p)q − (c1 + c2)y − c2∇V (p)− (c1c2 + 1)q. (23)

Then y → η(p, q) ≜ −∇V (p) + g(q) asymptotically.

Proof. Based on (17) and
γ(p, q) = y − η(p, q),

we can transform (22) into

ṗ = Aq (24a)
q̇ = η(p, q) + y − η(p, q) = η(p, q) + γ (24b)
γ̇ = ν − η̇(p, q) = ν̃. (24c)

Consider Lyapunov candidate

Vc = H(p, q) + 1
2γ

T γ.

Whose derivative is
V̇c = −c1qT q + γT q + γT ν̃. (25)



8 Cong Wei et al.

Let
ν̃ = −c2γ − q,

such that
V̇c = −c1qT q − c2γ

T γ. (26)

Therefore
ν = γ̇(p, q)− c2(y − γ(p, q))− q,

which leads to (23).

Controller design for extended translational dynamics Since the depth tracking for
the translational dynamics is not related to (18a), extending (18b) yields

żc = yc (27a)
ẏc = νc. (27b)

Theorem 3. Consider (27) with control input

νc = −(1 + c1)(zc − ζ)− (1 + c1)(yc − ζ̇) + ζ̈. (28)

Then yc → ηc(zc, ζ, ζ̇) ≜ −c1(zc − ζ) + ζ̇ asymptotically.

Proof. Let ỹc = yc − ηc, so (27) implies

żc = ηc + ỹc (29a)
˙̃yc = νc − η̇c = ν̃c. (29b)

Lyapunov candidate
Ve =

1
2 (zc − ζ)2 + 1

2 ỹ
2
c .

has time derivative

V̇e = (zc − ζ)(żc − ζ̇) + ỹcν̃c = −(zc − ζ)2 + ỹc(ν̃c + zc − ζ).

Taking
νc = η̇c − ỹc − (zc − ζ) (30)

yields V̇c = −(zc − ζ)2 − ỹ2c ≤ 0.

Combining (23) and (28), the net buoyancy control is

µ = u+ bddiag{ż}|ż| = ν + νc + bddiag{ż}|ż|. (31)

As a result, to achieve formation control, each agent i needs to know the range (for
constructing ∇V (p)) of all of its neighbors j ∈ Ni, the dynamics of the scattering
layer, and the mass center of all Driftcams.
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(a) The distances between neighbors of the Driftcams converge to the desired range d.
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(b) Each Driftcam succeeds in tracking the depth of the swarm mass center zc(t) and the scattering
layer’s nominal depth ζ(t), which varies sinusoidally in depth.

Fig. 1. Simulation results for a Driftcam formulation tracking a time-varying scattering layer.
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Fig. 2. Path of agents and scattering layer. The length of the gray arrows denotes the flow speed.

5 Simulation Results

The following simulations illustrate the performance of the control strategy de-
signed to achieve equal spacing and depth tracking for a group of Driftcams. The pa-
rameters for potential function (10) are as follows: d = 3m, r = d, ϵ = 0.1, a =
b = 5, and h = 0.2. The parameters for controller (31) are c1 = 3.5, c2 = 1, and
bd = 0.1/m. The parameters for the shear flow are A = 0.0062/s and B = 5m/s. The
nominal depth of the scattering layer, which is the reference depth signal, is chosen to
be [9].

ζ(t) = Aω sin(ωt+ ϕ) + ζ(0),
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where Aω = 300m, ω = 1/120rad, ϕ = π/6, and ζ(0) = −500m.
Ten Driftcam are initially released within communication range using [xi(0), zi(0)] ∈

[0, 4]× [−330,−300]. The simulation runs for t = 10000s. Figure 1(a) illustrates how
the distance error between neighbors converges to the desired value d. The tracking
performance is presented in Figure 1(b). The process of convergence in the horizontal
direction is not monotonic since the horizontal error tuning in one pair may be transmit-
ted to another one several hops away. Balancing horizontal tuning and vertical tracking
is the subject of ongoing and future work. Compared with the formation from t = 0s to
t = 10s and t = 9900s to t = 10000s, the initial configuration in Fig. 2(a) is gradually
transformed into the formation with equal distancing in Fig. 2(b) while achieving the
depth tracking. The whole picture is shown in Fig. 3.

Fig. 3. Path of agents from t = 0 to t = 10000.

6 Conclusion

This paper presents a formation strategy for a moving network of underwater robotic
sensors in a shear flow field. The buoyancy-driven Driftcam is modeled as an underac-
tuated system. A depth controller is designed to track the scattering layer and achieve
equal spacing between neighbors in a Driftcam formation. The formation strategy is
built on a potential function that measure the deviation energy of the swarm’s configu-
ration from the desired formation. Backstepping is applied for controlling the dynamics
and LaSalle’s invariance principle is used to establish the stability for the moving for-
mation described in a moving frame. Simulation results motivate the need to balance
depth tracking and horizontal spacing, since once the former is done it is more difficult
for the latter to be executed.

In ongoing work, a recursive filter is used to estimate the horizontal shear flow
from pairwise range measurements. Another objective is to estimate the density of the
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scatter layer using onboard measurements of the organism density. Together with the
presented formation strategy, the Driftcam sensor network can be adapted according to
the exploration requirements.
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