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Abstract Modeling soft robots that move on surfaces is challenging from a variety

of perspectives. A recent formulation by Bergou et al. of a rod theory that exploits

new developments in discrete differential geometry offers an attractive, numerically

efficient avenue to help overcome some of these challenges. Their formulation is an

example of a discrete elastic rod theory. In this paper, we consider a planar version

of Bergou et al.’s theory and, with the help of recent works on Lagrange’s equations

of motion for constrained systems of particles, show how it can be used to model soft

robots that are composed of segments of soft material folded and bonded together. We

then use our formulation to examine the dynamics of a caterpillar-inspired soft robot

that is actuated using shape memory alloys and exploits stick-slip friction to achieve

locomotion. After developing and implementing procedures to prescribe the parameters
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for components of the soft robot, we compare our calibrated model to the experimental

behavior of the caterpillar-inspired soft robot.

Keywords Elastic Rods · Soft Robots · Locomotion

1 Introduction

The field of soft robots has emerged as a prominent research area in mechanics in the

past decade. The function of these soft robots range from soft gripping devices such

as Galloway et al. [13] and Laschi et al.’s octopus [16] with fully functional extending

and grabbing tentacles to locomoting devices such as the worm-like robot developed

by Seok et al. [30] and the caterpillar-inspired robot developed by Trimmer et al. [18].

While much of the work in soft robots focuses on design and construction, works on

the challenging tasks of developing and analyzing models for these machines are far

fewer in number (see, for example, [7,11,12,14,20,27,28]). Models that have appeared

in the literature use finite element methods or rod-based theories to model the robot

(cf. [14,34,35] and references therein). Developing tractable finite element models that

are validated with soft robot prototypes is challenging and often involves some type of

model reduction (cf. [7]). Notable examples of this work include Renda et al.’s model for

an underwater soft robot [27]. Because of the challenges in modeling frictional contact,

developing, validating, and analyzing models for soft robots that are designed to grip

objects or locomote on rough terrains is difficult.

Nonetheless, a new avenue to develop models for soft robots has become available

due to Bergou et al.’s recent formulation of a discrete elastic rod theory [1,3,4]. Their

formulation, which we refer to as DER, is computationally efficient and can model the

three-dimensional dynamics of elastic and viscoelastic rods that are capable of bending,

stretching, and twisting. The computational advantages of the DER formulation over

traditional approaches, such as finite element models, lumped parameter models, or

continuous rod models, make it ideal for use in analyzing soft robots. These advantages

include generation of ordinary differential equations for the motion of the soft robot

that can interface with control schemes and contact algorithms, ability to incorporate

a hierarchy of rod models, and ease of interpretation and measurement of kinematical

quantities. We also take this opportunity to note that discrete elastic rod formulations

are also used to analyze assembly processes for cables (cf. [19,21,22]).

The purpose of the present paper is to examine a planar version of DER that is

capable of modeling locomoting soft robots as a branched structure in frictional contact

with a surface and then use the formulation to model the dynamics of a soft robot test

bed. For brevity, we refer to this formulation as a planar discrete elastic rod (PDER).

The soft robot that we examine is a caterpillar-inspired robot shown in Figure 1. Using

the PDER model, we are able to examine the efficacy of actuation strategies for the

robot as it locomotes on a rough horizontal surface. Complementing Bergou et al.’s

original works [1,3,4], we derive formulations of the equations of motion for the PDER

by taking advantage of recent works on the formulation of Lagrange’s equations of

motion for a discrete set of particles [6,23]. We also explore a novel folding strategy to

develop models for soft robots composed of multiple SMA actuators bonded together

such as those shown in Figure 1.

As in earlier works on locomotion [33,34], the locomotion in the soft robots we ana-

lyze is a product of stick-slip friction induced by changing the intrinsic curvature of the
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Fig. 1: Caterpillar-inspired robot made out of six SMA actuator segments connected in

series, with embedded flexible circuit and battery packs on top. The inset image shows

a schematic of the assembly process for a single actuator segment.

rod-like structure that is being used to model the SMA actuator. However, in contrast

to earlier work, which involved a quasi-static analyses of an elastica with an attached

mass at one of its ends [34] and a multibody dynamics model for a caterpillar-inspired

robot [9], here we analyze the dynamics of the actuator using the PDER formulation.

The PDER formulation also provides a set of ordinary differential equations for the

discrete model of the soft robot. In ongoing work, these equations are being used to

design distributed feedback control strategies.

An outline of the paper is as follows. In the next section, ingredients needed to

formulate a planar theory of a discrete elastic rod are presented. The theory is a

specialization of Bergou et al.’s formulation for an extensible rod that resists bending

and torsion [1,3,4]. For the planar case, we are able to restrict attention to bending

and stretching and the DER formulation simplifies dramatically. Once the kinematical

preliminaries have been presented, we turn to a discussion of mass matrices and inertias

in Section 3 and forces and elastic potential energies in Section 4. Our treatment in

the latter section closely follows a recently published primer on DER [15]. With the

preliminaries taken care of, we then turn to presenting Lagrange’s equations of motion

for a rod that is free to move on a surface (and is consequently subject to external

constraints). Here, we take advantage of recent works [6,23,24] on Lagrange’s equations

of motion for systems of particles to formulate the equations in a systematic manner.

In Section 6 we apply the ideas from these works to consider folding a rod so the PDER

is capable of modeling tree-like structures. This capability is needed if we are to be

able to model soft robots such as the one shown in Figure 1.

The PDER formulation that incorporates folded rods and branched tree-like struc-

tures is then used to model an SMA-actuated soft robot. First, however, we develop

and implement strategies to determine the parameters of the PDER model. These pa-

rameters include intrinsic curvature and Young’s moduli, both of which are functions
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of time. Next, we consider the caterpillar-inspired soft robot shown in Figure 1. The

design of the soft robot is based on measurements of caterpillar kinematics performed

by Trimmer et al. [32], where actuator segments are connected in series to mimic body

segments of a caterpillar that are actuated from rear to front to result in forward lo-

comotion. Here, we model the segments as connected SMA actuators and model the

entire robot as a tree-like branched structure. Mimicking the actual soft robot, we

are able to demonstrate that locomotion can be achieved by actuating the segments

in a particular order. Our model also enables the study of the efficiency of different

actuation schemes.

Additional details on the fabrication and testing of the SMA actuators are presented

in Appendix A.

2 A Planar Discrete Elastic Rod

We consider Bergou et al.’s [1,3,4] formulation of a discrete elastic rod. Their theory

is sufficiently general to model the stretching, torsional, and flexural deformations of

an extensible, flexible elastic rod. In this section of the paper, we restrict the theory to

the planar case. Thus, the rod is free to move on a plane and the torsional deformation

of the rod is ignored. The resulting simplifications to Bergou et al.’s formulation are

considerable and we refer to the theory as PDER in the sequel.

E1

E2

xk−1

xk

xk+1

t
k−1

tk

nk−1

nk

ϕk

Fig. 2: Three vertices xk−1, xk, and xk+1 of a planar discrete elastic rod. This figure

also illustrates the pairs of unit vectors
{

tk,nk
}

associated with the edges and the

turning angle ϕk. The unit vectors E1 and E2 define an inertial frame.

In a discrete elastic rod formulation, the centerline of the rod is discretized into a

series of n nodes (or vertices) that are connected by n−1 segments (edges), where n is

an integer. The higher n, the more refined the discretization of the rod. The position

vectors of the nodes that define the edges are denoted by x0, . . . ,xn−1 (cf. Figure 2).

The edge vector ei and the associated unit vector ti are defined as follows:

e
i = xi+1 − xi, t

i =
ei

‖ei‖
. (2.1)

Here, and in the sequel, a subscript is used to denote quantities associated with a

vertex (e.g., xk) and a superscript is used to denote quantities associated with an edge
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(e.g., ei). For the planar discrete elastic rod, it is convenient to identify the material

vector (director) mk
1 with the unit normal vector for each edge and the material vector

(director) mk
2 = E3 with the out-of-plane direction:

m
k
1 = n

k = E3 × t
k , m

k
2 = E3. (2.2)

Thus,
{

tk ,nk,E3

}

are an orthonormal triad of vectors. The turning angle can be used

to relate the triads at adjacent edges:

t
k = cos (ϕk) t

k−1 + sin (ϕk)n
k−1, n

k = cos (ϕk)n
k−1 − sin (ϕk) t

k−1. (2.3)

Associated with each vertex, we define the length ℓk of the Voronoi region:

ℓ0 =
1

2

∥

∥

∥
e
0
∥

∥

∥
, ℓk =

1

2

(∥

∥

∥
e
k−1

∥

∥

∥
+
∥

∥

∥
e
k
∥

∥

∥

)

, ℓn−1 =
1

2

∥

∥

∥
e
n−2

∥

∥

∥
, (2.4)

where k = 1, . . . , n− 2.

For the discrete elastic rod, a signed discrete integrated curvature κk can be defined

at the kth vertex:

κk =
2 sin (ϕk)

1 + cos (ϕk)
= 2 tan

(

ϕk

2

)

, (2.5)

where ϕk is the turning angle at the kth vertex. In comparison to the curvature of

a continuous curve, κk can be easily measured in soft robot actuators where optical

methods are used to track a set of discrete points [9]. The curvature κk is dimensionless

and, as shown in Figure 3, this function is not defined when the edges are antiparallel.

We observe that

∂κk
∂ϕi

=
2δki

1 + cos (ϕk)

=
2δki

1 + tk−1 · tk
. (2.6)

In this equation, δki is the Kronecker delta: i.e., δki = 1 if i = k and is otherwise 0.

The discrete integrated curvature vector κkE3 at the vertex xk is used to quantify

the bending strain of the rod:

κkE3 =
2tk−1 × tk

1 + tk−1 · tk
. (2.7)

The representation (2.7) can be considered a specialization of the three-dimensional

curvature vector to the planar discrete elastic rod. The curvature κk can be considered

as a planar version of the vertex-based material curvatures κk1
and κk2

introduced in

Bergou et al. [3]. The curvatures κk1
and κk2

are used to formulate bending strains

and elastic energy associated with bending. Alternative measures of bending strain

are used in polymer dynamics where a worm-like chain model consisting of bead and

springs are used to model polymers. These alternative measures include the turning

angle ϕk and
∥

∥

∥
tk − tk−1

∥

∥

∥
=
√

2 (1− cos (ϕk)) (cf. [5] and references therein).
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xk
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Fig. 3: The discrete curvature κk as a function of the turning angle ϕk. When ϕk = π,

the edges of the rod are coincident and, as ϕk passes through π, the edges intersect. Such

behavior is non-physical and is penalized by the forces in the rod which, in proportion

to κk, become unbounded as ϕk → π.

For future reference, the variation of κk due to the displacements of the edges of

the discrete rod are presented here. The following are intermediate results from [15,

Chapter 6] that can be used to compute these variations:

∂ϕk

∂ek−2
= 0,

∂ϕk

∂ek−1
=

ek−1

∥

∥ek−1
∥

∥

2 ×
ek−1 × ek
∥

∥ek−1 × ek
∥

∥

,

∂ϕk

∂ek
= −

ek

∥

∥ek
∥

∥

2
×

ek−1 × ek
∥

∥ek−1 × ek
∥

∥

,

∂ϕk

∂ek+1
= 0. (2.8)

One can verify that the variations are orthogonal to E3 as expected. Indeed, for the

planar case of interest we can simplify (2.8) using the identities

t
k−1 × t

k = (nk−1 · tk)E3 = −(tk−1 · nk)E3. (2.9)
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Thus, we have the following simplifications of (2.8):

∂ϕk

∂ek−2
= 0,

∂ϕk

∂ek−1
= −

1
∥

∥ek−1
∥

∥

n
k−1,

∂ϕk

∂ek
=

1
∥

∥ek
∥

∥

n
k,

∂ϕk

∂ek+1
= 0. (2.10)

3 Prescribing Masses and Inertias

Following Bergou et al. [1,3,4], the mass Mi associated with the ith vertex is the

average mass of the edges meeting at this vertex:

M0 =
1

2
M0,

Mi =
1

2

(

M i +M i−1
)

, (i = 1, . . . , n− 2) ,

Mn−1 =
1

2
Mn−2. (3.1)

For a homogeneous rod with a uniform cross-section in its reference configuration (or

reference state),

M i = ρ0A
i
∥

∥

∥
ē
i
∥

∥

∥
, (i = 0, . . . , n− 2) , (3.2)

where ρ0 is the mass density per unit volume in the reference configuration, Ai is the

cross-sectional area in the reference configuration, and
∥

∥ēi
∥

∥ denotes the length of the

ith edge in the reference configuration. If the rod is not homogeneous or of a uniform

cross-section, then M i must be computed using a more primitive prescription:

M i =

∫ ∫ ∫

ρ0dx1dx2dx3, (i = 0, . . . , n− 2) , (3.3)

where the integration is performed over the segment of the three-dimensional body

that the ith edge is modeling.

The mass moments of inertia associated with the ith edge are defined with the help

of volume integrals:

ρi0I
i =

∫ ∫ ∫

x22ρ0dx1dx2dx3, (i = 0, . . . , n− 2) . (3.4)

Thus, for a segment of length ℓ of a homogeneous rod with a rectangular cross-section

of height h (in the x2 direction) and width w (in the out-of-plane x3 direction):

ρi0I
i = ρ0ℓ

hw3

12
=

M iw2

12
. (3.5)

Observe that we have used the definition of the mass M i of the ith edge to simplify

the expression for ρi0I
i.
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The mass matrix M can now be defined:

M =





















M0 0 · · · · · · 0 0

0 M0 · · · · · · 0 0

. . .
. . .

. . .

. . .
. . .

. . .

0 0 · · · · · · Mn−1 0

0 0 · · · · · · 0 Mn−1





















. (3.6)

This matrix can be used to formulate an expression for the kinetic energy T of the rod:

T =
1

2

n−1
∑

k=0

(

ẋ
T
k Mk ẋk

)

. (3.7)

where

ẋk =
[

ẋk1
, ẋk2

]T
. (3.8)

The mass matrix in (3.6) is always positive definite.

4 Forces and Energies

For the planar rod theory, we assume that the elastic energy is incorporated into the

stretching and bending of the rod; torsion is ignored. The elastic potential energy Ee

is a function of the stretching of the edges and the turning angles between the adjacent

edges. A simple choice of the function Ee is an additive decomposition of a stretching

energy Es and a bending energy Eb:

Ee = Es + Eb. (4.1)

The respective extensional Es and bending Eb elastic energy functions are assumed to

be quadratic functions of the strains:

Es =
1

2

n−2
∑

j=0

EAj

(
∥

∥ej
∥

∥

‖ēj‖
− 1

)2
∥

∥

∥
ē
j
∥

∥

∥
,

Eb =
1

2

n−2
∑

i=1

EIi
ℓ̄i

(κi − κ̄i)
2. (4.2)

In these expressions, the overbars ornamenting ℓk, e
j , mi, and κi denote the values of

these quantities in a fixed reference configuration and E denotes the Young’s modulus.

The moment of inertia in the bending energy is based on the average of the areal

moments of inertia:

Ii =
1

2

(

Ii + Ii−1
)

. (4.3)

This averaged quantity is considered a vertex-based measure. In the sequel, the intrinsic

curvature κ̄i at the vertex will change depending on the actuation of the SMA actuator

that the PDER is modeling. Modeling the actuation using the intrinsic curvature is

also a strategy used in models of pneunet actuators (cf. [25]).
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The force Fei acting on the ith vertex can be prescribed by solving an energy

balance that equates the negative of the time rate of change of the elastic energy to

the combined mechanical power of the forces Fe0 , . . . ,Fen−1
[15]:

Ėe = −

n−1
∑

i=0

Fei · ẋi. (4.4)

This procedure mimics the definition of conservative forces in systems of particles (see,

e.g., [23]). For the choice of Ee we have selected, it is possible to decompose the force

vector at the ith vertex:

Fei = Fsi + Fbi . (4.5)

Here, the force Fsi is associated with a stretching energy and the force Fbi is associated

with a bending or flexural energy. These forces can be prescribed by assuming that they

satisfy the following energy balance for all motions of the rod:

Ės + Ėb = −

n−1
∑

i=0

(

Fsi + Fbi

)

· ẋi. (4.6)

After some rearranging, we find that Eqn. (4.6) can be expressed as

n−1
∑

i=0

Xi · ẋi = 0. (4.7)

In this equation,

X0 = −
∂Ee

∂e0
+ Fs0 + Fb0 ,

Xk = −
∂Ee

∂ek
+

∂Ee

∂ek−1
+ Fsk + Fbk , (k = 1, . . . , n− 2) ,

Xn−1 =
∂Ee

∂en−2
+ Fsn−1

+Fbn−1
. (4.8)

As Eqn. (4.7) is assumed to hold true for all motions of the discrete rod, the vectors

Xi are independent of ẋi, and x0, . . . ,xn−1 can all be independently varied, we can

conclude that

Xk = 0, (k = 0, . . . , n− 1) . (4.9)

It is now possible to equate the forces to the gradients of the elastic energy.

With the help of (4.8), an expression for the internal force Fsj due to stretching

acting on the vertex xj in terms of the stretching energy Es can be found:

Fs0 =
∂Es

∂e0
= EA0

(

∥

∥e0
∥

∥

‖ē0‖
− 1

)

t
0,

Fsk = −
∂Es

∂ek−1
+

∂Es

∂ek
= −EAk−1





∥

∥

∥
ek−1

∥

∥

∥

∥

∥ēk−1
∥

∥

− 1



 t
k−1 + EAk





∥

∥

∥
ek
∥

∥

∥

∥

∥ēk
∥

∥

− 1



 t
k,

Fsn−1
= −

∂Es

∂en−2
= −EAn−2

(

∥

∥en−2
∥

∥

‖ēn−2‖
− 1

)

t
n−2. (4.10)
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As anticipated, the components of the forces Fsk are parallel to tangent vectors to the

edges that meet at the kth vertex.

The following expression for the internal force due to bending Fbk acting at the

vertex xi is computed using the bending energy Eb with the help of Eqns. (4.8) and

(4.9):

Fb0 =
∂Eb

∂e0
,

Fbk = −
∂Eb

∂ek−1
+

∂Eb

∂ek
, (k = 1, . . . , n− 2) ,

Fbn−1
= −

∂Eb

∂en−2
, (4.11)

where

∂Eb

∂ek
=

EIk2

ℓ̄k

[

(κk − κ̄k)
∂κk
∂ek

]

+
EI(k+1)

2

ℓ̄k+1

[

(κk+1 − κ̄k+1)
∂κk+1

∂ek

]

. (4.12)

We note that

∂κk
∂ek−2

=
2

1 + cos (ϕk)

∂ϕk

∂ek−2
= 0,

∂κk
∂ek−1

=
2

1 + cos (ϕk)

∂ϕk

∂ek−1
,

∂κk
∂ek

=
2

1 + cos (ϕk)

∂ϕk

∂ek
,

∂κk
∂ek+1

=
2

1 + cos (ϕk)

∂ϕk

∂ek+1
= 0. (4.13)

Representations for ∂κk

∂ek−1
and ∂κk

∂ek can be found using (2.10). In contrast to the forces

Fsk associated with stretching of the edge, the components of the forces Fbk are normal

to the tangent vectors of the edges that meet at the kth vertex.

5 State Space Formulation and Lagrange’s Equations of Motion

In the planar formulation of the discrete elastic rod formulation, a 2n-dimensional state

vector q is formulated using the Cartesian components of the position vectors of the n

vertices:

q =
[

q1, . . . , q2n
]

=
[

x0 · E1,x0 ·E2, . . . ,x(n−1) · E1,x(n−1) ·E2

]T
. (5.1)

Complementing this vector, a pair of 2n-dimensional generalized force vectors are also

formulated:

Fext =
[

F
0
ext, . . . ,F

(2n−2)
ext

]T

, Fint =
[

F
0
int, . . . ,F

(2n−2)
int

]T

. (5.2)

If we consider the kth node and the (k−1)th and kth edges bounding this vertex, then

the components of the force vector Fint are












...

F2k+1
int

F2k+2
int
...













=













...

Fk ·E1

Fk ·E2

...













, (5.3)
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where the resultant of the elastic forces and dissipative force Fdk
acting on the kth

node has the decomposition

Fk = Fdk
+ Fsk +Fbk . (5.4)

For future reference, we note that if an external force P acts on the vertex xk, then

this force contributes as follows to the components of the generalized force Fext:













...

F2k+1
ext

F2k+2
ext
...













=













...

P · E1

P · E2

...













. (5.5)

Examples of the force P in the sequel will include contact and friction forces acting on

a node.

As the discrete elastic rod can be considered as a set of particles joined by elastic

elements and acted upon by external forces, classic methods such as those in [31],

can be used to show establish the equations of motion for the rod. It is convenient

to define a Lagrangian function L = T − U where T is the kinetic energy of the rod

and U denotes the potential energy associated with elastic energy Ee and externally

applied conservative forces. The equations of motion can be expressed in the following

canonical form:
d

dt

(

∂L

∂q̇J

)

−
∂L

∂qJ
= QJ , (J = 1, . . . , 2n) (5.6)

where

QJ = Fnc0 ·
∂ẋ0

∂q̇J
+ . . .+ Fncn−1

·
∂ẋn−1

∂q̇J
. (5.7)

In these representations for the generalized force QJ , Fnck is the non-conservative

force acting on the kth vertex. The equations of motion (5.6) are equivalent to linear

combinations of Newton’s laws of motion Fi = miẍi applied to each of the nodes of

the rod. The equations (5.6) can also be expressed in a state space form discussed in

Bergou et al. [3, Section 6].

6 Constraining a Discrete Elastic Rod

There are two common instances where integrable constraints are imposed on the

discrete elastic rod. The first case arises when the rod is in contact with a surface.

The second case arises when certain edges of the rod are folded onto themselves or

(equivalently) edges of a rod are bonded together. Both cases occur when the soft robot

shown in Figure 1 is modeled using a discrete elastic rod. As we shall demonstrate for

the first time, it is straightforward to construct the potential and kinetic energies for

the constrained (folded) structure. In addition, because the constraints imposed during

the folding process are integrable, deriving the equations of motion follows a standard

procedure (see, e.g., [6,23]). Alternative numerical methods to impose the constraints

are discussed in Bergou et al. [4, Section 8].
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Fig. 4: (a) A discrete elastic rod composed of 4 edges and 5 nodes and (b) the folded

discrete elastic rod obtained by permanently joining two of the edges of the rod together.

6.1 Constrained Equations of Motion

After the integrable constraints have been imposed on the discrete elastic rod, a new

set of coordinates can be defined by eliminating the redundant coordinates. This new

set of coordinates is distinguished by a tilde:

q̃ =
[

q̃1, . . . , q̃N
]

, (6.1)

where N is the number of degrees of freedom of the constrained rod. For instance, for

the folded structure shown in Figure 4(b), N = 10 − 2. In the sequel, we ornament

kinetic and kinematic quantities associated with the constrained system with a tilde.

In the event that the rod is in contact with a rough surface, it is prudent not to

impose the constraints associated with the contact until the concomitant normal forces

have been computed. In the PDER formulation, the contact of a rod with a surface is

enforced through the contact of a node. For the purposes of exposition, suppose the

kth node is in contact with a stationary planar surface whose unit normal is E2. Then,

we prescribe the constraint forces Fkcon
acting on the node as the sum of a normal

force and a friction force:

Fkcon
=

{

NkE2 + FfkE1 whenvk = 0 where
∣

∣Ffk

∣

∣ ≤ µs |Nk|

NkE2 − µk |Nk|
vk

‖vk‖
otherwise

}

, (6.2)

where vk = ẋk. The unit vector vk

‖vk‖
is parallel to the slipping direction of the kth

node, µs is the coefficient of static friction, and µk is the coefficient of dynamic friction.

At the stick-slip transition, vk = 0, the friction force is static, and we prescribe the

slip direction to be antiparallel to the direction of the limiting static friction force.

By imposing the integrable constraints, we can also compute the constrained kinetic

energy T̃ of the structure:

T̃ =
1

2
˙̃qT M̃ ˙̃q, (6.3)

where the N×N mass matrix M̃ is computed using the 2n×2n matrix M by combining

the elements associated with the joined nodes. Similarly, for the elastic potential energy,
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we need to eliminate several terms associated with bending of the pairs of folded edges.

To avoid singularities with the turning angle, it may be necessary to introduce new

intrinsic curvature terms into the expression for Ee to arrive at Ẽe. Related remarks

pertain to the potential energy Ua associated with the applied conservative forces. The

energies Ẽe and Ũa are then added to define Ũ . We shall shortly discuss a pair of

examples in Section 6.2 to illustrate these points.

Lagrange’s equations of motion for the constrained rod are

d

dt

(

∂L̃

∂ ˙̃qK

)

−
∂L̃

∂q̃K
= Q̃K , (K = 1, . . . , N) , (6.4)

where L̃ = T̃−Ũ . Constraint forces Fck are needed to impose the integrable constraints

associated with contact, attachment, or folding. However, in the case where contact is

with a smooth surface, it can be shown that these forces do not contribute to several

of the forces Q̃K :

Fc0 ·
∂ẋ0

∂ ˙̃qK
+ . . .+ Fcn−1

·
∂ẋn−1

∂ ˙̃qK
= 0, (K = 1, . . . , N) . (6.5)

Consequently, (6.4) can be integrated using standard methods.

(a)

(b)

massless segments

x3

x3 x6

x7

x7 x8

x11

x11

x15

x15

x6 = x8

x0

x0

Fig. 5: (a) A discrete elastic rod composed of two segments with 8 nodes and a third

massless freely extensible segment with a single edge (dashed line). (b) The folded dis-

crete elastic rod obtained by permanently bonding the third edge to the first segment.

6.2 Folding a Discrete Elastic Rod

Imagine modeling a T-shaped structure using a discrete elastic rod. The simplest such

model will have 4 nodes, however to start the modeling process, we consider a discrete

elastic rod with 4 edges (and 5 nodes) shown in Figure 4. Imagine constraining the

positions of nodes x1 and x3 to be identical, which has the effect of folding the second

and third edges onto themselves1.

1 For discussion and proof that any discrete rod configuration in Euclidean two-dimensional
space can be reduced into a polygonal cycle or a polygonal arc using simple folding motions,
we refer the reader to [8,10,17].
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To establish the equations of motion for the folded structure shown in Figure 4, we

need only eight generalized coordinates:

q̃1 = x0 · E1, q̃2 = x0 ·E2, q̃3 = x1 ·E1 = x3 ·E1, q̃4 = x1 ·E2 = x3 ·E2,

q̃5 = x2 · E1, q̃6 = x2 ·E2, q̃7 = x4 ·E1, q̃8 = x4 ·E2. (6.6)

The mass matrix M̃ is

M̃ =

























M0 0 0 0 0 0 0 0

0 M0 0 0 0 0 0 0

0 0 M1 +M3 0 0 0 0 0

0 0 0 M1 +M3 0 0 0 0

0 0 0 0 M2 0 0 0

0 0 0 0 0 M2 0 0

0 0 0 0 0 0 M4 0

0 0 0 0 0 0 0 M4

























. (6.7)

The constrained elastic energy Ẽ = Ẽs + Ẽb can be obtained from Eqn. (4.2):

Ẽs =
1

2



EA0

(
∥

∥e0
∥

∥

‖ē0‖
− 1

)2
∥

∥

∥
ē
0
∥

∥

∥
+ EA3

(
∥

∥e3
∥

∥

‖ē3‖
− 1

)2
∥

∥

∥
ē
3
∥

∥

∥





+
EA1 + EA2

2

(

∥

∥e1
∥

∥

‖ē1‖
− 1

)2
∥

∥

∥
ē
1
∥

∥

∥
,

Ẽb =
1

2

(

EĨ1
ℓ̄1

(κ1 − κ̄1)
2 +

EĨ3
ℓ̄3

(κ3 − κ̄3)
2

)

. (6.8)

The areal moment of inertia in the bending energy expression is defined as

Ĩ1 =
1

2

(

I0 + I1 + I2
)

, Ĩ3 =
1

2

(

I3 + I1 + I2
)

. (6.9)

The intrinsic curvature at the T-joint is such that the intrinsic turning angle at this

point is 90◦. Thus,

κ̄1 = κ̄3 = 2. (6.10)

These modifications to the intrinsic curvatures and bending energies are necessary to

avoid singularities associated with turning angles of 180◦.

A generalization of this folding procedure used to model a caterpillar-inspired robot

is shown in Figure 6. In this construction, we are modeling the bonding of two segments

of a discrete elastic rod by artificially inserting massless freely extensible segments of a

rod (i.e., the segment has a Young’s modulus of 0). Such a segment is shown as a dashed

line in the aforementioned figure. We can then use the folding procedure mentioned

earlier to create a discrete elastic rod model for the caterpillar-inspired robot in Section

8.
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x6 = x8

x4 = x9

x4 = x9

x0

x0

x0

Fig. 6: (a) The folded discrete elastic rod from Figure 5 that is obtained by permanently

bonding the third edge to the first segment. (b) The folded discrete elastic rod formed

by bonding the 6th edge of the first segment to the first edge of the second segment. (c)

Introducing intrinsic curvature into the folded rod.

7 A Discrete Model for a Single SMA Actuator

A class of soft robots such as those discussed in [16,18,30] are typically made by

assembling a series of actuators composed of nickel-titanium (NiTi) shape memory

alloy (SMA) wire enclosed in a flexible casing. We refer to the assembly of wire and

flexible casing as an SMA actuator. As electric current is passed through the wire,

the wire heats up and transitions from its martensite to the austenite state [29]. This

transformation bends the actuator and also changes its flexural rigidity. Faithfully

simulating the dynamics of a single actuator during this transformation is a necessary

precursor to simulating a soft robot assembled from these actuators.

We model the transformation as inducing changes to the intrinsic curvature and

flexural rigidity in a rod-based model for the actuator. To obtain an estimate of the

material parameters of the SMA actuator during actuation, we consider a single ac-

tuator clamped at one end and free at the other under repeated actuation. We first

perform an experiment to measure the shape of the hardware actuator over time using

automated tracking of high speed video. Next we numerically solve for material pa-

rameter values that give the best agreement between the hardware measurements and

the results of numerical simulations of the planar DER model. All six of the actuators

(which we label #1 through #6) used in the construction of the caterpillar robot were

probed in this manner.
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We are able to employ an optical method based on our earlier work [9] to determine

the intrinsic curvature of the actuator. The tracking procedure involves three steps.

First, given a frame from the video, a colored edge of the actuator is isolated from

the rest of image. Then, a smoothing spline is used to obtain (x(s), y(s)) where s is

the arc-length parameter. Using the functions x(s) and y(s), the curvature κ can be

computed analytically. A sample of the results for a single actuator are shown in Figure

7. Although the curvature is not uniform along the length of the actuator, we seek to

approximate κ in our models using a mean curvature. At each frame, a circle is fit

to the outline of the actuator. The mean curvature of the actuator is identified as

the inverse of the circle’s radius. Paralleling our earlier work with pneu-net acuators

[25,26], the mean curvature we find in this manner, after a rescaling and appropriate

sign attribution, can be identified with the intrinsic discrete integrated curvature κk
used in the PDER model. Representative examples of the time evolution of the mean

curvature can be seen in Figure 8(a) for ten repeated activation cycles. Every cycle

heats the actuator and, without sufficient cooling time, the curvature profile flattens

out.

The periodic input current (or activation pulse) to the SMA actuator consists of

a square pulse, 0.15 s in duration, with a period of 3.54 s. The current changes the

curvature of the actuator. Based on a series of tests, a representative sample of which

are shown in Figure 8(a), we assume that the change in the mean intrinsic curvature

follows a logistic curve of the form

κ̄(t) = κ̄rest −A

(

1−
1

1 + e−
t−t0

τ

)

, (7.1)

starting from the moment electrical current is applied at t = 0. In this equation, κ̄rest is

the resting value of the curvature that it returns to after actuation, A > 0 represents the

net decrease in the curvature at the start of actuation, t0 is the time that the curvature

is halfway back to its resting value (κ̄(t0) = κ̄rest−A/2), and τ is a time constant. The

Matlab function lsqcurvefit is used to solve for the four parameters (κ̄rest, A, τ , t0)

that minimize a least-squares error function,
∑

(κ(t)− κ̄(t, κ̄rest, A, τ, t0))
2. To prepare

the data, we trim the 240 frame-per-second time series data for a given actuator into

data for each individual cycle, taking t = 0 to be the instant that the curvature first

crosses the threshold κ = −60 m−1 from below. The end of a cycle is chosen as the

time when the curvature reaches its minimum value before the next electrical pulse

input. As can be seen from Figure 8(a), the logistic function in Eqn. (7.1) qualitatively

matches the shape of κ(t) after initial oscillations have died down.

As regards our PDER simulation, we identify κ(t) with the intrinsic curvature κ̄(t)

of the rod. The function κ̄(t) is then used to define the reference (or intrinsic) discrete

integrated curvatures κ̄1(t), . . . , κ̄n−2(t) of the nodes of the PDER. In this manner, the

SMA actuation is incorporated into the rod model. That is, when the square pulse is

activated, the intrinsic curvature changes according to Eqn. (7.1). Note that the time

constant τ can be considered to be a function of the SMA temperature, as seen in

Figure 8(a) for an actuation period of 3.54 s; a longer period of actuation would yield

a constant τ but a slower locomotion speed of the caterpillar-inspired soft robot.

For the numerical simulations of the planar DER model, we use the implicit first-

order integration scheme suggested in [3] and [15]:

h ẋ(tk+1) = x(tk+1)− x(tk),

M
(

ẋ(tk+1)− ẋ(tk)
)

= hF (tk+1, x(tk+1), ẋ(tk+1)), (7.2)
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Fig. 7: Motion capture data of a cantilevered SMA actuator. (a) Deformed shape of the

actuator when an activation pulse signal is applied at t = 0. After a period of approxi-

mately 2 seconds, the actuator returns close to its undisturbed state. (b) Measurement

of the curvature κ = κ(s, t) of the centerline of the actuator as a function of arc length

for various instants of time. Data from t = 0 s to t = 0.5 s are omitted for visual clarity

due to the initial high-frequency response of the actuator (cf. Figure 8(a)). However,

the initial data are readily inferred from the video provided in the supplemental material

associated with this paper.

with a time step h = tk+1 − tk. At each instant of time tk, we numerically solve the

set of nonlinear equations in Eqn. (7.2) for x(tk+1) and ẋ(tk+1) via Matlab’s fsolve

function. Entries of the force vector F are the sum of forces due to bending, stretching,

viscous damping, and frictional ground contact for each node. The actuator is simulated

using a discrete elastic rod with n = 10 nodes and a time step of h = 0.001 seconds.

To simulate the boundary conditions at one end of the cantilevered rod, the first two

nodes of the discrete elastic rod were fixed.

To estimate the stiffness and damping parameters of the actuator, we consider the

oscillations in κ̄(t) during the first 0.4 seconds of actuation (cf. Figure 8(a)). For each

of the six actuators and each cycle, the dominant frequency of oscillation is computed

using Matlab’s periodogram function and the curvature overshoot is calculated as the

minimum value of the measured curvature relative to the logistic curve fit. We use

Matlab’s nonlinear equation solver fzero to solve for values of the Young’s modulus E

and viscous damping coefficient δ such that the oscillation frequency and overshoot of
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Fig. 8: PDER simulation of a cantilevered SMA actuator, using 10 nodes with the first

two fixed. (a) Predicted mean curvature κ̄(t) of the centerline of the actuator over time,

overlaying the simulation result with the logistic fit and measured data for actuator #1

over 10 cycles. (b) Deformed shape of the simulated actuator when an activation pulse

signal is applied at t = 0. After a period of approximately 2 seconds, the actuator

returns close to its undisturbed state.

the numerical PDER simulation of the actuator most closely match the experimental

data. The Young’s modulus is presumed to follow the same activation time profile as

the intrinsic curvature, assuming that the maximum stiffness is 2.3 times that of the

resting stiffness based on the martensitic-austenitic transition of the SMA wire:

E(t) = Erest

(

2.3−
1.3

1 + e−
t−t0

τ

)

. (7.3)

The damping coefficient δ is assumed to be constant over time. In our simulations, the

frequency of oscillation varies strongly with the bending stiffness, while the overshoot

and decay time varies more strongly with the damping coefficient.

Best-fit material parameter values for the cantilever SMA actuator are presented

in Table 1 in Appendix A, averaged over the six actuators and ten cycles of activation

each. Figure 8(b) shows snapshots of the cantilever DER simulation using average

parameter fits from actuator #1. In contrast to the snapshot data shown in Figure 7

where the rod does not have a constant curvature, the simulations in Figure 8(b) show

a rod where each node has the same curvature, based on the mean curvature parameter

fit from the experimental data. The temporal behavior of the mean curvature compares

favorably to the experimental measurements shown in Figure 7.

8 A Discrete Model for a Caterpillar-Inspired Soft Robot

The next model we consider is for the caterpillar-inspired soft robot shown in Figure

1. The PDER model for this robot is constructed using a straightforward variation

of the folding procedure presented in Section 6.2 (cf. Figure 5). Here, we consider a

series of ns interconnected PDER segments each containing nn nodes. Each segment

can be actuated to vary its intrinsic curvature and stiffness, as in the single-rod ex-

ample in the previous section. Within a single segment, we label the nodes in order as

j = 0, 1, . . . , nn − 1. The connection from segment k to segment k + 1 is such that the
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edge connecting nodes nn−1 and nn−2 of the kth segment are bonded onto nodes nf

and nf + 1 of the (k + 1)th segment, where nf and nb are the number of extra nodes

forming forward-facing and rearward-facing foot-like extensions, respectively (cf. Fig-

ure 9(a) showing the case of nf = 0, nb = 1). The end point of the foot structure will

sometimes contact the ground, giving rise to the frictional forces that enable locomo-

tion. Additionally, we add a passive spine PDER along the top of the structure that

holds the electronics and batteries to power and control the system. The spine rod has

one node per segment, such that node j − 1 of the spine is attached to a particular

node p of the jth segment.

In our simulations of the caterpillar PDER model, we use the same material pa-

rameters for the SMA actuator discussed in Section 7. The parameters for the time

series of intrinsic curvature and stiffness of the actuators are taken as the means of the

parameters over all measured actuators and actuation cycles. Inputs are based on a gait

developed for the experimental prototype shown in Figure 1. For both the hardware

robot and the simulation, control inputs are repeated with a period of 3.54 s, with a

1/3 period phase difference between neighboring segments, such that two actuators are

activated simultaneously in a wave from the back to the front of the robot. The full

list of material parameters for the SMA actuator segments and the passive spine rod

are collected in the Appendix.

For our simulations, we use ns = 6 segments with nn = 9 + nf + nb nodes per

segment for different combinations of nf , nb = {0, 1}. The spine is attached at node

4 + nf for each segment, and neighboring segments are connected along a single edge,

such that nodes nn − 2− nb and nn − 1− nb of the kth segment correspond to nodes

nf and nf + 1 of the (k + 1)th segment (cf. Figure 9(a)).

The asymmetry of the foot-like structure (having one additional node below the

shared edge on the next rod) appears to be vital for locomotion, based on observations

of the physical prototype. In simulation, we investigated a range of different foot shapes,

varying the length of the forward and rearward extended foot edges while keeping

the total length of each segment constant. The foot shape with maximum horizontal

displacement after one complete gait cycle used nf = 0, nb = 1 with the rearwards-

facing foot edge having length equal to the other edges. The displacement over time

for the hardware robot is compared to the simulations in Figure 9, and snapshots of

the maximum-displacement simulation are presented with corresponding images of the

hardware robot in Figure 10.

To compare locomotion performance, we measure the horizontal displacement of

the front foot (the last node of the last segment) and back foot (the first node of the

first segment). Over a single gait cycle of 3.54 s, the hardware robot has displacement

of 36.8 mm (front) and 38.0 mm (back). The best of the simulations has a horizontal

displacement of 26.7 mm (front) and 27.0 mm (back). The worst of the simulations

has displacement of only 6.9 mm (front) and 8.9 mm (back). Performance for a range

of foot shapes is presented in Figure 11. Although our highest displacement simulation

based on the material parameters measured in Section 7 has on average 28% lower

displacement compared to the hardware robot, we are encouraged that the complex

PDER model with many parameters is able to qualitatively track the motion of the

physical system. Through additional simulations with variations of the parameter val-

ues, we find that increasing the stiffness of the actuators by a factor of 20% yields a

displacement that is 6.7% greater than the hardware robot, illustrated in Appendix

A.6.
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Fig. 9: Locomotion performance of a PDER model for a caterpillar-inspired soft robot.

(a) Segment numbering of the model; (b) intrinsic curvature κ0(t) of the segments as a

function of time and (c) Young’s moduli E(t) of the segments as a function of time; (d)

displacement of the front foot of the robot as a function of time; and (e) displacement

of the rear foot of the robot as a function of time. The displacements shown in (d) and

(e) are compared to the performance of the fabricated and actuated soft robot (hardware

robot). The highest displacement was attained with rear-facing feet configured as shown

in (a).

Our simulations suggest that the locomotion performance is highly sensitive to the

geometry of the connections between rods forming the feet that contact the ground,

to such an extent that small changes in the foot shape yield simulations with up to a

3.4 times difference in locomotion performance, as shown in Fig. 11. Comparisons of

the simulation results to video of the hardware prototype reveal a few key differences.

At the onset of activation, the hardware appears to generate higher forces than the

simulation, causing the caterpillar to leap forward at the start of each step. The shape

of the foot end of each segment affects the angle that the end of the rod touches the

ground. This observation is significant because forces arising due to change in intrinsic

curvature at the first node are normal to the first edge.

The connection of the spine also has a significant effect on the behavior of the

system. We investigated other attachment schemes, such as only attaching to the first

and last segments, but found that attaching to every segment achieved the best loco-

motion results. The one-node-per-segment attachment used in the simulation preserves

the primary function of the spine, which is to keep the segments from folding over on

each other. In the future, the PDER theory may be extended to model rod-on-rod
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Fig. 10: Locomotion performance of a caterpillar PDER model compared to a soft robot

prototype. Left: snapshots of the model from one full period of the gait cycle. Right:

images of the soft robot at corresponding times during a gait cycle. The snapshots are

taken from a supplemental video associated with this paper.
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Fig. 11: Locomotion performance of a caterpillar PDER model with varying foot shapes,

measured over a full 3.54 s gait cycle. (a) Heat map of the front foot displacement

(mm); and (b) heat map of the rear foot displacement. Forward-foot and rearward-foot

extensions are the length of forward-facing foot edges and rearward-facing foot edges,

respectively, as a fraction of the length of interior edges. The color scale (in mm) is

the same for both plots.
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surface contact with frictional and normal forces. Such an extension might provide a

more realistic simulation in certain situations.

9 Conclusions

In this paper, we have discussed the application of Bergou et al.’s discrete elastic rod

formulation to study and analyze the locomotion of soft robots. The robots of interest

are composed of long slender structures that are amenable to modeling using a rod

theory. To help facilitate use of the discrete rod formulation, the notion of folding a

straight rod is introduced so it can model a soft robot that has a tree-like architecture.

This folding strategy was also shown to include a strategy where segments of rods were

bonded together. We also showed how recent works on Lagrange’s equations of motion

for systems of particles can be exploited so as to confidently establish the equations

of motion for the discrete rod. Our main goal was to apply the discrete elastic rod

formulation to study the difficult problem of developing models for the locomotion of

soft robots. A representative example was presented to show the capabilities of the

formulation: a caterpillar-inspired soft robot fabricated from SMA actuators in series.

The presentation was supplemented by an extensive discussion of parameter estimation

and identification. To date, ours is one of the most detailed analysis of a locomoting soft

robots in the literature. It is straightforward to consider modeling other locomoting

soft robots using this formulation and we hope this paper inspires the soft robotics

community to explore the development of models of this type.
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(a) (b)

(c) (d)

Fig. 12: Fabrication of an SMA actuator. (a) Thermal tape (40 × 18 × 0.5 mm) with

a layer of Ecoflex 00-30 (0.2mm) on top; (b) Top: thermal tape in (a) with a U-shape

SMA wire on top and sealed with a layer of Ecoflex 00-30 (0.4mm); Bottom: stretched

thermal tape (50%) with a layer of Ecoflex 00-30 on top (0.1mm); (c) two thermal

tapes (stretched and non-stretched) clamped together with binder clips; and (d) cut-out

naturally curled actuator.

of normal thermal tape (0.5mm in thickness, H48-2, T-Global). The layers are bonded with
a silicone elastomer (Ecoflex 00-30, Smooth-On). The SMA wire is bent into a loop that is
11mm in width and 34mm in length (see Figure 1).

First, the thermal tape is cut using a CO2 laser (30 W VLS 3.50; Universal Laser Systems)
into two rectangular pieces whose dimensions are 40 × 18mm and 80 × 50mm, respectively.
Next, the prepolymer part A and part B (Ecoflex 00-30, Smooth-On) are mixed using a 1:1
mass ratio in a planetary centrifugal mixer (AR-100, THINKY) with 30s mixing and 30s de-
gasification. We then apply a 0.2mm thick uncured Ecoflex on the smaller rectangular thermal
tape and make it half-cured at 50◦C for 7 minutes. After placing the bent SMA wire on the
top side of the half-cured silicone layer, we then apply another layer of the uncured Ecoflex
00-30 silicone with a thickness of 0.4mm on top. At the same time, we apply a layer of uncured
Ecoflex 00-30 silicone with a thickness of 0.1mm on the upper side of the larger piece of thermal
tape that is stretched to 1.5 times of its original length using a linear stretcher (A150602-S1.5,
Velmex). Following these procedures, we put both tapes with the uncured Ecoflex 00-30 in
the oven and half-cure them at 50◦C for 7 minutes and then clamp them together using two
binder clips. We then place the final assembly in the oven at 50◦C for another 10 minutes so
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it is fully cured. The final step in the fabrication process is to cut out the actuator using the
outline of the smaller piece of thermal tape with a pair of scissors.

(a) (b)

Fig. 13: SMA actuator fabricated showing (a) the unactuated or OFF state and (b) the

actuated or ON state that is achieved by passing an electric current through the shape

memory alloy wire. Image is reproduced from the authors’ earlier work [9].

A.2 SMA Actuator Parameters

A summary of the dimensions and material parameters for a single SMA actuator are recorded
in Table 1. The same parameters were used for the PDER model of the single cantilever rod,
and for each of the actuator segments in the caterpillar model. The moduli of the acutator are
obtained from JM medical 2

The spine of the caterpillar which holds the electronics and batteries has the following
properties in the caterpillar model: number of nodes 6, length 88.6 mm, width 27 mm, thickness
0.2 mm, Young’s modulus 2.43 GPa, mass 3 g plus six batteries of mass 2.45 g each for a total
of 17.7 g evenly distributed among the nodes.

A.3 Measurement of Coefficients of Friction

The static coefficient of friction µs between the thermally conductive tape and rubber is
characterized by varying the angle of the inclined plane that is covered by rubber with the
caterpillar robot sitting on top and recording the angle βs when the robot starts to slip down
the incline. For the dynamic coefficient of friction µk, we give a slight push to the robot
and record the angle of inclination βk when it starts slipping down at a steady speed. The
coefficients of friction are prescribed by the relations µs = tan (βs) and µk = tan (βk).

A.4 Measurements of Curvature

A variety of curvature measurements are used to characterize the evolution of curvature of
the SMA acuators. One set of measurements of curvature as a function of time and arc length
parameter s were discussed in Section 7. A second method, which gives a measure of the mean
curvature as a function of time, was also used.

For the mean curvature characterization, six actuators are actuated individually for ten
cycles with an actuation time of 0.15 s and a cooling time of 3.39 s in each cycle. This actuation
scheme is identical to the one used in the caterpillar-inspired robot in Section 8: each limb has
an actuation time of 0.15 s and a cooling time of 3.39s. The single actuators are also powered

2 http://jmmedical.com/resources/221/Nitinol-Technical-Properties.html#nitinol-physical-properties.

http://jmmedical.com/resources/221/Nitinol-Technical-Properties.html#nitinol-physical-properties
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parameter average ± std. dev.
Measured Length (mm): 36.42± 0.47

Width (mm): 19.72± 0.32
Thickness (mm): 1.80± 0.06
Mass (g): 2.31± 0.10
Static coefficient of friction µs = 1.15
Kinetic coefficient of friction µk = 0.8

Logistic fit κrest (1/m) −110.2231 ± 7.0895
A (1/m) 88.9733 ± 6.7709
τ (s) 0.3023 ± 0.1214
t0 (s) 0.8676 ± 0.1638

Dynamic fit Erest (MPa) 2.9586 ± 0.6089
Damping coeff. δ 0.0133 ± 0.0045

PDER model Number of nodes n 10
Time step h (s) 0.001

Table 1: Measured actuator parameters and fitted model parameters based on average

curvature measurements for the cantilever rod discussed in Section 7, which are also

averaged over the six actuators. Each of the actuators were each subjected to ten

actuation cycles.

and controlled by the same batteries and circuits that used to drive the caterpillar robot. A
high-speed camera (GoPro 5) was used to record the actuation with a speed of 240 frames per
second. We then extract all the frames, and fit the shape of the actuator in each frame with a
circle using the Pratt method. The radius of the circle is the inverse of the mean curvature.

A.5 Displacement Tracking

To characterize the motion of the caterpillar-inspired robot, the horizontal (x) displacement of
the end points of the first and last actuators are tracked by the commercial software package
Tracker as the caterpillar locomotes.

A.6 Parameter variation in caterpillar PDER model

We tested the sensitivity of the caterpillar PDER model to variations in the actuator stiffness
and friction coefficients. Each simulation was run using the foot shape parameters found in Sec-
tion 8 that had the highest displacement, with all the same material parameter values except
for either the actuator stiffnesses or the friction coefficients, which were varied by a multiplica-
tive factor ranging from 0.75 to 1.25 in increments of 0.05. Figure 14 displays the displacement
versus the parameter multiplier for each of the trials. We found the highest displacement when
increasing the actuator stiffness parameters by a factor of 1.2, which surpassed the displace-
ment of the hardware robot when averaged between front and back foot. Displacement appears
to be positively correlated with increasing friction, however friction above a factor of 1.05 led
to chattering and numerical instability in the simulation and those results have been omitted
from the figure.
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Fig. 14: Locomotion performance of the caterpillar PDER model simulations with mul-

tiplicative variation in actuator stiffness (red) and friction coefficients (blue) compared

to the hardware robot (black line) over one 3.54 s gait cycle.
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