
To appear in UUST 2013

BIO-INSPIRED FLOW SENSING AND CONTROL: AUTONOMOUS UNDERWATER
NAVIGATION USING DISTRIBUTED PRESSURE MEASUREMENTS

Francis D. Lagor, Levi D. DeVries, Kathryn M. Waychoff, and Derek A. Paley
Department of Aerospace Engineering and the Institute for Systems Research

University of Maryland, College Park MD 20742
(301) 405-5757

dpaley@umd.edu

Abstract—This paper presents ongoing work toward the
design and use of an artificial lateral-line system for a bio-
inspired underwater vehicle capable of various navigation
tasks enabled by flow-sensing information. We describe the
results of flow-sensing and control experiments using a bio-
inspired autonomous robot to achieve rheotaxis, which is
the natural tendency of fish to orient upstream. We first
implemented a feedback controller based on differencing
pressure measurements on opposite sides of the fish robot.
We also experimentally validated theoretical results for
the Bayesian estimation of flow speed and angle-of-attack
(orientation) by assimilating pressure measurements into
a two-dimensional potential-flow model.

I. INTRODUCTION

One challenging consideration in the design of mo-
bile autonomous robotic systems is the influence of
an unknown or unsteady flow field on vehicle motion
[1],[2],[3]. However, flow fields provide rich informa-
tion to the evolutionarily adaptive flow-sensing features
present in some biological systems [4],[5]. The field of
biomimetic flow-sensing has developed with the follow-
ing objectives: (1) to use biological structures to inform
the design, fabrication, and packaging of artificial flow-
sensing devices for use in autonomous robotics [2],[6];
and (2) to develop algorithms for data assimilation from
these complex flow-sensing arrays to achieve specific
functional goals, such as local flow field estimation and
object identification [7],[8],[3].

One prominent example of an advanced biological
flow-sensing system is the lateral-line system present
in all cartilaginous and bony fish and aquatic amphib-
ians [8],[5]. Cartilaginous and bony fish sense local
flow velocity and pressure-difference information using
a lateral-line sensory system. The uses of the lateral-
line system in fish include orienting in flow (rheotaxis),
schooling, detecting obstacles, and avoiding predators.
For example, the blind Mexican cave fish (Astyanax
fasciatus) relies exclusively on the lateral-line system for
orienting, navigating, and schooling [5],[4]. The lateral-
line system often runs the length of the fish and is

made up of receptors, known as neuromasts, ranging
in number from under 100 to well over 1000 [5]. The
neuromasts consist of ciliary bundles of hair cells that
serve as mechano-electrical transducers with directional
sensitivity covered in a gelatinous outer dome called a
cupula [4]. Neuromasts exist in two types: superficial
neuromasts, which are located on the exterior surface;
and canal neuromasts, which are located between pore
entrances of a subdermal lateral-line canal. Superficial
neuromasts serve as flow velocity sensors, whereas canal
neuromasts, responding to pressure-driven flow in the
canal, measure pressure differences [9].

Two specific fish behaviors of interest for bio-inspired
robotics are rheotaxis and station-holding. Rheotaxis is
a behavior in which a fish orients upstream toward the
oncoming flow; station-holding is a behavior in which
a fish swims behind an upstream obstacle. Although
the precise role of the lateral-line sensing modalities in
executing these behaviors is not fully understood, they
are thought to play an important role [4]. To this end,
developing an artificial lateral-line system for use on
an autonomous underwater vehicle would enhance its
autonomy by providing an additional sensing modality in
unknown and unsteady flows. Moreover, it would provide
indispensable sensory information in dark, murky, or
cluttered environments, where traditional sensing modal-
ities like vision or sonar may be impaired.

The first artificial lateral-line was fabricated in 2006
[10]. Since then, many researchers have contributed to
the field through the development of artificial lateral-line
systems using a variety of sensor types, including mi-
crofabricated hot-wire anemometry [10], capacitive [11],
piezoresistive [12], optical [8], and ionic polymer metal
composite cantilever [7] sensors. In 2011, Yang et al.
[6] designed an artificial lateral-line canal with a semi-
circular cross section and subsequently demonstrated the
properties of band-pass filtering and noise rejection in an
artificial lateral-line using dipolar and turbulent flows. In
2012, Tao and Yu [5] provided a comprehensive review
of biomimetic hair flow sensors, and Ren and Mosheni
[13] performed analytical work on a model for flow



sensing of a Kármán vortex street. Abdulsadda and Tan
[7] created an artificial lateral-line open to external flow,
using ionic polymer metal composite cantilever sensors;
they trained an artificial neural network to use features
from sensor outputs to localize a nearby dipole source
to within 3% error. Venturelli et al. [9] used an artificial
lateral-line made of off-the-shelf piezoresistive pressure
sensors (approximating the pressure-difference measure-
ments of canal neuromasts) and showed that the array
can be used to identify the presence of a Kármán vortex
street, its lateral position, and hydrodynamic features.

In this paper, we specifically focus on the design and
implementation of a feedback control law for rheotaxis.
Although many investigators have constructed artifical
lateral-lines, only a few have implemented closed-loop
estimation and control using sensor data. For example,
Salumäe et al. [3] demonstrated closed-loop rheotaxis of
a fish robot using pressure sensors and a Braitenberg
controller, and Salumäe and Kruusmaa [14] demon-
strated closed-loop control station-holding of a fish
robot. However, these works and others have focused
on empirical methods for control. This paper describes
the design and implemention of a closed-loop dynamic
control framework for rheotaxis of a bio-inspired fish
robot that includes model-based estimation of flow field
parameters. Our technical approach employs a reduced-
order fluid-mechanics model for flow past a streamlined
body based on potential-flow theory. We utilize tools
from Bayesian filtering to create a dynamic flow-sensing
control loop for rheotaxis behavior. To validate our
potential-flow model, we performed computational fluid
dynamic (CFD) simulations. We constructed an exper-
imental testbed, which consists of a 185L flow tank, a
two-degree-of-freedom mechanical gantry system, and a
fish robot endowed with commercially-available pressure
sensors. Finally, we used this testbed to validate our
dynamic controller for rheotaxis of a fish robot.

The contributions of this paper are (1) the design and
fabrication of a robotic platform for testing flow estima-
tion and control algorithms with a bio-inspired fish robot;
(2) the closed-loop demonstration of rheotaxis using two
pressure sensors and a proportional controller; and (3)
Bayesian estimation of angle-of-attack and flow speed
for flow past a fish robot, and the use of the estimated
angle-of-attack in a dynamic rheotaxis controller.

The outline of the paper is as follows. Section II
describes a potential-flow model for flow past a fish
robot as well as a measurement equation for pressure
differences in an artificial lateral-line sensor array. Sec-
tion III gives an overview of recursive Bayesian filtering
and presents the framework for dynamic feedback con-
trol. Section IV discusses the experimental testbed and

results from a rheotaxis experiment based on a pressure-
difference controller. Section V evaluates the potential-
flow model against CFD simulation, presents experimen-
tal results for Bayesian estimation of a fixed angle-of-
attack, and describes the performance of the Bayesian
filter-based rheotaxis controller. Section VI summarizes
the paper and describes our ongoing research.

II. MODEL FOR PRESSURE DIFFERENCES IN AN

ARTIFICIAL LATERAL-LINE

This section presents a reduced-order fluid-mechanics
model for flow past a fish body and a measurement
equation to predict pressure differences between sensor
locations in a bio-inspired artificial lateral-line.

A. Flow past a streamlined body

In order to make estimates of flow parameters based
on sensor measurements, we invoke an idealized model
of fluid flow past a streamlined airfoil. We employ
potential-flow theory and conformal mapping, making
use of the Joukowski transformation [15],[16]. Let ξ =
Reiθ−|λ| with θ ∈ [0, 2π) be a disk of radius R centered
at λ [15]. Using the complex plane to represent the two-
dimensional domain, the transformation [15]

z = ξ +
b2

ξ
∈ C, (1)

where b = R− λ, maps an offset disk into a symmetric
streamlined body centered at the origin1 [15]. Let U > 0
be the free-stream flow speed and α be the angle-of-
attack of the fish relative to the flow. When transforma-
tion (1) is used in conjunction with the velocity potential
[16],[15]

w(ξ) = U(ξ+λ)e−iα+
R2

ξ+λ
Ueiα+2iRU sin(α) ln(ξ+λ),

(2)
it maps uniform flow past a cylindrical disk into uniform
flow past a streamlined body [15],[17]. The first term in
the velocity potential (2) represents uniform flow, the
second term introduces the boundary condition, and the
third term enforces the Kutta condition, which states that
the rear stagnation point must occur at the trailing tip of
the airfoil.

1We choose R = 2.9 cm and λ = −.5 cm (similar to [17]).
This yields a 9.9 cm by 2.2 cm fish that approximately resembles
the dimensional characteristics of a Mottled sculpin (Cottus baridi)
[18],[19], a fish previously studied for rheotactic response [20].



The conjugate flow around the body in z coordinates
is [15],[17]

f∗(z) = ∂w
∂ξ

(
∂z
∂ξ

)−1

=
(
Ue−iα− R2

(ξ(z)+λ)2
Ueiα+ 2iRU sinα

(ξ(z)+λ)

)(
1− b2

(ξ(z))2

)−1
,

(3)
where ∗ denotes complex conjugation. ξ(z) is the dual-
valued inverse mapping of (1) with values selected to lie
outside of the fish body [15],[17], i.e.,

ξ(z) =


1
2

(
z +
√
z2 − 4b2

)
, if arg(z) ∈ (−π/2, π/2]

1
2

(
z −
√
z2 − 4b2

)
, if arg(z) ∈ (π/2, 3π/2] .

(4)
The real and imaginary parts of (3) give the components
of the flow field. Note that the flow is evaluated at
sensor placement locations and parameterized by the
free-stream flow speed U and angle-of-attack α.

B. Measurement equation

A model of the pressure values predicted by the
potential-flow model (3) is obtained by considering
Bernoulli’s principle for inviscid, incompressible flow
along a streamline [21]:

v2

2
+ gz +

p

ρ
= C, (5)

where v is the local flow speed, g is the acceleration of
gravity, z is the elevation, p is the static pressure, and
C is a constant describing the total specific energy of a
fluid parcel moving along the streamline. Applying (5) to
two equal-elevation locations along a streamline, where
the second location is a stagnation point, results in an
expression for pressure p in terms of the streamline’s
stagnation pressure ps [21]:

v21
2

+
p1
ρ

=
ps
ρ
,

which implies (dropping the subscript 1)

p = ps − ρ
v2

2
.

Figure 1 illustrates two sensors on opposing sides of a
fish robot. Figure 2(a) shows the ideal pressure values
for various flow field parameters at one of these sensor
locations with stagnation pressure ps = 1 kPa. (A plot of
pressure values for the opposing sensor location would
be identical except mirrored about the flow speed axis.)

Figure 2(b) illustrates the difference between measure-
ments from the two sensor locations. For an unknown
angle-of-attack, the stagnation pressure ps is not known.

Fig. 1. Relevant reference frames and flow field parameters.

(a) (b)

Fig. 2. a) Fluid pressure at a given sensor location; b) pressure
difference between two sensor locations.

However, the difference between two pressure measure-
ments is

∆p = p2 − p1 =
ρ

2

(
v21 − v22

)
.

Hence, a measurement equation based on the pressure
difference offers the advantage that the stagnation pres-
sure does not need to be known. In Figure 2, the
maximum value of U is chosen as 0.2 m/s to correspond
to a flow speed of 2 body-lengths per second for a 10 cm
fish. We limit the angle-of-attack to α ∈ [−15◦, 15◦] to
avoid the stall condition in the study of airfoils [16],[17].

We assume that the pressure measurements contain
additive white noise, i.e., the ith sensor measurement is

p̃i = pi + ηi, (6)

where ηi has a zero-mean Gaussian distribution with σ2i
variance, Ni(0, σ2i ). (Note the difference between sensor
signals produce another random variable, η2−η1, which
has distribution N (0, σ21 + σ22).) Let Ω = [U,α]T . The
measurement equation, after subsititution of the flow
model (3) and inclusion of the measurement noise model
(6), is

∆p̃ =
ρ

2

(
|f∗(z1,Ω)|2 − |f∗(z2,Ω)|2

)
+ η2 − η1.

This equation can be used to estimate Ω from pressure
measurements. However, note from Figure 2(b) that U
is unobservable at zero angle-of-attack (all flow speeds
give ∆p = 0). Similarly, α is unobservable if U is zero
or if the pressure difference is smaller than the noise
level of the sensors.



III. ESTIMATION AND CONTROL FRAMEWORK FOR

RHEOTAXIS

This section describes a recursive Bayesian filter for
estimating flow field parameters from pressure measure-
ments and presents how the filter is integrated in a
dynamic control framework for rheotaxis.

A. Bayesian estimation and filtering

Bayesian estimation is a technique by which knowl-
edge of an unknown quantity is enhanced through the
assimilation of measurements [22]. Bayes’ formula is
[22]

π(x|y)︸ ︷︷ ︸
posterior

∝ π(y|x)︸ ︷︷ ︸
likelihood

π(x)︸︷︷︸
prior

, (7)

where π(·) represents a probability density function
(pdf). The central idea is to use Bayes’ formula (7) to
adjust the prior understanding of an unknown quantity
x, represented in the form of a pdf, based upon the
likelihood that a measurement y was generated by a
nearby state of the system. Normalization of the posterior
density is required to ensure the total integral of the
pdf sums to unity. (The ∝ symbol is used with pdf’s
to indicate a proportional relationship.) In practice, we
perform grid-based Bayesian estimation, in which a
finite volume of parameter space is discretized, and the
pdf’s are approximated on this grid. Normalization is
performed by summing the weights of all the grid-
points and dividing by the total value. The assumption of
white Gaussian measurement noise results in a Gaussian
likelihood function

π(∆p̃|z,Ω) ∝ exp

(
−(∆p̃−∆p(z,Ω))2

2(σ21 + σ22)

)
.

(The variances σ21 and σ22 are chosen by collecting
data from the pressure sensors and analyzing the noise
statistics. Since the noise in the sensor measurements
increases with free-stream flow speed, we choose σ21 and
σ22 based on measurements at the maximum relevant flow
speed.)

Pressure sensors provide a sequence of measurements
represented by D(t−∆t) , {∆p̃(t−∆t), . . . ,∆p̃(t0)}.
The posterior probability density from the previous t−∆t
assimilation time is used as the prior density for assim-
ilation at time t, yielding

π(Ω(t)|D(t)) ∝ (8)

π (∆p̃(t)|Ω(t))π (Ω(t−∆t)|D(t−∆t)) .

The state evolution equation and the measurement
equation together are an evolution-observation model, for
which our knowledge of the system state can evolve in

time and be augmented with new information through
the following sequential, recursive scheme, known as
Bayesian filtering [22]:

• Time evolution of the pdf (prediction) is accom-
plished using the Chapman-Kolmogorov equation
[22]

π (Ω(t+∆t)|D(t))= (9)∫
π (Ω(t+∆t)|Ω(t))π (Ω(t)|D(t)) dΩ(t).

• Assimilation of the observations occurs via Bayes’
formula [22]

π (Ω(t+∆t)|D(t+∆t)) ∝ (10)

π (D(t+∆t)|Ω(t+∆t))π (Ω(t+∆t)|D(t)) .

In Section V-B, we choose π (Ω(t+∆t)|Ω(t)) to be
a Gaussian transition density, with variance chosen to
improve estimator/filter performance.

B. Dynamic control design

We now present a model-based dynamic controller for
rheotaxis shown in Figure 3. The kinematics of the robot
turning at a commanded angular rate u are

α̇ = u, (11)

where u is the control input. The Bayesian filter produces
estimates of α̂ and Û as the robot moves. The estimate
Ω̂(t) is the maximum a posteriori estimate of (10), i.e.,

Ω̂(t) , arg max
Ω

π (Ω(t)|D(t)) (12)

Fig. 3. Rheotaxis estimation and control framework.

The controller calculates the control input with a pro-
portional control law given by [17]

u = −K1α̂.

Since the Bayesian filter is applied in real-time, it
is necessary to account for the fish motion during the
estimation step. Let (11) serve as the evolution equation
with process uncertainty so that the prior pdf for the next
Bayesian assimilation cycle represents the best estimate
of the system state. The transition density is [17]

π (Ω(t+∆t)|Ω(t)) = N (Ψ,Σp) ,

where Ψ , [0 ∆tα̇(t)]T .



IV. LABORATORY TESTBED FOR FLOW-SENSING AND

CONTROL

This section introduces the laboratory testbed con-
structed for experimental validation of the flow-sensing
control and presents preliminary results from using this
testbed to achieve autonomous rheotaxis in a bio-inspired
fish robot.

A. Experimental setup

We designed and constructed a laboratory testbed con-
sisting of a 185 L flowtank (Loligo Systems, SW10275
modified) and a two-degree-of-freedom custom robot
equipped with commercially available pressure sensors,
as shown in Figure 4. The flow tank has a flow straight-
ener and 25 x 25 x 87.5 cm test section. The test
section is enclosed, except for a 7 x 21 cm slot in
the top for access of the robotic control arm. Calibra-
tion of the flow tank was accomplished using a Hach
FH950 portable flow meter. A mechanical gantry system
provides overhead control of the vehicle’s orientation
and cross-stream position. It is elevated by a custom
80/20 fixture and consists of an LS-100-18-H linear lead
screw table (Anaheim Automation, Inc.), coupled to a
secondary stepper motor for rotary motion. Both step-
per motors are STM23Q-XAE integrated stepper drives
(Applied Motion Products, Inc.), which take commands
from LabVIEW via an RS-232 serial connection. The
drives contain built-in motion controllers that accept
high-level ASCII text commands, most notably feed-to-
length and jog commands for control of motor position
or angular velocity. The stepper motors also contain
integrated encoders that can be queried directly from
LabVIEW.

Fig. 4. The laboratory testbed consists of a 185 L flowtank and a
two-degree-of-freedom underwater robot equipped with commercially
available pressure sensors. The robot’s overhead motors are controlled
by a laptop computer.

The fish robot was constructed from a 3D-printed
airfoil shape (9.9 cm long, 2.2 cm wide) when viewed
from above, as seen in Figure 5. (The height of the
fish was elongated to 5 cm to reduce three-dimensional
effects of the flow near sensor locations.) We designed
the fish in two pieces with a hollow inner pocket and port
holes with small canals on opposing sides of the body
for embedded pressure sensors. The sensors (Mikro-Tip
Catheter Pressure Transducers) are connected to a PCU-
2000 Pressure Control Unit (Millar Instruments, Inc)
and embedded in canals to shield the pressure sensors
from direct impingement of the fluid flow. Without
the dynamic pressure contributions, the sensors read
the static pressure, which enables analysis using the
potential-flow model. The sensors were glued into small
steel tubes within the fish robot (Figure 5(b)); wiring was
fed up through the vertical rod that attaches the robot
to the gantry system. A data acquisition board (National
Instruments NI USB-6008) provides the link between the
pressure sensors and the LabVIEW software interface.

(a) (b)

(c) (d)

Fig. 5. a) CAD drawing of bottom half of the fish robot; b) steel
sensor isolation tubes; c) the internal features of the fish robot; d)
assembled robot. Tape was applied to the seam for smoothness, except
at sensor port holes.

B. Rheotaxis via pressure-difference feedback control

We implemented a feedback control for rheotaxis
based on pressure differences, using signals from two
pressure sensors located on opposing sides of the fish
robot, as depicted in Figure 1. The control input u is
calculated according to the proportional control law,

u = −K2∆p̃ (13)

where K2 is a proportional gain. For initialization,
pressure data is collected at zero angle-of-attack in still



water; after each run, we verify that sensor drift has not
exceeded 2%, after [9]. Figure 6 shows the results of the
rheotaxis experiment using (13). Note that convergence
to the desired orientation is not monotonic. Further, 60
to 100 seconds elapsed before rheotaxis was achieved. It
is evident that the pressure-difference signal was jagged
and noisy. Although the proportional control law (13) is
sufficient to accomplish rheotaxis, it lacks memory of
past measurements, causing sensitivity to sensor noise.

Fig. 6. Results of robotic rheotaxis using a pressure-difference
feedback control.

V. EXPERIMENTAL VALIDATION OF DYNAMIC

CONTROL

This section presents results from evaluation of the
potential-flow model CFD simulations and flow-tank
experiments. It includes use of the potential-flow model
for estimation of a fixed angle-of-attack and fixed flow
speed, and presents results from using the recursive
Bayesian filter for rheotaxis via a dynamic control.

A. Potential-flow model evaluation

To validate the potential-flow model from Section II,
we compared it with simulations from a commercially
available computational fluid dynamics solver (COM-
SOL) and experimental sensor data. Figures 7(a), 7(c),
and 7(e) show the pressure difference between sensor
locations for a constant angle-of-attack. Figures 7(b),
7(d), and 7(f) show the pressure difference for a constant
free-stream flow speed. For low flow speeds and angles-
of-attack, the potential-flow model accurately represents
the physical phenomenon captured in the high-fidelity
CFD model, with decreasing accuracy at higher flow
speeds and angles. (The COMSOL CFD simulations
solve the Reynolds Averaged Navier Stokes equations
with a Spalart-Allmaras turbulence model [23].)
Discrepancies with experimental data are likely due to
sensor noise, angular alignment uncertainty, disturbances

(a) (b)

(c) (d)

(e) (f)

Fig. 7. a), c), and e) Comparisons for fixed angle-of-attack; b), d),
and f) comparisons for fixed flow speed. Error bars represent three
standard deviations from the mean.

in the free-stream flow, and unmodelled viscous ef-
fects. Nonetheless, the potential-flow model captures the
general shape of the pertinent physical relationships.
Additionally, the potential-flow model is a reduced-order
model, offering the possibility of real-time implementa-
tion for rheotaxis control. As the closed-loop rheotaxis
system converges to α=0, the error in the potential-flow
model vanishes.

B. Static angle-of-attack and flow speed estimation

The results of Bayesian estimation for fixed angles-of-
attack and flow speed experiments are shown in Figure 8.
Figure 8(a) shows estimation of the true angle-of-attack
to within the alignment uncertainty of the laboratory
setup (approximately ±2◦). Figure 8(b) illustrates how
the estimator performance depends on having a small
angle-of-attack; across all flow speeds, the angle-of-
attack estimator performed better for 7.5◦than 10◦. (Note
however that even the poor estimates of angle-of-attack
have the correct sign.) Figure 8(c) shows the results for
flow speed estimation for an angle-of-attack of 7.5◦and a
true flow speed of 0.17 m/s; Figure 8(d) shows a similar
plot for a 10◦.



(a) (b)

(c) (d)

Fig. 8. Fixed angle-of-attack and flow speed estimation results.
Contour plots show the marginal pdf’s at each instant in time. The
estimate (mode) is shown in black, and the white lines indicate the
ground truth values.

Although the Bayesian estimation approach increases
the computational work required, its benefit is reduced
sensitivity to sensor noise. Figures 8(a) and 8(b) show
that the estimator transient response is short (<10 s). The
estimator converges to an estimate for angle-of-attack
without large excursions due to noisy data. Additionally,
since the potential-flow model provides a way to predict
pressure differences, the pressure sensors in principle do
not need to be placed on opposing sides of the fish;
the Bayesian approach allows the sensors to be placed
asymmetrically, in contrast to the proportional pressure-
difference controller. In the following section, we show
that a dynamic controller based on the potential-flow
model achieves rheotaxis from an uncertain initial orien-
tation far outside the accurate domain of the potential-
flow model.

C. Rheotaxis via dynamic control with Bayesian filtering

Results from a rheotaxis experiment using the esti-
mation and control framework are shown in Figure 9.
Although the estimates of the angle-of-attack produced
by the Bayesian filter are only accurate for small angles,
the control loop drives the fish robot to the upstream
direction. Further, the motions of the robot are less sen-
sitive to sensor noise during the experiment if compared
to Figure 6.

VI. CONCLUSION

In this work, we describe closed-loop rheotaxis control
of a bio-inspired fish robot. The approach employs a

Fig. 9. Results from rheotaxis using the Bayesian filtering for
dynamic feedback control.

fluid-mechanical model for flow around a fish robot
based on potential-flow theory, and provides estimates of
both the fish’s orientation and the free-stream flow speed.
The estimation-control framework produces a dynamic
controller less sensitive to sensor noise than a pressure-
difference controller and was able to achieve rheotaxis
from an initial orientation far outside the operational
domain of the potential-flow model. In ongoing work,
we are examining sensor signatures of flow behind an
upstream obstacle for the development of a station-
holding control law. Additionally, we will integrate flow
velocity sensors with the pressure sensors used herein to
produce a hybrid artificial lateral-line that more closely
mimicks the two sensing modalities of a natural lateral-
line system. We will use this hybrid array to improve
performance on the rheotaxis task and to perform station-
holding.
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