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Summary. The paper overviews recent and ongoing efforts by the authors to de-
velop a design methodology to stabilize isolated relative equilibria in a kinematic
model of identical particles moving in the plane at unit speed. Isolated relative equi-
libria correspond to either parallel motion of all particles with fixed relative spacing
or to circular motion of all particles about the same center with fixed relative head-
ings.

1 Introduction

Feedback control laws that stabilize collective motions of particle groups have
a number of engineering applications including unmanned sensor networks.
For example, autonomous underwater vehicles (AUVs) are used to collect
oceanographic measurements in formations that maximize the information
intake, see e.g. [LPL+05] and the references therein.

In this paper, we consider a kinematic model of identical (pointwise) parti-
cles in the plane [JK03]. The particles move at constant speed and are subject
to steering controls that change their orientation. In recent work [SPL05], see
also [SPL04,PLS05], we proposed a Lyapunov design to stabilize isolated rel-
ative equilibria of the model. Isolated relative equilibria correspond to either
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parallel motion of all particles with fixed relative spacing or to circular mo-
tion of all particles about a common center with fixed relative headings. The
stabilizing feedbacks were derived from Lyapunov functions that prove expo-
nential stability and suggest almost global convergence properties. The results
in [SPL05] assume an all-to-all communication topology, that is, the feedback
control applied to one given particle uses information about the (relative)
heading and position of all other particles.

The objective of the present paper is to relax the all-to-all assumption on
the communication topology in different ways. We show how the Lyapunov
design of stabilizing control laws can be extended to any constant, bidirec-
tional, and connected communication topology. We provide a unified interpre-
tation of all the Lyapunov functions considered in earlier work as quadratic
forms induced by the Laplacian of the graph associated to the communication
topology. We then address the more challenging situation of time-varying and
unidirectional communication topologies. We briefly review recent results in
the literature that address the stabilization of parallel motions and we pro-
pose a new control law that stabilizes circular motions with time-varying and
unidirectional communication topologies.

The model assumptions are recalled in Section 2. Section 3 introduces the
quadratic functions induced by the communication topology. The main Lya-
punov functions considered in [SPL05] are then reinterpreted and generalized
in Section 4. Section 5 provides a further analysis of the phase potentials used
for the design. In Section 6, we address the situation of time-varying and uni-
directional communication topologies. A short discussion concludes the paper
in Section 7.

2 Particle model and control design

We consider a continuous-time kinematic model of N > 1 identical particles
(of unit mass) moving in the plane at unit speed [JK03]:

ṙk = eiθk

θ̇k = uk,
(1)

where k = 1, . . . , N . In complex notation, the vector rk = xk + iyk ∈ C ≈ R2

denotes the position of particle k and the angle θk ∈ S1 denotes the orientation
of its (unit) velocity vector eiθk = cos θk + i sin θk. We refer to θk as the
phase of particle k. We use the boldface variable without index to denote the
corresponding N -vector, e.g. θ = (θ1, . . . , θN )T . We also let eiθ ∈ CN where
ṙ = eiθ = (eiθ1 , . . . , eiθN )T . The configuration space consists of N copies of
the group SE(2). In the absence of steering control (θ̇k = 0), each particle
moves at unit speed in a fixed direction and its motion is decoupled from the
other particles.

We study the design problem of choosing feedback controls that stabilize
a prescribed collective motion. The feedback controls are identical for all the
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particles and depend only on relative orientation and relative spacing, i.e., on
the variables θkj = θk − θj and rkj = rk − rj , j, k = 1, . . . , N . Consequently,
the closed-loop vector field is invariant under an action of the symmetry group
SE(2) and the closed-loop dynamics evolve on a reduced quotient manifold
(shape space). Equilibria of the reduced dynamics are called relative equilibria
and can be only of two types [JK03]: parallel motions, characterized by a
common orientation for all the particles (with arbitrary relative spacing), and
circular motions, characterized by circular orbits of the particles around the
same fixed point.

3 Communication topology and Laplacian quadratic
forms

The feedback control laws are further restricted by a limited communication
topology. The communication topology is defined by an undirected graph
G(V,E) with N vertices in V = {1, . . . , N} and e edges (k, j) ∈ E whenever
there exists a communication link between particle k and particle j. We denote
by N (k) = {j | (j, k) ∈ E} the set of neighbors of k, that is, the set of vertices
adjacent to vertex j. The control uk is allowed to depend on rkj and θkj only
if j ∈ N (k).

Consider the (undirected) graph G = (V,E) and let dk be the degree of
vertex k. The Laplacian L of the graph G is the matrix defined by

Lk,j =






dk, if k = j,
−1, if (k, j) ∈ E,
0, otherwise.

(2)

The Laplacian matrix plays a fundamental role in spectral graph theory
[Chu97]. Only basic properties of the Laplacian are used in this paper. First,
L1 = 0, where 1 = (1, . . . , 1)T ∈ RN , and the multiplicity of the zero eigen-
value is the number of connected components of the graph. As a consequence,
the Laplacian matrix of a connected graph has one zero eigenvalue and N − 1
strictly positive eigenvalues.

We denote by < ·, · > the standard inner product in CN . The quadratic
form Q(z) =< z, L z >, where L is the Laplacian of a connected graph,
vanishes only when z = 1z0. It defines a norm on the shape space CN/C
induced by the action of the group of rigid displacements z → z + 1z0.

Consider the valence matrix D = diag(d), the adjacency matrix A, and
the incidence matrix B ∈ RN×e associated to the graph G. One easily shows
that L = D − A. Using the property L = BBT for a bidirectional graph, an
alternative expression for the quadratic form Q(z) is

Q(z) =
∑

(k,j)∈E

|zk − zj |2.



6 Rodolphe Sepulchre, Derek A. Paley, and Naomi Ehrich Leonard

In words, Q(z) is thus the sum of the squared lengths of the edges connecting
communicating vertices zk.

Example 1. Let 1 = (1, . . . , 1)T ∈ RN and I = diag(1). An all-to-all commu-
nication topology with N vertices corresponds to a complete graph, KN , with
the Laplacian L = NI − 11T = NP where P = I − 1

N 11T is the projector
orthonormal to the vector 1. Using the property P 2 = P , the quadratic form
Q(z) then takes the form

Q(z) = N ‖ Pz ‖2,

which is (N times) the sum of the squared distances of vertices zk, k =
1, . . . , N , to their centroid 1

N

∑N
j=1 zj .

Example 2. A meaningful generalization of the all-to-all communication topol-
ogy is the topology corresponding to a circulant graph in which each node is
connected to n other nodes, for a fixed n where 2 ≤ n ≤ N − 1. Each column
of the Laplacian is a cyclic shift of the vector v with

vk =






n, k = 1,
−1, k = 2, . . . , n + 1,
0, k = n + 2, . . . , N.

(3)

4 Collectives specified by synchrony

4.1 Parallel and circular motion

Under the constant control uk = ω0, ω0 '= 0, the particle k rotates on a circle
of radius ρ0 = 1/|ω0| centered at ck = rk + iω−1

0 eiθk . Achieving a circular
formation amounts to synchronizing all the particle centers. This prompts us
to define

sk = iω0ck = −eiθk + iω0rk (4)

and to specify a circular formation by the synchronization condition s = 1s0

for an arbitrary s0 ∈ C, or, equivalently,

(I − 1
N

11T )s = 0. (5)

Note that for ω0 = 0, we have sk = −eiθk and the condition (5) thus specifies
the phase synchrony θ = 1θ0. One concludes that the sync condition (5) either
specifies a parallel motion (ω0 = 0), or a circular motion of radius ρ0 = |ω0|−1.

The dynamics
ṡk = −ieiθk(uk − ω0) (6)

shows that each sk is invariant under the constant control uk = ω0. The
Lyapunov function
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U(s) = KQ(s) = K < s, Ls >, K > 0,

where L is the Laplacian of a connected graph, thus has the property of
reaching its global minimum (only) when the sync condition (5) is satisfied.
U(s) is invariant under the constant control uk = ω0:

U̇ = −2K
N∑

k=1

< ieiθk , Lks > (uk − ω0). (7)

The (dissipation) control

uk = ω0 + K < ieiθk , Lks >, K > 0 (8)

ensures that U evolves monotonically along the closed-loop solutions since
U̇ = − ‖ ∂U

∂θ ‖2≤ 0. Moreover, it satisfies the restrictions imposed by the
communication topology.

Proposition 1 Let L be the Laplacian matrix of a bidirectional, connected
graph. Consider the model (1) with the shape control law (8). Then for ω0 < 0
(resp. ω0 > 0), the set of clockwise (resp. counter-clockwise) circular motions
of radius |ω0|−1 is globally asymptotically stable and locally exponentially sta-
ble. For ω0 = 0, the set of parallel motions is locally exponentially stable;
moreover, each solution converges to the set of critical points of U(eiθ).

Proof. This is proved by a straightforward adaptation of the corresponding
proof in [SPL05] where it was applied to the particular case L = N(I− 1

N 11T ).

Using the equality L = D −A = BBT , one has several equivalent expres-
sions for Q(s) with ω0 = 0:

Q(s)|ω0=0 = Q(ṙ) = Q(eiθ) = < eiθ, Leiθ > (9)
= trD− < eiθ, Aeiθ > (10)
= trD − 21e

T cos(BT θ). (11)

Likewise, one has the equivalent expressions for the derivative of Q(ṙ),

∂Q

∂θ
= 2B sin(BT θ) (12)

and
∂Q

∂θk
= 2

∑

j∈N (k)

sin(θk − θj). (13)

The quadratic function Q(ṙ) reaches its minimum when ṙ = 1eiθ0 , that is,
when all phases synchronize, which corresponds to a parallel motion. The con-
trol u = −B sin(BT θ) is proposed in [JMB04] to achieve synchronization in
the phase model θ̇ = u. It generalizes to arbitrary communication topologies
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the all-to-all sinusoidal coupling encountered in the Kuramoto model [Kur84].
For the KN topology (all-to-all communication), the quadratic function Q be-
comes

Q(ṙ) = N ‖ Peiθ ‖2= N2(1− | 1
N

N∑

k=1

eiθk |2). (14)

Up to a constant and a change of sign, it coincides with the phase potential
|pθ|2 used in [SPL05], where pθ = 1

N

∑N
k=1 eiθk denotes the centroid of particle

phases, or equivalently, the average linear momentum Ṙ = 1
N

∑N
k=1 ṙk. The

parameter |pθ| is a classical measure of synchrony of the phase variables θ
[Kur84,Str00]. It is maximal when all phases are synchronized (identical). It
is minimal when the phases balance to result in a vanishing centroid. In the
particle model (1), synchronization of the phases corresponds to a parallel
formation: all particles move in the same direction. In contrast, balancing of
the phases corresponds to collective motion with a fixed center of mass.

4.2 Isolated circular relative equilibria

For ω0 '= 0, the sync condition (5) specifies a circular relative equilibrium but
the phase arrangement of the particles is arbitrary. A given phase arrangement
θ = θ̄ +1(ω0t+ θ0) (with θ0 ∈ S1 arbitrary) can be specified by means of the
additional sync condition

(I − 1
N

11T )ei(θ−θ̄) = 0. (15)

To enforce this additional sync condition by feedback, we use the augmented
Lyapunov function

V (r,θ) = K < s, Ls > +K1 < ei(θ−θ̄), Lei(θ−θ̄) >

with K > 0 and K1 ≥ 0 arbitrary positive constants, and, accordingly, the
augmented feedback control

uk = ω0 + K < ieiθk , Lks > −K1 < iei(θk−θ̄k), Lkei(θ−θ̄) > (16)

Proposition 2 Let L be the Laplacian matrix of a bidirectional, connected
graph. Then the shape feedback control (16) exponentially stabilizes the iso-
lated relative equilibrium determined by a circular motion of radius |ω0|−1

(ω0 '= 0) with a phase arrangement satisfying the synchrony condition (15).
Moreover, every solution of the closed-loop system converges to a critical point
of Q(ei(θ−θ̄)).

The convergence under control law (16) is illustrated in Figure 1. Simula-
tions are shown in the case of N = 12 particles with a circulant interconnec-
tion topology where each particle communicates with four others. In the case
K1 = 0 the particles converge to a circular formation with arbitrary phase
arrangement. In the case K1 = 0.01 convergence is to a circular formation
with phases dictated by θ̄; here, θ̄ is chosen for uniform distribution of the
particles around the circle, also known as a splay state.
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Fig. 1. Simulations of the circular control law (16) for a 4-circulant topology con-
necting N = 12 particles. The particle positions and headings are indicated by black
circles and arrows. Both simulations use ω0 = 0.1, K = 0.04, and were simulated for
the duration 10 2π

ω0
. (a) Control (16) with K1 = 0; (b) control (16) with K1 = 0.01

and θ̄ corresponding to a splay state).

4.3 Isolated parallel relative equilibria

For ω0 = 0, the sync condition (5) specifies a parallel relative equilibrium but
the distance between particles is arbitrary. A fixed vector r̄ ∈ CN specifies an
isolated parallel relative equilibrium via the condition

r = r̄eiθ0 + 1r0(t) (17)

where r0(t) = r0 + teiθ0 and where the constants θ0 ∈ S1 and r0 ∈ C are arbi-
trary. Motivated by the previous sections, the following proposition specifies
this parallel equilibrium as a synchrony condition.

Proposition 3 Let L be the Laplacian matrix of a bidirectional, connected
graph. Let r̄ be an arbitrary vector in CN such that Lkr̄ '= −1, k = 1, . . . , N .
Define the vector

t = (I + D̄)−1(Lr + eiθ), D̄ = diag(Lr̄). (18)

Then the isolated relative equilibrium (17) is uniquely determined by the syn-
chrony conditions

Lt = 0 (19)
Leiθ = 0. (20)

Proof. The synchrony conditions (19) and (20) impose t = 1t0 and eiθ = 1eiθ0

for some fixed t0 and eiθ0 . By definition of t, this yields

(I + D̄)1t0 = Lr + 1eiθ0 . (21)

Left multiplication of both sides by 1T yields t0 = eiθ0 since 1T D̄1 = 1T Lr̄ =
0. But then (21) implies Lr = D̄1eiθ0 = Lr̄eiθ0 , that is,
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r(t) = r̄eiθ0 + 1r0(t).

Differentiating both sides, we obtain ṙ(t) = eiθ = 1ṙ0(t) which implies ṙ0 =
eiθ0 under the synchrony assumption (20). This concludes the proof.

To enforce the conditions (19) and (20), we choose the Lyapunov function

V (s,θ) = K < t, Lt > +(1 + K) < eiθ, Leiθ > . (22)

The importance of specifying the parallel equilibrium through the synchrony
conditions (19) and (20) is that the Lyapunov function (22) can be rendered
nonincreasing along the closed-loop solutions by means of a feedback control
that satisfies the required communication topology.

Proposition 4 Consider the particle model (1) with the control law

uk = −(1 + K) < ieiθk , Lkeiθ > −K < Lkt, (1 + Lkr̄)−1ieiθk >, K > 0.
(23)

The parallel relative equilibrium defined by (17) is Lyapunov stable and a
global minimum of the Lyapunov function (22). Moreover, for every K > 0,
there exists an invariant set in which the Lyapunov function is nonincreasing
along the solutions. In this set, solutions converge to a parallel equilibrium
that satisfies

< (1 + Lkr̄)Lkt, ieiθ0 >= 0 (24)

for some θ0 ∈ S1 and for k = 1, . . . , N .

Proof. This is proved by a straightforward adaptation of the corresponding
proof in [SPL05] where it was applied in the particular case L = N(I − 11T ).

Convergence under the control law (23) is illustrated in Figure 2 with a
simulation of N = 3 particles.

The phase control (8) stabilizes the set of parallel equilibria, which is
of dimension 2(N − 1) in the shape space. Away from singularities, the N
algebraic constraints (24) are independent. As a result, the control law (23)
isolates a subset of parallel equilibria of dimension N − 2 in the shape space.
However, it does not isolate the desired parallel equilibrium for N > 2. A
simple calculation indeed shows that the Jacobian linearization of (1) at the
parallel equilibrium (17) possesses N − 2 uncontrollable spatial modes with
zero eigenvalue. This means that the Jacobian linearization of the closed-loop
system will possess N−2 zero eigenvalues for any smooth static state feedback.
For N > 2, no smooth static state feedback can achieve exponential stability
of an isolated relative parallel equilibrium.

4.4 Symmetries of the closed-loop vector field

All the control laws in this paper are shape control laws, i.e. they result in a
closed-loop vector field that is invariant under the action of the group SE(2).
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Fig. 2. Simulation of the parallel control law (23) for a complete graph connecting
N = 3 particles. The particle positions and headings are indicated by black circles
and arrows. The simulation uses K = 1 and r̄ = 2eiθ̄ where θ̄ is a splay state.

For an all-to-all communication topology, we have shown in [SPL05] how to
break this symmetry with the help of an extra virtual particle that acts as
a leader. This result easily extends to the fixed, bidirectional, and connected
topologies considered in this paper and the details are omitted.

The control law (8) is further invariant under the (discrete) group of per-
mutations, that is, there is no differentiation among particles. This symme-
try property might be a desirable feature of the design but is lost for the
control laws (16) and (23) that aim at stabilizing isolated relative equilib-
ria of the model. An issue of interest is whether isolated relative equilibria
can be stabilized with control laws that retain the permutation symmetry.
In [PLS05, SPL05], we have addressed this question for the stabilization of
isolated circular relative equilibria with certain symmetric phase arrange-
ments. The results assume an all-to-all topology and make use of a linear
combination of higher-harmonics potentials U(eimθ), m ∈ {1, . . . ,

⌊
N
2

⌋
}. The

generalization of such results to arbitrary communication topologies remains
to be addressed.

5 Critical points of phase potentials

Several results in the previous section provide global convergence results to a
critical point of the phase potential Q(eiθ). In this section we further investi-
gate the structure of the critical points of these phase potentials.

Lemma 1 Let L be the Laplacian matrix of a bidirectional, connected graph.
If θ̄ is a critical point of the phase potential Q(eiθ) =< eiθ, Leiθ > then there
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exists a nonnegative, real vector α ∈ RN such that

(L− diag(α))eiθ̄ = 0 (25)

and
αT eiθ̄ = 0. (26)

The Hessian of the phase potential evaluated at these critical points is given
by

H(eiθ̄) = 2(L̃(θ̄)− diag(α)) (27)

where L̃(θ) is given by

L̃kj = Lkj < eiθk , eiθj > . (28)

.

Proof. Critical points of the phase potential are characterized by

< ieiθ̄k , Lkeiθ̄ >= 0. (29)

If θ̄ is a critical point, then

Lkeiθ̄ = αkeiθ̄k , αk ∈ R, (30)

for k = 1, . . . , N . The condition (25) is the matrix form of (30). Left-
multiplying (25) by 1T and using 1T L = 0 gives the second condition (26). In
words, the αk are the weights for which the weighted centroid of the phasors,
eiθ̄k , vanishes. To see that α is nonnegative, we solve (30) for αk to obtain

αk = dk −
∑

j∈Nk

< eiθ̄k , eiθ̄j > . (31)

Equation (31) gives the bounds 0 ≤ αk ≤ 2dk.
The Hessian of Q(eiθ) is determined by

∂2Q

∂θ2
k

= 2(dk− < eiθk , Lkeiθ >) (32)

and, for j '= k,

∂2Q

∂θj∂θk
=

{
−2 < eiθk , eiθj >, if j ∈ Nk,

0, otherwise. (33)

Using (32) and (33) we can express the Hessian as

H(eiθ) = 2(L̃(θ)− diag(< eiθ1 , L1e
iθ >, . . . , < eiθN , LNeiθ >)) (34)

where L̃(θ) is given by (28). Evaluating (34) at a critical point and using (30),
we obtain (27), which completes the proof.
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.
There are three special sets of critical points of the phase potential Q(eiθ).

If α ∈ span{1}, then α = λ1 where λ is an eigenvalue of the graph Laplacian
with the eigenvector eiθ̄. Synchronized critical points correspond to λ = 0 and
eiθ̄ = eiθ01, where θ0 ∈ S1. The set of synchronized critical points exists for
any graph and is a global minimum of the phase potential. Balanced critical
points correspond to α = λ1 where λ > 0 and 1T eiθ̄ = 0. A sufficient condition
for balanced critical points to exist is that the graph is circulant, that is, the
Laplacian is a circulant matrix. The components of the eigenvectors of any
circulant matrix form symmetric patterns on the unit circle centered at the
origin of the complex plane.

The only critical points for which α /∈ span{1} that we have identified
are unbalanced (2, N)-patterns. These patterns have two phase clusters that
are separated by π and contain an unequal number of phases. If eiθ̄ is an
unbalanced (2, N)-pattern, then 1T eiθ̄ '= 0 and 1T ei2θ̄ = N . Using (13), we
observe that the unbalanced (2, N)-patterns are critical points of the phase
potential for any Laplacian since sin θ̄kj = 0 for all (j, k) ∈ E.

Lemma 2 An equivalent expression to (27) for the Hessian of the phase po-
tential Q(eiθ) is the weighted Laplacian,

H(θ̄) = BW (θ̄)BT . (35)

The weight matrix is defined by

W (θ̄) = 2diag(cos(BT θ̄)) ∈ Re×e. (36)

Proof. Using (27) and (31), we obtain

Hkj =






2
∑

j∈Nk
< eiθ̄k , eiθ̄j >, if j = k,

2 < eiθ̄k , eiθ̄j >, if j ∈ Nk,
0 otherwise.

(37)

Equation (37) is equivalent to the weighted Laplacian (35). Let f ∈ {1, . . . , e}
be the index of the edge (j, k) ∈ E. The corresponding weight is Wff = 2 <

eiθ̄k , eiθ̄j >= 2 cos θ̄kj in agreement with (36).

Next, we give sufficient conditions for asymptotic stability and instability
of critical points of the phase potential that are isolated in the shape manifold
TN/S1.

Proposition 5 Let L be the Laplacian matrix of a bidirectional, connected
graph. The potential Q(eiθ) =< eiθ, Leiθ > reaches its global minimum when
θ = θ01, θ0 ∈ S1 (synchronization). The gradient control θ̇ = K1

∂Q
∂θ forces

convergence of all solutions to the critical set of Q(eiθ). If θ̄ is a critical point
that is isolated in the shape manifold TN/S1, then a sufficient condition for
asymptotic stability of θ̄ is K1W (θ̄) < 0 where W (θ̄) is given by (36). If
KW (θ̄) > 0, then θ̄ is unstable.
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Proof. Pursuant to Lemma 2, if L = BBT is the Laplacian of a connected
graph and W (θ̄) is definite, then H(θ̄) has rank N−1 with the zero eigenvector
1. The stability result follows from the fact that the Jacobian of the gradient
control is equal to the Hessian of the phase potential. Definiteness of W (θ̄)
implies that all eigenvalues of H(θ̄) other than λ = 0 are positive.

Proposition 5 addresses phase arrangements in which cos θkj has the same
sign for all (j, k) ∈ E. Thus, synchronized critical points are asymptotically
stable for K1 < 0 and unstable otherwise since W (eiθ01) is the identity matrix
in Re×e. The weight matrix is definite for some balanced critical points as well.
For circulant matrices, it is sufficient to check that all cos θ1j have the same
sign for j ∈ N1. A complete characterization of balanced critical points and
the unbalanced (2, N)-patterns is the subject of ongoing work and will be
presented in a separate paper.

6 Time-varying and unidirectional topologies

The stabilization results of the previous section require a communication
graph which is time-invariant, undirected, and connected. It is of interest,
both from the theoretical and practical viewpoint, to investigate which of
these assumptions can be relaxed. In the rest of the paper, L(t) denotes the
Laplacian matrix of a time-varying, directed graph G(t).

The simplest situation to analyze is the parallel control (8), with ω0 = 0,
which only involves the phase dynamics

θ̇k = uk =< ieiθk , Lk(t)eiθ > (38)

Several synchronization results for pure integrator dynamics have recently ap-
peared in the literature [JLM02,JMB04,OSM04,Mor05], both for continuous-
time and discrete-time models. Convergence results are obtained for time-
varying and undirected communication graphs, under relaxed connectedness
assumptions. These convergence results are not global: they require all the
initial phase differences to be in the open interval (−π/2,π/2). Under this
assumption, the phase dynamics (38) can be mapped to the Euclidean state-
space RN through a change of coordinates. Then, a key observation for the
convergence analysis in [Mor05] is that the convex hull of the states can only
contract along the solutions.

We now propose an extension of the results in [Mor05] for the stabiliza-
tion of circular motions (ω0 '= 0) by considering the synchronization of the
“centers” (4) which obey the dynamics

ṡk = −ieiθk(uk − ω0) (39)

for k = 1, . . . , N . Following [Mor05], we adopt co{s} as a set-valued Lyapunov
function and modify the control (8) such that this function is nonincreasing.
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Using (4), one can interpret this modification as contracting the convex hull
of the centers of the particles’ circular orbits.

Denote by conhull(Nk(t)) the conic hull spanned by the neighbors of sk at
time t, that is,

conhull(Nk(t)) = {
∑

j

βj(sj − sk) | j ∈ Nk(t), βj ≥ 0}

and consider the sets S+
k (t) = sk+conhull(Nk(t)), S−k (t) = sk−conhull(Nk(t)),

and Sk(t) = S+
k (t)∪S−k (t). To ensure that co{s} contracts along the solutions

of the particle model, we modify the circular control (8) as

uk = ω0 + Kk(θk, Sk(t))|Lk(t)s| (40)

with the gain Kk(θk, Sk(t)) a Lipschitz continuous function that satisfies

Kk(θk, Sk(t))






> 0 if − ieiθk ∈ S+
k (t)

< 0, if − ieiθk ∈ S−k (t)
0, otherwise

(41)

Indeed, if ṡk ∈ S+
k (t) (resp. ṡk ∈ S−k (t)), then ṡk (resp. −ṡk ) points inwards

co{s} at sk. As a consequence, the control law (40) renders the convex hull
co{s} invariant, from which we obtain the following result.

Proposition 6 Let L(t) be the time-dependent Laplacian matrix of a time-
varying directed graph. Assume that L(t) is T -periodic and that the following
condition is satisfied for all s '= 1s0:

' ∃ θ0 ∈ S1, k ∈ {1, . . . , N} : −iei(ω0t+θ0) ∈ C\Sk(t) ∀t > 0. (42)

Then the shape feedback control (40) uniformly asymptotically stabilizes the
set of circular motions of radius |ω0|−1 (ω0 '= 0).

Proof. By design, the set-valued Lyapunov function co{s} is nonexpanding
with the control (40). Moreover, it is strictly contracting when uk − ω0 '= 0
for some k. This means that the limit set of each solution is a set where
u ≡ 1ω0. In this set, ṡ = 0 and θ̇ = 1ω0. Invariance of the limit sets implies
that all solutions must converge to a constant s that satisfies

∀ t : Kk(θ0 + ω0t, Sk(t)) = 0, k = 1, . . . , N

for some θ0 ∈ S1. This set reduces to 1s0 under the condition (42).

The result of Proposition 6 holds without the periodicity assumption on
L(t) but the proof is more technical and not detailed in the present paper.
The convergence result is illustrated by the simulations shown in Figure 3
and Figure 4. In the simulations of Figure 3, we used a fixed, unidirectional,
connected, 2-circulant topology (each particle is connected to two neighbors).
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Fig. 3. Simulations of a unidirectional, connected 2-circulant topology. The particle
positions and headings are indicated by black circles and arrows. Both simulations
have identical initial conditions, use ω0 = 0.1, and were simulated for the duration
30 2π

ω0
. (left) Control (8) with K = 0.1; (right) control (40) with gain (41).
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Fig. 4. Simulations of a unidirectional, weakly connected topology in which the
neighbor sets, Nk, k = 1, . . . , 12, have identical cardinality, dk = 4, but whose mem-
bers are chosen randomly and switched with frequency ω0

2π . The particle positions
and headings are indicated by black circles and arrows. Both simulations have iden-
tical initial conditions and randomly switching Laplacian L(t), use ω0 = 0.1, and
were simulated for the duration 10 2π

ω0
. (left) Control (8) with K = 0.1; (right) control

(40) with gain (41).

The simulation illustrates a situation where the control (8) that stabilizes the
circular motion with a fixed bidirectional, connected topology fails to achieve
the same stabilization when the communication becomes unidirectional. By
contrast, the modified gain (41) achieves stabilization. In the simulations of
Figure 4, we used a unidirectional, weakly connected topology in which the
neighbor sets, Nk, k = 1, . . . , 12, have identical cardinality, dk = 4, but whose
members are chosen randomly and switched with frequency ω0

2π . The simula-
tion illustrates a situation where the control (8) that stabilizes the circular
motion with a fixed, bidirectional, connected topology fails to achieve the
same stabilization when these assumptions are relaxed.
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It is of interest to note that, for the simulation described in Figure 4,
the control (8) is not stabilizing for K = 0.1 but does stabilize the circular
formation for smaller values of the gain, e.g. K = 0.01. The convergence for
sufficiently weak coupling gain K = ε > 0 suggests to apply averaging analysis
to the closed-loop system

ṡk = −εiei(ω0t+θ̃k) < iei(ω0t+θ̃k), Lk(t)s >
˙̃θk = ε < iei(ω0t+θ̃k), Lk(t)s >

(43)

where we have used the coordinate change θ̃k = θk − ω0t. For a switch-
ing (piecewise-constant) communication topology with switching times syn-
chronized with the rotation period 2π

ω0
, the averaged system is ṡ = −(εI +

0(ε2))L(t)s and the convergence results in [Mor05] apply, that is, synchro-
nization is achieved under a weak connectedness assumption on L(t).

7 Discussion

The results summarized in this paper focus on a core collective stabilization
problem, that is, the stabilization of relative equilibria of the kinematic model
(1), which are of two types: parallel or circular. These results can be combined
and extended in various ways in order to provide a versatile design method-
ology that can be effectively used for the coordination of motions in specific
engineering applications. In [LPL+05], an illustration is provided in the con-
text of an oceanographic application in which autonomous underwater vehicles
(AUVs) are used to collect oceanographic measurements in formations that
maximize the information intake.

One effective way to use the results of the present paper in the design of
group formations is to define a set of primitives on the basis of the relative
equilibria: parallel motion, circular motion with a given radius and a given
phase arrangement. Simple symmetry-breaking control laws allow to further
specify the direction of parallel motion and the center location of the circular
motion. Switching between these primitives offers a way to specify reference
trajectories for the group that can be tracked by feedback control laws that
only use relative information and a limited communication topology. Details
are provided in [SPL05].

Figure 5 illustrates a situation detailed in [LPL+05] that combines several
variants of the control laws discussed in the present paper: a group of N = 12
vehicles is stabilized in a formation that combines all-to-all communication
(the potential uses the Laplacian of a complete graph) and block all-to-all
communication (the potential uses a block diagonal Laplacian of three identi-
cal complete subgraphs): the phase arrangement is a splay-state for the entire
group but also within each of the subgroups. The spacing control is also block
all-to-all and uses a symmetry-braking control law to specify different centers
of rotation for each of the three subgroups.
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Fig. 5. A group formation that combines all-to-all coupling and block all-to-all
coupling for the phase control so that the phase variables are in a splay state for-
mation both in the entire group and in the three subgroups. The spacing control
stabilizes the three circular subformations around three different fixed beacons at
(R1

0,R
2
0,R

3
0) = (−30, 0, 30).

The proposed control laws can be further extended to generalize the cir-
cular shape of the formations to any closed convex curve. This work is in
progress and will be presented in a forthcoming paper. The formation illus-
trated in Figure 5 could for instance be generalized to a phase-locked motion
of the particles along three identical ellipses centered at different locations.

All these different group formations are characterized by two properties:
the formation is specified by a few geometric parameters and the design pro-
vides Lyapunov-based feedback control laws that asymptotically stabilize the
specified formation. In applications where one wishes to shape the group tra-
jectory in order to optimize some dynamic performance criterion, this low-
order but versatile parametrization of stabilizable collectives offers an inter-
esting alternative to the often prohibitive cost of optimizing the individual
trajectories.
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