
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

Three-Dimensional Motion Coordination in a
Spatiotemporal Flowfield
Sonia Hernandez and Derek A. Paley, Member, IEEE

Abstract—Decentralized algorithms to stabilize three-
dimensional formations of unmanned vehicles in a flowfield that
varies in space and time have applications in environmental
monitoring in the atmosphere and ocean. In this note, we
provide a Lyapunov-based control design to steer a system
of self-propelled particles traveling in three dimensions at a
constant speed relative to a spatiotemporal flowfield. We assume
that the flow is known locally to each particle and that it does
not exceed the particle speed. Multiple particles can be steered
to form three-dimensional parallel or helical formations in a
flowfield. Also presented are motion coordination results for
a special case of the three-dimensional model in which the
particles travel in a circular formation on the surface of a
rotating sphere.

I. INTRODUCTION

Decentralized algorithms to stabilize collective motion in
a three-dimensional flowfield that varies in space and time
can be applied in many real-world scenarios [1], [2]. Previous
work on collective motion in a flowfield has focused on a
planar model of self-propelled particles [2]–[4], which is suf-
ficient for studying motion coordination in a two-dimensional
operational domain. Most prior work on non-planar collective
motion has focused on flow-free models [5]–[7]. We provide
a Lyapunov-based control design to steer a system of self-
propelled particles traveling in three dimensions at a constant
speed relative to a spatiotemporal flowfield. We assume that
the flow is known locally to each particle and that it does
not exceed the particle speed. Our model of three-dimensional
motion coordination is motivated by unmanned vehicles that
operate in a three-dimensional domain—such as underwater
gliders [8] and long-endurance aircraft [9]. Motivated by
constant-altitude/-depth surveys over spatial scales for which
the curvature and/or rotation of Earth are relevant, we also
study a special case of the three-dimensional model in which
particles are constrained to the surface of a rotating sphere.

Our analysis extends [6] and [10], which describe de-
centralized strategies to steer a three-dimensional system of
self-propelled particles in a flow-free environment. It also
extends the three-dimensional analysis in [11], which includes
a spatially variable, time-invariant flowfield. To model a
spatiotemporal flowfield in three dimensions, we adapt the
development of a planar framework for collective motion in
a time-varying flow [2]. The spherical analysis extends [7],
which introduced a flow-free spherical model. Additional prior
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work appears in [12] and an extended presentation of these
results is available [13]. The study of motion coordination in
an unknown flowfield or with turn-rate limits is ongoing [14]
and outside the scope of this note, as is the study of flowfields
that exceed the particle speed.

The contribution of this note is the Lyapunov-based design
of decentralized control laws to stabilize moving formations of
a three-dimensional, connected network of particles in a spa-
tiotemporal flowfield. (This framework can also be extended to
directed, time-varying communication topologies [15].) Previ-
ous results for three-dimensional motion coordination apply to
flow-free models [6], [7]. We provide algorithms to stabilize
parallel and helical formations in a three-dimensional flowfield
that varies in space and time; we also provide an algorithm
to stabilize circular formations in a spatiotemporal flowfield
on the surface of a rotating sphere. (A parallel formation is a
steady motion in which all of the particles travel in straight,
parallel lines with arbitrary separation [6]. A helical formation
is a steady motion in which the particles converge to circular
helices with the same axis of rotation, radius of rotation, and
pitch—the ratio of translational to rotational motion [6]; the
along-axis separation is arbitrary. In a circular formation on a
sphere all of the particles travel around a fixed circle [7].)

The note is organized as follows. In Section II, we describe
a three-dimensional system of self-propelled particles in a
spatiotemporal flowfield. In Section III, we describe a special
case of the three-dimensional model in which the particles are
constrained to travel on the surface of a rotating sphere. In
Section IV, we provide control laws for the three-dimensional
model to stabilize parallel formations in an arbitrary or
prescribed direction. We also provide control laws for the
three-dimensional model to stabilize helical formations with
arbitrary center and pitch or prescribed center and pitch. In
Section V, we provide control laws for the spherical model
to stabilize circular formations with an arbitrary or prescribed
center. Section VI summarizes the note and our ongoing work.

II. PARTICLE MOTION IN THREE DIMENSIONS

The model studied in this section introduces a three-
dimensional spatiotemporal flowfield to the flow-free particle
model described in [5] and further studied in [10]. The flow-
free model consists of N identical particles moving at unit
speed in three dimensions. The position of particle k ∈
{1, . . . , N} is represented by rk ∈ R3 and its velocity relative
to an inertial frame I by ṙk. Control uk = [wk −hk qk]T ∈
R3 steers each particle by rotating its velocity about the
unit vectors of a path frame, Ck = (k,xk,yk, zk), where
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xk,yk, zk ∈ R3. (Ck is a right-handed reference frame fixed
to particle k such that the unit vector xk points in the direction
of the velocity of particle k.) The equations of motion are [5]

ṙk = xk, ẋk = qkyk + hkzk
ẏk = −qkxk + wkzk, żk = −hkxk − wkyk,

(1)

where qk (resp. hk) represents the curvature control of the kth
particle about the yk (resp. zk) axis. The control wk rotates
the unit vectors yk and zk about the xk axis.

The dynamics in (1) represent a control system on the Lie
group SE(3) [5], [10] and, consequently, can be expressed as

ġk = gkξ̂k =

[
Rk rk
0 1

] [
ûk e1
0 0

]
, where Rk = [xk yk zk]

and e1 = [1 0 0]T . The matrix ξ̂k ∈ se(3) is an element
of the Lie algebra of SE(3) and ûk is the 3 × 3 skew-
symmetric matrix that represents an element of so(3), the
Lie algebra of SO(3). The dynamics are invariant under rigid
motions in SE(3) provided the controls uk depend only on
shape variables—relative positions and relative orientations of
the path frames Ck, k ∈ {1, ..., N}. In this case, a special
set of solutions correspond to steady-state formations, called
relative equilibria [5], [10], in which the position and path-
frame orientation of each particle is fixed with respect to the
position and path-frame orientation of every other particle. The
relative equilibria of model (1) are parallel formations, helical
formations, and circular formations (helical formations with
zero pitch) [5]. Algorithms to stabilize these formations in the
flow-free model (1) are provided in [6]. Section IV provides
algorithms to stabilize these types of formations in a three-
dimensional, spatiotemporal flowfield.

Next we introduce a model of N particles traveling in a
three-dimensional flowfield that varies in space and time. The
instantaneous velocity of the flow at rk is denoted by fk(t) =
f(rk, t). Expressed in vector components with respect to the
path frame Ck, we have fk(t) = pk(t)xk + tk(t)yk +vk(t)zk.
We make the following three assumptions about the flowfield:
(A1) the components of fk(t) expressed in Ck are known
by particle k at time t; (A2) the flow speed is less than
the particle speed relative to the flow, i.e., ||fk(t)|| < 1 ∀
k, t; and (A3) fk(t) is differentiable in rk and t. The second
assumption ensures that a particle can always make forward
progress as measured from an inertial frame. The inertial
velocity of particle k is the sum of its velocity relative to
the flow and the velocity of the flow, i.e., ṙk =xk + fk(t) =
(1 + pk(t))xk + tk(t)yk + vk(t)zk.

We associate frame Ck with motion relative to the flow-
field. We can express the dynamics (1) relative to an inertial
(or ground-fixed) frame using a second path frame, Dk =
(k, x̃k, ỹk, z̃k). Dk is aligned with the inertial velocity of par-
ticle k, i.e., x̃k is parallel to ṙk. Let sk(t) = ||xk+ fk(t)|| > 0
denote the (time-varying) inertial speed of particle k. The
dynamics expressed as components in frame Dk are

ṙk = sk(t)x̃k, ˙̃xk = q̃kỹk + h̃kz̃k
˙̃yk = −q̃kx̃k + w̃kz̃k, ˙̃zk = −h̃kx̃k − w̃kỹk,

(2)

where ũk = [w̃k −h̃k q̃k]T are the steering controls relative
to frame Dk. Note that the dynamics in (2) represent a control
system on SE(3), with Rk replaced by R̃k = [x̃k ỹk z̃k]

and e1 replaced by sk(t)e1. We will make use of the fact
that (2) implies

˙̃xk = R̃kũk × x̃k. (3)

The definition of parallel and helical formations in three
dimensions uses the concept of a twist [10], which is related to
screw motion [16]. The operator ∨ generates a 6-dimensional
vector that parametrizes a twist of the matrix ˆ̃

ξk, where ξ̃ =
ˆ̃
ξ∨k = [sk(t)e1 ũk]T ∈ R6 [16]. A constant screw motion is
defined by the constant twist ξ̃0 = [ṽT0 ωT0 ]T ∈ R6 [16].
When ω0 6= 0, the motion corresponds to rotation about an
axis parallel to ω0 and translation along ω0. When ω0 = 0, the
motion corresponds to pure translation along ṽ0. The pitch α0

is the ratio of translational to rotational motion and its value in
constant motion is α0 = ωT0 ṽ0/‖ω0‖2 if ω0 6= 0 and α0 =∞
if ω0 = 0 [16]. Following [10], we define a helical formation
using the consensus variable (the superscript a indicates an
inertial reference frame)

ṽak = x̃k + rk × ω0, ω0 6= 0. (4)

Using (3), the velocity of ṽak along solutions of (2) is
˙̃vak = (R̃kũk − sk(t)ω0) × x̃k. The following two lemmas
extend [10, Proposition 1] to helical and parallel motion in a
spatiotemporal flowfield.

Lemma 1: The control ũk = R̃Tk sk(t)ω0 steers particle k
in model (2) with time-varying flow fk(t) along a circular
helix with axis parallel to ω0, radius ‖ω0‖−1, and pitch αk =
ωT0 x̃k/‖ω0‖2 ≤ 1. The quantity ṽak defined in (4) is fixed. A
helical formation of N particles is characterized by ṽak = ṽaj
for all pairs j, k ∈ {1, ..., N}.

Lemma 2: The control ũk = 0 steers particle k in model (2)
with time-varying flow fk(t) along a straight line such that x̃k
is fixed. A parallel formation of N particles is characterized
by x̃k = x̃j for all pairs j, k ∈ {1, ..., N}.

Next we summarize the transformation between the flow-
relative frame Ck and frame Dk. This relationship is important
because we design the steering controls ũk using (2) and the
platform dynamics are presumed to obey (1); one needs to
compute uk from ũk to implement the algorithm. Using ṙk =
xk + fk(t) and (2), we have x̃k = 1+pk(t)

sk(t)
xk + tk(t)

sk(t)
yk +

vk(t)
sk(t)

zk. Note x̃k lies in the plane spanned by xk and fk(t).
Let θ be the angle between xk and x̃k such that 0 ≤ θ ≤ π,
which implies cos θ = xk · x̃k = s−1k (1 + pk(t)) and sin θ =
||xk × x̃k|| = s−1k

√
t2k(t) + v2k(t). Using these relations, it is

possible to derive the transformation between frames Ck and
Dk. (Omitted due to length; see [13].)

Unlike in the flow-free model (1), the inertial speed sk(t) of
particle k in model (2) is not constant—it depends on the flow
and the direction of motion. The inertial speed of particle k
is sk(t) = ||sk(t)x̃k|| =

√
(1 + pk(t))2 + t2k(t) + v2k(t) > 0,

where pk(t), tk(t), and vk(t) are components of fk(t) in Ck.
In order to integrate (2), we need the following expression for
sk(t) in terms of the components of fk(t) in Dk.

Theorem 1: The inertial speed of particle k in model (2)
with flow fk(t) is

sk(t) =
√

1− ‖x̃k × fk(t)‖2 + x̃k · fk(t). (5)
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The proof of Theorem 1 can be found in [13]. Note, (5) is
used to integrate (2) and only requires knowledge of fk(t)
expressed in Dk. However, to compute uk from ũk, we need
to know fk(t) in Ck.

III. PARTICLE MOTION ON A ROTATING SPHERE

We now constrain particle motion in the three-dimensional
model to the surface of a rotating sphere. The model studied
here extends the spherical model introduced in [7], which
consists of N particles moving at a constant speed on the
surface of a non-rotating sphere. We expand this framework
by first introducing rotation to the sphere and then attaching
a spatiotemporal flowfield to its surface. The flow-free model
consists of N particles moving at unit speed on the surface
of a sphere with radius ρ0 > 0 and center O. The position
of particle k ∈ {1, . . . , N} relative to O is represented by
rk. A path frame Ck = (k,xk,yk, zk) is fixed to particle k
such that the unit vector xk points in the direction of the
velocity of particle k, zk = ρ−10 rk is orthogonal to the sphere
at rk, and yk completes the right-handed reference frame. A
gyroscopic force steers each particle k on the surface of the
sphere, modeled as a state-feedback control uk that rotates the
velocity of each particle about zk. The dynamics are [7]

ṙk = xk, ẋk = ukyk − ρ−10 zk
ẏk = −ukxk, żk = ρ−10 xk.

(6)

One obtains (6) directly from (1) by substituting uk =
[0 0 uk]T into (1) and incorporating the radius of the sphere.
As such, the dynamics in (6) represent a control system on the
Lie group SE(3) [5], [17]. Alternatively, since rk is parallel
to zk, the dynamics evolve on SO(3) according to Ṙk =
Rkη̂k =

[
xk yk zk

]
η̂k, where η̂k ∈ so(3) is the 3 × 3

skew-symmeric matrix generated from ηk = [0 ρ−10 uk]T .
We first extend the framework described in [7] by adding

rotation to the sphere, which introduces the Coriolis acceler-
ation acork = −2ω1 × ṙk, where ω1 is the angular velocity
of the sphere and ṙk is the velocity relative to the surface
of the sphere. To derive the particle dynamics on a rotating
sphere, we use a spherical coordinate system consisting of the
azimuth angle θk, the polar angle φk, and the (fixed) radius ρ0.
I = (O, ex, ey, ez) is an inertial reference frame with origin
O at the center of the sphere. We assume that ω1 = ω1ez , so
that the sphere rotates at constant angular rate ω1 about ez .

We introduce four additional reference frames. Frame I ′ =
(O, e1, e2, e3) is fixed to the sphere and differs from I by
a rotation of ω1t about e3 = ez , where t is time. Frame
Ak = (O,a1k ,a2k ,a3k), k ∈ {1, . . . , N}, differs from I ′ by a
rotation of θk about a3k = e3. Frame Bk = (O, eφk

, eθk , erk)
differs from Ak by a rotation of φk about eθk = a2k . The
unit vector erk points from O to the position rk of particle k.
The fourth frame, Ck = (k,xk,yk, zk), differs from Bk by a
rotation of the orientation angle γk about zk = erk . The origin
of Ck is attached to particle k and the unit vector xk points
in the direction of motion of particle k relative to the sphere-
fixed frame I ′. The angular velocity IωCk of Ck with respect
to the inertial frame I is IωCk = (ω1+ θ̇k)a3k + φ̇keθk + γ̇zk,
where a3k = − sinφk cos γkxk + sinφk sin γkyk + cosφkzk
and eθk = sin γkxk + cos γkyk [7].

The inertial acceleration due to the Coriolis effect is acork =
−2IωCk× ṙk = −2ω1 (cosφkyk−sin γkzk). The Coriolis ac-
celeration contributes a fictional force, Fcork = acork (assuming
the particles have unit mass). The force Fk = −Nkzk +ukyk
on particle k in the non-rotating sphere is the sum of the
normal force Nk = ρ−10 that acts orthogonally to the surface
of the sphere and the steering force uk that acts tangentially
to the surface of the sphere and orthogonally to xk. The total
apparent force in the rotating sphere is Ftotk = Fk + Fcork =
(2ω1 sin γk −Nk) zk + (uk−2ω1 cosφk)yk. Comparing the
yk components of Ftotk and Fk, we observe that the control
uk is augmented by−2ω1 cosφk. Since cosφk = zk·e3 = zk3 ,
we define the effective control [12]

νk = uk − 2ω1zk3 . (7)

Under the effective control (7), the dynamics of particle k
relative to the sphere-fixed frame I ′ are

ṙk = xk, ẋk = νkyk − ρ−10 zk
ẏk = −νkxk, żk = ρ−10 xk.

(8)

Thus, if we use (8) to design νk, we can cancel the Coriolis
acceleration by using (7) to compute uk.

The only relative equilibrium of the closed-loop dynamics
on the (non-rotating) sphere is circular motion with a common
radius and axis and direction of rotation [7]. Algorithms to
stabilize circular formations in the flow-free model (6) are
provided in [7]. We provide algorithms to stabilize circular
formations in a spatiotemporal flowfield on a rotating sphere
in Section V. A circular trajectory on one side of the surface
of a sphere can be described as the intersection of the sphere
and a right circular cone whose axis of rotation passes through
the center of the sphere and whose apex is outside the sphere.
The position ck (relative to O) of the apex of the cone is
ck = rk + ω−10 yk, where ω0 6= 0 and the chordal radius of
the circle is |ω0|−1 [7]. The velocity of ck along solutions of
(8) is ċk ,

I′
d
dt ck = (1−ω−10 νk)xk. If ck = cj for all pairs j

and k, we call this motion a circular formation with center ck.
The following extends [7, Proposition 2] to a rotating sphere.

Lemma 3: The control νk = ω0 steers particle k in
model (8) around a circle such that the center ck is fixed.
A circular formation is characterized by ck = cj for all pairs
j, k ∈ {1, ..., N}.

We now study the case of N particles traveling on a rotating
sphere in a spatiotemporal flowfield. The velocity of the flow
at the position rk is represented by fk(t) = f (rk, t), which
can be decomposed into vector components in frame Ck as
fk(t) = pk(t)xk + tk(t)yk. (There is no flow orthogonal to
the surface of the sphere.) Assumptions (A1)–(A3) apply here.
Adding fk(t) to the time derivative of the position of the
particle model in (8) we obtain ṙk = (1 + pk(t))xk+tk(t)yk.
Since żk is parallel to ṙk, i.e., żk = ρ−10 ṙk, and the dynamics
evolve on SO(3), the remaining equations of motion can
be found from Ṙk = Rk ˆ̃ηk, where Rk , [xk yk zk],
η̃k = [−ρ−10 tk(t) ρ−10 (1+pk(t)) νk], and νk is defined in (7).

In order to find a control law to stabilize a formation in a
spatiotemporal flow, we express the dynamics in frame Dk =
(k, x̃k, ỹk, z̃k). The motion of a particle relative to the sphere
is the sum of the particle motion relative to the flow and the



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 4

motion of the flow relative to the sphere. We choose x̃k to be
parallel to ṙk. The speed of particle k relative to I ′ is denoted
sk(t). The dynamics are

ṙk = sk(t)x̃k, ˙̃xk = ν̃kỹk − ρ−10 sk(t)z̃k
˙̃yk = −ν̃kx̃k, ˙̃zk = ρ−10 sk(t)x̃k,

(9)

where ν̃k is the control input in frame Dk. In Dk, we have

c̃k = rk + ω−10 ỹk. (10)

The velocity of c̃k along solutions of (9) is ˙̃ck = (sk(t) −
ω−10 ν̃k)x̃k. The following extends Lemma 3 to motion on a
rotating sphere in a spatiotemporal flowfield.

Lemma 4: The control ν̃k = ω0sk(t) steers particle k in
model (9) with time-varying flow fk(t) around a circle such
that the center c̃k defined in (10) is fixed. A circular formation
is characterized by c̃k = c̃j for all pairs j, k ∈ {1, ..., N}.

The relationship between frames Ck and Dk is important
because we design ν̃k using (9) and the platform dynamics
are presumed to obey (8); one needs to compute νk from ν̃k.
Since z̃k = zk, we use Ṙk = Rk ˆ̃ηk and (9) to find x̃k =
sk(t)−1 [(1 + pk(t))xk + tk(t)yk]. The relationship between
ν̃k and νk is found by taking the time derivative of x̃k [13].

The inertial speed is sk(t) =
√

(1 + pk(t))
2

+ t2k(t) > 0,
where pk(t) and tk(t) are the components of fk(t) in Ck. To
integrate (9) we express sk(t) in terms of the components of
fk(t) in frame Dk using Theorem 1.

IV. MOTION COORDINATION IN THREE DIMENSIONS

In this section, we derive decentralized control laws that
stabilize three-dimensional parallel and helical formations in
a spatiotemporal flowfield, following the flow-free approach
provided in [5] and [10]. We use a graph G to represent
the particle communication topology, which we assume to be
connected, undirected, and time-invariant. (The extension to
directed, time-varying topologies follows [15].)

A parallel formation is a steady motion in which all of
the particles travel in straight, parallel lines with arbitrary
separation. We first provide a control law to stabilize parallel
formations in an arbitrary direction of motion and then a
control law that prescribes the direction. Let G = (N , E),
where N = {1, ...N}, have edge set E and graph Laplacian
L [18]. Using the matrix L , L ⊗ I3, where ⊗ denotes
the Kronecker product, we define the potential (we drop the
subscript to denote a matrix collection of N elements)

S(x̃) = 1
2 x̃

TLx̃ = 1
2

∑
(j,k)∈E ‖x̃j − x̃k‖2, (11)

where x̃ , [x̃T1 · · · x̃TN ]T and the summation is over all of the
edges in G. The potential S is minimized by the set of parallel
formations in accordance with Lemma 2.

Using (3) we find the time derivative of S along solutions
of (2) to be Ṡ =

∑N
j=1

˙̃xj · Ljx̃ =
∑N
j=1

(
R̃jũj × x̃j

)
· Ljx̃,

where Lk denotes three consecutive rows of L starting with
row 3k − 2, k ∈ N . Choosing the control law

ũk = −K0R̃
T
k (x̃k × Lkx̃) , K0 > 0, (12)

ensures that S is nonincreasing, since Ṡ =
−K0

∑N
j=1(x̃j×Ljx̃×x̃j) · Ljx̃=−K0

∑N
j=1||x̃j ×Ljx̃||2 ≤

0. The following extends [10, Theorem 1] to motion in a
flowfield that varies in space and time.

Theorem 2: All solutions of the closed-loop model (2) with
time-varying flow fk(t), the speed sk(t) given by (5), and the
control ũk by (12), converge to the set {Ṡ = 0}, where S
is defined in (11). The set of parallel formations is uniformly
asymptotically stable and the direction of motion is determined
by the initial conditions.

Proof: The closed-loop dynamics ˙̃xk = R̃kũk × x̃k
with ũk given by (12) are autonomous and independent of
the flowfield. Since each x̃k has unit length, the dynamics
evolve on a compact space isomorphic to N copies of the
two-sphere S2. The potential S is radially unbounded and
positive-definite in the reduced space of relative velocities, and
its time derivative satisfies Ṡ ≤ 0. By the invariance principle,
all solutions converge to the largest invariant set in {Ṡ = 0},
for which x̃k × Lkx̃ = 0, k ∈ N . When Lkx̃ = 0 ∀ k, the
potential S is minimized, forming the set of parallel formations
x̃j = x̃k ∀j, k ∈ N . Since this set corresponds to the global
minimum of S, it is asymptotically stable.

Theorem 2 provides a decentralized algorithm to stabilize
a parallel formation in a three-dimensional flowfield using
control (12), as illustrated for all-to-all communication in Fig.
1(a). The direction of motion of the formation is determined
by the initial conditions. The flowfield is a three-dimensional
adaptation of a Rankine vortex, with maximum flow speed
occurring on a set of radii that increases with height. The
vortex translates horizontally (see dashed arrows).

Next we provide a control algorithm that stabilizes parallel
formations in a prescribed direction by introducing a virtual
particle k = 0 that travels parallel to ω0 6= 0. The dynamics
of the virtual particle are given by (2) with ũ0 = 0 and
x̃0(t) = x̃0(0) = ω0/‖ω0‖. Let G0 = (N0, E0), where
N0 = {0, 1, ..., N}, denote a time-invariant and directed graph
rooted to node 0. The edge set E ⊂ E0 includes at least one
link from particle 0 to a particle k ∈ N . We define

S0(x̃) = 1
2 x̃

TLx̃ + 1
2

∑N
j=1 aj0‖x̃j − x̃0‖2, (13)

where aj0 = 1 if there is information flow from particle 0
to particle j ∈ N and aj0 = 0 otherwise. Using (3), the time
derivative of S0 is Ṡ0 = −

∑N
j=1[R̃jũj×x̃j ] · [Ljx̃−aj0(x̃j−

ω0/‖ω0‖)]. Choosing

ũk = K0R̃
T
k x̃k×(Lkx̃− ak0(x̃k − ω0/‖ω0‖)), K0 > 0, (14)

ensures that S0 is non-increasing.
Corollary 1: All solutions of the closed-loop model (2)

with time-varying flow fk(t), the speed sk(t) given by (5),
and the control ũk by (14), converge to the set {Ṡ0 = 0},
where S0 is defined in (13). The set of parallel formations
with direction of motion determined by ω0 is uniformly
asymptotically stable.

A helical formation is a steady motion in which all of the
particles converge to circular helices with the same axis of
rotation, radius, and pitch. We now provide control laws to
stabilize helical formations with arbitrary pitch and center and
prescribed pitch and center. The potential

Q(ṽa) = 1
2 (ṽa)

T Lṽa = 1
2

∑
(j,k)∈E ||ṽaj − ṽak||2, (15)
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Fig. 1. Three-dimensional motion coordination in a spatiotemporal flowfield:
parallel, helical, and circular formations.

where L , L ⊗ I3 and ṽak is defined in (4), is minimized
by the set of helical formations in accordance with Lemma 1.
Recall Lk, k ∈ 1, ..., N , denotes three consecutive rows of
L starting with row 3k − 2. Along solutions of (2), Q =∑N
j=1 Ljṽa ·( ˙̃xj + ṙj×ω0), where ˙̃xj given by (3). Choosing

ũk = K0R̃
T
k [sk(t)ω0 + Lkṽa × x̃k] , K0 > 0, (16)

results in Q̇ = −K0

∑N
j=1Ljṽa · (x̃j×Ljṽa × x̃j) =

−K0

∑N
j=1 ||x̃j × Ljṽa||2 ≤ 0. The following result ex-

tends [10, Theorem 2] to motion in a spatiotemporal flowfield.
Theorem 3: All solutions of the closed-loop model (2) with

time-varying flow fk(t), the speed sk(t) given by (5), and the
control ũk by (16), converge to the set {Q̇ = 0}, where Q
is defined in (15). The set of helical formations with axis of
rotation parallel to ω0, radius ‖ω0‖−1, and arbitrary pitch is
uniformly asymptotically stable and the formation pitch and
center are determined by the initial conditions.

Proof: The closed-loop dynamics (2) with ũk given
in (16) depend on the time-varying speed sk(t). The proof
follows from a pair of invariance-like theorems for nonau-
tonomous systems [19, Theorems 8.4 and 8.5]. Q is radially
unbounded and positive definite in the reduced space of the rel-
ative quantities ṽak−ṽaj ∀ (j, k) ∈ E. The time derivative of Q
satisfies Q̇ ≤ 0 and neither Q nor Q̇ depend explicitly on time.
By [19, Theorem 8.4] all solutions of the closed-loop model
converge to the set {Q̇ = 0}, in which x̃k×Lkṽa = 0 ∀ k. The
potential Q is minimized when Lkṽa = 0 ∀ k ∈ N , which
implies the set of helical formations ṽj = ṽk ∀ k, j ∈ N it is
uniformly asymptotically stable.

Theorem 3 provides a method to stabilize helical formations
in a three-dimensional flowfield. The pitch and center of a
helical formation stabilized by control (16) are determined by
the initial conditions. Note, the parameter ω0 used in (16)
prescribes a line parallel to the axis of rotation of the forma-
tion, but not necessarily the location of this axis (the formation
center). To isolate helical formations with a prescribed pitch
and center we introduce a virtual particle k = 0 with dynamics
given by (2) with ũ0 = sk(t)R̃kω0, so that ṽa0 is invariant for
all time, i.e., ṽa0(t) = ṽa0(0). The twist of the virtual particle,
ξ̃
a

0 = [(ṽa0)T , ωT0 ]T , is constant and its corresponding pitch
is ṽa0 · ω0/‖ω0‖2 [10], [16].

To isolate helical formations with a prescribed center and
pitch we use the center ṽa0 and the pitch α0 ∈ [0, 1) (a pitch
of α0 = 0 results in a three-dimensional circular formation).

We define the potentials [10]

Qpitch(ṽa) = 1
2

∑N
j=1 aj0(ṽaj · ω0/‖ω0‖ − α0)2

Qcenter(ṽ
a) = 1

2

∑N
j=1 aj0||ṽaj − ṽa0 ||2,

where ṽaj is defined in (4) and the center of the formation is
a point on ṽa0 . Qpitch is minimum when the pitch of every
particle is equal to α0. The parameter aj0 = 1 if information
flows from particle 0 to particle j ∈ N , and aj0 = 0 otherwise.
Consider the augmented potential

Q0(ṽa) = Q(ṽa) +Qpitch(ṽa) +Qcenter(ṽ
a), (17)

which is non-increasing under the control

ũk = K0R̃
T
k [sk(t)ω0 + (L̃kṽa + ak0(βkω0/‖ω0‖

+ṽak − ṽa0))× x̃k], K0 > 0. (18)

Fig. 1(b) illustrates (18) stabilizing a helical formation with
α0 = 0.8 and the center located at the origin of the xy-plane.

Corollary 2: All solutions of the closed-loop model (2)
with time-varying flow fk(t), the speed sk(t) given by (5),
and the control ũk by (18), converge to the set {Q̇0 = 0},
where Q0 is defined in (17). The set of helical formations
centered on ṽa0 , with pitch α0, and radius ‖ω0‖−1 is uniformly
asymptotically stable and the formation center is determined
by the initial conditions.

V. MOTION COORDINATION ON A ROTATING SPHERE

The spherical model is a special case of the three-
dimensional model in which the particles travel on the surface
of a (rotating) sphere in the presence of a spatiotemporal
flowfield. We seek to design a decentralized control law that
stabilizes circular formations on the sphere, as has been done
previously for the flow-free case [7]. We first provide a control
law to stabilize a circular formation on a rotating sphere and
then a control law to stabilize a circular formation on a rotating
sphere in a spatiotemporal flowfield. The potential [7]

V (r,x,y, z) , 1
2c
TLc = 1

2

∑
(j,k)∈E ‖cj − ck‖2, (19)

where L , L ⊗ I3 and ck = rk + ω−10 yk, is minimized by
the set of circular formations on a sphere in accordance with
Lemma 3. The time derivative of V along solutions of (8) is
V̇ =

∑N
j=1 ċj · Ljc =

∑N
j=1(1− ω−10 νj)xj · Ljc. Choosing

νk = ω0(1 +K0xk · Lkc), K0 > 0, (20)

yields V̇ = −K0

∑N
j=1 (xj · Ljc)

2 ≤ 0, which ensures that
V is nonincreasing. Using (7) to compute uk = νk + 2ω1zk3
we cancel the Coriolis effect and stabilize a circular forma-
tion with a fixed center. The following theorem extends [7,
Theorem 4] to motion on a rotating sphere.

Theorem 4: All solutions of the closed-loop (flow-free)
model (8), where the control νk is given by (20), converge
to the set {V̇ = 0}, where V is defined in (19). The set of
circular formations with radius |ω0|−1 and direction of rotation
determined by the sign of ω0 is asymptotically stable.

Proof: By the invariance principle, all solutions converge
to the largest invariant set where xk · (ck − cj) = 0 for all
connected pairs j and k. This is a set of circular trajectories
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on the same or opposite sides of the sphere. The set of circular
formations (on the same side of the sphere) is asymptotically
stable because it corresponds to the global minimum V .

Next we incorporate a spatiotemporal flow to the rotating
spherical model. We work in the frame Dk to find a control
law that stabilizes a circular formation. The potential

Ṽ (r, x̃, ỹ, z̃) = 1
2 c̃
TLc̃ = 1

2

∑N
(j,k)∈E ‖c̃j − c̃k‖2, (21)

where L , L ⊗ I3 and c̃k is defined in (10), is minimized
by the set of circular formations on the sphere in accordance
with Lemma 4. The time derivative of Ṽ along solutions of
(9) is ˙̃V =

∑N
j=1

˙̃cj · Lj c̃ =
∑N
j=1(sj(t) − ω−10 ν̃j)x̃j · Lj c̃.

Choosing the control law

ν̃k = ω0(sk(t) +K0x̃k · Lkc̃), K0 > 0, (22)

ensures ˙̃V = −K0

∑N
j=1 (x̃j · Lj c̃)

2 ≤ 0.
Theorem 5: All solutions of the closed-loop model (9), with

time-varying flow fk(t), the speed sk(t) given by (5), and the
control ν̃k by (22) converge to the set { ˙̃V = 0}, where Ṽ
is defined in (21). The set of circular formations with radius
|ω0|−1 and direction of rotation determined by the sign of ω0

is uniformly asymptotically stable.
Proof: The closed-loop dynamics (9) with ν̃k given

in (22) depend on the time-varying speed sk(t). Therefore,
the proof follows from application of a pair of invariance-
like theorems [19, Theorems 8.4 and 8.5]. The potential Ṽ is
radially unbounded and positive-definite in the reduced space
of relative centers. The time derivative of Ṽ satisfies ˙̃V ≤ 0

and neither Ṽ nor ˙̃V depend explicitly on time. By [19,
Theorem 8.4] all solutions converge to the set { ˙̃V = 0}, in
which x̃k ·Lkc̃ = 0 ∀ k, which includes circular trajectories on
the same or opposite sides of the sphere. Since Ṽ is minimized
by the set of circular formations for which c̃k = c̃j ∀k, j ∈ N ,
this set is asymptotically stable, uniformly in time.

Fig. 1(c) illustrates the stabilization of a circular formation
in a spatiotemporal flow generated by two point vortices on the
sphere. The flowfield at rk due to M point vortices of identical
strength Γ is fk(t) = 1

4πρ0

∑M
j=1;j 6=k Γj

rj×rk
ρ20−rk·rj

[20], where
rj in the sum is the position of the jth vortex.

Under control (22) the center of the circular formation
depends on the initial conditions of the particles. In order to
prescribe the formation center, we introduce a virtual particle
k = 0 with dynamics given by (9) with ν0 = ω0s0(t), so that
c̃0(t) = c̃0(0) ∀ t. Consider the augmented potential

Ṽ0(r, x̃, ỹ, z̃) = 1
2 c̃
TLc̃ + 1

2

∑N
j=1 aj0||c̃j − c̃0||2, (23)

where aj0 = 1 if there is information flow from particle 0
to particle j ∈ N , and aj0 = 0 otherwise. We ensure Ṽ0 is
non-increasing by choosing

ν̃k = ω0 (sk(t) +K0x̃k · [Lkc̃ + ak0 (c̃k − c̃0)]) . (24)

Control (24) stabilizes the set of circular formations on a
rotating sphere with prescribed center c0.

VI. CONCLUSION

In this note we present a Lyapunov-based design of decen-
tralized control algorithms for a three-dimensional, connected
network of self-propelled particles in a spatiotemporal flow-
field. We provide control laws to stabilize parallel formations
with arbitrary and prescribed direction in three dimensions.
We also provide control laws to stabilize helical formations in
three dimensions with arbitrary pitch and center and prescribed
pitch and center. In a spherical model that is a special case
of the three-dimensional model, we provide control laws to
stabilize circular formations on a rotating sphere with arbitrary
and prescribed center. In ongoing work we seek decentralized
control algorithms to regulate particle space-time separation
in a three-dimensional, spatiotemporal flowfield.
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