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Understanding the benefits of the behaviors of aquatic animals can improve the ca-

pabilities of robotic systems. Aquatic species such as the zebrafish swim with discrete

motions that alternate between perception and action while avoiding predators and swim-

ming in schools, and other species such as the lionfish use their pectoral fins to herd and

trap prey. This work seeks to model these bioinspired behaviors (i.e., schooling, swim-

ming with intermittent sensing and actuation, and pursuit and evasion in a structured

environment) and enhance our understanding of their benefits.

A hybrid dynamic model is derived with two phases; namely a burst phase during

which each particle applies a control input and a coast phase during which each particle

performs state estimation. This model provides a way to investigate how having non-

overlapping sensing and control affects a multi-agent system’s ability to achieve collective

behavior such as steering to some desired direction. By evaluating the stability properties



of the equilibrium points for the collective behavior, investigators can determine parameter

values that exhibit exponentially stable behavior.

Aside from swimming intermittently, fish also need to avoid predators. Inspired by

observations of predation attempts by lionfish (Pterois sp.), a pursuit-evasion game is de-

rived in a bounded environment to study the interaction of an advanced predator and

an intermittently steering prey. The predator tracks the prey with a pure-pursuit strat-

egy while using a bioinspired tactic to minimize the evader’s escape routes, i.e, to trap

the prey. Specifically, the predator employs symmetric appendages inspired by the large

pectoral fins of lionfish, but this expansion increases its drag. The prey employs a bioin-

spired randomly-directed escape strategy to avoid capture and collisions with the bound-

ary known as the protean strategy. This game investigates the predator’s trade-off of

minimizing the work to capture the prey and minimizing the prey’s escape routes. Using

the predator’s expected work to capture as a cost function determines when the predator

should expand its appendages as a function of the relative distance to the evader and the

evader’s proximity to the boundary.

Prey fish also swim in schools to protect themselves from predators. To drive a school

of fish robots into a parallel formation, a nonlinear steering controller is derived and imple-

mented on a robotic fish platform. These robotic fish are actuated with an internal reaction

wheel driven by a DC motor. Implementation of the proposed parallel formation control

law on an actual school of soft robotic fish is described, including system identification ex-

periments to identify motor dynamics and the design of a motor torque-tracking controller

to follow the formation torque control. Experimental results demonstrate a school of four

robotic fish achieving parallel formations starting from random initial conditions.
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Chapter 1: Introduction

Stemming back from the philosophy of Darwinism, a common belief in many scien-

tific disciplines is that biological systems tend to naturally optimize themselves over time.

We as engineers often draw inspiration from biology to enhance our knowledge and ability

to develop pre-optimized engineered systems.

For example, biological species ranging from gray squirrels to zebrafish traverse their

environments with discrete motions that alternate between perception and action [1–6].

For underwater species, like the zebrafish and rummy-nose tetra, this discrete behavior

is hypothesized to be the result of the perceptual degradation in their sensory organs due

to self-generated motions like swimming [6–8]. In fact, some zebrafish desensitize their

lateral line system, a sensory organ system used to measure the pressure gradient of the

surrounding fluid, during active swimming [7]. For fish, these intermittent swimming

behaviors offer many benefits including reduced cost of transport, enhanced functionality

of sensory organs, improved localization in pursuit of prey, and ample time to process the

perceived environment and formulate motor commands in response [1,5,7].

While much attention has been given to modeling a fish’s swimming kinematics, little

attention has been given to the idea that some fish species have active swimming periods

where they are sensory deprived and non-active periods where they are sensory rich. What
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happens to an engineered system when there is non-overlapping sensing and control? Here

we devise a hybrid model of intermittent locomotion with non-overlapping sensing and

control. With this model we’re able to draw conceptual and technical conclusions of how

the stability changes due to intermittent locomotion.

While there are benefits to having intermittent locomotion, biological fish do more

than just swim. Fish also need to hunt and avoid predators. While observing the pursuit

interactions between a lionfish and its intermittently swimming prey, biologist have noted

that lionfish tend to spread their pectoral fish in an effort to herd prey [9,10]. Lionfish tend

to also reside near coral reefs where the structures in the environment may play a role in

predation. While this herding behavior may seem intuitive and quite trivial, spreading the

pectoral fins increases the lionfish’s frontal surface area and therefore increases its drag. It

is unclear, why this predator would choose work harder to catch prey, and it is unclear if the

structures in the environment affect the lionfish’s pursuit tactics. In this dissertation we

use differential game theory to create a pursuit-evasion game with a single predator and

a single prey in a bounded environment, inspired by observations of predation attempts

by lionfish (Pterois sp.). The model for this game allows researchers to study the trade-

off between minimizing the predator’s work to capture the prey and minimizing the prey

escape routes by expanding its pectoral fins. This model also sheds light on how boundaries

in the environment can be beneficial to predators.
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1.1 Relation to Prior Work

The work in this dissertation builds on similar work done by others. In this section,

I highlight the relation of this work to prior work, and I describe how this work pushes the

envelope further. First, I discuss prior work for hybrid models with intermittent locomo-

tion. Second, I highlight biological observations of predator-prey interactions for lionfish,

and I study this type of interaction with a differential game. Third, I discuss prior work

on formation control for underwater vehicles.

1.1.1 Intermittent Sensing and Actuation

While the kinematic modeling of intermittent swimming in biological fish has re-

ceived ample attention, the dynamic modeling of these behaviors in fish is not well studied.

The works in [11–13] model the viscous drag forces on the body of a fish and investigate the

energy saving benefits of intermittent swimming as compared to continuous swimming.

Intermittent swimming is found to be more energy efficient than continuous swimming at

high Reynolds numbers and with moderate values for the duty cycle between the burst

and coast phases [12, 13]. Other research in this area neglects the effects of viscous drag

and uses a variation of Vicsek’s particle model [14], to describe the dynamics of multiple

self-propelled particles while focusing on intermittent consensus control.

In [15–18], multi-agent intermittent consensus controllers were derived for agents

with self-propelled particles dynamics with both synchronous and asynchronous updates.

For the synchronous intermittent consensus controllers, the agents share and update their

states at equivalent discrete times, whereas for the asynchronous controllers the agents
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have delays between their discrete updates. The intermittency of the state-feedback con-

trollers were dictated by event-triggered protocols for the control inputs [15,16] and switched

communication topologies [17]. The main result from these works is that the stability con-

ditions of the asynchronous consensus controllers are similar to that of the synchronous

controllers, but also depend on the difference in discrete time updates. For intermittent

consensus problems, the agents have Euclidean dynamics and rendezvous to a single point.

However, in our work we are interesting in the intermittent heading synchronization ob-

served in schooling fish.

Multi-particle synchronization on the N-torus using state-feedback controllers is well

studied [14, 19–23]. In [22], a discrete-time state-feedback controller synchronizes the

headings of multiple self-propelled particles with asynchronous updates. The key assump-

tions in [22] are as follows: the particles share their orientation on a fixed communication

graph, every particle is updated over a uniform time horizon, and only disconnected parti-

cles update at the same time. Under these assumptions, any locally asynchronous descent

algorithm is shown to drive the particles to synchronize there headings. The work pre-

sented here relaxes some of these assumptions and extends these results to controllers

with output feedback, where each particle estimates the relative headings of its neighbors.

Much of the research on intermittent consensus and synchronization relies on the

assumption that each agent knows the relative states of its neighbors. In contrast, [24]

uses output feedback control laws on multiple second order self-propelled particles to drive

them into parallel and circular formations. The multi-particle system has a fixed commu-

nication graph and each particle estimates the relative velocity of its neighbors with the

knowledge of their relative distances and turning rates. Lyapunov’s direct method was

4



used to prove that the errors in estimated relative velocity are ultimately bounded and the

desired equilibrium points were practically stable.

1.1.2 Bioinspired Pursuit in a Structured Environment

Interactions between predators and their prey have fascinated a variety of scien-

tific disciplines for several decades. For biologists, predator-prey interactions inform the

structure of ecosystems [25–27], and characterize the pursuit behavior of predators [1, 9,

10, 25, 28–30], and the evasive behavior of prey [31–34]. Engineers and mathematicians

use these interactions to develop dynamic and kinematic models for missile guidance [35],

differential games [36, 37], and to derive pursuit and evasion strategies for robotic sys-

tems [38–45].

Pursuit-evader games attempt to derive optimal pursuit strategies by modeling both

agents as particles. These particle models are often based on the kinematic modeling

from [35] and used in the theoretical differential games from [36]. In [35], Shneydor de-

rives kinematic models for missiles guidance for a variety of pursuit strategies like clas-

sical pursuit, known as pure-pursuit, deviated pure-pursuit, and parallel navigation, also

known as motion camouflage. Differential games consider the kinematics of both agents

and study how their pursuit and evasion strategies affect the outcome of the interaction.

For zero-sum differential games, the pursuer seeks to minimize some cost function and the

evader seeks to maximize it such that the total sum of their costs is zero [36]. A common

assumption of kinematic pursuit models is that the pursuer is faster than the evader which

guarantees that the evader is captured [35, 38, 42]. However, capture of a faster evader is

5



possible for a slower pursuer by using the Apollonius circle pursuit method. A slow pur-

suer computes the points of intersection between its Appolonius circle and the evader’s

trajectory; where the circle’s center and radius corresponds to the positions where capture

is guaranteed [41,45,46]. This model assumes pursuit of a faster non-maneuvering evader,

while [35] assumes the evader is non-maneuvering and is slower than the pursuer. These

mathematical frameworks give insight about the pursuit trajectories and provide condi-

tions on both the pursuer and the evader for capture and evasion. With these conditions

as a foundation, a kinematic model can be used to determine the time required to capture

the evader.

The unique ability of animals to alter their behavior, locomotion, and morphology in

response to a stimuli inspires and informs both biologists and engineers. Fishes are widely

studied by engineers interested in developing control systems and autonomous underwater

vehicles. Bioinspiration also plays an integral role in pursuit-evasion games [37, 38] and

pursuit-evasion models have previously been applied to a handful of fish species [1, 30,

31, 34, 42]. For example, lionfish (Pterois sp.) will actively pursue maneuverable prey

fishes with a pure-pursuit targeting strategy, often approaching their target slowly to avoid

inducing a startle response [27,28,31]. In addition, lionfish have large fan-like pectoral fins

(depicted in Figure 1.1(a-b)) that may serve to restrict prey movement [9, 10]. The large

surface area of the pectoral fins are likely drag inducing, yet lionfish rarely pursue a prey

without expanding them. To understand the benefits of employing these large appendages

we test their effect on a pursuit-evasion game. In this game the pursuer is modeled as a

rigid streamlined body with symmetric appendages in pure-pursuit of the evader. In the

resting orientation, the pursuer’s appendages are held against the body, parallel to the

6



pursuer’s sagittal plane as in Figure 1.1(c), while in the active orientation the appendages

are expanded perpendicular to the sagittal plane as in Figure 1.1(d). The pursuer uses

its appendages to minimize the evader’s escape routes, but this orientation increases the

pursuer’s surface area and therefore its drag.

(a) Lionfish (Pterois sp.) (b) Lateral view

(c) Model of pursuer with symmet-
ric appendages

(d) Pursuer’s appendages in an ac-
tive orientation

Figure 1.1: Lionfish (Pterois sp.) serve as bioinspiration for a shape changing predator.
(a) Lateral view of a lionfish (Pterois miles) (b) Dorsal view of a lionfish (Pterois volitans;
in black and white); (c) depicts the model of the pursuer with appendages in the resting
orientation; and (d) the pursuer’s appendages are in an active orientation.

In biological systems animal prey may employ an optimal evasion strategy (clas-

sical evasion), where the evader attempts to maximize the relative distance to the pur-

suer [31,34,47] or a protean strategy, where the evader senses the relative position of the

pursuer and flees in a random direction to be less predictable [31–33,48]. Observations of

an evader’s escape direction yields a probability density function that is used for mathe-

matical predictions [33]. The movement patterns of animals also play a role in the pursuit-
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evasion interaction. Mathematical models often assume constant locomotion, however, a

variety of aquatic, aerial, and terrestrial species use intermittent locomotion [2, 3]. For

many fishes this intermittent locomotion is split into two discrete phases that correspond

with acceleration and deceleration. During the acceleration phase the fish will generate

thrust and actively steer itself, while during the deceleration phase the fish glides through

the water without active steering [1, 7]. Inspired by the intermittent prey from the obser-

vations in [28,29], the evader in the present study uses an intermittent-steering kinematic

model (with a constant speed) and a protean evasion strategy to evade the pursuer and to

avoid collisions with the boundary.

1.1.3 Formation Control for Multiple Robotic Fish

Collective behavior of mobile agents has received significant interest recently in

fields such as biology, physics, computer science, and control engineering [49–51]. Re-

search in this area is allowing scientists to better understand swarming behavior in nature

and benefits control engineers in numerous applications by mimicking nature’s behavior

in engineered mobile systems such as unmanned ground, air, and underwater vehicles.

Previous investigations of bioinspired underwater vehicles include the design, sens-

ing, and control of a single fish-inspired robot that is driven by an internal reaction wheel

[52–54]. Here, we present control laws that stabilize planar formations of a school of such

robotic fish (Fig. 1.2). Related work involving formation experiments of fish robots pro-

pelled by tail flapping was presented in [55, 56]. In [55], a school of fish robots achieves

circular formations and other collective behaviors using vision-based behaviors based on
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relative position. Similarily, in [56], parallel and circular formations are achieved using

an overhead camera to provide absolute positions of all the agents. Our work differs in

that we investigate synchronized motion of multiple fish robots driven by an internal re-

action wheel. We utilize consensus control to achieve collective motion by communicating

only relative position and/or orientation with nearby agents. This approach is particularly

well suited to challenging underwater environments where small, low-power robots have

limited communication or sensing range.

Figure 1.2: A school of soft robotic fish serves as a testbed for formation control experiments at
the University of Maryland’s Neutral Buoyancy Research Facility.

Consensus control in Euclidean space, which assumes that the states of the system

live on RN , is a well-studied topic [57]. The goal of consensus control is to steer N agents

into identical states. Similarly, average-consensus control laws steer agents towards the

average value of the initial conditions of the agents [58]. Consensus and average con-

sensus are typically studied for single-integrator dynamics [59], which may contain lin-

ear or nonlinear drift vector fields [60]. Interactions between agents can be static [61],
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time-varying [62], all-to-all [61], or limited [63]. These interactions are typically described

using the Laplacian matrix from algebraic graph theory [64] to compute relative state

information, such as relative position. Consensus and average consensus in Euclidean

space have also been studied for double-integrator dynamics [65] and second-order sys-

tems with a nonlinear drift vector field that represents the vehicle dynamics [66]. Fur-

thermore, consensus control on a nonlinear manifold has been investigated [21, 67]. For

example, consensus on the N-torus—also called synchronization—arises in the control of

planar formations, where the heading orientation is a phase angle on the unit circle [19].

Orientation and translation control of agents in the plane utilizes the special Euclidean

group [68]. Many synchronization approaches are based on the theory of coupled oscil-

lators, such as the celebrated Kuramoto model [19], and invoke the graph Laplacian for

cooperative control of first-order dynamics on the N-torus [20]. Second-order consensus

of coupled oscillators with double-integrator dynamics [69] uses the gradient of a phase

potential.

Another class of collective behaviors of multi-agent systems are circular formations.

Previous work in this area studied circular formations of first-order, self-propelled parti-

cles with unit velocity. Feedback control laws designed in [19] stabilize a circular formation

having a fixed center and a constant radius. Some extensions to this work consider a cir-

cular formation in a flow field [70] and constant non-unitary velocity, or with a constraint

bounding the circular formation to a region of interest [71]. Other extensions include time-

varying centers, so that the circular formation position is not fixed [72, 73]. Some authors

assume agents use relative-position sensing to achieve circular formations around a given

center and radius that is known only to a subset of agents [74]. Circular formation con-

10



trol on the tangent bundle of the N-torus has also been investigated where agents are

second-order self-propelled particles [19,69].

1.2 Contributions of this Dissertation

The contributions of this dissertation are in the areas of planar formation control for

bioinspired multi-agent systems and bioinspired pursuit and evasion. These contributions

provide dynamic models to study the behavioral of many biological species and validates

theoretical results through experimental demonstration. Many of these results have either

been published in peer-reviewed journals or submitted and are currently under review

[23,75,76].

1.2.1 Non-overlapping Sensing and Actuation

I derive a dynamic model that describes intermittent behavior using non-overlapping

sensing and actuation for a single self-propelled particle and multiple self-propelled parti-

cles with synchronous and asynchronous actuation times. Stability and bifurcation anal-

ysis of a single particle with intermittent dynamics and a closed-loop heading controller

using either state or output feedback determine the effects of having non-overlapping sens-

ing and actuation. These results are expanded to to include multiple particles with syn-

chronous and asynchronous actuation times. I also provide practical stability bounds in

the presence of bounded actuator and measurement noise for one or more particles.
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1.2.2 Bioinspired Pursuit in a Structured Environment

Inspired by the predation tactics of lion fish and the common evasion strategies of

prey fish, I derive a pursuer-evader interaction model with a single pursuer and a single

evader in a bounded environment. The pursuer changes its morphology to aid in predation

and the evader intermittently steers in a random direction to flee the pursuer. A mathe-

matical model for the evader’s escape heading probability density function in a bounded

environment is also derived.

To study how the pursuer’s morphology aids its predation, we use the metric of ex-

pected work to capture the evader as a function of the pursuer’s shape, the relative dis-

tance between the pursuer and evader, and the evader’s proximity to the boundary. I also

qualitatively assess the pursuer’s optimal pursuit trajectory as a function of the evader’s

position in a bounded environment. These results provide insight into the predation be-

haviors found in nature and a fundamental understanding on how a complex environment

influences predation strategies.

1.2.3 Planar Formation Control for a School of Robotic Fish

The works in [43, 77] present a rigid body dynamic model for a robotic fish known

as the Chaplygin sleigh and presents a closed-loop steering controller for a single robot

and closed-loop heading synchronization controller for multiple robots. I experimentally

validate the parallel formation control law on a school of bio-inspired robotic fish in the

University of Maryland’s Neutral Buoyancy Research Facility. While most of the robot’s

design and construction was done by a previous labmate, Jinseong Lee, I develop new
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hardware, perform system identification on the robot’s reaction-wheel motor dynamics,

and design and implement an optimal estimation and tracking controller that follows the

torque commands of the formation control.

1.3 Outline of Dissertation

This dissertation is outlined as follows. Chapter 2 reviews necessary background in-

formation and derivations for the subsequent chapters. To familiarize the reader, deriva-

tions of the dynamics for a self-propelled particle and a decentralized closed-loop steering

controller for a single particle and for multiple particles are provided. A well studied kine-

matic pursuit model is also provided.

Chapter 3 introduces a bioinspired dynamic model for intermittent locomotion with

non-overlapping sensing and actuation. This model is used to study how stability is af-

fected by intermittent locomotion for a single particle and for a collection of multiple par-

ticles.

Chapter 4 proposes a dynamic model to study pursuit and evasion in a bounded

environment with a single pursuer and a single evader. Bioinspired pursuit and evasion

tactics are modeled for the pursuer and the evader, and effects of pursuit in a closed setting

are studied.

Chapter 5 covers the rigid body dynamics of a robotic fish driven by an internal re-

action wheel, and studies planar formation control for multiple robotic fish. Experimental

demonstration of the planar formation controller validates the theory.
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Chapter 2: Background

This chapter provides background information and derivations for chapters 3-5. First,

I derive the dynamic model for a single self-propelled particle with a closed-loop heading

controller and discuss the stability of the closed-loop equilibrium points. Second, I intro-

duce a decentralized steering controller to synchronize the headings of multiple particles.

Third, I adapt the self-propelled particle model to have intermittent locomotion with sep-

arate sensing and actuation phases. Fourth, I introduce a kinematic pursuit model for

self-propelled particles in a pursuit and evasion game. Fifth, I outline how to compute the

expected value of a random variable.

2.1 Complex Variables

This dissertation uses complex numbers to express the position and orientation of

the pursuer and the evader. Complex numbers have real and imaginary components and

can be expressed as h = x+ j y. The imaginary component of h is multiplied by the imagi-

nary unit j such that Im(h) = y, and the real component of h is Re(h) = x. Since complex

numbers have two components, they can be visualized in two dimensional space called the

complex plane C.

A common tool for dimension reduction is to express vectors with two orthogonal
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components as a complex number. Let the horizontal and vertical position of a particle

be v = [x, y], where the bold face notation represents a vector. By making the horizontal

component the real axis and the vertical component the imaginary axis, we can express

vector v as a complex number v = x+ j y.

Similarly, the orientation of a vector v can be expressed as the phase of a complex

number v, where the phase of v is

θ = arg(v). (2.1)

The arg() operator is the argument of the complex number. Likewise, the magnitude of a

complex number is determined by taking its absolute value.

Using the phase θ and magnitude |v| of a v, we can express the position of a particle

in complex polar form with Euler’s formula [78], such that

v = |v|e jθ = |v| (cosθ+ j sinθ) . (2.2)

In general, since the imaginary component is orthogonal to the real component of a com-

plex number, multiplying that number by j rotates its phase by π/2 radians in the counter-

clockwise direction.

2.2 Self-propelled particle dynamics

To model planar locomotion of a moving body in a fluid, we invoke the dynamic model

of a self-propelled particle. The dynamics of a self-propelled particle are useful to describe

motion that distinguishes between translational acceleration (thrust) and rotational accel-
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eration (turning), accomplished by expressing the particle’s velocity and control inputs in

polar coordinates.

Let rn ∈C be the position of the nth particle in the complex plane such that rn = xn+

j yn, where xn, yn ∈R and j is the imaginary unit. Let θn ∈S1 and sn ≥ 0 be the orientation

and magnitude of the particle’s velocity, respectively. The drag-free self-propelled particle

dynamics are [68]

ṙn = sne jθn

θ̇n = un

ṡn = νn,

(2.3)

where un is the steering control and νn is the thrust control.

To steer the particle’s velocity to a desired direction θd, consider the control input

un = K sin(θd −θn), (2.4)

where K > 0 is the control gain. The heading dynamics in (2.3) with control (2.4) has

equilibrium points at θ∗ = θd and θ∗ = θd ±π. Linearization indicates that the only stable

equilibrium point is θ∗ = θd.

2.3 Multi-agent synchronization in a plane

Multi-particle formation control is a well studied topic [14, 19–22, 79]. The phase

synchronization of multiple particles, also called parallel formation, with the dynamics in

(2.3), is achieved by designing a steering input un for each of the N particles that aligns

their headings to a common value. Drawing inspiration from the Kuramoto model [80] and
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the noise-free steering law of the Vicsek model [14], the following steering controller uses

relative heading information between the nth particle and the other particles in the school

to synchronize all of their headings, [19,21]:

un = K
N

N∑
m=1

sin(θm −θn), n = 1, · · · , N. (2.5)

The communication protocol in (2.5) assumes each particle has knowledge of the rel-

ative headings of the other particles in the school and, because of this assumption, the

school of particles has an all-to-all communication graph. The control framework extends

naturally to limited communication [20].

The equilibrium points of the closed loop heading dynamics (2.3) with steering in-

put (2.5) and constant velocity (i.e., νn = 0) are classified as synchronized, balanced, and

parallel anti-parallel [19]. The synchronized equilibrium point θ∗ = α1, where α ∈ S1 is

the average initial heading of the particles and 1 is a vector of ones, is asymptotically sta-

ble if K > 0 and all other equilibrium points are unstable [19]. In Sections 3.3 and 3.4,

(2.5) is used to synchronize the headings of multiple particles using state feedback with

synchronous and asynchronous cycles, respectively.

2.4 Pursuit and Evasion Strategies

Pursuit and evasion are well-studied topics with applications in missile guidance

[35], biological predation [30,31,42], and engineered systems [38,41,43,44]. Pure pursuit

[35], is characterized by having a pursuer P heading directly towards an evader E along

their line-of-sight vector.
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Let the pursuer’s position be rP = xP + j yP ∈ C, where xP and yP are the horizontal

and vertical positions, respectively, and j is an imaginary unit. Let θP and sP be the

pursuer’s velocity orientation and speed, respectively. Similarly, let rE, θE, and sE be the

evader’s position, heading, and speed, respectively. The line-of-sight vector with respect to

the pursuers body frame is

rE/P = rE − rP , (2.6)

and the orientation of the line-of-sight vector is

α= arg(rE/P ), (2.7)

see Figure 2.1.

Figure 2.1: Classical pursuit model using particle kinematics

Common assumptions in the pursuit literature are that both pursuer and evader

have constant speeds and that the pursuer has a higher speed than the evader [35, 36].

The ratio of the two speeds is ε = sP /sE. In the present model the pursuer’s speed is

arbitrarily set to sP = 1.05 m/s and the evader’s speed is sE = 1 m/s such that ε= 1.05.

In pure pursuit, the time duration required to capture a non-maneuvering evader
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is [35]

∆t = |rE/P |
sE

ε+cos(α−θE)
ε2 −1

. (2.8)

Note that (2.8) is only valid for ε> 1.

The line-of-sight orientation (2.7) is used as the reference heading for the pursuer in

section 4.2, and (2.8) is used to compute the work required to capture the evader in section

4.3.

An evasion strategy observed in animals is the protean strategy [31, 32], where the

evader senses the pursuer and flees in a random escape direction θd. The stochastic nature

of this evasion strategy makes the evader less predictable to the pursuer. The random flee

direction has a probability density function that depends on the evader’s proximity to the

boundary and relative distance to the pursuer. The probability density function of θd is

derived in section 4.2 and used to compute the expected value of the work required to

capture the evader in section 4.3.

To compute the work executed during pursuit, let TP be the pursuer’s thrust aligned

with the its velocity acting at its center of mass rP . Assuming the pursuer has a constant

speed, the work that TP does on the center of mass depends on the path the pursuer takes

from some time t0 to t0 +∆t, where ∆t is (2.8), such that [81]

WP =
∫ t0+∆t

t0

TP sP dt. (2.9)

To find the work required to capture the evader, substitute (2.8) into (2.9) and evaluate the
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integral such that

WP = TP |rE/P |
ε2 +εcos(α−θE)

ε2 −1
. (2.10)

Note that the pursuer’s work required to capture the evader depends on the evader’s head-

ing θE.

The randomness of the evader’s protean evasion strategy makes the work in (2.10) a

stochastic process and we use tools from probability theory to analyze the expected value

of work, also called the expected work. In section 4.3, (2.10) is adapted to analyze the work

required to capture the evader.

2.5 Expected Value of a Random Variable

To analyze the stochastic nature of a random variable, we use tools from probability

theory. Let χ be a random variable on the real number line. Also let the sample space of χ

be between −∞ and +∞, such that all possible values of χ lie between −∞ and +∞. The

probability density function of χ is denoted by f (χ), and it describes the likelihood that χ

will be within a certain range of values. To compute the expected value of χ, also known as

the mean of χ, integrate the product of χ and the probability density function of over the

entire sample space such that [82]

E[χ]=
∫ ∞

−∞
χ f (χ)dχ. (2.11)

If random variable χ is used in a function Y = g(χ) with probability density function
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f (χ), then the expected value of the function is [82]

E[Y ]=
∫ ∞

−∞
g(χ) f (χ)dχ. (2.12)

We adapt (2.12) to compute the expected work required for the pursuer to capture an

evader using the protean strategy in section 4.3.
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Chapter 3: Estimation and Control for Collective Motion with Intermit-

tent Locomotion

3.1 Introduction

To study the conceptual effects of separating estimation and control, I introduce a

variation of Vicsek’s model [14] for multiple self-propelled particles with non-overlapping

actuation and sensing phases. The actuation phase, also known as the burst phase, applies

thrust and steering control, whereas the sensing phase, also known as the coast phase,

estimates the relative headings of other particles. In the single-particle case, the agent

estimates its own heading. I also study the effects of intermittent sensing and control for

multiple particles with synchronous burst phases and asynchronous burst phases.

To analyze the stability of the heading dynamics, I integrate the continuous dynam-

ics to obtain a discrete map and use Lyapunov’s indirect method. I provide conditions on

system parameters that guarantee local exponential convergence to the synchronized equi-

librium point using either state-feedback or output feedback for both the single-particle

system and the multi-particle system with either synchronous updates or asynchronous

updates. The stability conditions for a multi-particle system with asynchronous updates

assumes that each group of particles have non-overlapping burst phases and constant
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bounded time delays. In the presence of actuation and measurement noise, I use Lya-

punov’s direct method to establish practical stability bounds for the desired equilibrium

point of a single particle and multiple particles.

This chapter is organized as follows. Section 3.2 introduces the intermittent dy-

namics of a single particle and analyzes the stability conditions of the zero-noise state

and output feedback cases. Section 3.3 analyzes the stability conditions for multi-particle

intermittent heading synchronization with noise-free state and output feedback with syn-

chronous updates. Section 3.4 introduces the intermittent dynamics for a multi-particle

system with asynchronous updates and analyzes the stability conditions of the zero-noise

state and output feedback cases. Section 3.5 investigates the practical stability of the

closed-loop heading dynamics with bounded actuation noise and measurement noise, re-

spectively, for a single-particle and multiple particles with asynchronous cycles. Lastly,

Section 3.6 summarizes the chapter and discusses ongoing and future work.

3.2 Burst and Coast Dynamics for a Single Particle

This section presents a dynamic model for a single particle with burst and coast

behavior in which sensing and actuation occur during non-overlapping phases. A single

burst phase combined with a single coast phase is called a cycle. Index k = 0,1, ... denotes

the kth cycle. The duration of the burst and coast phases in a single cycle are denoted β> 0

and T > 0, respectively, and are identical for all k. The start time of cycle k is tk = k(β+T ),

where t0 = 0.
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3.2.1 Intermittent locomotion in a fluid

The dynamics during the burst phase are adapted from (2.3). First, assume that

the steering and thrust inputs for the kth burst phase, i.e., u(t) = u(tk) and ν(t) = ν(tk),

are constant for t ∈ [tk, tk +β]. The steering input u is subject to actuator noise ξ and the

particle’s acceleration is subject to quadratic drag with coefficient b. The burst dynamics

for cycle k are

ṙ = se jθ (3.1)

θ̇ = u(tk)+ξ (3.2)

ṡ = −bs2 +ν(tk). (3.3)

The values r(tk), θ(tk), and s(tk) at the start of the kth burst phase are equal to the values

of the corresponding state variables at the conclusion of the previous coast phase for k > 0

and equal to the initial conditions for k = 0.

Because there is no actuation during the coast phase, the coast dynamics are equiv-

alent to (3.1)–(3.3) with u(tk) = 0, ν(tk) = 0, and ξ = 0. Observations collected during the

coast phase are denoted by y and are equal to the (constant) orientation θ of the particle ve-

locity subject to sensor noise η. Let θ̂ denote the estimate of θ. The coast phase dynamics,
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including a linear observer for θ with observer gain L, are

ṙ = se jθ (3.4)

θ̇ = 0 (3.5)

ṡ = −bs2 (3.6)

˙̂θ = L(y− θ̂) (3.7)

y = θ+η. (3.8)

The initial conditions for coast phase k are r(tk +β), θ(tk +β), and s(tk +β). Further-

more, the initial heading estimate is θ̂(tk)= θ̂(tk−1) for k > 0 and θ̂(tk)= 0 for k = 0. Figure

3.1 illustrates the dynamic model.

The output (3.8) and the observer dynamics (3.7) treat θ and θ̂ as linear variables

in R1, although θ and θ̂ are both in S1. To properly treat the nonlinearity of θ and θ̂, let

z′ = e jθ be the position of the particle projected on the unit circle and let y′ = z′e jη = e j(θ+η)

be the noisy measured output where θ+η= arg(y′). Similarly, the estimated heading is ẑ′ =

e jθ̂ and the nonlinear observer dynamics are ˙̂z′ = jL 〈e j(θ+η), e jθ̂〉, where < ·, · > represent

the complex inner product. Evaluating the inner product and linearizing the nonlinear

observer dynamics at the equilibrium point θ̂∗ = θ yields ˙̂z′ = L(θ+η− θ̂), i.e. (3.7).

3.2.2 State Feedback Heading Dynamics

For state feedback, the controls u and ν are constant during the burst phase of each

cycle. To track the desired heading θd, consider the steering control (2.4) evaluated at the
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Figure 3.1: Block diagram of a single particle dynamic model with burst and coast behavior.
Actuation occurs during the burst phase and sensing occurs during the coast phase.

start time tk of burst phase k:

u(tk)= K sin(θd −θ(tk)). (3.9)

The thrust control during the burst phase is ν(tk) = ν0. This subsection characterizes the

stability of the heading dynamics (3.2) with control (3.9) and no noise, i.e., ξ= 0; I consider

the case ξ ̸= 0 in Section 3.5.

The mapping from θ(tk) to θ(tk+1) is obtained by substituting (3.9) into (3.2) and

integrating from tk to tk+β for the burst phase and integrating (3.5) from tk+β to tk+β+

T = tk+1 for the coast phase. I obtain

θ(tk+1)= f (θ(tk)), (3.10)
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where

f (θ)= θ+Kβsin(θd −θ). (3.11)

The equilibrium points θ∗ of the map (3.10) are the solutions to the equation θ = f (θ), i.e.,

θ∗ = θd and θ∗ = θd ±π. To evaluate the stability of θ∗, take the Jacobian of (3.11) and

evaluate it at θ∗. For θ∗ = θd, I have

∂ f
∂θ

∣∣∣
θ∗=θd

= 1−Kβ. (3.12)

The following theorem states the necessary and sufficient conditions on the control gain K

and burst duration β for θ∗ = θd to be an exponentially stable equilibrium point.

Theorem 3.2.1. The map (3.11) corresponding to the closed-loop heading dynamics with

noise-free state feedback exponentially stabilizes the equilibrium point θ∗ = θd if and only if

0< Kβ< 2. The equilibrium points θ∗ = θd ±π are unstable.

Conceptually, the technical result in Theorem 3.2.1 implies that using state feedback

to steer a single particle with non-overlapping sensing and actuation to a desired heading

is achievable, but the magnitude and duration of the actuation, Kβ, must be considered.

Proof. The proof follows from the stability condition for a linear map, which requires the

eigenvalue(s) to lie within the unit circle. The map (3.10) is one dimensional and the sole

eigenvalue at θ∗ = θd is given by (3.12). Evaluating |1−Kβ| < 1, i.e., −1< 1−Kβ< 1, yields

the desired result. The eigenvalue at θ∗ = θd ±π is 1+Kβ, which is always greater than

one because K and β are positive.
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3.2.3 Output Feedback Heading Dynamics

In the output-feedback case, θ is estimated using the linear observer (3.7) with ob-

servations (3.8). The intermittent behavior of an agent following these dynamics using

output feedback is shown in Figure 3.2. The remainder of this subsection characterizes

the stability of the heading dynamics (3.2) with noise-free output feedback, i.e., η = 0; I

consider the case η ̸= 0 in Section 3.5.
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Figure 3.2: Intermittent burst and coast behavior of a single particle using output feedback
to steer in the desired direction θd = 135◦.

Since output feedback control of θ utilizes the heading estimate θ̂, the closed-loop

output feedback may be described using a two-dimensional map. Let g(θ, θ̂) represent the

map

(θ(tk+1), θ̂(tk+1))= g(θ(tk), θ̂(tk)), (3.13)

where g1(θ, θ̂) denotes the map from θ(tk) and θ̂(tk) to θ(tk+1) and g2(θ, θ̂) denotes the map

from θ(tk) and θ̂(tk) to θ̂(tk+1).
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Since the heading estimate θ̂(tk) is constant during the burst phase, I have

u(tk)= K sin(θd − θ̂(tk)). (3.14)

As with the state-feedback case, the output feedback map is

g1(θ, θ̂)= θ+Kβsin(θd − θ̂). (3.15)

The map g2(θ, θ̂) is constructed by analyzing the burst and coast phases separately.

Since the heading estimate is constant during the burst phase, θ̂(tk +β) = θ̂(tk). During

the coast phase, θ̇ = 0, which implies y = θ is constant from tk +β to tk +β+T . The map

θ̂(tk +β) to θ̂(tk+1) is obtained by integrating (3.7) with η= 0 to obtain

θ̂(tk+1)= θ(tk +β)(1− e−LT )+ θ̂(tk +β)e−LT . (3.16)

Substituting θ(tk +β)= g1(θ(tk), θ̂(tk)) into (3.16) and using θ̂(tk +β)= θ̂(tk) yields

g2(θ, θ̂)= (1− e−LT )(θ+Kβsin(θd − θ̂))+ e−LT θ̂. (3.17)

Let z = [θ, θ̂]T , which implies z(tk+1) = g(z(tk)), where g1 and g2 are given by (3.15)

and (3.17), respectively. The equilibrium points of g(z) are z∗ = (θ∗,θ∗), where θ∗ = θd or

θ∗ = θd±π. Linearizing g(z) about z∗ = (θd,θd) yields the following two-dimensional linear
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map:

∂g
∂z

∣∣∣
z=z∗

=

 1 −Kβ

1− e−LT Kβ
(
e−LT −1

)+ e−LT

 (3.18)

The following theorem provides conditions on the control and observer gains, K and

L, and the burst and coast durations, β and T, that ensure exponential stability of the

equilibrium point z∗ = (θd,θd). The other equilibrium points are unstable. The proof in-

vokes the stability of a 2D map as determined by its trace and determinant [83, p. 317]

(see Appendix A).

Theorem 3.2.2. The map g(θ, θ̂) given by (3.15) and (3.17) corresponding to the closed-loop

heading dynamics with noise-free output feedback exponentially stabilizes the equilibrium

point (θ∗, θ̂∗)= (θd,θd) if and only if LT > 0 and 0< Kβ< 2(1+e−LT )
1−e−LT .

Proof. Let τ and δ be the trace and determinant of (3.18), respectively, such that

τ = 1+Kβe−LT −Kβ+ e−LT (3.19)

δ = e−LT . (3.20)

From (A.3), δ< 1 is the first of three necessary conditions for stability of a 2D map. Sub-

stituting (3.20) into δ < 1 and noting that δ > 0 yields 0 < e−LT < 1, which implies the

desired condition on the product LT . Substituting (3.19) and (3.20) into the second condi-

tion δ>−1−τ (A.3) yields e−LT >−2−Kβe−LT +Kβ− e−LT , which implies

Kβ< 2(1+ e−LT )
1− e−LT . (3.21)
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(a) Kβ-LT plane (b) trace-determinant plane (c) complex plane

Figure 3.3: Stability regions of the burst and coast dynamics using noise-free output feed-
back with K = L = 1 and three values of the cycle time CT =β+T . The shaded regions are
stable.

Substituting (3.19) and (3.20) into the third condition δ > −1+τ (A.3) yields e−LT >

Kβe−LT −Kβ+ e−LT , which implies Kβ> 0 as desired.

The results of Theorem 3.2.2 are illustrated in Figures 3.3a–3.3c. Certain values

of Kβ, LT , and the overall cycle time CT = β+T can destabilize the desired equilibrium

point. Figure 3.3a illustrates the stability region in the Kβ–LT plane for three values of

CT ; Figure 3.3b illustrates the stability region in the trace-determinant plane; Figure 3.3c

illustrates the stability region in the complex plane.

Conceptually, the technical result in Theorem 3.2.2 implies that using output feed-

back to steer a single particle with non-overlapping sensing and actuation to a desired

heading is achievable, but the strength and duration of the actuation, Kβ, and the obser-

vation, LT , must be considered. Intuitively, one may expect shorter weaker bursts with

longer more accurate observations to be stable. In fact this is commonly observed in a va-

riety of biological species [3]. However, as illustrated in Figure 3.3a, the bounds on Kβ and

LT suggest that perhaps longer stronger burst with shorter less accurate observations are

also stable.
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3.2.4 Bifurcations of Output Feedback Dynamics

This section analyzes bifurcations of the output feedback dynamics using the total

cycle time CT as the bifurcation parameter. Solving for β = CT −T yields the following

constraint on the trajectories in the Kβ–LT plane:

Kβ= K(CT −T )=−K
L

(LT )+KCT , (3.22)

corresponding to a line with slope −K
L and vertical-axis intercept KCT . The following

corollary to Theorem 3.2.2 identifies the largest cycle time CT for which all values of Kβ

and LT stabilize the desired equilibrium point θ∗ = θd.

Corollary 3.2.1. Consider the closed-loop heading dynamics with noise-free output feed-

back described in Theorem 2. Let CT = β+T denote the cycle time. The equilibrium point

θ∗ = θd is exponentially stable for any control gain K > 0 and observer gain L > 0 if

CT < 2(1+ p)
K(1− p)

+ 1
L

ln p (3.23)

where

p = K +2L+2
p

L(L+K)
K

(3.24)

Proof. I seek a tangential intersection of the constraint (3.22) with the stability condition

(3.21). An intersection occurs at the value of CT for which (3.21) equals (3.22), which yields

CT = 2(1+ e−LT )
K(1− e−LT )

+ 1
L

(LT ). (3.25)
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The intersection is tangential if the derivatives of (3.21) and (3.22) are equal at the inter-

section point, i.e.,

−K
L

=− 4e−LT

(1− e−LT )2 . (3.26)

Equation (3.26) yields the following quadratic equation in terms of p = e−LT :

K p2 −2(K +2L)p+K = 0. (3.27)

Solving for p using the quadratic equation and adopting the positive root gives the desired

result. (The negative root does not satisfy the stability conditions in Theorem 3.2.2.)

3.3 Multi-particle Synchronization with Synchronous Bursts

This section extends the intermittent dynamics of a single particle to multiple par-

ticles with all-to-all communication and synchronous cycles. I adopt the intermittent dy-

namics from Section 3.2 and use subscript n to denote the nth particle. First, I introduce

the heading consensus controller (2.5) used to align each particle’s heading. Second, I

examine the equilibrium points of the multi-particle system and determine the stability

properties for the state feedback case. Third, I devise an idealized sensor to observe the

relative headings between each particle and determine the stability properties for the out-

put feedback case.
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3.3.1 State Feedback Heading Synchronization

As in the single-particle case, the constant thrust control input for the nth particle is

νn = ν0. For multiple particles, the (constant) steering input is [19]

un(tk)= K
N

N∑
m=1

sin(θm(tk)−θn(tk)) , (3.28)

which seeks to aligns each particle’s heading (see Figure 3.4). The remainder of this section

characterizes the stability of the heading dynamics (3.2) with (3.28) and no noise, i.e.,

ξn = 0. Let θ denote the vector of headings and hn denote the map of the nth particle’s

heading from θn(tk) to θn(tk+1) such that θn(tk+1)= hn(θ(tk)), where

hn(θ)= θn + Kβ
N

N∑
m=1

sin(θm −θn). (3.29)

The synchronized equilibrium points of (3.29) are θ∗ = α1, where α ∈ S1 and 1 =

[1, · · · ,1]T . Linearizing (3.29) about θ∗ yields the N ×N Jacobian matrix

∂hn

∂θ

∣∣∣
θ=θ∗ =


1− Kβ

N
(N −1) n = m

Kβ
N

n ̸= m

. (3.30)

The following theorem provides conditions on Kβ for θ∗ = α1 to be exponentially stable.

Note the result is identical to the single-particle case.

Theorem 3.3.1. The map (3.29) corresponding to the multi-particle closed-loop heading dy-

namics with noise-free state feedback exponentially stabilizes the synchronized equilibrium
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Figure 3.4: State feedback heading alignment for multiple particles with intermittent be-
havior.

point if and only if 0< Kβ< 2.

Proof. Let there be N agents such that the Jacobian matrix follows the structure of (3.30).

The eigenvalues of (3.30) are λ= 1 and N −1 repeated roots of λ= 1−Kβ. Evaluating the

magnitude of the repeated eigenvalues to be less then 1, i.e., −1 < 1−Kβ < 1, yields the

desired result. The eigenvector for the λ= 1 eigenvalue corresponds to the inertial frame’s

rotational symmetry and does not affect the convergence to θ∗. All other equilibrium points

are unstable [19].

3.3.2 Output Feedback Heading Alignment

To simplify notation, let the relative headings between the mth and nth particles be

denoted by θm,n = θm −θn and let ∆θ = [θ1,2, · · · ,θN,N−1]T be the N2 −N vector of relative

headings for N particles. The output equation and linear observer dynamics for the multi-
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particle coast phase are

y=∆θ+η (3.31)

and

∆ ˙̂θ = L
(
y−∆θ̂)

, (3.32)

respectively, where L is the observer gain and ∆θ̂ is the vector of estimated relative head-

ings.

In the output-feedback case I use an idealized sensor to estimate the relative head-

ings ∆θ during the coast phase. The estimated relative headings ∆θ̂ are used in the steer-

ing control input during the burst phase. The heading controller during the burst phase

is

un = K
N

N∑
m=1

sin(θ̂m,n(tk)). (3.33)

Since (3.33) utilizes θ̂m,n(tk), the closed-loop heading dynamics may be described using a

N2-dimensional map. Let H(θ,∆θ̂) represent the map so that

(θ(tk+1), θ̂(tk+1))= H(θ(tk),∆θ̂(tk)), (3.34)

where Hθ(θ,∆θ̂) denotes the map from θn(tk) and ∆θ̂n(tk) to θn(tk+1) and H∆θ(θ,∆θ̂) de-

notes the map from θn(tk) and ∆θ̂n(tk) to ∆θ̂n(tk+1).

The nth term of the multi-particle output feedback map is

Hn
θ (θ,∆θ̂)= θn + Kβ

N

N∑
m=1

sin
(
θ̂m,n

)
. (3.35)
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The map H∆θ(θ,∆θ̂) is determined by integrating (3.32), substituting (3.35), and using

θm,n(tk +β)= θm,n(tk+1), which yields the (m,n)th term of

Hm,n
∆θ

(θ, θ̂)= (1− e−LT )
(
θm,n +um −un

)+ e−LT θ̂m,n, (3.36)

where um and un are given by (3.33) for the mth and nth particles, respectively.

Let φ = [θ,∆θ̂]T represent the N2-dimensional column vector of the absolute head-

ings and estimated relative headings. This implies that φ(tk+1) = H(φ(tk)), where Hθ and

H∆θ are given by (3.35) and (3.36), respectively. The synchronized equilibrium points of

H(φ) are φ∗ = [θ∗,∆θ̂∗]T , where θ∗ =α1 and ∆θ̂∗ = 0.

Linearizing H(φ) about the synchronized equilibrium points yields a N2 ×N2 Jaco-

bian matrix

∂H
∂φ

∣∣∣
φ=φ∗ =


∂Hθ

∂θ
∂Hθ

∂∆θ̂

∂H∆θ
∂θ

∂H∆θ

∂∆θ̂


∣∣∣
φ=φ∗ . (3.37)

Evaluating (3.37) for N = 2 particles yields

∂Hθ

∂θ
=

1 0

0 1

 ,
∂Hθ

∂∆θ̂
=


Kβ
2 0

0 Kβ
2

 ,
∂H∆θ

∂θ
=

e−LT −1 1− e−LT

1− e−LT e−LT −1

 ,

∂H∆θ

∂∆θ̂
=

e−LT + 1
2

(
Kβ(e−LT −1)

) −1
2

(
Kβ(e−LT −1)

)
−1

2

(
Kβ(e−LT −1)

)
e−LT + 1

2

(
Kβ(e−LT −1)

)
 .

The evaluation of (3.37) for N = 3 particles followed a similar structure, and the general
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form of (3.37) for N particles with noise-free output feedback is

∂H
∂φ

∣∣∣
φ=φ∗ =

 I A

D e−LT I +DA

 , (3.38)

where I is the identity matrix of appropriate dimensions, A ∈RN×N2−N is a block diagonal

matrix with N −1 repeated Kβ
N entries on the diagonal, and D ∈RN2−N×N is the transpose

of incidence matrix [79] of an all-to-all communication network multiplied by (e−LT −1).

As an example, the A and D matrices for N = 3 particles are

A = Kβ
N


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 , D =
(
e−LT −1

)



1 −1 0

1 0 −1

−1 1 0

0 1 −1

−1 0 1

0 −1 1



.

The following theorem provides conditions on the products Kβ and LT that exponen-

tially stabilize the synchronized equilibrium point for N particles. The other equilibrium

points are unstable. Note, the following result matches the single particle case.

Theorem 3.3.2. The map H(θ,∆θ̂) given by (3.35) and (3.36) corresponding to the closed-

loop heading dynamics with noise-free output feedback exponentially stabilizes the synchro-

nized equilibrium point if and only if LT > 0 and 0< Kβ< 2(1+e−LT )
1−e−LT .

Proof. Let λ be the eigenvalues of the linearized heading dynamics (3.37) for N particles,
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such that there is a single eigenvalue at λ = 1, there are N2 −2N +1 eigenvalues at λ =

e−LT , and there are N −1 eigenvalue pairs at

λ= 1
2

((
e−LT (1+Kβ)+ (1−Kβ)

)
±

√(
e−LT (1+Kβ)+ (1−Kβ)

)2 −4e−LT
)
. (3.39)

For a map to be exponentially stable, λ must lie within the unit circle centered at the origin

of the complex plane, i.e, |λ| < 1. For the repeated λ= e−LT eigenvalues, the stability con-

dition yields e−LT < 1, which implies the desired condition on the product LT . Similarly,

evaluating the stability of (3.39) yields (Kβ+2)(e−LT −1)>−4, which implies

Kβ< 2(1+ e−LT )
1− e−LT . (3.40)

The eigenvector for the λ = 1 eigenvalue corresponds to the rotational symmetry of the

inertial frame and does not affect convergence to φ∗ = [α1,0]T .

3.4 Heading Synchronization with Asynchronous Updates

This section examines the intermittent heading synchronization of multiple particles

with asynchronous cycles. The asynchronous assumption implies that the burst phases for

individual particles can occur at different times. To generalize the intermittent dynamics

for multiple particles with asynchronous cycles, I build on the work from [22]. In [22] it is

assumed that the particles share a fixed communication graph, all particles are actuated

over a uniform time horizon (i.e., all particles have constant and equivalent cycle times),

and only non-connected particles can burst at the same time. I relax this last assumption
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by introducing the concept of groups. I define a group as a collection of particles with dis-

tinct initial conditions that burst at the same time. To model the ensemble level dynamics

for a collection of particles with asynchronous intermittent locomotion, I introduce a time-

dependent matrix B(t) that selects which particles are bursting at time t. I also introduce

a constraint on the delays between each group’s burst phase and assume that groups have

distinct burst phases. While the non-overlapping burst phase assumption may seem ar-

tificial, the duration of the burst phase for many aquatic species is small relative to the

duration of the coast phase [3]. Therefore, I are assuming that the duration of the burst

phase for one group is small enough to not overlap with the burst phase of another group.

With these assumptions, I examine the stability of the synchronized equilibrium point and

determine stability criteria for the state feedback case. For the output feedback case, I use

the idealized sensor from Section 3.3 to determine the stability properties for the synchro-

nized equilibrium point.

3.4.1 Modeling Intermittent Group Dynamics

Let x = [r1 · · · rN , s1 · · · sN ,θ1 · · ·θN]T denote the vector of states for N self-propelled

particles and yn be the output vector of relative headings for the nth particle. Using the

framework described in Section 3.2, the dynamics during the burst and coast phases are

ẋ= fb(x,u,ν) and ẋ= fc(x), respectively, where the burst dynamics for the nth agent are

f n
b (x,u,ν)=



ṙn = sne jθn

θ̇n = un(tk)

ṡn = νn(tk)−bs2
n,

(3.41)
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and the coast dynamics for the nth particle are

f n
c (x)=



ṙn = sne jθn

θ̇n = 0

ṡn =−bs2
n

yn = θm −θn, ∀ m ̸= n

˙̂θn = L(y− ŷ),

(3.42)

where the constant input un is (3.28) and νn = ν0 for all n = 1, . . . , N.

The dynamics for the collection of particles at any given time can be written as

ẋ= B(t) fb(x,u,ν)+ (I −B(t)) fc(x), (3.43)

where B(t) is a diagonal matrix that selects which of the P subset groups of particles are

bursting. The following assumptions are used to define the structure and piecewise time

dependence of B(t). First, assume that the particles are homogeneous, in that all particles

coast for T seconds and burst for β seconds. Second, assume that the particles have non-

overlapping burst phases separated by delays.

Let dp/p−1 be the delay between the p and p−1 groups and let d ∈ RP be the vector

of subsequent delays between each particle group, such that

d= [d1/0,d2/1,d3/2, . . . ,dP/P−1]T , (3.44)

where d1/0 is the delay between the start of the global cycle time t = tk and the start of
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the first group’s burst phase. Assume that d1/0 = 0, without loss of generality. Since the

particles have non-overlapping bursts, the sum of the delays between each group’s burst

phase must be in the following range

0≤ 1Td≤ CT −Pβ. (3.45)

Due to the delays between the burst phases of each particle group, the burst phase of

all particles does not start at tk. Instead, the beginning of the burst phase for the particles

in the pth group is

τ
p
k = tk + (p−1)β+

p∑
m=1

dm/m−1, (3.46)

and the end of the coast phase for the pth group is

τ
p
k+1 = tk + pβ+T +

p∑
m=1

dm/m−1. (3.47)

Note that τp
k and τ

p
k+1 are universal times among all particles, but the status of whether

or not a group is bursting depends on the value of B(t).

Let V be the set of N particles such that V= {1, . . . , N}, Ep be the set of particles in the

pth group where Ep ⊆ V, and ψp ∈ RN×N be the diagonal matrix that represents the pth

particle group in the school of N particles. The nth element on the main diagonal in ψp is

either a 1 or 0 depending on whether the nth particle is in Ep. Generally the nth diagonal
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Figure 3.5: Timeline of asynchronous intermittent locomotion for P = 5 groups with delays
between burst phases. When ψp = 1, particle group p is bursting, whereas when ψp = 0
group p is coasting.

entry of ψp can be expressed as

ψn
p =


1, if n ∈ Ep,

0, otherwise.

(3.48)

Figure 3.5 illustrates a timeline of the school’s behavior for P = 5 groups.

3.4.2 State Feedback Heading Synchronization with Asynchronous Bursts

For the state feedback case with asynchronous cycles, B(t) is expressed as

B(t) =


I ⊗ψp; τ

p
k ≤ t ≤ τp

k +β

0; otherwise

, (3.49)
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where 0 is a matrix of zeros with the appropiate dimensions. In (3.49), the Kronecker

product ⊗ with I ∈RP×P is used to distribute ψp among all N particles such that

B(t)=



ψp(t) 0 0 · · · 0

0 ψp(t) 0 · · · 0

0 0 ψp(t) · · · 0

...
...

... . . . ...

0 0 0 · · · ψp(t)


∈RPN×PN (3.50)

from τ
p
k ≤ t ≤ τp

k +β.

Let bn(t) be the element of B(t) corresponding to the nth particle, such that

bn(t)=


ψn

p, τ
p
k ≤ t ≤ τp

k +β,

0, otherwise.

(3.51)

The closed-loop heading dynamics of the nth particle with control law (3.28) synchronizes

the headings of the particles with asynchronous state feedback (see Figure 3.6). The closed-

loop heading dynamics are

θ̇n = bn(t)

(
K
N

N∑
m=1

sin(θm(τk)−θn(τk))

)
+ (1−bn(t)) (0). (3.52)

Note that if the nth particle is in the pth group, then bn(t) = 1 from τ
p
k ≤ t ≤ τ

p
k +β and
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Figure 3.6: Asynchronous convergence to the synchronized heading equilibrium point for
a collection of N=12 agents and P=5 groups using state feedback. Since distinct groups of
particles have non-overlapping burst phases, their respective speeds will never synchro-
nize as time goes to infinity, as in the previous section.

bn(t)= 0 for the remainder of the cycle. Integrating (3.52) from the τp
k to τp

k+1 yields

∫ θn(τp
k+1)

θn(τp
k )

dθn =
∫ τ

p
k+β

τ
p
k

bn(t)
( K

N

N∑
m=1

sin
(
θm

(
τ

p
k

) − θn
(
τ

p
k

)))
dt+

∫ τ
p
k+1

τ
p
k+β

0dt (3.53)

θn
(
τ

p
k+1

)= θn
(
τ

p
k

)+ Kβ
N

N∑
m=1

sin
(
θm

(
τ

p
k

)−θn
(
τ

p
k

))
. (3.54)

Note that (3.54) is identical to the state feedback case with synchronous cycles.

The following theorem provides conditions that guarantee local exponential conver-

gence to the synchronized equilibrium point θ∗ =α1.

Theorem 3.4.1. The map (3.54) corresponding to the closed-loop heading dynamics with

noise-free asynchronous state feedback locally exponentially stabilizes the synchronized equi-

librium point if and only if the constraint in (3.45) is satisfied and 0< Kβ< 2.
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Proof. Given that the delay vector d satisfies the constraint in (3.45), the map (3.54) cor-

responding to the closed-loop heading dynamics with noise-free asynchronous state feed-

back is identical to the map (3.29) corresponding to the closed-loop heading dynamics with

noise-free synchronous state feedback. The Jacobian matrix of (3.54) for N particles is

(3.30). The remainder of the proof follows the proof of Theorem 3.3.1.

3.4.3 Output Feedback Heading Synchronization

For the output feedback case with asynchronous cycles, I use the control law (3.33)

to synchronize the headings of the particles and the measurements (3.32) to estimate the

relative headings between particles. Since I are measuring the relative headings for each

of the particles, the structure of the B(t) matrix differs from the state feedback case. The

ψp matrix for the pth particle group is (3.48); however, distributing ψp with the Kronecker

product of the identity matrix is required such that

B(t) =



ψp 0

0 ψp ⊗ I

 , τ
p
k ≤ t ≤ τp

k +β,

0, otherwise

. (3.55)

The closed-loop heading dynamics for the nth particle are

θ̇n = bn(t)

(
K
N

N∑
m=1

sin
(
θ̂m,n

))+ (1−bn(t))(0), (3.56)

46



and the estimated relative heading observer dynamics are

∆ ˙̂θn = bn(t)(0)+ (1−bn(t))
(
L(∆θn −∆θ̂n)

)
. (3.57)

I derive the map for the closed-loop heading dynamics by using separation of variables and

integrating (3.56) from t = τp
k to t = τp

k+1, which yields

θn
(
τ

p
k+1

)= θn
(
τ

p
k

)+ Kβ
N

N∑
m=1

sin
(
θ̂m,n

(
τ

p
k

))
. (3.58)

The map for the observer dynamics is derived by integrating (3.57) from τ
p
k to τ

p
k+1 and

substituting in (3.58), yielding

θ̂m,n
(
τ

p
k+1

)= (1− e−LT )
(
θm,n

(
τ

p
k

)+um
(
τ

p
k

)−un
(
τ

p
k

))+ e−LT θ̂m,n
(
τ

p
k

)
, (3.59)

where um and un are the heading inputs for the mth and nth particles, respectively. Note

that (3.58) and (3.59) are identical to the maps (3.35) and (3.36). The following theorem

provides sufficient conditions to exponentially stabilize the synchronized equilibrium point

φ∗.

Theorem 3.4.2. The maps (3.58) and (3.59) corresponding to the closed-loop heading dy-

namics with noise-free asynchronous output feedback locally exponentially stabilizes the

synchronized point if the constraint in (3.45) is satisfied, LT > 0, and 0< Kβ< 2(1+e−LT )
1−e−LT .

Proof. Given that the delay vector d satisfies the constraint in (3.45), the maps (3.58) and

(3.59) corresponding to the closed-loop heading dynamics and estimation with noise-free
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asynchronous output feedback, respectively, are identical to the maps (3.35) and (3.36),

corresponding to the closed-loop heading dynamics and estimation with noise-free syn-

chronous output feedback, respectively. The Jacobian matrix of (3.58) and (3.59) for N

particles is (3.37). The remainder of the proof follows the proof of Theorem 3.3.2.

A common assumption in decentralized consensus and synchronization literature

is homogeneous control parameters [20–22]. In the present work, the particles share a

common control gain K , burst duration β, and observer gain L. However, if the particles

had different burst durations, then one could implement an additional consensus controller

to achieve a common β before synchronizing the particle’s headings. After aligning β for

all particles the simulations would be equivalent to the results presented in this chapter.

3.5 Noisy Sensing and Actuation

This section considers the robustness of the estimation and control results from Sec-

tions 3.2 – 3.4 under the influence of sensor and actuator noise. First, Lyapunov analy-

sis (see Appendix) shows that the synchronized equilibrium point is uniformly ultimately

bounded under the dynamics (3.2) with state-feedback heading control (3.9) for a single

particle and (3.28) for multiple particles and bounded actuator noise ξ ̸= 0. Second, a sim-

ilar analysis shows that the estimation error σ = θ− θ̂ is uniformly ultimately bounded

under the observer dynamics (3.7) with observation (3.8) and bounded measurement noise

η ̸= 0.
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3.5.1 State Feedback Noisy Heading Control

Consider the single particle heading dynamics (3.2) with state-feedback control (3.9)

and bounded actuator noise ξ. Let q = θ−θd denote the smallest angular difference be-

tween θ and θd. The map from q(tk) to q(tk+1) is obtained from f (θ) in (3.11) by including

ξ̄ = ∫ tk+β
tk

ξdt on the right-hand side and subtracting θd from both sides. Assume |ξ̄| ≤ γ.

Taking the Taylor series expansion of sin q about q = 0 yields

q(tk+1)= q(tk)−Kβq(tk)+ ξ̄. (3.60)

Consider a quadratic Lyapunov function candidate V (q)= 1
2 q2. Let∆V (tk)=V (tk+1)−

V (tk). Along solutions of the map (3.60), I have

∆V = 1
2

Kβ(Kβ−2)q2 + (1−Kβ)qξ̄+ 1
2
ξ̄2

≤ 1
2

Kβ(Kβ−2)q2 +|1−Kβ||q|γ+ 1
2
γ2 (3.61)

The following corollary to Theorem 3.2.1 identifies a bound on q proportional to the actua-

tor noise bound γ.

Corollary 3.5.1. Consider the closed-loop heading dynamics (3.2) with noisy state feedback

ξ ̸= 0. Let ξ̄ = ∫ tk+β
tk

ξdt for all k. Assume 0 < Kβ < 2, and |ξ̄| < γ. The solution θ(t) is

uniformly ultimately bounded with bound θd ± γ

Kβ .

Proof. Since 0< KB < 2, (3.61) corresponds to a concave-down parabola ∆V (q). Therefore,

V (q) is decreasing for all values of q for which ∆V < 0. The roots ∆V = 0 occur for q =
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γ

Kβ , γ

Kβ−2 , which implies solutions converge to |q| < γ

Kβ .

For the multi-particle case, with either synchronous or asynchronous cycles, consider

the map of the nth particle’s closed-loop heading dynamics (3.54) with bounded actuator

noise ξ̄n = ∫ τp
k+1

τ
p
k

ξndt. Let the smallest difference between the nth and mth particle head-

ings at time τp
k be θnm(τp

k ). The map from θnm(τp
k ) to θnm(τp

k+1) is

θnm(τp
k+1) = θnm(τp

k ) + Kβ
N

N∑
q=1

(
sin

(
θq(τp

k )−θn(τp
k )

) − sin
(
θq(τp

k )−θm(τp
k )

)) + (
ξ̄n − ξ̄m

)
.

(3.62)

Taking a Taylor series expansion about θnm = 0 yields

θnm(τp
k+1)= θnm(τp

k )−Kβθnm(τp
k )+ (

ξ̄n − ξ̄m
)
. (3.63)

Consider the quadratic Lyapunov function candidate V (θ)= N
2

∑N
q=1

∑N
a=1θ

2
qa(τp

k ). Let

∆V (τp
k )=V (τp

k+1)−V (τp
k ) and assume |ξ̄n| ≤ γ. Along solutions of the map (3.62), I have

∆V = N
2

N∑
q

N∑
a

(
Kβ

(
Kβ−2

))
θ2

qa(τp
k )+2

(
1−Kβ

)(
ξ̄q − ξ̄a

)
θqa(τp

k )+ (
ξ̄q − ξ̄a

)2

∆V ≤ N
2

N∑
q=1

N∑
a=1

(
Kβ

(
Kβ−2

))
θ2

qa(τp
k )+2

∣∣1−Kβ
∣∣(2γ)∣∣θqa(τp

k )
∣∣+ (

2γ
)2 (3.64)

The following corollary to Theorem 3.4.1 identifies the bound on θnm proportional to the

magnitude of actuator noise γ.

Corollary 3.5.2. Consider the closed-loop multi-particle heading dynamics (3.52) with

noisy state feedback ξn ̸= 0. Let ξ̄n = ∫ τp
k+β

τ
p
k

ξndt for all k. Assume 0 < Kβ< 2, and |ξ̄n| < γ.
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The solution θ(t) is uniformly ultimately bounded with bound α1± γ

Kβ .

Proof. Since 0 < Kβ < 2, (3.64) corresponds to a sum of concave-down parabolas ∆V (θ).

Therefore, V (θ) is decreasing for all values of θqa for which ∆V < 0. The roots ∆V = 0 occur

for θqa = γ

Kβ , γ

Kβ−2 , which implies that solutions converge to |θqa| < γ

Kβ for all points q and

a.

3.5.2 Output Feedback with Noisy Measurements

Now consider the observer dynamics (3.7) and measurement equation (3.8) of a single

particle. Analysis of the multi-particle case of output feedback with noisy measurements

is the subject of ongoing work. Let ξ = 0 and η be bounded measurement noise satisfying

|η| < Γ. The estimation error σ denotes the angular difference between θ and θ̂ during the

coast phase. Since θ, θ̂ ∈ S1, let σ = θ− θ̂ corresponds to the smallest angle between eiθ

and eiθ̂. Since θ is constant during the coast phase, the time derivative of σ in the interval

tk +β to tk +β+T is

σ̇=− ˙̂θ =−L(σ+η). (3.65)

Consider the quadratic Lyapunov function candidate U(σ)= 1
2σ

2. The time-derivative

of U(σ) along solutions of (3.65) is

U̇ =−Lσ2 −Lησ. (3.66)

The following corollary to Theorem 3.2.2 identifies a bound on σ equal to the sensor-noise

bound.
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Corollary 3.5.3. Consider the observer dynamics (3.7) with L > 0 and bounded sensor noise

|η| <Γ. The estimation error σ= θ− θ̂ converges to |σ| <Γ.

Proof. Since |η| <Γ, (3.66) becomes

U̇ ≤−Lσ2 +LΓ|σ|. (3.67)

Therefore, U is decreasing outside of the region given by the non-zero roots of (3.67), i.e.,

|σ| = ±Γ.

3.6 Conclusion

The effects of separating sensing and actuation in dynamic systems is not well stud-

ied. This chapter presents a bio-inspired dynamic model of planar self-propelled particles

with intermittent heading sensing and control. Stability analysis of the noise-free state

feedback and output feedback control provides conditions on control and observer gains to

ensure local exponential convergence of the equilibrium point in the case of a single parti-

cle, multiple particles with synchronous cycles, and multiple particles with asynchronous

cycles. The practical stability of the heading estimation and controller is analyzed for

bounded measurement and actuator noise, respectively.
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Chapter 4: Bioinspired Pursuit in a Structured Environment

4.1 Introduction

I introduce a pursuit-evasion game with a single pursuer and a single evader moving

at a constant speed in a still fluid to study how bioinspired predation strategies affect the

interaction. In an effort to study the effects of a complex environment on predation, the

game occurs in a planar convex environment. Using the expected work required to capture

the evader as an objective function I show that minimizing the evader’s escape routes

can outweigh the effect of incurring additional drag. With this metric, I determine the

regions in the bounded environment where it is advantageous for the pursuer to expand

its appendages in the active orientation. Similarly, I show that the presence of a boundary

positively affects the pursuer by expanding this active orientation shape-changing region

in certain directions.

This chapter is organized as follows. Section 4.2 describes the problem formulation,

equations of motion, the evader’s avoidance and escape regions, and the evader’s escape

heading probability density function. Section 4.3 presents the expected work required

to capture the evader, discusses when the pursuer should prioritize trapping the evader

over minimizing the work to capture, and provides qualitative assessment on the optimal

pursuit trajectories. Section 4.4 summarizes the results and describes ongoing work.
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4.2 Problem Formulation

This chapter considers a pursuit-evasion game with a single pursuer P and evader E

in a planar convex environment. The pursuer is modeled as a streamlined rigid body with

symmetric movable appendages and its objective is to capture the evader using pure pur-

suit. The evader is modeled as a self-propelled particle and employs the protean strategy

in an effort to avoid capture. Capture is defined as the coincidence of the frontmost point

on the pursuer’s body and evader.

During pursuit, the pursuer orients its appendages to minimize the evader’s escape

directions; however, expanding the appendages increases drag. I explore the trade-off

between minimizing the work to capture the evader and minimizing the evader’s escape

directions by using the expected work to capture as the cost function.

The following subsections present the planar interaction model between a pursuer P

and an evader E in a bounded environment. First, I derive the equations of motion for the

pursuer and evader. Second, I introduce the evader’s avoidance and escape regions that

are used to derive the probability density function of the evader’s escape heading. Third, I

derive the probability density function for the evader’s escape heading.

4.2.1 Predator-Prey Equations of Motion and Interaction Model

Let the pursuer’s body length, width, and appendage length be lP , wP , and l f , respec-

tively. The pursuer’s center of mass is positioned at rP = xP + j yP and the body’s frontmost

point is

rP f = rP + lP

4
e jθP , (4.1)
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where θP is the pursuer’s heading.

Inspired by the predation strategies of lionfish [10, 25, 31], the pursuer uses its ap-

pendages to minimize the evader’s escape routes, but doing so affects the pursuer’s size and

surface area. Let ψ be the appendage orientation with respect to θP . Since the appendages

are symmetric, ψ is the orientation of the right appendage and −ψ is the orientation of the

left appendage. The endpoints of the left and right appendages are positioned at rAL and

rAR , respectively, where

rAL = rP + 1
2

wP je jθP + l f e j(θP−ψ) (4.2)

rAR = rP − 1
2

wP je jθp + l f e j(θP+ψ). (4.3)

When ψ= 0, the appendages are held parallel to the line-of-sight vector and the pur-

suer is in its narrowest configuration, and when ψ=π/2 the appendages are perpendicular

to the line-of-sight vector and the pursuer is in its widest configuration. For simplicity, let

ψ be treated as a switching parameter with values of either ψ = 0 or ψ = π/2. Increasing

the frontal area of the pursuer comes at the cost of additional drag, where drag is modeled

as

Dp = b
(
1+H sin(ψ)

)
sP , (4.4)

where b > 0 is the nominal drag coefficient and H > 0 is the percent drag increase due

to the orientation of the appendages. I use (4.4) in Section 4.3 to compute the work and

expected work to capture the evader as a function of ψ.

To model the planar locomotion of the pursuer, I model a thrust force TP , linear drag
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force DP , and turning rate uP . uP directly controls rate of change of the the pursuer’s

direction of motion. The body is aligned with this direction. Also assume that the pursuer

has a constant speed sP , i.e., the thrust and drag forces cancel. The equations of motion of

P are

ṙP = sP e jθP (4.5)

θ̇P = uP . (4.6)

Using the pure pursuit strategy, the pursuer seeks to align its heading with the line-

of-sight vector such that

uP = KP sin(α−θP ), (4.7)

where α is (2.7) and KP > 0 is a steering control gain.

The evader, on the other hand, is modeled as a point mass self-propelled particle E

with intermittent steering. The intermittent steering is divided into an active steering

phase during which the evader changes its heading over a duration of β seconds and a

non-steering phase during which the evader has a constant heading over a duration of T

seconds. Let the evader’s constant speed be denoted as sE and its heading be θE. Adapting

the planar intermittent locomotion model from [23], the equations of motion of E are shown

in Figure 4.1. Assume β is much smaller than T . The completion of a single active steering

phase and single non-steering phase is called a cycle, where k is the cycle number [23].

Using the protean evasion strategy, the evader steers to a random escape heading θd

during the active steering phase and continues to travel along θd during the non-steering
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Figure 4.1: Evader intermittent dynamics split into active steering and non-steering
phases. β is the time duration of active steering, T is the non-steering duration, t is
the current time, and tk is the time when the kth active steering phase started.

phase. Let uE = KE sin(θd −θE) be the steering control input, where KE > 0 is a control

gain, and the closed-loop heading dynamics during the active steering phase are

θ̇E = KE sin(θd −θE). (4.8)

Figure 4.2: Illustration of the free-body diagram of the pursuer and the interaction of the
kinematics with the evader.

Figure 4.2 illustrates the pursuer-evader interaction model.
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The pursuit and evasion trajectories are governed by the closed-loop dynamics of

the pursuer and the evader. Figure 4.3 illustrates the pursuer’s pure-pursuit strategy

and the evader’s protean strategy in a bounded environment shown by solid black lines.

In Figure 4.3a, both the pursuer and evader are in their initial configuration where the

pursuer has its appendages retracted and is not sensed by the evader. The evader has

a limited sensing range with maximum radius R, here arbitrarily set to 1 m, shown as

the lightly shaded blue region in Figure 4.3. Let RS ∈ R2 be the set of points within the

evader’s sensing range. If the pursuer or the boundary is outside of RS then the evader

does not respond to their presence. However, if the pursuer or boundary are inside of RS ,

then the evader responds by steering away from them in a random direction θd according

to its probability density function.

At the start of the simulation, the evader enters its active steering phase during

which it randomly selects a desired heading θd. The next snapshot in Figure 4.3b shows

the pursuer entering the evader’s sensing region and expanding its appendages. The

evader senses the pursuer while in its non-steering phase, so it continues to move in the θd

direction until the next cycle. In Figure 4.3c, the evader has entered the next cycle during

which a new θd is randomly selected to avoid the pursuer by steering in the opposite direc-

tion. The pursuer keeps its appendages expanded to minimize the evader’s escape routes.

Lastly, in Figure 4.3d, the evader again steers in a random direction to avoid the pursuer,

however, the pursuer captures the evader during the non-steering phase. The simulation

parameter values for the pursuer and the evader are shown in Table 4.1. The size of the

pursuer’s body length, body width, and appendage length were adapted from [84].
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(a) time: 0 sec (b) time: 0.6350 sec

(c) time: 1.2750 sec (d) time: 1.9050 sec

Figure 4.3: Pure pursuit and protean evasion trajectories in a bounded environment at
intervals of 0.6350 sec, showing (a) the initial configuration where the blue dot and black
arrow is the evader and its velocity orientation, the large blue circle is the evader’s sensing
region; and (b-d) the trajectories of the pursuer (red line) and evader (blue line) until
capture is achieved.

4.2.2 The Evader’s Avoidance and Escape Regions

The goal of the evader is to avoid capture from the pursuer and avoid collisions with

the boundary B ∈ R2. Due to the limited sensing range, the evader can only respond to

these obstacles when they are in its sensing region RS .

When the pursuer is within the sensing range, the evader detects its relative direc-

tion and size. Let rE/AL and rE/AR be the relative positions of the pursuer’s left and right
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Parameter Symbol Value

Pursuer Speed sP 1.05 m/s

Pursuer Steering Gain KP 50 rad/s

Pursuer Appendage Length l f 316×10−3 m

Pursuer Body Length lP 378×10−3 m

Pursuer Body Width wP 44.8×10−3 m

Evader Sensing Range R 1.0 m

Evader Steering Gain KE 50 rad/s

Evader Speed sE 1.0 m/s

Evader Burst Duration β 0.25 s

Evader Coast Duration T 2.75 s

Environment Bounds B {B ∈R2 | |x| ≤ 1.5m, |y| ≤ 1.5m}

Table 4.1: Parameter values for the pursuer and evader for simulations

appendages with respect to the evader, respectively, i.e.,

rE/AL(ψ) = (rE − rP )− 1
2

wP je jθP − l f e j(θP−ψ) (4.9)

rE/AR(ψ) = (rE − rP )+ 1
2

wP je jθp − l f e j(θP+ψ). (4.10)

The corresponding relative directions of the left and right appendages are

θAL(ψ) = arg(rE/AL(ψ)) (4.11)

θAR(ψ) = arg(rE/AR(ψ)), (4.12)

respectively, and the perceived size of the pursuer is the smallest counter-clockwise arc
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length δP between θAL and θAR projected onto the evader’s maximum sensing radius, i.e.,

δP (ψ)= R
(
arg

(
e j(θAL(ψ)−θAR (ψ))

))
. (4.13)

Note that δP (ψ) ≥ 0 is the counter-clockwise arc length and has its maximum value when

the appendages are fully expanded.

Similarly, when the boundary is within its sensing range, the evader detects the

relative direction and angular displacement. Let θBi and θBi+1 be the angles of the ith

intersection between the sensible region and the boundary, and let δBi ≥ 0 be the smallest

counter-clockwise arc length between θBi and θBi+1 projected onto the evader’s maximum

sensing radius, i.e.,

δBi = R
(
arg

(
e j

(
θBi−θBi+1

)))
. (4.14)

To avoid capture, the evader avoids all directions between θAL and θAR along arc

length δP and, to avoid collisions, the evader avoids all directions between θBi and θBi+1

along arc length δBi . I now introduce the concept of an avoidance region A⊂RS , defined as

any intersection of the sensing region and the boundary and any intersection of the sensing

region and the pursuer. Let there be a single avoidance region per set of intersections such

that there are N ≥ 0 avoidance regions in total. Let φA(ψ) be a matrix containing each set
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Figure 4.4: Illustration of the evaders sensing region divided into avoidance regions and
escape regions. The gray avoidance regions are defined by the intersection angles between
the sensing region, the pursuer’s appendages, and the boundary (black lines). The green
escape regions are the spaces where the evader’s possible escape routes exist.

of avoided directions, where

φA(ψ)=



θAL(ψ) , θAR(ψ)

θB1 , θB2

...

θBN , θBN+1


=



φA1 , φA2

φA3 , φA4

...

φAN , φAN+1


, (4.15)

and let φAn and φAn+1 be the intersection angles for the nth avoidance region.

I define the evader’s escape region E ⊂ RS as the compliment of A, as shown in

Figure 4.4; let there be M ≥ 1 escape regions. Let φE (ψ) be a matrix containing each set of
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escape directions where

φE (ψ)=



φA2 , φA3

φA4 , φA5

...

φAN+1 , φA1


=



φE1 , φE2

φE3 , φE4

...

φEM , φEM+1


, (4.16)

and let φEm and φEm+1 be the intersection angles for the mth escape region. The size of the

mth escape region is

δEm(ψ)=


R

(
2π−arg

(
e j

(
φEm−θEm+1

)))
, ccw arc length > π

R
(
arg

(
e j

(
φEm−θEm+1

)))
, otherwise.

(4.17)

Note that δEm and φE are also implicitly dependent on the relative distance between the

pursuer and evader.

If there are N = 0 avoidance regions, then φA is a null matrix and there are M = 1

escape regions, where φE = [0,2π]. When there are N ≥ 1 avoidance regions, there are M =

N escape regions. I use (4.16) and (4.17) to compute the probability density function for

the evader’s protean strategy and to compute the expected work required for the pursuer

to capture the evader in Section 4.3.

4.2.3 Probability Density Function of the Evader’s Heading

This section defines the evader’s probability density function for the random escape

heading θd. During the active steering phase, the evader steers to θd to avoid capture from
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the pursuer and to avoid collisions with the boundary. The probability density function for

θd is dependent on the number of escape regions M and the arc length of each individual

escape region δEm .

When there are N = 0 avoidance regions and M = 1 escape regions, the evader

chooses θd with a uniform probability density such that 0 ≤ θd ≤ 2π. The corresponding

probability density function for the N = 0 case is

f (θd)=


1

2π , 0≤ θd ≤ 2π

0, otherwise.

(4.18)

For the general N = M ≥ 1 case, let φEn and φEn+1 be the pair of headings for the nth

escape region and let δEn be the corresponding arc length. The probability density function

for θd is

f (θd)=



δE1∑N
m=1δ

2
Em

, φE2 −δE1 /R < θd <φE2

...

δEN∑N
m=1δ

2
Em

, φEN+1 −δEN /R < θd <φEN+1

0, otherwise.

(4.19)

Figure 4.5 illustrates the evader’s probability density function for θd. The positions

of the pursuer and evader are shown in Figure 4.5a, where the evader is also near two

boundaries. The corresponding probability density function θd is computed using (4.19)

and is shown in Figure 4.5b.

In the next section, I use (4.19) to compute the expected work to capture the evader
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(a) Pursuer evader configuration
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Figure 4.5: Probability density function of the evader’s escape direction as a function of
the relative position with the pursuer and proximity to the boundary (black lines). (a) the
pursuer and the boundary are in the evader’s blue sensing region, the solid green lines
represent the evader’s possible escape directions, and the dashed gray lines represent the
evader’s avoidance directions; (b) the corresponding probability density function for the
evader’s escape heading.

for the resting appendages case, ψ= 0, and for the active appendages case, ψ= π/2. I can

determine when it is advantageous for the pursuer to expand its appendages by comparing

the expected work for these two cases.

4.3 Shape-Changing Predation Strategy

This section analyzes the use of the pursuer’s appendages to aid in capturing the

evader. First, I compute the work required for the pursuer to capture the evader as a

function of the appendage orientation ψ. Second, I derive the expected work to capture

the evader using the evader’s probability density function for its escape heading. Third, I

compare the expected work for the ψ= 0 and ψ= π/2 cases to determine when the efforts

to trap the evader outweighs the additional effort due to increased drag.
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4.3.1 Work to Capture the Evader and the Expected Work

Since the pursuer has a constant speed sP , its thrust and drag forces are balanced,

such that TP = Dp and TP is aligned with the pursuer’s velocity sP . Substituting (4.4) into

(2.10) gives the work required to capture the evader during its non-active steering phase,

where

WP (ψ)= b
(
1+H sin(ψ)

)
sP |rE/P f |

(
K2 +K cos(α−θe)

K2 −1

)
. (4.20)

The work to capture the evader depends on the evader’s heading θe and the pursuer’s

appendage orientation ψ. Regardless of the evader’s heading, the work for ψ= 0 is always

less than the work for ψ=π/2 for all H > 0, where H is the drag increase due to appendage

expansion. Computing the work alone does not account for the minimization of the evader’s

escape routes by expanding the appendages, so instead I use the expected work.

Due to the stochastic nature of the evader’s heading, I compute the expected value

of work by substituting (4.20) into (2.12) and evaluate the integral with the appropriate

probability density function for the evader’s heading.

For the N = 0 case, neither the pursuer nor the boundary are in the sensing region

and the evader’s escape heading probability density function is (4.18). The corresponding

expected work is

E[WP (ψ)]=
b

(
1+H sin(ψ)

)
sP |rE/P f |

K2 −1
K2. (4.21)

Since the pursuer is beyond the sensing region, (4.21) does not depend on the minimization

of escape routes, and the expected work for ψ = 0 is always less than the expected work

for ψ = π/2, i.e., E[Wp(ψ = 0)] < E[WP (ψ = π/2)] for N = 0. Therefore, when there are no
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avoidance regions and when |rE/P f | > R it is never advantageous for the pursuer to expand

the appendages.

For the general N ≥ 1 case the evader’s probability density function for its escape

heading is (4.19) and the expected work is

E[WP (ψ)]=
b

(
1+H sin(ψ)

)
sP |rE/P f |

(K2 −1)
∑N

m=1δ
2
Em

(ψ)

N∑
q=1

δEq (ψ)
(
K2δEq (ψ)

R
+K

(
sinφE2q −sin

(
φE2q −

δEq (ψ)

R

)))
.

(4.22)

Unlike the actual work in (4.20), the expected work in (4.22) accounts for the reduction

in the evader’s escape region due to the boundary and the orientation of the pursuer’s

appendages.

4.3.2 Minimizing the Expected Work

This section uses the expected work in (4.22) to analyze the trade-off between min-

imizing the evader’s escape region and minimizing the work to capture. In general the

advantages from expanding the appendages depends on the additional drag H felt by the

pursuer. To analyze this trade-off I evaluate the conditions on H that satisfy

E[WP (ψ=π/2)] ≤ E[WP (ψ= 0)]. (4.23)

Condition (4.23) is satisfied if the expected work to capture the evader with expanded

appendages is less than or equal to the expected work with appendages at rest.
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To simplify the notation, let the summation in (4.22) be represented as

X (ψ)=
N∑

q=1
δEq (ψ)

(
K2δEq (ψ)

R
+K

(
sinφE2q −sin

(
φE2q −

δEq (ψ)

R

)))
, (4.24)

such that the expected work for the N ≥ 1 case is

E[WP (ψ)]=
b

(
1+H sin(ψ)

)
sP |rE/P f |(

K2 −1
)∑N

m=1δ
2
Em

(ψ)
X (ψ). (4.25)

Substituting (4.25) into (4.23) yields the following condition on H:

H ≤
(

X (0)
X (π/2)

N∑
m=1

δ2
Em

(π/2)

δ2
Em

(0)

)
−1. (4.26)

This condition on H acts as an upper limit to the amount of additional drag due to ap-

pendage expansion where condition (4.23) is also satisfied.

During pursuit, if the pursuer’s additional drag H > 0 satisfies the condition in (4.26),

then the minimization of the evader’s escape region outweighs the minimization of the

pursuer’s work to capture, and the pursuer should expand its appendages. For practical

systems, the exact value of H depends on the geometry of the pursuer’s body.

The remainder of this chapter discusses how conditions (4.23) and (4.26) affect the

predation strategy of the pursuer.
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4.3.3 The Optimal Shape-Changing Boundary

This section numerically analyzes the spaces where conditions (4.23) and (4.26) are

satisfied in the bounded environment. To illustrate the spaces where it is advantageous

for the pursuer to extend the appendages, I place the evader in a fixed location and eval-

uate condition (4.23) for varying positions of the pursuer. The boundary of the area under

which conditions (4.23) and (4.26) are satisfied is called the shape-changing boundary. Dur-

ing pursuit, if the pursuer crosses the shape-changing boundary, then it should extend its

appendages to minimize the evader’s escape directions; otherwise, it should relax its ap-

pendages to minimize drag. The size, configuration, and symmetry of the shape-changing

boundary depends on the evader’s proximity to the domain boundary.

The size of the shape-changing boundary also depends on the additional drag felt by

the pursuer. In Figure 4.6, I numerically compute the outer limits of the shape-changing

boundary for the predation trajectories shown in Figure 4.3, and I set the additional drag

to be H = 0.15. As shown in Figure 4.6a, when the evader is far from the boundary B, the

shape-changing boundary has axial symmetry with a radius less than the evader’s max

sensing radius R. Due to the evader’s inability to respond when the pursuer is beyond the

sensing range, the radius of the shape-changing boundary is always less than or equal to

the sensing radius.

Once the pursuer crosses the outer limits of the shape-changing boundary, it is ad-

vantageous to expand its appendages, to minimize the evader’s escape directions, shown in

Figure 4.6b. The shape-changing boundary loses axial symmetry when the evader detects

the boundary B; see Figure 4.6c. When the evader is close to a single wall, the radius of the

69



(a) Time: 0 sec (b) Time: 1.2750 sec (c) Time: 1.9050 sec

Figure 4.6: Numerical illustrations of the outer limits of the shape-changing boundary (or-
ange region) during pursuit with a 15% increase in drag when the pursuer expands its ap-
pendages: (a) the evader (blue dot) is far from the boundary so the shape-changing bound-
ary has axial symmetry; (b) the pursuer enters the evader’s sensing region (blue circle) and
the shape-changing boundary so it expands it appendages to minimize the evader’s escape
directions; (c) the evader is near the domain boundary so the shape-changing boundary
loses axial symmetry, and the evader is also captured.

shape-changing boundary decrease in directions perpendicular to the wall and increases

in directions parallel to the wall. Due to these shorter radial distances, the pursuer needs

to get closer to the evader before it is advantageous to expand its appendages; this also

implies that approaching the evader in some directions are sub-optimal. The expansion of

the radial distance of the shape-changing boundary in other directions implies that, when

the evader is near the domain boundary there are optimal pursuit trajectories.

While the figures in Figure 4.6 only illustrate the outer limits of the shape-changing

boundary, the figures in Figure 4.7 illustrate the level curves of the percent difference in

the expected work to capture the evader due to extending the appendages. The percent dif-

ference in expected work is computed by evaluating E[WP (π/2)] and E[WP (0)], from (4.25),

for a fixed evader location and all possible pursuer locations, and using the following for-
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mula:

%Diff= 100
(

E[WP (π/2)]−E[WP (0)]
E[WP (0)]

)
. (4.27)

Following the gradient of the percent difference level curves yields an optimal pursuit

trajectory.

In cases where the evader is far from boundaries, see Figure 4.7a, the level curves

maintain axial symmetry with increasing reductions in expected work as |rE/P f | decreases.

The axial symmetry for the level curves implies that there are no sub-optimal pursuit

trajectories when the evader is far from boundaries. Optimal pursuit trajectories are more

evident when the evader is near a boundary (trajectories are approximately parallel to the

detected boundary). Figure 4.7b shows the level curves of the percent difference when the

evader is near a single wall. The sub-optimal trajectories are perpendicular to the detected

boundary since the distance between the pursuer and the evader must be smaller before

extension of the appendages becomes advantageous.

When the evader is near a detected boundary, the optimal pursuit trajectories imply

that directly cornering the evader such that it has an equal probability of choosing any

escape direction parallel with the boundary is sub-optimal. In cases when the evader is

near a single wall or near a corner, the optimal pursuit trajectories minimize the number

of escape regions for the evader.

Thus far, the additional drag was assumed to be H = 0.15; however, the max al-

lowable additional drag is computed with (4.26) and is a function of the relative distance

between the pursuer and the evader. To illustrate how the additional drag affects the

shape-changing boundary, I evaluate (4.26) for a fixed evader position and all possible
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(a) Time: 1.2750 sec (b) Time: 1.9050 sec

Figure 4.7: Numerically computed level curves for the percent difference in expected work
to capture the evader during pursuit and a 15% increase in drag: (a) the evader is far from
the domain boundaries and the level curves of the percent difference in expected work have
axial symmetry; (b) the evader is near a single wall with optimal pursuit trajectories being
approximately parallel to the boundary minimizing the number of the evader’s M escape
regions.

pursuer positions in the bounded environment. Figures 4.8a and 4.8b show snapshots

during pursuit with the level curves of the maximum additional drag that satisfies (4.23).

The level curve of the additional drag for H = 0.15 is equivalent to the outer limit of the

shape-changing boundary in Figure 4.6. As the value of H increases the radius of the

shape-changing boundary decreases; implying that for higher values of H, the pursuer

needs to get closer to the evader before it is advantageous to minimize the evader’s escape

directions. While there are benefits for this predation strategy for high values of additional

drag, the close proximity requirement makes it less tractable.

4.4 Conclusion

This chapter presents a bioinspired pursuit-evasion game in a closed environment

with one pursuer and one evader. I model the pursuer as a streamlined body with sym-
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(a) Time: 0.6350 sec (b) Time: 1.9050 sec

Figure 4.8: Snapshots of the pursuit trajectories with numerical illustrations of the shape-
changing boundary for various drag coefficients: (a) as the pursuer approaches the evader
and crosses the shape-changing boundary for H = 0.15 it expands its appendages to mini-
mize the evader’s escape directions; (b) the evader is captured near a detectable wall and
the level curves of the shape-changing boundary loses axial symmetry.

metric movable appendages in pure-pursuit of an intermittently steering evader. To avoid

capture, the evader uses a protean strategy, which steers in a random escape direction to

be less predictable to the pursuer. The evader’s random escape direction has a probabil-

ity density function that depends on its proximity to the pursuer and boundary and the

orientation of the pursuer’s appendages. The bioinspired predation strategy allows the

pursuer to actively use its appendages to minimize the evader’s escape routes, but at the

cost of additional hydrodynamic drag. I show that actively using the appendages to mini-

mize the evader’s escape routes outweighs the effects of additional drag once the pursuer

is sufficiently close to the evader. Furthermore, I show that when the evader is far from

detectable boundaries, all pursuit trajectories are optimal; whereas, not all trajectories are

optimal when the evader is near a boundary. The work in this chapter gives insights to

understanding the predation strategies of biological systems and provides a mathematical

model that describes when to use this strategy for engineered systems.
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Chapter 5: Planar Formation Control for a School of Robotic Fish Imple-

mentation

5.1 Introduction

This chapter investigates planar formations in a novel setting: a system of second-

order oscillators with nonlinear dynamics and nonholonomic constraints on the tangent

bundle of the N-torus. The closed-loop swimming dynamics of the fish robots are repre-

sented by the Chaplygin sleigh [85], [54], a nonholonomic mechanical system driven by an

internal reaction wheel. The control design is inspired by prior work on collective motion

of self-propelled particles [19, 69, 70, 86]; however, a key distinction is that agents have

second-order limit-cycle dynamics with time-varying speed. Thus, novel parallel forma-

tions are achieved in an average sense.

My contributions of this chapter are (1) system identification of the reaction-wheel

motor dynamics and the design of an optimal estimation and tracking controller that fol-

lows the torque commands of the formation control; and (2) experimental validation of

the parallel formation control law on a school of bio-inspired robotic fish (see Fig. 1.2).

The proposed control algorithms are illustrated through both numerical simulations and

experiments in the University of Maryland’s Neutral Buoyancy Research Facility.
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The remainder of the chapter is organized as follows. Section II provides Chaplygin

sleigh dynamics. Section III presents a control design to achieve parallel formations for a

robotic fish school. Section IV presents the experimental implementation and results for

the parallel formation control for a school of robotic fish. Lastly, Section V summarizes the

chapter.

5.2 Robotic Fish Dynamics and Parallel Formation Control

The Chaplygin sleigh is a canonical nonholonomic mechanical system consisting of

a rigid body moving in the plane that is supported by two frictionless sliding points and

a single knife edge that allows no motion perpendicular to its edge [87]. Previous studies

have demonstrated that a fish robot driven by an internal reaction wheel can be modeled

as a Chaplygin sleigh due to the nonholonomic constraint imposed by the Kutta condition

[85], [54], which constrains the fluid flow at the trailing edge. As the reaction wheel spins

back and forth, it flaps the robot’s body, which interacts with the surrounding fluid to

generate thrust.

Figure 5.1: Coordinates and unit vectors: (a) the self-propelled particle; (b) the Chaplygin-
sleigh model of a robotic fish. In (b), the hydrofoil shape represents the fish robot body and
a bronze-colored reaction wheel is shown at the center of mass.

75



Consider a system of N fish robots each modeled as a Chaplygin sleigh with the

following dynamics in state-space form [54]:

ṙn = sne jθn

θ̇n =ωn

ṡn = lω2
n −bsn

ω̇n =−mlsn

d
ωn − un

d
,

(5.1)

where rn ∈ C is the position of the trailing edge of the fish robot (see Fig. 5.1b), sn ∈ R is

the swimming speed, θn ∈ T is the velocity orientation, ωn ∈ R is the angular rate of the

nth fish, and un ∈ R is the applied torque, where n = 1, . . . , N. Furthermore, b ≥ 0 is the

drag coefficient, and m > 0, l > 0, and d > 0 are the mass, length, and moment of inertia,

respectively. Unlike the self-propelled particle (2.3), the speed of the Chaplygin sleigh (5.1)

is not constant and the control input is a torque rather than an angular rate.

Prior work has established that the Chaplygin-sleigh model exhibits limit-cycle dy-

namics under open-loop periodic control inputs [88], as well as feedback control [54] [43].

Consider the feedback control [54]

un = d(−K1ωn −K2 sin(θ̄n −θn)) , (5.2)

where θ̄n is the desired heading angle of the nth fish, and K1,K2 > 0 are feedback gains.

76



Substituting (5.2) into (5.1) yields the closed-loop system [54]

ṙn = sne jθn

θ̇n =ωn

ṡn = lω2
n −bsn

ω̇n =−ml
d

snωn +K1ωn +K2 sin(θ̄n −θn) .

(5.3)

The control law (5.2) that enables each fish robot to swim in a desired direction can

be modified, with interactions from neighboring fish, to achieve collective motion of the

school, as described next.

Consider a collection of N identical fish robots modeled by the Chaplygin sleigh sys-

tem (5.1). Assume a sufficiently large drag coefficient so that sn → (l/b)ω2
n and let a = ml2

bd .

For the purposes of control design, the simplified Chaplygin sleigh system (5.1) becomes

ṙn = (l/b)ω2
ne jθn

θ̇n =ωn

ω̇n =−aω3
n −

un

d
.

(5.4)

Consider the potential

Vp(θ,ω)= 1
2
ωTω+ 1

2N
K2〈e jθ,Le jθ〉 . (5.5)
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The time-derivative of Vp(θ) is

V̇p(θ,ω)= ω̇Tω+ 1
N

K2〈 d
dt

e jθ,Le jθ〉 , (5.6)

where, along trajectories of (5.4),

ω̇Tω=
N∑

k=1

(−aω3
n −d−1un

)
ωn , (5.7)

and

〈 d
dt

e jθ,Le jθ〉 =
N∑

n=1
〈 je jθn ,Lne jθ〉ωn . (5.8)

By choosing the control

un = b(−K1ωn + K2

N
〈 je jθn ,Lke jθ〉)

= b(−K1ωn + K2

N

∑
p∈Nn

sin(θp −θn)) ,
(5.9)

and substituting (5.7)–(5.9) into (5.6), V̇p(θ,ω) becomes

V̇p(θ,ω)=
N∑

n=1
(−aω2

n +K1)ω2
n . (5.10)

The feedback control law (5.9) relies only on relative-state measurements between

agents and does not include feedback linearization of the agents’ dynamics. Recall K1,

K2 > 0 are control gains. Since (5.10) is a summation of quartic functions with roots at
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Table 5.1: Parameters used to simulate the fish robot system, based on the experimental
testbed.

Parameter Symbol Value

Mass m 1.4 kg
Length l 0.31 m
Drag coefficient b 0.5
Moment of inertia d 0.1395 kg·m2

Control gains (K1,K2,K3) (0.5,3,1)

ωn = 0 and |ωn| =
√

K1/a, then V̇ < 0 outside Ωp = {(θ,ω) ∈TN ×RN : |ωn| ≤
√

K1/a ∀ k ∈V}.

Therefore, all trajectories are trapped in Ωp. The gain K2 in (5.9) is chosen to ensure

forward flapping motion for (5.1), as discussed in Section 5.2.

Figure 5.2: Simulation of (5.1) with parallel formation control (5.9) and N = 8 identical
fish. The black circular markers in (a)–(c) indicate the initial simulation states. The last
10 seconds of the limit cycle in (a) and (b) are shown with colored lines.

The control law (5.9) is illustrated by numerical simulation using control (5.9) and

the full dynamics (5.1). The simulation was conducted for 150 seconds with N = 8 robots

using the parameters listed in Table 5.1. The robots were initialized with random headings

and zero linear and angular velocities. A communication range of three meters determined

the communication topology, which remained invariant during the simulation based on the

agent’s random initial positions. Figures 5.2a and 5.2b show all N robots converging to

the same limit cycle in the (θn,ωn) and (sn,ωn) planes. As a result, all robots move in the
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same direction (on average), as shown in Fig. 5.2c. The parallel potential, Vp(t), initially

decreases (see Fig. 5.2d), but instead of converging to zero, it oscillates around a fixed value

as the robots converge to different phases on the same limit cycle.

5.3 Experimental Testbed

This section describes the implementation of the parallel formation control law (5.9)

on a school of robotic fish and experimental results. First, the experimental testbed used

in this chapter is briefly described. Next, results from system identification experiments

are presented that provide parameters for a model of the reaction wheel dynamics. Based

on this model, an inner-loop linear-quadratic-Gaussian (LQG) controller is implemented

to track a desired reference torque generated from the formation control law using the

onboard motor’s angular velocity measurements. Lastly, results from a series of in-water

experiments demonstrating the parallel formation control are presented.

The fish-inspired soft robots used in the experiments (see Fig. 1.2) are each driven

by a Pololu 12V DC motor (with a 4.4 to 1 gear ratio) that oscillates a reaction wheel

located at each robot’s center of mass. Each fish robot measures its orientation with an on-

board BNO055 inertial measurement unit (IMU) sensor that features a built-in extended

Kalman filter. A micro-SD card is used to store sensor data and a 900MHz xBee radio

enables each fish robot to communicate with a ground station and other fish robots on the

water’s surface. Each fish robot performs onboard sensor processing and control with a

Teensy 3.2 microcontroller. For a more detailed discussion of the fish robots’ design, refer

to [54].
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The experiments were conducted in a 367,000 gallon water tank at the Neutral Buoy-

ancy Research Facility at the University of Maryland, College Park. An overhead camera

is mounted above the experimental area to record the true position of each robotic fish;

however, the position data is not used in real time by the fish for formation control. In-

stead, during formation control experiments, each robot exchanges orientation data from

their onboard IMU with other fish in the school using the xBee radios. Since the position of

each robotic fish is not computed in real-time, an invariant complete communication graph

was used in the experiments; whereas, a proximity-based communication graph was used

in simulation. The overhead camera images are post-processed after each experiment to

visualize the trajectory of each robotic fish. The image processing uses MATLAB’s built-in

corner/object detection based on a minimum eigenvalue algorithm [89] and a built-in con-

stant velocity Kalman filter for object tracking. Since all of the sensing and control law

computations occur onboard, the school of robotic fish are a self-contained system when

performing formation control experiments. The block diagram in Fig. 5.3 gives an overview

of the experimental testbed.

5.3.1 System Identification of the Actuator

The nonlinear control law (5.9) generates a reference torque command that steers

the fish robots to their respective formations. However, this torque cannot be commanded

directly since the control input into the reaction wheel system is the voltage applied to

the DC motor generated by the motor driver and Teensy micro-controller. Furthermore,

the only available measurement is the angular velocity of the motor’s shaft measured by
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Figure 5.3: Block diagram of the experimental testbed. Since all of the sensing and con-
trol law computations occur onboard, the school of robotic fish are a closed self-contained
system when performing parallel formation control experiments.

an encoder. Thus, to track the reference torque a linear-quadratic-Gaussian (LQG) con-

troller and estimator was implemented. The LQG controller assumes the following motor

dynamics [90]:

Λ = µ
di
dt

+Ri+ e (5.11)

e = Keψ̇ (5.12)

τ = Kτi (5.13)

Jψ̈ = τ−ζmψ̇, (5.14)

where Λ is the voltage input, R is the motor’s electrical resistance, µ is the inductance,

i is the current, e is the motor’s back electromotive force (EMF), ψ̇ is the angular rate of

the output shaft, J is the sum of inertias between the reaction wheel and motor’s output
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shaft, τ is the torque applied by the motor, ζm is the internal damping friction applied to

output shaft, and Ke and Kτ are the motor’s generator and torque constants, respectively.

To identify the values of the DC motor and reaction wheel parameters, a series of system

identification experiments were conducted, as described next.

The resistance of the motor R was measured directly with an ohm meter, and the sum

of the motor and reaction wheel inertias J was approximated using analytical expressions

for the moment of inertia of a cylinder about its axis of symmetry with a known mass and

diameter. To determine the motor generator constant Ke, substitute (5.12) into (5.11) and

examine the system at steady current state, i.e., di/dt = 0. Solving for ψ̇ yields

ψ̇= 1
Ke

(Λ−Ri). (5.15)

Using a Rigol DP711 power supply and quadrature encoder attached to the motor’s output

shaft, a series of constant voltages were applied to the motor. For each voltage, the cur-

rent through the motor and the angular velocity of the output shaft at steady state were

recorded. A linear regression was used to determine the quantity 1/Ke, which is the slope

of the line in (5.15) and Fig. 5.4a.

The internal friction coefficient ζm was found by setting the torque to zero, i.e., τ= 0

in (5.14), and solving the resulting differential equation to obtain

ln(ψ̇(t))=−ζm

J
t+ ln(ψ̇(0)) , (5.16)

where ψ̇(0) is the initial shaft angular velocity. Notice that (5.16) is a linear equation that
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describes ln(ψ̇) as a function of time. A similar technique as described previously can be

used to find −ζm/J from a time-history of torque-free motor data. To identify the damping

parameter, the motor was initialized with a constant nonzero angular velocity and the

input voltage was removed. The motor’s angular velocity was recorded as it decays under

internal friction. As before, a linear regression was used to determine the slope −ζm/J in

(5.16) from Fig. 5.4b and, hence, ζm can be inferred since J is known.

To determine the torque constant Kτ, substitute (5.13) into (5.14) at steady state (ψ̇

constant) and solve for ψ̇ to obtain

ψ̇= Kτ

ζm
i. (5.17)

By repeating the procedure used to determine Ke, using the value of ζm, the value of Kτ is

found from the slope Kτ/ζm in (5.17) and Fig. 5.4c.

Since the inductance µ only plays a role in the transient response of the motor, which

are sufficiently fast, I estimate this parameter heuristically. The simulated response of

the motor to a sinusoidal voltage input is visually compared to the actual response of the

motor under the same input. The process is repeated while adjusting the value of µ to

obtain a similar response, as shown in Fig. 5.4d.

Lastly, the motor was found to exhibit a range of deadband voltages near zero that

resulted in the motor being unresponsive. To determine the range of this deadband, a se-

ries of incrementally increasing voltages were applied to the motor, giving an approximate

deadband range of ±4V. The parameter values determined through this system identifica-

tion process are summarized in Table 5.2.
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Table 5.2: Motor parameters identified through system identification for the Pololu 12 V
DC Motor (with 4.4 to 1 gear ration) and reaction wheel

Parameter Symbol Value

Inductance µ 0.005 H
Generator constant Ke 0.0506 V ·s/rad
Torque constant Kτ 0.2137 N ·m/A
Damping coefficient ζm -1.1016×10−4 N ·m ·s/rad
Resistance R 2.5 Ω
Inertia J 1.7405×10−4 kg ·m2

Deadband - ±4 V
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Figure 5.4: Experimental data used to identify motor-reaction wheel dynamics: Panels
(a)–(c) are used to infer the values of the generator constant, linear damping, and torque
constant through linear regression. Panel (d) compares the motor’s simulated and actuated
response with a best guessed value of the inductance.

5.3.2 Torque Tracking Controller

To implement the LQG torque controller and state estimator for the DC motor, con-

vert (5.11)–(5.14) into state space form where q = [
τ,ψ̇

]T denotes the states of the motor

and the output is Υ= ψ̇. The continuous-time state space equations take the form

q̇ = Aq+BΛ (5.18)

Υ=Cq (5.19)
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where

A =

−
R
µ

−KeKτ

µ

1
J −ζm

J

 , B =


Kτ

µ

0

 , and C =
[
0 1

]
. (5.20)

For implementation onboard the micro-controller, the continuous system (5.18)–(5.19)

is converted into a discrete-time system (with an addition of torque process noise and head-

ing measurement noise):

qk+1 =Φqk +ΓΛk +ξwk (5.21)

Υk =Cqk +ηk , (5.22)

where [91]

Φ = eA∆t , Γ=
(∫ ∆t

0
eAτdτ

)
B , ξ=

1

0

 , (5.23)

k is an integer indexing the discrete state, ∆t = 100Hz is the time-step of the microcon-

troller, wk is zero-mean, Gaussian, additive process noise with variance σ2
w, and ηk is

zero-mean, Gaussian, additive measurement noise with variance σ2
η.

I adopt the standard approach outlined in [91] and [82] to implement a discrete-time

Kalman filter for the system (5.21)–(5.22). The estimated state q̂k is used in a linear-

quadratic-regulator (LQR) feedback control law of the form Λk =κT(qd − q̂k), where the κ

is a gain matrix found by solving the discrete-time algebraic Riccati equation and qd are

the desired state values.
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Figure 5.5: Experimental data from a closed loop heading controller (5.2): (a) the reference
torque produced by (5.2) and the estimated torque from the LQG controller. (b) fish robot’s
closed loop heading response to a step input reference heading.

Numerical values used in the LQG controller and estimator design are given in Ta-

ble 5.3.

To evaluate the LQG torque controller/estimator, the control law (5.2) was used to

generate a reference torque for a step input change in desired heading. The performance

of the torque tracking controller is shown in Fig. 5.5a, and the heading trajectory of the

fish robot during this experiment is examined in the next section.

Table 5.3: Parameters used in a LQG controller and estimator

Parameter Symbol Value

Process noise variance σ2
ω 1 V2

Measurement noise variance σ2
η 0.89 (rad/s)2

LQR gain κ [−9.57,0.24]T
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5.4 Experimental Results

This section presents the experimental results of two nonlinear steering controllers.

First, I experimentally validate the steering controller for a single fish robot where a de-

sired direction is specified by the ground computer. Second, I discuss the experimental

results for the nonlinear parallel formation controller for multiple robotic fish.

5.4.1 Single Fish Robot Heading Control

I first examine the accuracy of the closed-loop directional controller (5.2), where θd is

a desired heading. After testing (5.2) on a single robotic fish, I found that the DC motor’s

deadband does not allow the average heading to completely converge to θd. When the fish

robot’s heading is close to the desired heading, the voltage required to close the gap is

too small and falls within the dead zone making the motor unresponsive. The accuracy

of (5.2) is limited on our testbed due to this voltage deadband, but can also be mitigated

by choice of the values of the nonlinear control gains K1 and K2. In both (5.2) and (5.9),

increasing the value of K2 makes the control laws more sensitive to relative heading errors

and increases the torque required to minimize the error. Similarly K1 amplifies the torque

and, therefore the voltage input required to keep the fish swimming. Tuning these control

gains increases the accuracy of the aforementioned control laws. The experimental results

of this test with a step input for θd is shown in Fig. 5.5b. The fish robot’s heading oscillates

about a desired heading with a small persistent error between the average and desired

headings. The control gains used in this experiment are K1 = 0.5 and K2 = 7.
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Figure 5.6: Parallel formation control onboard sensor data: (a) orientation measurements
from onboard IMU for each fish robot while achieving a parallel formation. (b) experimen-
tal parallel formation misalignment potential computed for six independent experiments.

5.4.2 Parallel Formation

To validate the theoretical results of the parallel formation control law (5.9), the

results from six experiments are presented. The fish robots’ micro-controller uses IMU

measurements for the heading and xBee radios for communication within the school. An

overhead camera observes the positions of each fish robot; these were not used by the

school during the experiments.

Four fish robots were initialized with random initial positions and orientations at the

beginning of each parallel formation control experiment (implemented with gains K1 = 3

and K2 = 5). Consensus was achieved by the four fish with a small phase shift (up to 20

degrees) of the mean heading for each fish. This offset may be attributed to excess noise

in angular velocity measurements and the aforementioned voltage dead zone. An example
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heading time-history from one of the experiments is shown in Fig. 5.6a.

The excess noise in the angular velocity measurements caused large spikes to appear

when computing the Lyapunov potential (5.5) from experimental data. Thus, to illustrate

the convergence of this potential, the 1
2ω

Tω term was removed, leaving only the heading

alignment term K2
2N < e jθ,Le jθ > plotted in Fig. 5.6b for each of the six experiments. The

potential function does not decrease completely to zero when consensus is achieved because

each robot converges to a different phase on the limit cycle.

An example trajectory of the fish robots in Fig. 5.7a shows the fish robots achieving

consensus and swimming in a parallel formation. However, since the ground truth orien-

tations of the fish robots are not used, errors in the IMU measurements sometimes cause

a subset of the school to swim in a different direction than the rest of the school, as shown

in Fig. 5.7b. The error in IMU measurements may be caused by an erroneous calibration

or magnetic anomalies in the water tank interfering with the onboard magnetometer.

5.5 Conclusion

Nonlinear control laws are proposed that stabilize parallel and circular formations

in a model of N planar fish robots. The control design approach extends prior work on

collective motion of self-propelled particles to a school of robotic fish with Chaplygin sleigh

dynamics. The feedback control laws rely only on relative-state measurements between

agents that interact according to a connected, undirected, communication graph and do not

include feedback linearization of the agents’ dynamics. Implementing the parallel control

law on a testbed of fish robots required conducting system identification experiments to
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(a) Parallel formation control fish robot trajectory (b) Parallel formation control fish robot trajectory with IMU erros

Figure 5.7: Parallel formation control of fish robot ground truth trajectory: (a) school of
robotic fish swimming in a parallel formation. (b) errors affect the IMU of one fish causing
to swim in a different direction than the rest of the school

characterize the motor dynamics and designing a torque tracking motor controller and

estimator. Numerical simulations and experiments on a school of robotic fish demonstrate

the proposed approach. In ongoing work, I seek to model the fluid interactions between fish

robots and instrument the robotic fish with pressure sensors to exploit the hydrodynamic

benefits of close-proximity swimming.
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Chapter 6: Conclusion

Overall, this dissertation investigates bioinspired dynamic models of fish behavior in

the areas of schooling, predation, and intermittent sensing and control. Although inspired

by the behavior of aquatic species, this work can give insight to the behaviors of terrestrial

and avian animals. These models not only enhance our understanding of the certain ani-

mal behaviors, but they also allow us to further study the benefits of these behaviors and

apply then to autonomous robotic systems. This research was conducted using concepts

from linear and nonlinear control theory, classical mechanics, differential game theory,

and probability theory. Chapter 3 developed a hybrid model for intermittent dynamics to

study the effects of non-overlapping sensing and control for a single agent and for multi-

ple agents. Chapter 4 investigated pursuit interactions in a bounded environment. The

predator changes its morphology to trap the prey, but doing so increases its hydrodynamic

drag, and therefore its work to capture. This work devises a metric to determine the trade-

off between minimizing the work to capture the prey and minimizing the prey’s escape

routes. Chapter 5 demonstrated the use of a nonlinear steering controller to drive a school

of robotic fish into a parallel formation, developed an optimal sub-controller and estimator

for torque tracking on a DC brushed motor.
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6.1 Summary of Dissertation

This section summarizes the main results of this dissertation and suggest future

research directions for these topics. First, I summarize the work presented in Chapter 3

and propose some ideas for future work in the intermittent sensing and control. Second,

I summarize the work in Chapter 4 and present some of the many future directions this

research can investigate. Third, I summarize Chapter 5.

6.1.1 Intermittent Locomotion with Non-overlapping Sensing and Control

Inspired by the intermittent swimming patterns where biological fish switch between

active swimming and gliding through the water while desensitizing and sensitizing its

sensory organs [7], I introduce a hybrid dynamic model that imitates this behavior and

I explore the effects of non-overlapping sensing and control. To illustrate the effects of

asynchronous sensing and control, I analyze the stability conditions of a closed-loop steer-

ing controller for a single particle and a heading synchronization controller for multiple

particles.

The results from this work show that the stability conditions for the steering of a

single particle and for the heading synchronization of multiple particles with synchronous

burst phases using output feedback are the same, the these conditions depend on the ad-

ditional features. Unlike the stability condition for a continuous closed-loop heading con-

troller in Chapter 2, the stability conditions for this work depends on the strength of the

actuation during the burst phase and the quality of the estimation during the coast phase.

The strength of the actuation is defined as the product of the steering control gain and the
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time duration for the burst phase. Similarly, the quality of the estimation is defined as the

product of the linear observer gain and the time duration of the coast phase.

While exploring the limits of these stability conditions, I found that having weak ac-

tuations with high quality observations was exponentially stable. This result agreed with

both our intuition and observations recorded in [3]. However, I also found that having very

strong actuations with low quality observations was also exponentially stable. This result

is surprising, and yet pretty astonishing, because it implies that large errors accumulated

during the burst phase eventually go to zero as I encounter more coast phases.

The last two sections of Chapter 3 consider more realistic cases, where there are

multiple particles with asynchronous burst phases. Building on the work in [22], I re-

laxed some assumptions and expanded there results to use an output feedback heading

controller. The assumptions that I retained from [22] are the agents sure a fixed commu-

nication graph and all agents update on a uniform time horizon, i.e. share a homogeneous

burst duration and overall cycle time. I relaxed the assumption that only non-connected

agents can burst at the same time from [22], and allow a group of agents to have a syn-

chronous burst phase. Regardless of the synchroneity of the burst phases, each of the

particles have non-overlapping sensing and control.

With these assumptions, I derived a dynamic model for the entire ensemble of parti-

cles which generalizes to both the synchronous and asynchronous burst phase assumption.

Analyzing the stability of the ensemble level dynamics proved that heading synchroniza-

tion is locally exponentially stable and the conditions are identical to those in the single

particle case.

For both the single particle and multiple particle cases, I evaluated local stability
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conditions to synchronize the heading to a desired direction. The multi-particle case has

three equilibrium points, i.e. synchronized, balanced, and parallel anti-parallel. When

simulating the asynchronous multi-particle burst and coast model with initial conditions

far from the synchronized equilibrium point, I noticed that the synchronization is still

achieved. This observation may imply that the region of attraction of the asynchronous

case may be larger than that of the synchronous.

The main idea with this burst and coast model is, since there is no sensing during

the burst phase, I cannot apply feedback while bursting. However, future work in this

area should explore the use of multiple sensory organs and develop a model where one or

multiple senses get desensitized during the burst phase, but not all of them. This may be

more realistic to what is observed in biological species. Also, future work should analyze

the case of bounded actuator noise with bounded measurement noise in a single particle

and compare these results to a continuously locomoting particle with the same actuator

and measurement noise. This comparison will highlight the benefits or disadvantages of

non-overlapping sensing and control for stochastic systems.

6.1.2 Bioinspired Pursuit in a Structured Environment

Pursuit has been a topic of interest to engineers, biologist, and military personnel,

for over three centuries. Starting with the work from Pierre Bouguer in 1732 [92], sci-

entist have created kinematic models of pursuit interactions to predict the behavior of

adversaries and maximize there probability of capture. The work presented in Chapter 4

develops a pursuit interaction model inspired by observations of the predation between a
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lionfish and its prey, and develops a metric used to determine the trade-off between mini-

mizing the work to capture the prey and minimizing the prey’s escape routes.

To study this trade-off, I modeled the dynamics of each agent, where the lionfish

is modeled as a streamlined rigid body with symmetric appendages and constant speed

in pure-pursuit of the prey, and the prey is modeled as a constant speed self-propelled

particle that intermittently steers in a random flee direction to be less predictable to the

lionfish. These behaviors are integrated in a differential game simulation where the prey

wants to avoid capture from the predator and avoid collisions with the boundary, and the

predator wants to capture the prey. The prey’s random flee direction has a probability

density function that depends on the prey’s proximity to the boundary and the perceived

width of the predator. The predator can chooses to expand its appendages to trap the prey,

but doing so induces additional drag and increases its work to capture.

Devising a metric to determine when to prioritize minimizing work versus minimiz-

ing escape routes was the greatest challenge of the work in this chapter, but I found that

using the expected value of work as a function of predator’s appendage orientation and

the added drag due to appendage expansion was sufficient. The work to capture the prey

depends on the predator’s thrust and the time required to capture the prey given the kine-

matics, but it does not account for the potential benefits of minimizing the possible maneu-

vers of the prey. The expected work is computed using (2.12), where the probability density

for the prey’s heading is accounted for along with the work to capture. When the expected

work for the appendages expanded is less than the expected work for the appendages re-

tracted, the predator should prioritize trapping the prey. I call this the shape-changing

condition.
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By evaluating the shape-changing condition for a given prey location and all possi-

ble predator locations in the bounded environment, I determine the positions where the

predator should prioritize trapping the prey. I call the outer boundary of this region the

shape-changing boundary. The geometry of the shape-changing boundary depends on the

prey’s proximity to a structure. Studying the evolution of the shape-changing boundary, I

qualitatively determined the existence of optimal pursuit trajectories for the predator that

minimize the expected work.

Additional consideration must be made for the added hydrodynamic drag acting on

the predator. Intuitively, one could understand that there is an upper limit for the amount

of drag the predator can experience before it is never beneficial to expand its appendages.

I compute this upper drag limit by solving the shape-changing condition for drag. While

the angular geometry of the shape-changing boundary depends of the prey’s proximity to a

structure, the radial geometry depends on the added drag. As the added drag increases to-

wards this upper limit, the max radial distance of the shape-changing boundary decreases.

While our model is useful in determining the trade off between minimizing work and

minimizing escape routes, I guarantee that capture is achieved by making the predator

faster than the prey. In reality, the prey’s speed changes such that it is intermittently

faster than the predator. Future work in this area should include and intermittently faster

prey and find conditions on the relative speeds where capture is guaranteed.

Here we assume that the predator’s appendages are always symmetric. This assump-

tion resembles the behavior from observations [29], but perhaps symmetric appendages

are the optimal expansion method. In ongoing and future work, I seek to control each

appendage individually and optimize their orientation to further minimize the expected
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work.

Lastly, the boundary can be used to aid the predator in capturing the prey, but real-

world environments are more complex than a convex boundary. To enhance our under-

standing of the role that structures, i.e. coral reefs, trees, or boulders, play in pursuit

interactions, future work should create virtual environments, devise parameters to char-

acterize the density and convexity of the environment, and use a differential game to study

how the pursuit interaction changes as a function of the environment.

6.1.3 Planar Formation Controller for a School of Robotic Fish

Inspired by the collective behavior found in many biological fish species, I demon-

strate the utility of a novel nonlinear steering control law (5.9) that drives a school of

robotic fish into a parallel formation. While the nonlinear steering control law was derived

by other researchers, this dissertation experimentally validates its theoretical result by

developing a robotic platform that implementing the control law.

The dynamics of the fish robot are modeled as the canonical Chaplygin sleigh model

[54,77], where the actuator propelling and steering the system oscillates a reaction wheel

at the sleigh’s center of mass. The fish-inspired robots used in the experiments are each

driven by a Pololu 12V DC motor (with a 4.4 to 1 gear ratio) that oscillates a reaction

wheel located at each robot’s center of mass. Each fish robot measures its orientation

with an onboard BNO055 inertial measurement unit (IMU) sensor that features a built-in

extended Kalman filter. A micro-SD card is used to store sensor data and a 900MHz xBee

radio enables each fish robot to communicate with a ground station and other fish robots
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on the water’s surface. Each fish robot performs onboard sensor processing and control

with a Teensy 3.2 microcontroller.

The nonlinear control (5.9) generates a reference torque that steers the fish robots to

a parallel formation. However, on our robotic platform this torque cannot be commanded

directly since the control input into the reaction wheel system is the voltage applied to

the DC motor. Furthermore, the only available measurement is the angular velocity of the

motor’s shaft measured by an encoder. To track the reference torque a I implemented a

linear-quadratic-Gaussian (LQG) controller and estimator as a low level controller.

System identification was performed on the DC motor using motor dynamics (5.11)−(5.14);

after which the LQG low level controller and estimator were implemented. The perfor-

mance of the low level controller and estimator was evaluated experimentally where I

specified the heading of a single fish robot. A single was able to track a specified head and

respond to a step input change in desired heading with a small average offset. This offset

is likely due to the motor’s deadband voltage region where the motor is unresponsive.

For the multi-fish robot experiment, I implemented the parallel formation controller

(5.9) on four fish. The controller was able to align the average heading of each robot with

a small offset of about twenty degrees. The motor’s deadband region and excess gyro noise

may have attributed to the magnitude of the offset.

To evaluating the performance of the controller on the robotic platform, I compute

a polarization term, where the heading of each robot is compared to its neighbors head-

ings, and plot it over time in Figure 5.6. This graph illustrates that at the start of six

experiments the school’s polarization term is high, heading are not aligned, and as the

experiments progress the term decrease within some range. If the robots behaved as self-
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propelled particles, as in [19,20], then the polarization term would converge to the control

gain K divided by the number of particles N. However, since the robots are required to os-

cillate their bodies to generate thrust for continued swimming, the polarization term also

oscillates while converging to K2/N.

While this successful demonstration of a nonlinear schooling controller is bioinspired,

our implementation to align the fish robot’s heading relied on the use of a XBee radio.

Biological fish, of course use sensory organs like their eyes and their lateral line to sense

neighboring fish and form schools. Future work in this area should seek to use an artificial

lateral line system in conjunction with cameras to sense other robotic fish and swim in a

parallel or circular formation.
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Appendix A: Lyapunov’s Direct and Indirect Methods

The behavior of an autonomous system near an equilibrium point can be character-

ized by using either Lyapunov’s direct or indirect methods [93].

Lyapunov’s direct method uses a scalar potential function candidate to determine

the stability of an equilibrium point. Let V (x) be a Lyapunov potential function candi-

date of the system ẋ = f (x) such that V (x) > 0 for all x ̸= x∗, i.e., V (x) is positive definite.

The equilibrium point of a continuous-time system is asymptotically stable if V (x) is con-

tinuously differentiable and V̇ (x) < 0 for all x ̸= x∗ [93], i.e., V̇ (x) is negative definite.

Similarly, in a discrete-time system where the dynamics are x(t+ 1) = f (x(t)), an equi-

librium point is asymptotically stable if there exist V (x(t)) > 0 for all x ̸= x∗ such that,

V (x(t+1))−V (x(t))< 0 for all x ̸= x∗.

Lyapunov’s indirect method is used to determine the local stability of an equilibrium

point. Let the dynamics of a system be ẋ = f (x), where x is a vector of state variables. In

Lyapunov’s indirect method the system dynamics f (x) are linearized about an equilibrium

point x∗ to produce the Jacobian matrix

A = ∂f
∂x

∣∣∣
x=x∗

, (A.1)

and the eigenvalues of (A.1) determines the behaviour of the equilibrium point. For a
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linear continuous-time system, i.e., a flow, to have local exponential convergence to an

equilibrium point, all eigenvalues must be in the left-half of the complex plane. Similarly,

a discrete-time system, i.e., a map, has local exponential convergence to an equilibrium

point if all eigenvalues are inside the unit circle of the complex plane [83].

For a one-dimensional linear map, the eigenvalue is the slope of the map at the

equilibrium point. For a two-dimensional map, linearization requires the computation of

the Jacobian matrix. The eigenvalues of this matrix can be calculated from its trace τ and

determinant δ, i.e.,

λ1,2 = τ±
p
τ2 −4δ
2

. (A.2)

Because λ1,2 must be inside the unit circle, τ and δ must be inside the so-called stability

triangle in the trace-determinant plane [83, p. 317]. The stability triangle is defined by

the following three inequalities [83]:

δ < 1

δ > −1−τ

δ > −1+τ.

(A.3)

Note, for a linear map, just like a linear flow, the strict inequalities in (A.3) can be replaced

by non-strict inequalities.
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