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Uncrewed Aerial Systems (UAS) are essential for safely exploring indoor environments

damaged by shelling, fire, floods, and structural collapse. These systems can gather critical visual

and locational data, aiding in hazard assessment and rescue planning without risking human lives.

Reliable UAS deployments requires advanced sensors and robust algorithms for real-time data

processing and safe navigation, even in GPS-denied and windy conditions. This dissertation

details three research projects to improve UAS performance: (1) in-flight calibration to improve

estimation and control, (2) system identification for wind rejection, and (3) indoor aerial 3D

mapping.

The dissertation begins with introducing a comprehensive nonlinear filtering framework for

UAV parameter estimation, which considers factors such as external wind, drag coefficients, IMU

bias, and center of pressure. Additionally, it establishes optimized flight trajectories for parameter

estimation through empirical observability. Moreover, an estimation and control framework is

implemented, utilizing the mean of state and parameter estimates to generate suitable control



inputs for vehicle actuators. By employing a square-root unscented Kalman filter (sq-UKF),

this framework can derive a 23-dimensional state vector from 9-dimensional sensor data and

4-dimensional control inputs. Numerical results demonstrate enhanced tracking performance

through the integration of the estimation framework with a conventional model-based controller.

The estimation of unsteady winds results in improved gust rejection capabilities of the onboard

controller as well.

Closely related to parameter estimation is system identification. Combining with the previ-

ous work a comprehensive system identification framework with both linear offline and nonlinear

online methods is introduced. Inertial parameters are estimated using frequency-domain linear

system identification, incorporating control data from motor-speed sensing and state estimates

from automated frequency sweep maneuvers. Additionally, drag-force coefficients and external

wind are recursively estimated during flight using a sq-UKF. A custom flight controller is devel-

oped to manage the computational demands of online estimation and control. Flight experiments

demonstrate the tracking performance of the nonlinear controller and its improved capability in

rejecting gust disturbances.

Aside from wind rejection, aerial indoor 3D mapping is also required for indoor naviga-

tion, and therefore, the dissertation introduces a comprehensive pipeline for real-time mapping

and target detection in indoor environments with limited network access. Seeking a best-in-class

UAS design, it provides detailed analysis and evaluation of both hardware and software compo-

nents. Experimental testing across various indoor settings demonstrates the system’s efficacy in

producing high-quality maps and detecting targets.
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Chapter 1: Introduction

This chapter serves as an introduction to the dissertation, beginning with an exploration

of the motivation driving the research. It then provides a comprehensive review of prior works,

positioning them in relation to current state-of-the-art developments. Following this, the chapter

outlines the key contributions of the research. It concludes with an overview of the structure and

content of the subsequent chapters.

1.1 Motivation

Uncrewed Aerial Systems (UAS) are a valuable tool in exploring indoor environments that

have been compromised by severe damage due to shelling, fire, flood, structural collapse, and

other potentially dangerous situations. These environments often pose significant risks to hu-

man responders, making it crucial to gather detailed visual and locational information before

commencing rescue operations. This information is vital for assessing the condition of the envi-

ronment, identifying potential hazards, and planning the safest and most effective approach for

rescue teams without physically entering the compromised area.

Deploying UAS in such dangerous situations necessitates the careful identification, design,

and integration of advanced sensors and algorithms. These systems must enable the UAS to

safely navigate and operate in complex and unpredictable conditions. The integration of high-
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resolution cameras, thermal imaging sensors, LiDAR, and other advanced technologies allows

the UAS to capture comprehensive data, even in environments with low visibility and multiple

obstructions. Additionally, the algorithms must be sophisticated enough to process this data in

real-time, providing immediate feedback and actionable insights to rescue teams.

Motivation
● Unmanned Aerial Systems (UAS) are a valuable tool in exploring indoor environments that have been 

compromised by severe damage due to shelling, fire, flood, structural collapse, and other potentially 
dangerous situations. Before commencing rescue operations, it is vital to collect visual and location data 
about the environment without entering it

● Deploying UAS in such dangerous situations necessitates careful identification, design, and integration 
of advanced sensors and algorithms than enables a UAS to safely operate and reliably perform its 
mission successfully

● The UAS must be capable of handling wind gusts, smoke, obstructed pathways, limited or no lighting, 
and fly reliably in a GPS-denied infrastructure

3

Figure 1.1: In disaster scenarios before commencing rescue operations a UAS can enter dan-
gerous damaged structures and provide valuable information about the environment leading to
efficient and safe rescue. (Left: Associated press photo taken by Pavel Dorogoy. Middle: Artistic
rendering of UMD Intrigue UAS. Right: Associated press photo taken by Andrew Marienko)

The UAS must be capable of handling various environmental challenges to ensure reliable

performance. These challenges include but are not limited to wind gusts that can destabilize the

aircraft, smoke that can obscure visual sensors, and obstructed pathways that require advanced

navigation capabilities. Moreover, in many scenarios, lighting may be severely limited or en-

tirely absent, necessitating the use of infrared or other non-visual sensors to maintain situational

awareness. Operating in a GPS-denied infrastructure also demands robust autonomous naviga-

tion systems that can function independently of external positioning signals.

Overall, the successful deployment of UAS in hazardous indoor environments hinges on the

seamless integration of cutting-edge technologies and intelligent design to overcome the myriad

challenges posed by such conditions. This approach not only enhances the safety and effective-

ness of rescue operations but also significantly reduces the risk to human life. This dissertation

describes three applied research ventures that were undertaken to increase the resilience, relia-

2



bility and performance of indoor aerial systems: (1) improving quadrotor control performance

via in-flight calibration, (2) system identification for wind rejection, and (3) indoor aerial 3D

mapping.

1.2 Relation to the State of the Art

The work in this dissertation is built on similar work done by others. In this section, the

relation of this work to prior research is highlighted, and how this work pushes the envelope fur-

ther is described. Firstly, prior work on techniques for improving quadrotor control performance

via in-flight calibration is described. Secondly, a discussion on the various system identification

techniques that have been developed in the literature and is currently in use in industry is pre-

sented. Finally, the advancements in 3D Mapping and autonomous technologies performed in

academia are presented.

1.2.1 Improving Quadrotor Control Performance via In-flight Calibration

Unmanned aerial vehicles (UAVs) heavily rely on specialized estimation and control sys-

tems designed to precisely understand the vehicle’s condition while ensuring stability and respon-

siveness to user commands. Linear estimation and control frameworks, though effective at han-

dling external disruptions and uncertainties within the system, can struggle in situations requiring

precise tracking due to their reliance on linear assumptions. Conversely, nonlinear model-based

frameworks offer more flexibility, yet their effectiveness is contingent upon the accuracy of the

dynamic model employed. Regardless of the approach, identifying system parameters, including

calibrating sensors, is imperative. These processes ensure that the UAV operates optimally, de-
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livering reliable performance and accurate responses in various conditions and tasks, from aerial

surveillance to package delivery.

Conventional linear-system identification for quadrotors [1] relies on chirped frequency in-

puts in hover and batch post-processing. Furthermore, not all parameters/states are observable

in hover, and stability derivatives are identified in stages. In contrast, a nonlinear estimation

approach [2] indirectly selects frequencies based on parametrized trajectories, uses recursive es-

timation to identify all parameters simultaneously, and achieves weak observability almost glob-

ally. The system actually loses observability in hover.

Utilizing onboard sensor data for parameter estimation has been studied using an unscented

Kalman filter (UKF) [3], but only the vehicle’s inertia was estimated. In [2], estimation of 14

parameters was performed using a UKF in real time, but the estimation accuracies of only mass

and inertia were analyzed. In [4], a genetic algorithm (GA) was used to estimate the center

of mass in an online fashion. In [5], a GA was used to estimate the mass, inertia, thrust, and

torque coefficients offline. In [6], the mass estimation performance of least-squares and extended

Kalman filters and instrumental-variable algorithms were investigated in simulation.

Most prior works does not explicitly handle the low observability of UAV parameter esti-

mation. In [7], the authors developed an observability-aware trajectory-optimization framework

that produces optimal self-calibration trajectories. The novelty of the work described here is

that the calibration trajectories are optimized based on observability, which enables numerically

stable estimation of more parameters.

An alternate strategy to handle parameter estimation is using an adaptive control framework

capable of handling structured and unstructured parameter uncertainties. L1-adaptive control is

a recently developed controller [8] that requires the plant model to be in a certain specific form

4



and, therefore, does not directly apply to the nonlinear dynamical model of UAVs. Moreover,

researchers have pointed out several issues with the controller [9, 10]. Model Reference Adaptive

Control (MRAC) is a popular adaptive controller with a rich literature [11, 12, 13]. However, the

traditional methodology requires a strict matching condition between the structure of the plant

dynamics and the model used for control derivation, which may be difficult to obtain a priori.

1.2.2 System Identification for Wind Rejection

A UAV relies on the performance of its flight controller’s estimation and control algorithms

to reconstruct its state and track reference trajectories. The conventional approach for implement-

ing stable and reliable controllers for a UAV involves a trial-and-error procedure, where control

gains are manually adjusted based on flight performance and the pilot’s experience. Linear con-

trollers such as the proportional–integral–derivative controller (PID) are almost universally used

in robotics and aerospace control systems [14, 15]. Commercially available quadrotors and flight

control firmware [16] such as PX4, Ardupilot, and Betaflight implement cascaded PID control

for stabilization. However, there are two major drawbacks to linear control: (1) performance

degrades in some situations where tracking precision is required due to the linearity assumption;

and (2) gain tuning can be time-consuming and requires the presence of an experienced pilot.

Furthermore, it is impractical to tune PID controllers for UAVs that pick up and carry payloads

or packages of unknown size and weight.

A modern approach for UAV control utilizes model-based nonlinear control laws to ensure

global stability of the vehicle. Feedback linearization controllers, also known as dynamic inver-

sion controllers, achieve high control performance and have been extensively researched [17, 18].
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The state-of-the-art for nonlinear quadrotor control are adaptive control [19] and geometric con-

trol [20], which have been widely used to demonstrate aggressive and agile flights. However,

a major drawback to a model-based nonlinear control is that its performance depends on the

accuracy of the model parameters [18]. The same problem affects UAV state estimation. For

example, the Kalman filter is the state-of-the-art, but as a model-based framework, its perfor-

mance is also limited by the accuracy of the dynamic model [21]. Widely accepted solutions

to parameter uncertainty are to either directly measure system parameters before flight or use a

system identification process in a controlled setting. These existing solutions can often be costly,

risky, and/or require specialized equipment and experiments [22, 23], making them undesirable

for rapid development of high-performance UAVs.

The system identification process involves utilizing flight testing data to develop a dynamic

model of the aircraft. Linear methods involve measuring sensor outputs of the aircraft in response

to inputs and computing the state-space representation of the aircraft. For a typical UAV, the in-

puts are the commands generated by the controller and the outputs are obtained from the state

estimator. Using commanded control inputs is beneficial in settings where inertial characteris-

tics of the system do not need to be precisely estimated. If the end goal is the implementation

of a linear controller, then knowledge of the state-space model is more useful than inertial pa-

rameters. On the contrary, if a nonlinear framework is desired, then inertial parameters need to

be estimated, which is difficult to extract from the identified model since it contains the inertial

characteristics mixed in with the speed controller’s response and structural characteristics of the

rotor [24]. The state-of-the-art industry-standard in rotorcraft frequency-domain linear system

identification is the Comprehensive Identification from FrEquency Response (CIFER®) [25] pro-

gram developed by the Ames Research Center. The CIFER® tool is widely used for aircraft and
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rotorcraft system identification [26], including quadrotors; however, it is almost exclusively used

for linear controller implementations [27, 28]. One novelty of this article is that it improves the

inertial parameter estimation accuracy of the linear system identification technique by directly

sensing the individual motor revolutions per minute (RPM) to get better values for the control

inputs than a traditional approach. The nonlinear dynamic model parameters are extracted from

the resulting linearized model and used for the nonlinear control implementation. We augment

offline linear system identification of parameters with online recursive estimation of them.

Nonlinear approaches towards system identification rely on parameter estimation models

that indirectly select frequencies based on parametrized trajectories, use recursive estimation to

identify all parameters simultaneously, and achieve weak observability almost globally. Notably,

a multi-rotor often loses observability in hover, a flight condition typically used in system iden-

tification. Recursive estimation of mass and inertia parameters have been demonstrated using

only onboard sensor data with an unscented Kalman filter (UKF) [29], but the estimates in our

testing were observed to be less accurate than frequency-domain system identification methods.

Parameters related to aerodynamic effects have higher observability when the aircraft operates

away from hover conditions, such as high-speed maneuvers and aerobatic flight, especially using

onboard sensing of inertial velocity via visual odometry. Alternate approaches for parameter es-

timation include adaptive control [13] and probabilistic optimization [5]. Notable developments

include recent developments of adaptive nonlinear dynamic inversion control [30, 31, 32] and

adaptive recursive orthogonal least-squares [33] frameworks.
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1.2.3 Indoor 3D Mapping & Autonomy

In today’s rapidly evolving landscape of emergency response, the demand for enhanced

tools to support first responders in navigating hazardous indoor environments is more pressing

than ever. Incidents such as fires, floods, and structural collapses frequently compromise the

safety and practicality of traditional rescue operations, necessitating innovative solutions that can

provide real-time situational awareness without exposing personnel to undue risk. UAS have

emerged as a pivotal technology in this regard, offering the capability to swiftly gather and relay

critical information to incident command teams during high-stakes operations.

Despite significant advancements in robotics and UAS technology, the full potential of

UAS as an invaluable tool for first responders remains largely untapped. Current applications

have demonstrated the ability of UAS to operate in complex and dangerous environments, yet

there is still a considerable gap in the widespread integration and utilization of these systems in

everyday emergency response protocols. This manuscript presents a low-cost system for indoor

3D mapping and target localization designed to be used by first responders. This system competed

in the National Institute of Standards and Technology (NIST) 2023 First Responder UAS 3D

Mapping Challenge[34] and won third place overall, in addition to awards for Best-in-Class Bill

of Materials Total Cost, Best-in-Class Map Data Acquisition Speed and Best-in-Class Blue/Green

UAS Capable.

Several commercial UAS are currently used in the public safety and search and rescue

industry. This paper compares the specifications of our solution against these commercial options.

Many low-cost UAS lack real-time mapping, target detection, and target localization capabilities.

While flagship and enterprise-level UAS in the industry meet some first responder requirements,
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they are generally larger and unsuitable for indoor environments. Additionally, their higher cost

makes them less appealing to public safety departments with budget constraints.

In academia, various technical manuscripts describe or implement specific capabilities de-

sirable in UAS for search and rescue applications. Typically, the focus is on individual software

frameworks for mapping, object detection, object localization, communication design, or UAS

hardware design. However, a systematic approach to integrating all these capabilities into a single

UAS is lacking. Karam et al. [35] utilized a microdrone equipped with six laser rangefinders (1D

scanners) and an optical sensor for mapping and positioning, employing graph SLAM for loop

closure detection. Despite this, the resulting maps are uncolored point clouds and textureless,

limiting their usefulness for first responders. Caballero et al. [36] presented a mapping system

for first responders that creates 2D maps using UAVs, but their design and implementation are

geared towards outdoor use cases. Generally, indoor mapping and SLAM have recently seen nu-

merous implementations. Otero et al. [37] provided an interesting analysis and comparison of the

different mobile indoor mapping options available on the market. Their review includes handheld

scanners, backpack devices, and trolley configurations, which are mostly suited for ground robots

rather than UAS. Placed et al. [38] conducted a comprehensive survey of the state-of-the-art in ac-

tive SLAM, highlighting how the disparity and lack of unification in the literature have hindered

the development of cohesive frameworks, mature algorithms, and their transition to practical ap-

plications. Kolhatkar et al. [39] reviewed various techniques used in mapping and localization

of mobile robots and the design of low-cost mobile platforms with sensors, focusing on LiDAR

and RGB-D Camera technology—the latter utilized in this manuscript. Additionally, LiDAR and

IMU-based mapping technologies have seen widespread use, from pipe-inspecting UAVs to self-

driving cars. Kumar et al. [40] introduced a method to efficiently determine the planar position
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of UAVs via a point-to-point scan matching algorithm, leveraging data from a horizontally scan-

ning primary LiDAR. The UAV’s altitude relative to the ground was estimated using a vertically

scanning secondary LiDAR mounted orthogonally to the primary LiDAR, with a Kalman filter in-

tegrating data from both LiDARs to calculate the 3D position. However, the resulting map lacks

texture, making it challenging for human interpretation, and finer details necessary for object

classification are absent, diminishing its suitability for search and rescue mapping applications.

Similarly, Opromolla et al. [41] presented an approach combining point clouds from LiDAR with

inertial data. However, their implementation was confined to 2D environments, unsuitable for

mapping intricate 3D spaces. Chan et al. [42] employed a LiDAR approach to demonstrate and

assess state-of-the-art SLAM algorithms, LeGO-LOAM [43] and LIO-SAM [44], in simulated

indoor environments using ground robots. Results revealed that even advanced LiDAR odometry

and mapping methods can experience significant drift due to the absence of features. Cvisic et

al. [45] introduced a stereo vision SLAM method that employs separate localization and mapping

threads. Localization relies on visual feature matching, while mapping utilizes depth information

generated using the semi-global matching algorithm [46]. However, while the approach excels

in stereo localization, the resulting maps lack texture and fidelity, limiting their utility for first

responders. Labbe et al. [47] presented a comprehensive mapping software package supporting

both visual and LiDAR SLAM. Their graph-based SLAM approach is adopted here due to its ver-

satility in accommodating various sensors, including unsynchronized RGB-D systems. Recent

developments include generic multi-robot and multi-modal mapping frameworks, such as the one

by Cramariuc et al. [48], capable of integrating multiple robots, visual landmarks, and LiDAR

scans. Additionally, there’s ongoing research in utilizing UAVs equipped with neural networks

for mapping tasks [49, 50]. However, these advanced frameworks are yet to attain the technical
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readiness level required for reliable UAS mapping performance.

Recent research has been dedicated to exploring the potential of UAS in target-tracking

missions, spanning both indoor and outdoor environments. Alhafnawi et al. [51] conducted a

survey investigating UAV-based target tracking and monitoring across diverse settings. Their

study delved into the deployment scenarios of these systems, offering detailed characterization

and analysis. Cui et al. [52] introduced an end-to-end search and revisit framework designed for

small UAVs to detect and localize targets using a single onboard camera module. This framework

is well-suited for outdoor applications. In another study, Wang et al. [53] proposed a real-time

multi-target localization scheme employing an electro-optical stabilized imaging system. How-

ever, the system’s output of geodetic coordinates limits its applicability to outdoor settings. On a

different note, Unlu et al. [54] introduced a comprehensive end-to-end framework for mapping,

detecting, and extinguishing fire targets in indoor environments. However, the framework relied

on a fiducial marker to simulate fire and was solely demonstrated in simulated environments.

1.3 Contributions

This dissertation advances the state-of-the-art in aerial robotics by integrating concepts,

tools, and techniques from various disciplines, including Aerospace Engineering, Computer Sci-

ence, Robotics, and Estimation and Control Theory, as illustrated in Figure 1.2. System iden-

tification tools were developed by researchers in rotorcraft and aircraft systems, while Kalman

Filters and Nonlinear SE(3) Controllers were created by experts in estimation and control. Visual

Inertial Odometry techniques emerged from computer scientists specializing in computer vision,

and Pose-Graph Optimization was introduced by roboticists to overcome the limitations of using
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Kalman Filters for the localization and mapping of mobile robots. This dissertation leverages

these interdisciplinary tools to bridge gaps between fields and address significant challenges in

aerial robotics. The resulting contributions have been published in peer-reviewed journals or are

currently under review [52, 55, 56, 57].
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Figure 1.2: This work applies concepts from multiple disciplines to solve Indoor Aerial Auton-
omy Challenges.

1.3.1 Self-Calibrated Nonlinear Filtering and Control Framework for UAVs

A comprehensive nonlinear filtering framework for UAV parameter estimation is intro-

duced, encompassing factors such as external wind, drag coefficients, IMU bias, and center of

pressure. Additionally, optimized flight trajectories for parameter estimation through empirical

observability is established. Futhermore, an estimation and control framework that leverages the

mean of state and parameter estimates to generate appropriate control inputs for vehicle actuators

is implemented. Utilizing a square-root unscented Kalman filter (sq-UKF), the framework can
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deduce a 23-dimensional state vector from 9-dimensional sensor data and 4-dimensional control

inputs. This innovative, self-calibrated approach is the first to effectively integrate estimation and

control for UAVs in windy conditions, significantly enhancing the capability of unmanned flight

vehicles to operate autonomously without the need for manual intervention or tuning.

1.3.2 Advanced Integrated UAV System Identification for Wind Rejection

Linear and nonlinear estimation methods from robotics, rotorcraft, and flight dynamics

is integrated to accurately estimate model parameters such as mass, inertia, drag coefficients,

and external wind. The accuracy of inertial parameter estimation in linear systems is enhanced

through direct sensing of control inputs. Additionally, a custom, low-cost flight controller ca-

pable of managing the high computational demands of nonlinear control and high-dimensional

estimation is developed. Using a vision-based localization camera removes the need for external

positioning, reducing both time and cost without compromising accuracy. These advancements

enable the rapid deployment of nonlinear frameworks for high-performance UAVs, eliminating

the need for manual tuning and experienced pilots.

1.3.3 Reliable Real-Time Indoor Aerial 3D Mapping

A comprehensive pipeline for real-time mapping and target detection in indoor environ-

ments with limited network infrastructure is introduced. This work is not pursuing just a proof-

of-concept but a best-in-class UAS design and hence a detailed description, comparison, and thor-

ough evaluation of the system’s hardware and software components is provided. Experimental

validation is conducted in various indoor settings which demonstrates the system’s effectiveness
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in producing real-time, high-quality maps and tagging locations of targets. Additionally, it is

being planned to make the code repositories publicly available, which is valuable for researchers

and first responders. This work enables the development of low-cost, highly capable, and reli-

able unmanned aerial systems (UAS) using accessible open-source software tools and hardware

designs.

1.4 Dissertation Outline

This dissertation is outlined as follows.

Chapter 2 develops a framework for online state, parameter, and wind estimation for a UAV

equipped with an IMU and a ground-velocity sensor, such as visual- or lidar-based odometry.

Thrust and moment control inputs are used to steer the process model and the ground-velocity and

IMU measurements are assimilated by a square-root unscented Kalman filter containing 23 states,

12 of which are constant parameters. Additionally, the system’s observability is characterized and

optimal calibration trajectories are designed to maximize observability of the model parameters.

Simulations show the improvements obtained in tracking performance by coupling the estimation

framework with a standard model-based controller. By estimating unsteady winds, the onboard

controller’s gust rejection improves.

Chapter 3 describes and experimentally evaluates a comprehensive system identification

framework for high-performance UAV control in wind. The framework incorporates both lin-

ear offline and nonlinear online methods to estimate model parameters in support of a nonlin-

ear model-based control implementation. Inertial parameters of the UAV are estimated using a

frequency-domain linear system identification program by incorporating control data obtained
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from motor-speed sensing along with state estimates from an automated frequency sweep ma-

neuver. The drag-force coefficients and external wind are estimated recursively in flight with a

square-root unscented Kalman filter. A custom flight controller is developed to handle the compu-

tational demand of the online estimation and control. Flight experiments illustrate the nonlinear

controller’s tracking performance and enhanced gust rejection capability.

Chapter 4 presents the systematic design of an advanced and feature-rich UAS tailored

for first responders in search and rescue operations. It details the creation and implementation

of a 3D mapping, target detection, and localization framework alongside the specific hardware

and software components essential for enhanced reliability. Utilizing a distributed computing

approach, the UAS offloads intensive computations to an offboard computer, resulting in im-

proved real-time mapping performance and system stability. The cost-effective UAS participated

in the National Institute of Standards and Technology (NIST) 2023 First Responder UAS 3D

Mapping Challenge, securing third place overall, along with awards for Best-in-Class Bill of

Materials Total Cost, Best-in-Class Map Data Acquisition Speed, and Best-in-Class Blue/Green

UAS Capability. Competition results and independent testing demonstrate the system’s reliable

performance in diverse scenarios.

Finally, Chapter 5 concludes the dissertation by summarizing the key findings and dis-

cussing the implications of the research. It highlights the advancements made in enhancing aerial

autonomy and the integration of various interdisciplinary tools and techniques. The chapter also

addresses any challenges or limitations encountered during the research and outlines ongoing

work aimed at further improving aerial robotics capabilities. Future directions for research are

suggested, focusing on overcoming identified issues and exploring new avenues to advance the

field.
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Chapter 2: Quadrotor Modeling for Improved Control Performance via In-flight

Calibration

Unmanned aerial vehicles (UAVs) demand precise estimation and control systems to main-

tain stability and fulfill user requirements. Traditional linear estimation and control frameworks,

while robust against disturbances and uncertainties, struggle with precision due to their inher-

ent linearity assumptions. Conversely, nonlinear model-based frameworks are hindered by the

accuracy of the dynamic models. Therefore, accurate system parameter identification, includ-

ing sensor calibration, is essential. Conventional methods for quadrotor parameter identification

rely on frequency inputs in hover and batch post-processing, yet they face observability issues.

A nonlinear estimation approach using recursive estimation improves parameter identification

but loses observability in hover. Prior studies employing unscented Kalman filters and genetic

algorithms have estimated parameters like mass and inertia, but often fail to address low observ-

ability in UAVs. This chapter introduces a novel approach that optimizes calibration trajectories

based on observability, enhancing parameter estimation accuracy. The presented work offers

improvements in UAV control by developing a nonlinear filtering framework, optimizing flight

trajectories for parameter estimation, and implementing an estimation and control framework

that integrates these estimates to stabilize the vehicle. This self-calibrated system, employing a

square-root unscented Kalman filter is tested in simulations and shows improved performance

16



especially under challenging conditions like high winds.

This chapter is structured as follows. Section 2.1 begins with the notation and conventions

that will be used throughout this dissertation. Next, it presents the full nonlinear dynamics model

of a quadrotor, followed by the control allocation model, the developed estimator model and the

modified controller model. Section 2.2 describes the observability analysis and the design of an

offline trajectory optimization method for optimizing estimation performance. Lastly, section 2.3

illustrates the performance of the in-flight calibration framework design through numerical simu-

lations. It also presents the post-calibration performance of the estimation and control framework.

2.1 System Modeling

This section describes the mathematical models utilized by the UAV estimation, control,

and simulation frameworks. The models depicted here are applicable to quadrotors, tail-sitters in

hover, and similar vehicles whose aerodynamic effects are not negligible.

2.1.1 Notation and Conventions

A right-handed orthonormal inertial frame represented by W = {w1,w2,w3} is defined

such that w3 points opposite to the direction of gravity g. A body-fixed frame represented by

B = {b1,b2,b3} is attached to the vehicle, such that b1 points forward, b3 is aligned with the

collective thrust, and b2 = b3 × b1 completes the orthonormal triad. The orientation of the

vehicle is represented by a rotation matrix R ∈ SO(3), where [R]ij = wi · bj . Additionally,

the superscript notation vF is used to express a vector v in frame F . Also, the convention for

representing the set of standard basis vectors is {ei}, where ei is a three-dimensional unit vector.
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2.1.2 Aircraft Dynamics Model

The quadrotor aircraft is modeled as a rigid body with gravity, motor thrust, and aerody-

namic forces acting on the aircraft’s center of mass. The translational and rotational kinematics

and dynamics of the aircraft are

ṙW = vW

v̇B =
1

m

(
Te3 + FB

a

)
− gRTe3 − ωB × vB

Ṙ = R
[
ωB]

×

ω̇B = J−1
(
M − ωB × JωB + τB

a

)
(2.1)

where rW is the position of the vehicle in W , vB := [vx vy vz]
T ∈ R3 is the inertial velocity of

the vehicle in B, ωB := [ωx ωy ωz]
T ∈ R3 is the inertial angular velocity of the vehicle in B,

m is the vehicle’s mass, J ∈ R3×3 is the vehicle’s inertia tensor, T ∈ R1 is the thrust generated

by the motors, M ∈ R3 is the moment generated by the motors, FB
a is the aerodynamic force

experienced by the vehicle in B, and τB
a is the aerodynamic torque experienced by the vehicle in

B.

The aerodynamic force components FB
a,i ∀ i ∈ {1, 2, 3} are modeled as

FB
a,i = −CDi

∣∣(vB − vB
a

)
· ei
∣∣ (vB − vB

a

)
· ei, (2.2)

where CB
D := [CD1 CD2 CD3]

T ∈ R3 is the vector of body drag force coefficients, and vB
a is the

wind velocity in B. We are focused on the parasitic drag component only and hence, the drag

expression is quadratic with relative wind. The wind is assumed to be static in W and, hence, its
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evolution in B is described by

v̇B
a = −ωB × vB

a (2.3)

The aerodynamic torque components τB
a,i ∀ i ∈ {1, 2, 3} are modeled as

τB
a,i = −CMi

(
b3 ×

(
vB − vB

a

))
· ei, (2.4)

where CB
M := [CM 1 CM 2 0]

T ∈ R3 is the vector of body drag moment coefficients.

2.1.3 Control Allocation Model

The thrust and moment forces generated by the motors for a quadrotor in squashed-X con-

figuration are modeled as [58]

 T
M

 =



kf kf kf kf

kfLy kfLy −kfLy −kfLy

−kfLx kfLx kfLx −kfLx

−km km −km km





u21

u22

u23

u24


, (2.5)

where kf is the thrust coefficient for the propellers, km is the moment coefficient for the pro-

pellers, Lx and Ly are the moment arm lengths, and ui is the speed of the ith motor. Assume that

both the forces and moments generated by the motors are proportional to the square of the speed

of the motors.
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2.1.4 Estimator Model

The state vector used in the estimator’s process model is

x = [sT vBT ωBT vBT
a CBT

D rBTCP bBT]T (2.6)

where s := [s1 s2]
T ∈ S2 is the tilt of the quadrotor expressed in stereographic coordinates,

vB ∈ R3 is the inertial velocity of the vehicle in the body frame, ωB := [ω1 ω2 ω3]
T ∈ R3 is

the angular velocity of the vehicle in B, vB
a ∈ R3 is the velocity of the external wind acting on

the vehicle in B, CB
D := [CD1 CD2 CD3]

T ∈ R3 is the vector of square-roots of the body drag

coefficients, rBCP := [xCP yCP zCP ]
T ∈ R3 is the position of the center of pressure relative to

the center of mass in the body-fixed frame, and bB = [bBT
a bBT

g ]T ∈ R6 is the IMU bias vector

containing the accelerometer bias bB
a ∈ R3 and the gyroscope bias bB

g ∈ R3.

The evolution of the state vector is [2, 58]



ṡ1

ṡ2

v̇B

ω̇B

v̇B
a

ĊB
D

ṙBCP

ḃB



=



1
2
(ω2(1 + s21 − s22) + 2ω3s2 − 2ω1s1s2)

1
2
(ω1(s

2
1 − s22 − 1)− 2ω3s1 + 2ω2s1s2)

1
m

(
Tde3 + FB

a

)
− gRTe3 − ωB × vB

J−1
(
M d − ωB × JωB + rBCP × FB

a

)
−ωB × vB

a

03×1

03×1

06×1



(2.7)
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where m is the vehicle’s mass, J ∈ R3×3 is the vehicle’s inertia tensor, Td is the thrust control

input, M d ∈ R3 is the moment control input, and FB
a is the aerodynamic force experienced by

the vehicle in the body frame, whose components FB
a,i ∀ i ∈ {1, 2, 3} are modeled as [58, 59]

FB
a,i = −CD2

i

∣∣(vB − vB
a

)
· ei
∣∣ (vB − vB

a

)
· ei (2.8)

Using Equation (2.7), the process model for the kth step with time interval dt is

F (xk, Td,k,M d,k) = xk + ẋkdt (2.9)

The measurement model for the square-root unscented Kalman filter represents the biased

measurements obtained from the IMU and ground-velocity sensing as a function of the state and

control:

yk = H(xk, Td,k,M d,k) (2.10)

Dropping the subscript k for simplicity, the sensor outputs are modeled as

y=


1
m

(
Tde3 + FB

a

)
− ωB × vB + aB

IMU + bB
a

ωB + bB
g

vB

 (2.11)

where

aB
IMU = ωB ×

(
ωB × rBIMU

)
+ ω̇B × rBIMU (2.12)

and rBIMU is the IMU’s position relative to center of mass. Popular frameworks to sense ground-
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velocity vB are visual-inertial odometry [60] and lidar-based odometry [61].

2.1.5 Controller Model

A standard model-based controller operating on the Special Euclidean Group SE(3) [20]

modified to include aerodynamic interactions is used for evaluating the effect of the estimator

framework’s parameter update on the quadrotor’s tracking performance. Aerodynamic forces

and moments are treated as external disturbances so that the controller’s exponential stability is

preserved. The thrust control Td and the moment control M d expressions are [20]

Td = m(−kxeW
x −kveW

v −ge3+ẍW
d −RFB

a/m) ·Re3

M d = J
(
−kReB

R − kωe
B
ω

)
+ ωB × JωB

− J
(
ωB ×RTRdω

B
d −RTRdω̇

B
d

)
− rBCP × FB

a

(2.13)

where kx, kv, kR, kω are positive constants and the expression for desired orientation Rd is [20]

Rd =

[
yB × zB, yB, zB

]
zB =

−kxeW
x − kve

W
v − ge3 + ẍW

d −RFB
a/m

∥−kxeW
x − kveW

v − ge3 + ẍW
d −RFB

a/m∥

yB =
zB × xC
∥zB × xC∥

, xC = [cosψW
d , sinψ

W
d , 0]

T

(2.14)

The tracking errors in position eW
x , velocity eW

v , orientation eB
R, and angular velocity eB

ω are [20]

eW
x =xW − xW

d , eW
v = RvB − ẋW

d

eB
R =

1

2
(RT

dR−RTRd)
∨, eB

ω = ωB −RTRdω
B
d

(2.15)
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where the orientation R is obtained from heading ψ and the estimation of stereographic tilt (s1,

s2). The expression for the orientation R is

R =RψRtilt

=


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




b3z +

b23y
1+b3z

−b3xb3y
1+b3z

b3x

−b3xb3y
1+b3z

1− b23y
1+b3z

b3y

−b3x −b3y b3z


(2.16)

where

b3x =
2s1

1 + s21 + s22
, b3y =

2s2
1 + s21 + s22

, b3z =
1− s21 − s22
1 + s21 + s22

(2.17)

Note that the position xW and heading ψ are not estimated by the framework and their ground

truth values are assumed to be known.

2.2 Observability Analysis and Optimization

This section analyzes the observability of the UAV estimator framework and describes

the trajectory optimization process for self-calibration. The optimization process consists of

establishing the trajectory parameters, formulating the observability gramian, designing the cost

function, defining the problem, and finally choosing the appropriate optimization technique. The

goal of optimizing the calibration trajectory is to ensure that the vehicle operates in the best

observability conditions with feasible control efforts.
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2.2.1 Observability Analysis

The observer dynamics (2.7) are expressed in control-affine form as

ẋ = f0(x) +

[
f1(x) f2(x) f3(x) f4(x)

]
η (2.18)

where η = [Td, M d]
T and the vector fields fi(x) are

f0(x) =



1
2
(ω2(1 + s21 − s22) + 2ω3s2 − 2ω1s1s2)

1
2
(ω1(s

2
1 − s22 − 1)− 2ω3s1 + 2ω2s1s2)

m−1FB
a − gRTe3 − ωB × vB

J−1
{
rBCP × FB

a − ωB × JωB}
−ωB × vB

a

012×1



f1(x) =


02×1

m−1e3

018×1

, fi(x) =


05×1

J−1ei−1

015×1

∀ i∈{2, 3, 4}

(2.19)

The output vector of the system is given in (2.11). Using Lie derivatives of the output vector, a

39-dimensional observable vector space O is constructed as [62]

O =

[
yT L(y)T L (L(y))T

]T
(2.20)
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where

L(y)=

[
Lf0y

T Lf1y
T Lf2y

T Lf3y
T Lf4y

T

]T
(2.21)

Using MATLAB’s symbolic toolbox, the column rank of the 39×23-dimensional observ-

ability co-distribution matrix ∇xO is 23, except at certain points in the state space that causes

degeneracy, such as hover. Hence, the system has the property of weak local observability almost

globally [62].

2.2.2 Calibration Trajectory Optimization Process

Periodicity is a desirable property of any self-calibration trajectory. Hence the class of Lis-

sajous trajectories is selected, following [2]. To increase the observability by exciting the states

at different frequencies while keeping the control efforts low, the superposition of two Lissajous

trajectories is chosen. Thus, the trajectory parameter vector P along with the trajectory’s position

xd and heading ψd component is represented as

P :=


[
A1x A1y A1z A1ψ n1x n1y n1z n1ψ

]T
[
A2x A2y A2z A2ψ n2x n2y n2z n2ψ

]T


xW
d (P , t) =
A1x (1− cos (2πn1xt)) + A2x (1− cos (2πn2xt))

A1y sin (2πn1yt) + A2y sin (2πn2yt)

A1z sin (2πn1zt) + A2z sin (2πn2zt)


ψW
d (P , t) = A1ψ sin (2πn1ψt) + A2ψ sin (2πn2ψt)

(2.22)
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where t is time in seconds.

Computation of the empirical observability gramian involves simulating the dynamics of

the state-space model represented by ẋ = f(x, u) [63], where the signal u is an open-loop control

to make the observability measure independent of the choice of the control law. However, it is

challenging to determine the open-loop control signal from the reference trajectory. Additionally,

numerical-integration techniques can also introduce large errors between the simulated and the

reference trajectory. Hence, the state vector is divided into two components: reference states

extracted from the trajectory and parameter states that do not evolve or are independent of the

trajectory. Performing simulation and numerical integration is not required with this method,

assuming that the control law is ideal with zero tracking error. Hence, the state vector composition

for the observability gramian computation is

x =

[
xT
r xT

p

]T
(2.23)

where xr is the part of the state vector that is directly computed from the trajectory parameters

and xp contains the parameter states with zero dynamics. The expressions for xr and xp are

xr =

[
sT vBT ωBT vBT

a

]T
xp =

[
CBT
D rBTCP bBT

]T (2.24)

where vB
a = 03×1, because no wind is the nominal condition.

Let Sx be a scaling vector with dimension equal to that of state xp. Given small, scaled

displacements ϵi = ϵSx · ei of state xp, let x±i
p = xp0± ϵiei and y±i be the corresponding output,
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with ei as the ith unit vector in R12. The empirical local observability gramian at xp0 is the 12×12

matrix WO(xp0) whose ijth entry is [64]

[WO]ij:=
1

4ϵ2

∫ T

0

(
y+i(t)−y−i(t)

)T(
y+j(t)−y−j(t)

)
dt (2.25)

where the duration T must be chosen sufficiently large to encompass the longest period of the

trajectory. Let T = 60 seconds and ϵ = 0.1. Additionally, the numerical value for the scaling

vector is

Sx = [0.01, 0.01, 0.02, (diag{0.1}13×1)
T , 1T

6×1]
T

The optimization cost function J favors trajectories with higher observability while penal-

izing control efforts. A valid and stable unobservability measure is the reciprocal of the smallest

singular value λmin of the observability gramian [64]. To ensure that the trajectory is feasible, a

quadratic control and control rate cost is also added, resulting in the following cost expression:

J(P ) :=
1

λmin(WO)
+

T∫
0

(
Qu

∥∥∥∥ u

umax

∥∥∥∥2+Qu̇

∥∥∥∥ u̇

umax

∥∥∥∥2
)
dt (2.26)

where u is the control input vector, umax defines the control saturation limit, and Qu and Qu̇

are the weights on the normalized control and control-rate actions, respectively. For a quadrotor

u ∈ R4 contains the motor speeds, and the numerical values of the weights are chosen asQu = 50

and Qu̇ = 10.

Given an initial state x0 ∈ R32 and perturbation ϵ, find a trajectory parametrization P ∈
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R16 such that

min
P

J(P )

s.t. P lb ≤ P ≤ P ub

(2.27)

where P lb and P ub define the lower and upper bounds of the parameter search space, and their

numerical values are chosen as

P lb =

[1, 1, 1, π/2, 0, 0, 0, 0]T
[0, 0, 0, 0, 1, 1, 1, 0.1]T



P ub =

 [2, 2, 2, π, 0.5, 0.5, 0.5, 0.05]T

[0.1, 0.1, 0.1, π/10, 2, 2, 2, 0.2]T


(2.28)

The optimization problem has multiple local minima and, hence, a group of global op-

timization solvers was selected. Additionally, the cost function evaluation is computationally

expensive; it requires the calculation of the observability gramian, which involves simulating the

dynamics repeatedly. Therefore, MATLAB’s Surrogate Optimization tool was chosen for solving

the optimization problem.

2.3 Numerical Results

The sq-UKF estimation framework, coupled with the modified SE(3) controller (2.13) was

simulated in MATLAB, with the controller using the mean values of the state feedback, as well as

the mean external wind, drag coefficients, and center of pressure estimates. The control updates,

along with the sensor feedback and sq-UKF estimates, were simulated at 100Hz for a duration

of 2 minutes. The true values for the system parameters utilized for simulating the vehicle with
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onboard sensors are shown in Table 2.1. For the observability calculation, the nominal values

for the external wind, drag coefficients, center of pressure, and IMU biases are zero, whereas

the true values of the remaining parameters are known. The self-calibration trajectory obtained

via the optimization method of Section 2.2 is given in Equation (2.29). The manually selected

trajectory [2] given in Equation (2.30) is used as a baseline to compare the optimized trajectory’s

performance. Figure 2.1 shows a side by side 3D view comparison of the manual and optimized

calibration trajectories.

P ∗=

[1.25, 1.75, 1.38, 2.49, .23, .22, .12, .04]T
[0, .0034, .006, .043, 1.16, 1.17, 1.2, .2]T

 (2.29)

P b=

 [1.5, 1.5, 1.5, π, 0.2, 0.2, 0.3, 0.0133]T

[0.02, 0.02, 0, 0.5, 1.2, 1.2, 1.8, 0.0796]T

 (2.30)

(a) Manual Trajectory. (b) Optimized Trajectory.

Figure 2.1: Manual vs Optimized Calibration Trajectory.
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Table 2.1: System parameters

Name Symbol Value Units
mass m 227 g
x moment of inertia J11 0.644 g·m2

y moment of inertia J22 0.739 g·m2

z moment of inertia J33 0.903 g·m2

x position of IMU xIMU 50 mm
y position of IMU yIMU 50 mm
z position of IMU zIMU 50 mm
x position of CP xCP 0 mm
y position of CP yCP 0 mm
z position of CP zCP -50 mm
x body drag coeff CD

2
1 0.0123 N·s2/m2

y body drag coeff CD
2
2 0.0123 N·s2/m2

z body drag coeff CD
2
3 0.0243 N·s2/m2

motor torque coeff kτ 2.47×10−5 N·m·s
rotor inertia jb 6.96×10−4 g·m2

rotor thrust coeff kf 1.63×10−7 N/(rad2·s4)
rotor moment coeff km 8.74×10−10 N·m/(rad2·s4)
motor speed sat umax 3200 rad/s
arm length L 125 mm
accel bias bB

a diag{0.5}13×1 m/s2

gyro bias bB
a diag{0.5}13×1 rad/s

accel noise SD σ(Na) 0.2 m/s2

gyro noise SD σ(Ng) 0.2 rad/s
velocity noise SD σ(Nv) 0.2 m/s

2.3.1 Self-calibration

For self-calibration, simulated unsteady wind is generated using the following expression:

vW
a =

√
3

[
cos
(
2πt
10

)
sin
(
2πt
10

)
sin
(
2πt
10

)]T (2.31)

To measure the estimation and control tracking performance three scaled error functions

30



are introduced given by the following expression:

Estate =
∥∥∥(xest

r − xtrue
r )

T diag{Sstate}
∥∥∥
2

Eparam =
∥∥∥(xest

p − xtrue
p

)T diag{Sparam}
∥∥∥
2

Etrack =
∥∥∥[eT

x eT
v eT

R

]T
diag{Strack}

∥∥∥
2

(2.32)

where xest
r is the vector of estimated state values, xest

p is the vector of estimated parameter values,

xtrue
r is the vector of ground truth state values, and xtrue

p is the vector of ground truth parameter

values. Also, Sstate, Sparam, and Strack are scaling vectors whose numerical values are

Sstate =
[
0.1, 0.1, 1T

3×1, (diag{0.1}13×1)
T , 1T

3×1

]T
Sparam =

[
CD

2
1, CD

2
2, CD

2
3, 1

T
6×1, (diag{0.1}13×1)

T
]T

Strack = 19×1

(2.33)

The scaled L2-norm of the estimation and tracking errors computed by running 100 Monte

Carlo simulations using the optimized calibration trajectory are shown and compared with the

manually selected trajectory in Figure 2.2. The optimized trajectory has better averaged esti-

mation and tracking RMSE. The framework’s chances of failure due to estimator divergence or

losing positive-definiteness of the covariance matrix is approximately 92% with the manual tra-

jectory and 4% with the optimized trajectory. Figure 2.3 shows the optimized trajectory’s position

and the framework’s tracking improvement with time for a single realization. The estimation of

sensor biases, external wind, and drag parameters, as shown in Figures 2.4, 2.5, and 2.6, respec-

tively, provides evidence for the framework’s improvements in tracking and estimation perfor-

mance. Note that the z-components of accelerometer bias, wind, and drag coefficients have lower
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estimation performance than other states. A possible cause is that the rotor dynamics of (2.5) are

not present in the estimator’s process model because the desired control efforts generated by the

controller is used as input. Also, this model mismatch is more pronounced in the z-direction as

the thrust term directly affects the z-component of the accelerometer measurements.

Figure 2.2: Estimation and tracking performance comparison of optimized and manually selected
calibration trajectories computed on a set of 100 Monte Carlo simulations. Performance is quan-
tified by scaled L2-norm of the error vectors and averaged RMSE scores are shown at the top of
each subplot.
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Figure 2.3: Position tracking of the optimized calibration trajectory.

2.3.2 Post-calibration Estimation and Control Performance

For gust rejection simulation, unsteady wind is generated using the following expression;

vW
a =

6√
3


cos
(
2πt
10

)
sin
(
2πt
10

)
sin
(
2πt
10

)

+
3√
3


cos
(
2πt
5

)
sin
(
2πt
5

)
sin
(
2πt
5

)

+
1√
3


cos (2πt)

sin (2πt)

sin (2πt)

 (2.34)

In this simulation, the final estimated values of the vehicle’s parameters xp are taken from one of

the calibration flights and are kept fixed by removing it from the sq-UKF’s state. The remnant of

the state xr is estimated by the sq-UKF. The post-calibration framework is able to estimate and
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Figure 2.4: IMU bias estimation of sq-UKF.

reject the unsteady wind (2.34). A Monte Carlo simulation over 100 trials resulted in averaged

estimation and tracking RMSE scores of 3.5136 and 0.75906, respectively. The simulated step-

response with position-hold and wind-estimation performance for a single realization are shown

in Figure 2.7 and Figure 2.8, respectively. The results show the framework estimating and reject-

ing unsteady winds; the performance in the z-direction is again worse than x, y, possibly due to

the same modeling mismatch reason as described above.
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Figure 2.5: Unsteady wind estimation of sq-UKF.
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Figure 2.6: Drag coefficients and center of pressure estimation of sq-UKF.
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Figure 2.7: Post-calibration position-hold performance in unsteady wind.
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Figure 2.8: Post-calibration unsteady wind estimation performance.
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Chapter 3: Experimental Implementation of System Identification for Gust Re-

jection

This chapter builds upon the work performed in Chapter 2. It utilizes the state and non-

linear parameter estimation algorithm that was introduced in the previous chapter. The work

done in Chapter 2 was primarily theoretical and included simulation results only, whereas the

work described in this chapter builds upon it and demonstrates its feasibility through real-world

experiments. Control inputs steered the process model and the ground-velocity and IMU mea-

surements updated the state and parameter estimates. This chapter demonstrates experimentally

the estimation performance of a subset of the estimator’s state vector. Additionally, the aero-

dynamic drag torque expression is simplified, assuming zero sensor bias drift. A model-based

feedback linearization controller operates on the Special Euclidean Group SE(3) [20] with neces-

sary modifications to include aerodynamic interactions [55]. Nominal values for mass and inertia

are obtained from a weight scale and a CAD model, respectively. Instead of manually tuning

the position and orientation control gains, they were obtained by setting the damping ratio to

0.75 and natural frequency to 2 for translation control and 13 for orientation control. The gain

values in simulations of prior work [55] also follow the same method, reinforcing the idea that

manual tuning is not required if inertial parameters are known. Inertial parameters are estimated

offline with a linear system identification process, whereas the aerodynamic parameters includ-
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ing drag force coefficients and wind are estimated online in a recursive manner with sq-UKF.

The resulting parameter estimates are utilized by the nonlinear controller to achieve high control

performance. The controller assumes zero wind and drag force coefficients to generate flight data

for the linear system identification process. For nonlinear estimation and control experiments,

the controller uses the drag force coefficients and wind estimates generated recursively by the

sq-UKF estimator in flight.

This chapter is structured as follows. Section 3.1 describes the aircraft and corresponding

hardware and software components that enable real-time implementation of nonlinear estimation

and control. Section 3.2 presents the lower level propulsion dynamics model along with a sum-

mary of parameters and their estimation methods. Section 3.3 describes the linearization of the

aircraft dynamics and presents the estimates of the model parameters extracted from frequency-

domain linear system identification. Finally, section 3.4 illustrates the recursive, in-flight estima-

tion of drag force coefficients and wind gusts through the use of a nonlinear state and parameter

estimation and control framework.

3.1 Experimental Testbed Development

A quadrotor with customized hardware and software was used in this research. This section

presents an overview of the aircraft’s hardware components, avionics, and software development.

3.1.1 Hardware Overview

The aircraft shown in Figure 3.1 is a squashed-X quadrotor with a 230 mm wheelbase.

A dummy payload in the shape of a cuboid is attached to the bottom to introduce unmodeled
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Figure 3.1: The quadrotor platform.

dynamic effects and additional disturbance so that the proposed framework’s performance can

be evaluated in a worst-case scenario. Propulsion and avionics components are assembled onto

a freestyle carbon fiber airframe. A pair of clockwise and counter-clockwise rotating Gemfan

5043 propellers are driven by Lumenier ZIP 2207 2450kV brushless direct-drive electric motors,

each with 12 electromagnets on the stator and 14 N52SH curved neodymium permanent mag-

nets on the rotor. The motors are controlled by electronic speed controllers (ESC) running KISS

firmware, and communication with the ESC is established using DShot600 digital signals gener-

ated using Direct Memory Access (DMA). The ESC is powered by a 4 cell (14.8V) 2000mAh

lithium polymer battery. Avionics include a custom-built flight controller board, Intel Realsense

T265 Tracking Camera, and a Raspberry Pi 4B flight computer. The T265 Tracking Camera en-

ables vision-based localization for the quadrotor; eliminates the requirement for a motion-capture

system or a Global Positioning System (GPS) for localization, thus reducing the system’s cost,
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complexity, and setup time.

Figure 3.2: The custom-made flight controller module. (Left) the top side; (right) the bottom.
The module measures 37 × 36 × 6 mm and has the standardized 30.5 × 30.5 mm mounting with
JST-SH connectors.

Commercially available, off-the-shelf, open-source flight controllers [16] such as Pixhawk,

PixRacer, Sparky2, Chimera, Atom, APM 2.8, FlyMaple, PXFMini, etc., have insufficient com-

puting power for implementation of modern nonlinear control and estimation algorithms that

are increasingly using sampling and optimization-based techniques. The recursive online and

onboard estimation scheme described in [55] is high-dimensional and takes more computational

load as compared to the controller. A backup estimator also needs to run in parallel so that in case

the framework diverges, the software will choose the estimates provided by the backup estima-

tor. The framework also needs to support a high receiving rate of visual-inertial odometry data;

hence, the hardware will need higher cache memory. Additionally, the framework developed in

this article required testing of many different motor speed measurement techniques and utilizing

off-the-shelf flight controllers will restrict the freedom of choice as they haven’t been designed

for research or experimentation. Moreover, modifying the estimator framework of open-source

firmware such as PX4 and Ardupilot comes with a very steep learning curve. Hence, seeking a
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custom approach, we designed a flight controller board with a focus on cost-effectiveness, high

performance, crash resistance, and modularity, making it suitable for a wide class of UAVs.

Figure 3.2 shows the custom flight controller module, which carries the Teensy 4.0 Micro-

Controller Unit (MCU) on the top and the ICM-20948 Inertial Measurement Unit (IMU) on the

bottom. The Teensy 4.0 is presently the fastest available MCU; it contains an NXP IMXRT1062

processor with a 32-bit ARM Cortex-M7 CPU core, making it capable of executing instructions

at 600 MHz. The high computing power of the MCU allows for the implementation of computa-

tionally demanding nonlinear estimation and control laws such as the high-dimensional sq-UKF

and SE(3) control. The flight control software, when configured with the estimation and control

laws mentioned in subsections 2.1.4 and 2.1.5 respectively, runs seamlessly at 120 Hz on the

MCU. Higher computational speeds are also possible by using faster communication protocols

and by overclocking the CPU to a maximum speed of 1 GHz. The design flies of the flight

controller [65] have been made open-source by the authors.

3.1.2 Software Overview

The Teensy 4.0 MCU is integrated with the Arduino Integrated Development Environment

(IDE), which facilitated the development of a user-friendly flight control software geared to-

wards students and researchers. Through the use of C++ templates and matrix software utilities,

standard operators are overridden to be used naturally in algebraic expressions, which results

in simplistic Matlab-type syntaxes. Figure 3.3 shows a simplified block diagram of the overall

software architecture. The system is designed to work fully onboard with negligible intervention

from the operator. The flight control software [66] has been made open-source by the authors.
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Figure 3.3: Software architecture overview

3.2 Rotor Dynamics Modeling and Calibration

3.2.1 Propulsion Model

The quadrotor’s electric brushless motors are controlled by varying the voltage amplitude

of the active phases of the individual coils. The rotor torque τzi and the applied voltage Vi of the

ith motor is modeled by [67]

Vi = Keui +RaIi

τzi = KqIi,

(3.1)
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where Ii is the current through the ith motor, Ra is its electrical resistance, and Ke and Kq are

motor parameters. Since the torque is assumed to be proportional to the square of the rotor speed,

the expression for the applied voltage as a function of motor speed is

Vi =
Rakm
Kq

u2i +Keui (3.2)

To compensate for the motor friction, a constant voltage V0 is added and the final expression for

the applied voltage is

Vi = Vcalib
(
K2u

2
i +K1ui

)
+ V0, (3.3)

where Vcalib is the calibration voltage at which the constants K2 = Rakm
KqVcalib

and K1 = Ke

Vcalib
are

calculated. The parameters V0, K1, and K2 can be obtained either from manufacturer data for

common motor-propeller setups or from calibration experiments such as a motor bench test for

custom setups. Finally, as the electric motors are controlled by Pulse-Width Modulation (PWM)

signals, their values can be obtained by

PWMi =
Vi

Vbattery
(3.4)

where PWMi is the PWM setting for the ith motor and Vbattery is the total voltage of the battery

pack. Typically, voltages of lithium-based batteries and other battery types decrease as the battery

drains and (3.4) will maintain the motor speed at desired levels by increasing the PWM setting,

thus ensuring consistent flight performance. Additionally, to minimize the influence of sharp

voltage changes and sensing noise on the vehicle’s control performance, a digital low-pass filter

is added to the battery voltage sensor readings.
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3.2.2 Model Parameter Estimation

The parameters of the aircraft dynamic model (2.1) are estimated collectively from linear

system identification and nonlinear parameter estimation techniques. The wind is treated as a

time-varying parameter. For verification purposes, beliefs of true values for the parameters were

obtained from independent experiments, CAD modeling, and specialized tools. Table 3.1 lists

the parameters used in the aircraft dynamics model and their respective estimation method(s).

The parameters used in the control allocation and propulsion model were obtained by mounting

the motor-propeller setup on a thrust stand and measuring the thrust, torque, and RPM values at

various PWM settings. Figure 3.4 shows the experimental data from the thrust stand and fitted

propulsion and control allocation models. The calibration voltage is 15 V, and each data point is

recorded by setting the PWM at a fixed value and averaging 500 measurements after the motor

RPM reaches a steady state. Table 3.2 lists the parameters used in the control allocation and

propulsion model along with their measured values.

Table 3.1: Estimation techniques for the parameters of the aircraft dynamics model

Parameter Name Symbol Units
Linear

System ID
Nonlinear
Estimation

True Value
Source

Mass m kg ✓ Weight Scale, CAD
Inertia J kg·m2 ✓ CAD
Drag Moment
Coefficient CB

M N·s ✓ —

Drag Force
Coefficient CB

D N·s2/m2 ✓ ✓
Gust Generation
System

Wind vB
a m/s ✓ Anemometer
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PWMi = K2u
2
i +K1ui +

V0
Vcalib

.

Ti = kfu
2
i .

τzi = kmu
2
i

Figure 3.4: Propulsion and control allocation models extracted from thrust-stand data.
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Table 3.2: Control allocation and propulsion model parameters

Parameter Name Symbol Value Units

Propeller Thrust Coefficient kf 1.717×10−8 N/RPM2

Propeller Moment Coefficient km 1.845×10−10 N·m/RPM2

Motor Constant Voltage V0 0.4575 V
Motor Model Linear Coefficient K1 1.975×10−5 RPM−1

Motor Model Quadratic Coefficient K2 7.835×10−10 RPM−2

3.3 Linear System Identification

This section linearizes the nonlinear dynamic model about hover and performs frequency-

domain system identification. Two sets of control data using different methods are collected for

each flight, and the resulting model-parameter accuracies are compared.

3.3.1 Model Description

Before deriving the linearized model of the aircraft, certain assumptions are made so that

the final state-space model resembles a standard rotorcraft model. Assumptions include negligi-

ble cross diagonal inertia terms, no wind, i.e., vW
a = 0, and a simplified linear drag force model.

As a consequence, the models presented in (2.2) and (2.4) become

FB
a,i = −C̄DivB · ei

τB
a,i = −CMi

(
b3 × vB) · ei (3.5)

where C̄Di are the body-drag force coefficients for the simplified linear aerodynamic force model.

The nonlinear aircraft model presented in Section 2.1.2 is linearized about hover and the

resulting quadrotor dynamics decomposed into longitudinal, lateral, heave, and yaw degrees of
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freedom. Additionally, the orientation representation of the vehicle is changed to a Z-Y-X Euler

angles set. The resulting linearized dynamics model is

v̇x = −C̄D1

m
vx + gθ

v̇y = −C̄D2

m
vy − gϕ

v̇z = −C̄D3

m
vz +

1

m
T

,

ϕ̇ = ωx

θ̇ = ωy

ψ̇ = ωz

,

ω̇x = −CM 1

Jxx
vy +

1

Jxx
τx

ω̇y = −CM 2

Jyy
vx +

1

Jyy
τy

ω̇z =
1

Jzz
τz

(3.6)

Converting (3.6) to state-space representation and adding time-delay parameters to the con-

trol inputs, the resulting state-space gray-box models are


v̇x

ω̇y

θ̇

 =


Xvx 0 g

Mvx 0 0

0 1 0




vx

ωy

θ

+


0

Mτy

0

 τy(t−∆t1) (3.7)


v̇y

ω̇x

ϕ̇

 =


Xvy 0 −g

Mvy 0 0

0 1 0




vy

ωx

ϕ

+


0

Mτx

0

 τx(t−∆t2) (3.8)

ω̇z
ψ̇

 =

0 0

1 0


ωz
ψ

+

Mτz

0

 τz(t−∆t3) (3.9)

v̇z = Xvzvz +XTT (t−∆t4), (3.10)

where Xvx = −m−1C̄D1, Xvy = −m−1C̄D2, Xvz = −m−1C̄D3, Mvx = −J−1
yy CM 2, Mvy =
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−J−1
xx CM 1, Mτx = J−1

xx , Mτy = J−1
yy , Mτz = J−1

zz , XT = m−1, and ∆ti∀ i ∈ {1, 2, 3, 4} are the

unknown stability derivatives and model parameters.

3.3.2 Model Parameter Identification

The Comprehensive Identification from FrEquency Response (CIFER®) [25] program was

utilized to identify the parameters of the state-space model representing the quadrotor dynamics

linearized about hover. The frequency-domain system identification procedure is more suitable

than time-domain techniques for an unstable vehicle like the quadrotor. It avoids divergence due

to time-domain integration of the equations of motion while simultaneously minimizing errors

associated with bias effects and processing noise.

To perform frequency-domain system identification, individual degrees of freedom of the

quadrotor are excited using an automated frequency sweep maneuver. The frequency sweep

involves a sinusoidal trajectory with frequency increasing exponentially in time from 0.1 rad/s

to 50 rad/s. The amplitude is automatically adjusted within manually specified bounds to ensure

the control commands do not saturate and the current consumption is below a set threshold. In

addition to the controller-generated commands, individual motor RPMs were also estimated using

each motor’s measured back Electromotive force (EMF) and supplied to the control allocation

model to obtain more accurate albeit noisy control input data. Traditionally, system identification

is performed with controller-generated commands, and this procedure is labeled as Method 1. An

alternate procedure involving control input measurements obtained from motor RPM data is also

investigated and labeled Method 2.

Figure 3.5 shows the state estimates and the lateral control inputs of the automated fre-
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quency sweep maneuver of the lateral degree of freedom. The difference between the commanded

torque and the torque obtained from sensing the motor RPM increases with frequency due to the

influence of the ESCs’ response and structural characteristics of the rotor. Figure 3.6 shows the

resulting model fit to the flight data for the lateral degree of freedom. Similar results were also

obtained for the other degrees of freedom. Table 3.3 presents the identified stability derivatives,

as well as their Cramer-Rao (C-R) bounds and insensitivities showing the level of confidence of

the identification. Some parameters have low confidence scores as it is difficult to improve coher-

ence at lower frequencies. Table 3.4 shows a comparison of the model parameters extracted from

the identified stability derivatives with true value estimates obtained from sources mentioned in

Table 3.1. Method 2 provides more accurate estimates of the inertial parameters. As for the drag

parameters, since their confidence scores are low, their estimates have large errors.

Table 3.3: Identified stability derivatives.
Method 1 uses controller generated command data and Method 2 uses control data obtained

from RPM sensing.

Parameter Method 1 Method 2 Confidence Rating

Value C-R % Insensitivity Value C-R % Insensitivity
Xvx -0.11 158.2 72.59 -0.055 245.7 119.3 LOW
Mvx -4.27 5.91 2.55 -5.235 5.34 2.28 MED
Mτy 234.2 2.48 1.08 273.7 2.6 1.1 HIGH
∆t1 0.051 3.2 1.59 0.022 7.11 3.54 MED
Xvy -1.32 16.09 7.74 -1.513 14.24 6.92 LOW
Mvy -1.89 9.12 4.08 -2.5 8.37 3.68 MED
Mτx 298.6 2.43 1.07 319.6 2.49 1.07 HIGH
∆t2 0.048 3.38 1.67 0.023 7.08 3.51 MED
Mτz 241.8 2.63 1.32 241.6 2.64 1.32 HIGH
∆t3 0.064 11.84 5.92 0.096 5.58 2.79 MED
Xvz -0.16 36.03 17.6 -0.15 39.98 19.54 LOW
XT 0.99 3.81 1.88 1.045 3.81 1.89 HIGH
∆t4 0.016 34.18 16.84 0.013 41.59 20.49 LOW
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Figure 3.5: Automated frequency sweep data for lateral degree of freedom used as input to
CIFER®.

3.4 Nonlinear Parameter Estimation and Control

This section presents a methodology for recursive, in-flight estimation of drag force coeffi-

cients and wind gusts. Although the nonlinear model described in Section 2.1 is used for estima-

tion, other models can also replace it without changing the estimation methodology. Experimen-

tal results are summarized with relevant observations and discussions detailing the framework’s

benefits and limitations.
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Figure 3.6: Model-data agreement using stability derivatives identified in CIFER®. Coherence
represents the fractional part of the output signal power that is produced by the input at that
frequency.

Table 3.4: Estimates of model parameters extracted from the identified stability derivatives
Method 1 uses controller generated command data and method 2 uses control data obtained

from RPM sensing.

Parameter Name Symbol Method 1 Method 2 True Value Belief Units

mass m 1.004 0.957 0.966 kg
x moment of inertia Jxx 0.00335 0.00312 0.00309 kg·m2

y moment of inertia Jyy 0.00427 0.00365 0.00345 kg·m2

z moment of inertia Jzz 0.00413 0.00414 0.00423 kg·m2

x body drag moment
coefficient CM 1 0.0063 0.0078 — N·s

y body drag moment
coefficient CM 2 0.018 0.019 — N·s

x body linear drag
force coefficient C̄D1 0.11 0.0526 0.21 N·s/m

y body linear drag
force coefficient C̄D2 1.325 1.45 0.42 N·s/m

z body linear drag
force coefficient C̄D3 0.16 0.143 — N·s/m
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3.4.1 Methodology

The study utilizes a coupled estimation and UAV control framework, building upon the

author’s previous work [55]. This framework facilitates the recursive estimation of drag force co-

efficients and wind parameters in separate experimental trials. Online parameter and state estima-

tion are executed using a sq-UKF (Square-Root Unscented Kalman Filter) framework, extracting

an 11-dimensional state vector from 9-dimensional sensor data and 4-dimensional control inputs.

In the wind estimation experiment, observability criteria are met during hover, enabling

accurate wind parameter estimation. However, in the drag force coefficient estimation exper-

iment, observability is compromised at zero speed. To address this, the quadrotor follows an

ellipsoid trajectory, maintaining a non-zero speed to ensure consistent observability. This ma-

neuver allows for robust drag force coefficient estimation despite the challenges posed by the

experimental setup.

The state vector of sq-UKF framework includes the states and either the drag force coeffi-

cients or the wind vector, depending on the experiment. For the drag force coefficient estimation

experiment, the estimator’s state vector is

x = [sT vBT ωBT CBT
D ]T (3.11)

and for the wind estimation experiment the state vector is

x = [sT vBT ωBT vBT
a ]T, (3.12)
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where s := [s1 s2]
T ∈ S2 is the tilt of the quadrotor expressed in stereographic coordinates. The

process model of each component of the state vector and the measurement model is the same

as in the original formulation [55]. The orientation estimate mean values in the stereographic

coordinates are combined with the yaw value from the VIO camera and transformed to SO(3)

orientation before supplying it to the SE(3) controller.

3.4.2 Drag Force Coefficient Estimation

The drag force coefficients estimation experiments are performed in an indoor flying area

of approximately 4 m × 3 m and a height of 4.5 m. For safety, the flight area was fenced in the

flight controller’s software to 2 m × 2 m and height to 2.5 m. The quadrotor is commanded to

track an ellipse-shaped trajectory as shown in Figure 3.7 whose time-parameterized expression is

rW
d (t) =


Ax sin (2πnxt)

−Ay cos (2πnyt)

Az sin (2πnzt) + z0

 , (3.13)

where z0 = 1.75 m, nx = ny = nz =
1
π
s−1, and the amplitudesAx, Ay, Az are linearly ramped up

in 7 seconds from 0.25 m to 0.5 m for Az and 0.5 m to 1 m for both Ax and Ay. The ramping up

of the trajectory amplitudes is implemented to reduce the large oscillations caused by low control

performance due to the inaccurate nominal values of the drag coefficients. The nominal values for

the drag coefficients were selected as CB
D = [0.5 1 0]T to simulate a worst-case scenario where

the controller’s drag compensation almost eliminates the damping effects of velocity feedback,

essentially starting the vehicle with an almost unstable control behavior. The z-drag coefficient
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CD3 is set to zero; we observed that the estimator is incapable of estimating it and, when set

to a non-zero value, it can lead to divergence. Figure 3.8 shows the commanded position and

the quadrotor’s position-tracking performance improving with time. Figure 3.9 shows that the

position and velocity tracking errors decrease rapidly in 5 seconds and oscillate around 0.2 m and

0.5 m/s, respectively. Figure 3.10 shows the drag force coefficients’ estimation performance and

Table 3.5 compares the final drag coefficient estimates with the true value belief. The estimates

of the coefficients converge quickly to a value that is slightly higher than the value of the true

coefficient belief. A possible cause is that there are other uncertainties present in the system

dynamics. Also, the aerodynamic force model of (2.2) is a simplified model and does not fully

capture the aerodynamic effects, thus creating residual dynamics affecting the estimation and

tracking performance.

Figure 3.7: Experimental setup showing the quadrotor tracking an ellipse trajectory.
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Figure 3.8: Position tracking of the ellipse trajectory.

Table 3.5: sq-UKF’s final drag force coefficient estimates

Parameter Name Symbol sq-UKF’s estimate True Value Belief Units

x body drag force coefficient CD1 0.13 0.07 N·s2/m2

y body drag force coefficient CD2 0.21 0.14 N·s2/m2

z body drag force coefficient CD3 0 — N·s2/m2

3.4.3 Wind Estimation

The wind estimation experiments were conducted within a controlled indoor gust genera-

tion facility, as depicted in Figure 3.11. This setup features a series of eight Dyson fans strate-

gically positioned behind servo-controlled blinds, which are intricately managed by an Arduino

system. The blinds operate dynamically, automatically opening and closing to produce gusts of

wind reaching velocities of 3.5 m/s, with each gust lasting for a duration of 5 seconds. To sim-
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Figure 3.9: Position and velocity tracking error magnitudes.

ulate a worst-case scenario, the quadrotor’s heading is deliberately aligned perpendicular to the

wind direction, maximizing the surface area upon which aerodynamic forces act.

In order to gauge the efficacy of wind estimation, the control performance was meticulously

assessed by comparing scenarios with and without wind estimation. This comparison was facil-

itated by deactivating wind estimation, effectively removing it from the estimator’s state vector.

Figure 3.12 provides a visual representation of the quadrotor’s positional displacements induced

by the wind. Notably, with wind estimation enabled, the quadrotor demonstrates enhanced re-

silience against wind forces, resulting in improved station-holding performance.

Furthermore, Figure 3.13 offers a comparative analysis of the wind estimates generated

by the sq-UKF (Square-Root Unscented Kalman Filter) against the true wind measurements ob-
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Figure 3.10: Drag force coefficient estimation performance.

tained from anemometer readings. Impressively, the estimates exhibit a high degree of correlation

with the ground truth, underscoring the accuracy and reliability of the wind estimation process.

It is essential to note, however, that due to the inherent nature of estimating wind based on the

quadrotor’s motion, a certain degree of delay is inevitable in the estimation process. Addition-

ally, the performance of the estimator may be compromised under windy conditions, particularly

during hover and no-wind scenarios, where observability is inherently diminished.
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Figure 3.11: Experimental setup showing the gust generation system on the right and the
quadrotor opposing the wind gust forces on the left.

Figure 3.12: Station holding performance comparison in 5 s duration 3.5 m/s wind gusts in −w2

direction.
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Figure 3.13: Wind estimation performance in inertial frame. Body frame wind estimates are
transformed to inertial frame W .

61



Chapter 4: Indoor Aerial 3D Mapping with a Multispectral Visual-Inertial Sen-

sor System

Imagine a scenario where responders can access a real-time 3D map of an indoor envi-

ronment, pinpointing obstacles, damaged structures, and the location of individuals in distress

with high accuracy. Such capabilities would revolutionize the effectiveness and safety of emer-

gency operations, providing responders with the insights needed to make split-second decisions

in high-stakes situations. Unfortunately, the current landscape presents significant barriers to the

widespread adoption of such advanced UAS solutions. While the technology exists in concept,

commercial availability at a low cost remains elusive, posing challenges for public safety bud-

gets and compliance with stringent national security requirements. Initiatives like the Defense

Innovation Unit’s Blue UAS Cleared List and the Association for Uncrewed Vehicle Systems

International’s Green UAS Cleared List are instrumental in setting standards and guidelines for

security clearance. However, there is still much ground to cover in terms of affordability and

accessibility for emergency response agencies.

This chapter presents a systematic design of a highly capable and feature-rich UAS solu-

tion, integrating various valuable works that have been performed in academia in recent years.

The aim is to bridge the gap between academia and industry by creating a comprehensive and

adaptable UAS to meet the needs of first responders. This UAS will provide crucial assistance to
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Incident Command, facilitating rapid assessment of damage, hazard identification, and survivor

location—essential components for an effective emergency response.

This chapter is structured as follows. Section 4.1 provides a detailed description of the

end-result of the UAS autonomy framework design. It describes a proposed UAS autonomy

levels followed by detailed descriptions of the onboard and offboard autonomy pipelines. Sec-

tion 4.2 offers a complete description of the communication system’s design including hardware

selection and software modification that were performed to increase the overall system’s run-

time reliability and performance. Section 4.3 presents an overview of the UAS hardware design

process including the design objectives, custom airframe manufacturing, avionics description,

and thermal management. Finally, section 4.4 presents the results from real-world testing of the

developed UAS, discussing the performance, effectiveness, and any observed limitations during

these trials.

4.1 Autonomy Framework Design

Achieving real-time performance of a 3D mapping framework, encompassing the intricate

tasks of generating dense colored point-clouds and subsequent meshing with high-resolution tex-

turing, presents a formidable challenge in the realm of UAV technology. This challenge is chiefly

rooted in the monumental computational demands inherent to these tasks, rendering them imprac-

tical for smaller UAVs where stringent constraints on weight and size of onboard avionics reign

supreme. Striking a delicate balance between computational power and the physical limitations

of UAVs poses a significant obstacle, necessitating innovative solutions to optimize performance

without compromising functionality or jeopardizing flight stability.
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One such solution lies in the strategic implementation of distributed computing, offering

a pathway to alleviate the computational load burdening the UAV while simultaneously enhanc-

ing runtime reliability and ushering advanced autonomy capabilities to lighter and smaller-sized

UAVs. Through the orchestration of onboard and offboard computers, a symbiotic relationship is

established wherein autonomy tasks are efficiently communicated and distributed. The onboard

computer assumes the role of executing lightweight software modules tailored specifically for

GPS-denied flight and obstacle avoidance, thereby ensuring swift and agile maneuvering in dy-

namic environments. Additionally, it assumes the responsibility of collecting data from onboard

sensors and compressing the acquired data to optimize transmission efficiency before dispatching

it to the offboard computer for further processing.

In contrast, the offboard computer serves as the computational powerhouse, tasked with ex-

ecuting resource-intensive processes integral to the generation of dense 3D maps. Leveraging its

robust computing capabilities, the offboard computer meticulously crafts intricate point-clouds

and meshes, while concurrently running neural network models for object detection and local-

ization. Furthermore, it undertakes the arduous task of rendering detailed textured 3D maps in

real-time, thereby facilitating swift decision-making and enhancing situational awareness during

UAV operations. A block diagram of the full autonomy framework is shown in Figure 4.1. Addi-

tionally, a block diagram for the onboard part of the autonomy framework is shown in Figure 4.2.

4.1.1 Levels of Autonomy

In the design of Autonomy Frameworks for aerial vehicles, the incorporation of fallback op-

tions in the event of system failure emerges as a critical consideration. Drawing inspiration from
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Figure 4.1: Full autonomy block diagram
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Figure 4.2: Onboard autonomy block diagram

the Autonomy Levels established for Self-Driving Vehicles, we have devised a structured hier-

archy of aerial autonomy levels, shown in Figure 4.3. It is strategically engineered to minimize

operator workload while maximizing operational efficiency. As the vehicle’s autonomy level
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ascends within this framework, the reliance on human intervention diminishes progressively.

Each autonomy level is meticulously defined, with specific capabilities and design require-

ments delineated to ensure seamless progression through the hierarchy. At the lowest autonomy

levels, human operators retain primary control, with the system serving in a supplementary ca-

pacity to assist and augment decision-making. As autonomy levels advance, the aerial vehicle

assumes greater responsibility for navigation, obstacle avoidance, and mission execution, thereby

reducing the cognitive burden on operators. In accordance with this framework, stringent criteria

are assigned to each autonomy level, encompassing factors such as sensor redundancy, fault toler-

ance, and real-time decision-making capabilities. By adhering to these predetermined standards,

the autonomy framework not only fosters operational safety and reliability but also fosters inno-

vation and advancement in autonomous aerial technologies. Moreover, the delineation of clear

autonomy levels serves as a roadmap for the progressive development and integration of auton-

omy features, guiding the evolution of aerial vehicles towards increasingly autonomous operation

while ensuring compatibility with existing regulatory frameworks and industry standards.
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4.1.2 Autonomy Architecture

4.1.2.1 Onboard Autonomy

An onboard computer always has computational constraints due to the aircraft’s size, weight,

and power requirements. To achieve real-time performance through a distributed computing ap-

proach, the onboard autonomy is designed to be extremely lightweight, containing only software

modules necessary for sustaining stable flight. A combination of off-the-shelf software tools and

custom-built-from-scratch software modules forms the building blocks of the autonomy frame-

work. Some off-the-shelf modules were also modified to make them more suitable for our re-

quirements and to resolve existing bugs that were not addressed by the developers for the specific

version.

Three cameras and two IMUs are used for Localization and Mapping needs. Two mapping

cameras and one IMU are present on a gimbal, while a localization/tracking camera and the other

IMU are fixed to the aircraft’s frame. The OV7251 global shutter camera with a fisheye lens is

utilized as a tracking camera for obtaining features for performing Visual-Inertial Odometry with

the help of an onboard ICM42688 IMU. The IMX412 low-light camera [68] is used as the RGB

sensor for mapping purposes, capturing color images in a wide range of lighting conditions. The

PMD-Tof camera [69] is used as the depth sensor for mapping, generating high-quality depth

images for capturing scene structure. Finally, a secondary ICM2098 IMU on a gimbal provides

inertial measurements to help in computing the gimbal orientation.

For Visual-Inertial-Odometry computation, a proprietary filter-based algorithm developed

by Qualcomm is utilized. The odometry pose outputs are transformed to the gimbal frame by

67



utilizing the gimbal’s orientation estimate obtained from the gimbal IMU through the use of the

Madgwick Filter. Both RGB and depth images undergo a preprocessing step. The RGB image

frames are decimated to lower the frame rate to that of the depth image sensor before sending to

a compression algorithm. The depth images are filtered by a confidence threshold so that lower

confidence values are rejected. Confidence for depth is computed by inverting the estimated

noise of the depth value of each pixel. The filtered depth frames are then sent to another instance

of the compression algorithm with slightly different parameters. For compression, the M-JPEG

intra-frame compression method is utilized as it is simple and fast to set up. The JPEG-quality

parameter for depth is set to 100 to lower compression noise as much as possible so that the point

cloud, which will be eventually computed from depth, has as few outliers as possible. Since the

depth images are lower resolution 224x168 and are formatted with 8-bit monocular encoding,

the resultant bandwidth consumption is low enough for reliable transmission. As for the RGB

images, the JPEG-quality parameter is set to 20 in order to match the bandwidth consumption

of the depth images and thereby match its transmission reliability as well. Since the bandwidth

consumption of the RGB images is slightly lower than that of the depth images, the transformed

VIO measurements are attached to its header along with the RGB image’s acquisition timestamp.

As for the depth images, only the acquisition timestamp is added to the M-JPEG frames. Both

RGB and depth M-JPEG streams are then sent to a frame rate controller, which takes in the time

to send each frame as feedback and switches between a low or a high frame-rate value in order

to smoothly control the data packets that are being sent to the aircraft’s radio through the use of

WebSockets. We chose to use the Transmission Control Protocol (TCP) even though it has higher

overhead since we needed the transmission to be reliable and image frames to be intact without

data-loss artifacts that usually are associated with User Datagram Protocol (UDP). Using UDP
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will allow for lower transmission overhead, but it will destroy the map structure when there are

data-loss artifacts in depth images; hence, it’s important to use TCP, at least for the purpose of

transmitting depth images.

4.1.2.2 Offboard Autonomy

An offboard computer, being external to the primary system, enjoys considerably looser

computational constraints compared to its onboard counterpart, which is typically constrained by

size, weight, and power limitations. This freedom from strict computational boundaries opens

up a realm of possibilities for more complex and resource-intensive tasks. However, despite

this flexibility, managing real-time performance can become a delicate balancing act, particularly

when dealing with demanding processes such as running large neural networks and rendering ex-

tensive map databases concurrently. One of the primary challenges arises from the fact that while

the offboard computer may have ample computational resources, ensuring seamless real-time

performance remains paramount, especially in critical applications like autonomous navigation.

This becomes particularly apparent when attempting to run tasks such as processing large-scale

point-cloud or mesh data alongside intensive neural network computations. Additionally, the ar-

chitecture of some processes may not be optimized to fully leverage the computational power

of modern multi-core CPUs, further complicating the real-time performance optimization pro-

cess. Therefore, when designing offboard autonomy frameworks, it becomes imperative to not

only harness the computational power available but also to carefully monitor and manage mem-

ory consumption, CPU utilization, and GPU loads. Failure to do so can result in performance

bottlenecks, leading to significant delays in processing and potentially compromising the real-

69



time mapping accuracy essential for autonomous navigation systems. Despite these challenges,

the relaxed computational constraints of the offboard system offer unique opportunities for inte-

gration with advanced middleware solutions such as the Robot Operating System (ROS). ROS

provides a flexible and modular framework equipped with a vast array of off-the-shelf software

components, enabling seamless integration and interoperability with various hardware and soft-

ware components.

To bridge the gap between the onboard and offboard systems, a custom script AMAV Ser-

vices [70] was developed to facilitate the transmission of data via a datalink radio. This script

employs WebSockets to efficiently read and package data into individual ROS messages, effec-

tively bringing the data into the ROS ecosystem. Within this framework, RGB and Depth image

frames undergo rectification to correct for distortions caused by the intrinsic properties of their re-

spective camera lenses. However, rectification requires different interpolation methods for RGB

and depth images due to the inherent characteristics of the data. RGB images are rectified using

linear interpolation, while depth images utilize nearest-neighbor pixel interpolation techniques to

ensure accurate sensor data transformation. Following rectification, the RGB images are directly

utilized for mapping and object detection purposes. Meanwhile, the depth images undergo a com-

prehensive filtering process to eliminate compression noise and outliers, ensuring the integrity of

the data before transformation into a point-cloud format. Despite the diligent filtering process, the

asynchronous nature of the sensors often results in discrepancies between the timestamps of RGB

and depth images. To address this, a motion compensation algorithm leveraging Visual-Inertial

Odometry (VIO) data is employed to align the point-cloud data with the acquisition time of RGB

frames, ensuring temporal coherence. Once aligned, the point cloud is projected onto the RGB

sensor frame using meticulously calibrated extrinsic transformation matrices, effectively register-
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ing the depth image onto the RGB camera’s frame. This registration process yields a registered

depth image, which serves as a critical component for accurate spatial perception. Following reg-

istration, an unguided depth completion process utilizing linear spatial interpolation is employed

to fill in the gaps in the registered depth image, further enhancing its completeness and accu-

racy. The rectified RGB images, registered depth images, and timestamped VIO data are then

fed into the Real-Time Appearance-Based Mapping (RTAB) [47] framework. RTAB utilizes this

rich dataset to generate and store a comprehensive map representation, leveraging graph-based

optimization techniques to refine the map structure whenever loop closure is detected.

In addition to the mapping pipeline, an autonomous localization framework has been devel-

oped to identify and tag objects of interest, such as humans and markers, in the environment. To

achieve this, we leveraged a 2D mapping target created by the National Institute of Standards and

Technology (NIST), specifically designed for evaluating camera systems’ performance on UAVs.

This target comprises a series of Landolt rings utilized for measuring visual acuity. Consequently,

an object detection model was trained to detect these Landolt rings alongside humans to facili-

tate comprehensive scene understanding. For training the object detection model, we employed

the You Only Look Once v8 (YOLOv8) [71] architecture. A semi-custom dataset was curated,

containing samples of Landolt rings and persons extracted from the Common Objects in Context

(COCO) dataset, a widely used dataset for object detection tasks. Diverse augmentation tech-

niques were applied to the dataset to enhance the model’s robustness to various environmental

conditions, including changes in lighting, exposure, orientation, and occlusion. During the train-

ing process, 15% of the images in the dataset were randomly selected for validation purposes.

The validation subset served to monitor the model’s performance and prevent overfitting by halt-

ing the training process when the validation loss ceased to improve. This approach ensured that
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the model generalized well to unseen data and maintained robustness across different scenarios.

At runtime, the trained model outputs 2D bounding box coordinates, detection confidence scores,

and class identifiers for each detected object. Concurrently, a Multi-Object Tracking algorithm,

known as ByteTrack [72], operates to assign unique IDs to individual objects in the scene, en-

abling robust tracking capabilities. The combined output from the object detection model and

the Multi-Object Tracking algorithm is fed into the Localization module. This module employs a

confidence threshold to filter out false positives and ensures that only detections with valid track

IDs are considered, reducing spurious detections. Subsequently, the registered depth image is

utilized to calculate the relative position of each pixel within the bounding box of the detected

object. A clustering algorithm is then applied to extract foreground pixels, representing the object

of interest. The mean position of these foreground pixels serves as the estimate of the object’s

relative position in the 3D space. Furthermore, a 3D bounding box is constructed by determining

the extreme points of the foreground pixel set, providing a comprehensive spatial representation

of the detected object.

4.2 Communications and Reliability Considerations

4.2.1 Radio DataLinks Hardware Investigation

Robotic systems operating in long-distance or indoor environments frequently contend with

bandwidth limitations. An illustrative example involves implementing robotic solutions utilizing

WiFi Halow [73] to navigate complex indoor settings, where conventional 2.4GHz or 5GHz WiFi

frequencies often face obstruction from glazed glass or concrete walls commonly encountered in

buildings. Wi-Fi HaLow, operating in the sub-GHz band for industrial IoT frequency range,
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delivers enhanced coverage and superior ability to penetrate obstacles such as walls, presenting

significant advantages over traditional WiFi technologies. However, it is worth noting that one

limitation of WiFi HaLow is its relatively lower data transfer rates compared to higher frequency

WiFi technologies like 2.4GHz and 5GHz. The best wireless device we have identified is Micro-

hard [74], which offers a maximum bandwidth of 8Mhz, which translates to a maximum observed

throughput of 16Mbps in ideal scenarios. In most situations, we have achieved 14Mbps through

careful selection of antennas. The throughput is reduced due to obstacles, range limitations,

interference, antenna orientations, and antenna polarity.

Table 4.1: Performance of various Data Links tested in a semi-controlled environment. NLOS
testing involved obstruction by two glazed glass walls, which contributed to signal strength at-
tenuation by about -60 dB.

Radio / Technology
Center

Frequency Bandwidth
Transmit

Power
Data rate

(81ft, LOS)
Data rate

(341 ft, NLOS)
Cost

(2 devices)

Wifi (802.11n) 2.4 GHz 20 MHz
20 dBm
(0.1 W) > 20 Mbps 0 Mbps < $100

Wifi Halow (802.11ah) 915 MHz 1-4 MHz
20 dBm
(0.1 W) 1-3 Mbps < 0.5 Mbps $250

Doodle Mini Mesh
Rider Radio 2.4 GHz 20 MHz

30 dBm
(1 W) > 20 Mbps 0 Mbps $3,800

Microhard Radio 2x2
MIMO pMDDL2450 2.4 GHz 8 MHz

30 dBm
(1 W) 15-20 Mbps 0 Mbps $1,400

Microhard Radio Dual-
Band pDDL900 2.4 GHz 8 MHz

30 dBm
(1 W) 10-15 Mbps < 0.5 Mbps $1,400

Microhard Radio Dual-
Band pDDL900 915 MHz 8 MHz

30 dBm
(1 W) 5 Mbps 2 Mbps $1,400

Table 4.1 provides a comprehensive evaluation of six radio data links conducted within a

semi-controlled environment. The testing setup involved placing the transmitter inside a room

within a building while the receiver was positioned outdoors, replicating scenarios of Non-Line-

of-Sight (NLOS) conditions typical for indoor Unmanned Aerial Systems (UAS). In this simu-

lated environment, the challenge arose from the need for the transmitted signal to traverse two

glazed glass walls upon exiting the building. These walls posed a significant obstacle, inducing
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higher attenuation compared to reinforced concrete, approximately -30 dB per wall, thus resulting

in a cumulative -60 dB attenuation solely from the walls themselves.

Data throughput measurements were obtained from two distinct locations: one situated

at an 81 ft distance from the transmitter, benefiting from Line of Sight through a single glazed

wall, and the other positioned at a 341 ft distance from the transmitter, not in Line of Sight, and

contending with two glazed glass walls alongside various sparse obstacles such as trees, poles,

and pedestrians. Remarkably, observations revealed the inadequacy of 2.4GHz radios, including

low-power Wifi, in maintaining a stable connection at the distant 341 ft NLOS testing location.

Among these, only the Microhard pDDL900 operating at 2.4 GHz managed to transmit a lim-

ited amount of data, albeit at a minimal rate. This disparity in performance was attributed to the

design of radios such as Doodle Mini and Microhard 2x2 MIMO, which employ dual antennas,

consequently necessitating a reduction in RF power per antenna to adhere to FCC regulations stip-

ulating a total Equivalent Isotropic Radiated Power (EIRP) of less than 1 Watt. In contrast, radios

operating at 915 MHz, namely Wifi Halow and Microhard pDDL900, exhibited the capability to

sustain a robust connection since they used single antennas only. However, Wifi Halow demon-

strated significantly reduced throughput owing to its lower RF output power, which is ten times

less than that of Microhard and its maximum frequency bandwidth being half of that of Micro-

hard. Notably, the pDDL900 radio, equipped with stock antennas, achieved the highest through-

put of 2Mbps among all radio data links at the challenging 341 ft distance in NLOS conditions,

thereby solidifying its selection for integration into the UAS design. Subsequent enhancements

were made to the pDDL900 by upgrading its antennas to a superior omnidirectional variant on

the aircraft and a high-gain directional antenna on the Ground Unit Radio, both boasting superior

Voltage Standing Wave Ratio (VSWR) characteristics compared to the stock antennas. Addi-
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tionally, adjustments were made to reduce the RF power on both the Air and Ground Unit Radio

Modules to ensure compliance with FCC requirements. Further experimentation revealed that the

radios perform optimally at a 27 dBm power setting, yielding a maximum throughput of around

14Mbps under favorable environmental conditions. These findings underscore the importance of

meticulous evaluation and strategic optimization in enhancing the performance and reliability of

radio data links in challenging operational scenarios.

4.2.2 Software Communication Configuration

ROS has gained popularity in robotics for several reasons, such as open source, modularity,

and large community support. Many common packages have been developed by the community.

The other key feature of ROS is its communication infrastructure, which enables different com-

ponents of a robotic system to exchange data seamlessly. However, the middleware layer in ROS

introduces overhead compared to direct socket communication. The overhead can impact perfor-

mance, especially for real-time or latency-sensitive applications. When operating in bandwidth-

limited conditions, we have noted that ROS fails to transmit any messages from VOXL2, flashed

with System Image 1.1 from Modal AI, when the network bandwidth drops below 8Mbps.

To facilitate ROS-based robotics operating in bandwidth-limited environments, our ap-

proach involves having UAS directly transmit data to the ground station using socket commu-

nication. The ROS messages are reconstructed on the ground station for ROS-based applications.

Table 4.2 compares the pros and cons of the socket communication and ROS. Socket communica-

tion offers a range of advantages. Firstly, its versatility transcends specific application domains,

making it adaptable for various purposes beyond robotics. Secondly, developers wield precise
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control over the communication process, managing aspects such as data encoding, transmission,

and error handling. Additionally, its language-agnostic nature facilitates interoperability across

systems coded in different programming languages. Lastly, due to its direct nature, socket com-

munication tends to operate with lower overhead than higher-level frameworks like ROS, thus

proving efficient for performance-critical scenarios. Socket communication also presents several

challenges. Firstly, implementing it from scratch can be intricate, particularly when dealing with

low-level intricacies like network protocols and data serialization. Moreover, socket communica-

tion lacks high-level abstractions for prevalent robotic tasks such as sensor processing, robot con-

trol, and message passing, leading to increased complexity in development. Furthermore, there

is a dearth of tools and libraries tailored for socket-based communication compared to ROS, po-

tentially elongating development timelines and intensifying the effort required. Lastly, managing

edge cases and error conditions in socket communication necessitates meticulous programming

to uphold robustness and reliability, posing a considerable risk for errors.

Socket Communication ROS
Pros Little overhead High-level abstraction

Low level control Visualization and debugging features
Efficiency Community support

Cons Lack of abstraction Resource intensive
Limited features Overhead
Error prone Limited flexibility

Table 4.2: Performance comparison of socket communication and ROS

In environments where bandwidth is a precious resource, robotics finds a niche application

in deploying indoor Unmanned Aerial Systems (UAS) for intricate 3D mapping tasks. These en-

vironments, often characterized by obstacles like glazed glass or concrete walls commonly found

in buildings, present formidable challenges to establishing reliable communication networks re-
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Figure 4.4: Autonomy data rate diagram

quired for mapping with an onboard and a remote ground station computer. The Microhard 915

MHz Data Link offers a promising solution in such communication-hostile environments. Op-

erating within the sub-GHz frequency range, it provides extended coverage and improved pene-

tration through obstructions, making it particularly well-suited for navigating the complexities of

indoor environments. Despite its advantages, the Microhard 915 MHz Data Link has restricted

bandwidth. This limitation necessitates a careful and strategic approach in determining which

types of data should be prioritized for transmission from the onboard computer to the offboard

ground station computer. Every bit of data sent must be carefully considered to ensure that es-

sential information is conveyed efficiently while minimizing unnecessary data transfer. To aid in

this decision-making process, a flattened and simplified autonomy block diagram, as depicted in

Figure 4.4, serves as a visual representation of the message data rates between various blocks in

the system. By analyzing the aggregated data rates at seven different locations and plotting them,

as demonstrated in the figure, we can pinpoint Location 2 as having the minimum data rate. This
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discovery highlights Location 2 as the optimal site for establishing data link communication, as it

offers a substantial bandwidth margin compared to other locations. Additionally, it inadvertently

also ensures low computational load on the aircraft’s onboard computer, which is beneficial for

long-term reliable operations. This strategic decision significantly enhances the reliability and

robustness of the overall framework, enabling seamless operations even under challenging condi-

tions such as extreme ranges and communication-hostile environments. It ensures that the UAS

can effectively navigate through complex indoor spaces, capturing and transmitting essential data

for 3D mapping purposes without being hampered by bandwidth constraints. In our pursuit of

accurate 3D mapping, we rely on RTAB-Map [75]. This powerful toolset requires the publication

of critical data streams, including point cloud, RGB image, and camera pose data, via ROS top-

ics, with a minimum frequency requirement of 1 Hz. The camera pose data, in particular, plays

a crucial role in the mapping process. It is computed by applying a fixed transformation to the

computed pose estimates from Visual-Inertial Odometry (VIO). This fixed transformation, deter-

mined during the extrinsic calibration procedure, ensures the alignment of the camera’s viewpoint

with the UAS’s position and orientation, facilitating accurate and consistent mapping results.

Table 4.3 provides a breakdown of the topics reconstructed on the ground station, along

with the associated message sizes transmitted via sockets. For optical RGB imaging, we utilize

the Starvis IMX412 sensor [68]. The RGB image resolution is 640 x 480 pixels, with a raw

image size of 921.6 KB, which can be reduced using M-JPEG compression. The original point

cloud consists of 40,000 points encoded with mono16, requiring 2 bytes per point, resulting in

approximately 80 KB per message or a transmission rate of 640 Kbps when messages are sent

at 1 Hz. Alternatively, we reconstruct the point cloud from depth images captured by the Modal

AI VOXL Time of Flight (ToF) Depth Sensor [69]. The depth image resolution is 224 x 171 pix-
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els, with a raw size of 38 KB. Pose data from Visual Inertial Odometry (VIO) includes position

(x, y, z) and orientation in quaternions (qx, qy, qz, qw), with each double consuming 8 bytes,

totaling 56 bytes. Additionally, VIO quality, represented as an integer between 0 and 100, is in-

cluded, computed using the inverse of the largest diagonal element of the covariance matrix. To

ensure optimal mapping quality, all topics must be synchronized. Therefore, when transferring

data from VOXL2 to the ground station via sockets, timestamps (27 bytes) for VIO, RGB image,

and depth image are included. This facilitates accurate reconstruction of ROS messages on the

ground station. VIO data, VIO quality, and timestamps are concatenated with the images for

transmission through the same socket. Socket communication allows precise selection and con-

trol over the transmitted data, facilitating efficient transmission for 3D mapping with less than 3

Mbps bandwidth. RGB images are compressed to less than 30 KB, and depth images to less than

35 KB. Depth images are less compressed to preserve their quality, improving the fidelity of re-

constructed point clouds. The source code for serializing the data on VOXL2 can be found in the

repository [76], while the repository for deserializing the data to reconstruct topics on the ground

station is available [70]. Despite the memory-intensive nature of 3D mapping and the tendency

of existing mapping apps on smartphones to crash due to memory shortages, our communication

setup enables RTAB-Map to operate on a laptop with fewer memory constraints.

4.3 Hardware Design and Evolution

4.3.1 UAS Design Objectives

The UAS was designed and manufactured with a comprehensive vision: not just to vali-

date a newly formulated mapping framework but to elevate its utility to the level of established
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Topic Message Size Bandwidth Usage (1
Hz)

Bandwidth Usage (5
Hz)

RGB image 15 - 30 KB 120 - 240 Kbps 0.6 - 1.2 Mbps
Depth image 15 - 35 KB 120 - 270 Kbps 0.6 - 1.35 Mbps
Odometry 56 B 448 bps 2.24 Kbps
Odometry quality 2 B 16 bps 80 bps
Timestamp 27 B 216 bps 1.08 Kbps
Total 30 - 65 KB 240 - 510 Kbps 1.2 - 2.55 Mbps

Table 4.3: Size of messages per topic for 3D mapping. Raw images undergo M-JPEG compres-
sion for size reduction.

commercial solutions for indoor Search and Rescue (SAR) operations. This ambitious goal ne-

cessitated meticulous attention to several key factors. Foremost among these was the importance

of achieving a high level of reliability and real-time performance for both the mapping frame-

work and the detection and localization of targets within indoor environments. Concurrently, the

UAS has to adhere to strict size and weight limitations, ensuring nimble maneuverability within

confined spaces. Complementing these core objectives was the integration of a diverse suite

of onboard sensors tailored to the unique demands of indoor SAR missions. The inclusion of

high-definition (HD) First Person View (FPV) video capability provides operators with clear, im-

mersive visuals essential for navigating complex indoor layouts with precision and confidence.

Meanwhile, a Night Vision-capable camera system provides critical support for operations in

environments with limited or zero illumination, ensuring SAR efforts can continue unhindered

by darkness. Additionally, thermal imaging technology assists in detecting human body heat

signatures, facilitating swift localization of individuals in need of rescue, and aiding in the iden-

tification and characterization of fires, a common hazard in emergency situations. Beyond sensor

technology, the UAS boasts a suite of advanced functionalities expressly designed to enhance

its effectiveness in SAR missions. A two-way audio system enables direct communication with
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victims, fostering a vital lifeline of reassurance and information exchange in the midst of a cri-

sis. The inclusion of a full 180◦ pitch range gimbal augments situational awareness by affording

comprehensive views of the surrounding environment, enabling operators to swiftly assess and re-

spond to dynamic circumstances. Furthermore, the incorporation of turtle/auto-flip mode ensures

mission continuity in the event of an unforeseen mishap, minimizing downtime and maximizing

operational efficiency. Moreover, to safeguard both the UAS and its surroundings, a simple col-

lision avoidance capability is useful, serving as a critical safety net against accidents that could

jeopardize rescue efforts. Finally, it’s important to keep the total cost low and affordable for first

responders and to also comply with Blue UAS requirements to make the UAS available to DoD

and Federal Government partners. Keeping these objectives in focus, we developed a competitive

UAS named Intrigue, and its specifications are presented in Figure 4.5 and are compared with

those of existing top-tier commercial SAR UAVs.

Elios3DJI Mavic 3TDJI Mini4 ProSkydio X10Skydio 2+ *IntrigueFeature
20 x 20 x 14 in.23 x 21 x 5 in.15 x 12 x 4 in.31 x 26 x 6 in.16 x 15 x 5 in.13 x 11 x 3 in.Size

5 lbs.2.1 lbs.0.55 lbs.4.7 lbs.1.7 lbs.2.4 lbs.Weight
<9 min38 min30 min35 min27 min18 minHover Flight Time

<0.1 mile4 miles4 miles3 miles0.5 mile4 milesHD Video LOS Range
UncoloredNoNoLow-PolygonLow-PolygonDetailed in colorReal-Time Mapping

NoIn CloudIn CloudOn UAVIn CloudOn GCSPost-Process. Map
NoNoNoYesNoYesNight Vision

180o125o150o180o120o180oGimbal Tilt Range
160x120640x512No640x512No160x120Thermal Resolution

NoYesNoYesNoYesTwo-way Audio

YesNoNoNoNoYesIntegrated Rotor 
Protection

Not Req.NoNoNoNoYesTurtle Mode

NoManualNoManualManualAutonomousHuman Detection & 
Location Tagging

NoYesYesYesYesYesCollision Avoidance
NoNoNoCompliantCompliantCapableBlue UAS

>$70k$7.5k$1k>$15k$2.2k$6.5kCost

Comparison with Top-Tier SAR UASs

* No longer in Production

Figure 4.5: Comparision of Intrigue UAS with top-tier commercial search and rescue UASs

81



4.3.2 UAS Overview

An external overview of the final design iteration of the intrigue UAS is shown in Fig-

ure 4.6. Locations of major individual hardware components are labeled with red arrows. The

UAS structure comprises two CNC-milled carbon fiber plates connected together using Alu-

minium standoffs and steel fasteners, creating a rigid, strong, and durable frame while keeping

material and manufacturing costs low. The top plate is 3 mm thick since it’s the primary load-

bearing structure, and the bottom plate is 2 mm thick to aid in the airframe’s rigidity. Additionally,

covers to protect the electronics and also to aid in cooling were 3D printed using nylon reinforced

with chopped carbon fibers. The gimbal structure was also 3D printed using the same material.

Appropriate mounting holes were strategically drilled on the carbon fiber plates to securely mount

the avionics components. Vibration isolation standoffs were used to mount the flight controller

and the onboard computer. Antennas were strategically mounted to place them as far away from

the conductive frame as possible without adding too much weight from the co-axial extension

cables/rods. Additionally, appropriately rated capacitors were integrated into the power source

for ESC and Microhard radio to attenuate voltage spikes and electrical noise generated from rapid

motor acceleration, active motor braking, and switching regulators.

A block diagram of the complete set of avionics hardware on the Intrigue UAS is presented

in Figure 4.7. The arrows represent wired connections between the components and the direc-

tion where the majority of the data goes from one component to another. The dashed lines and

a wireless icon on a block represent wireless communication. The colors represent individual

avionics sub-groups, i.e., mapping, flight control, FPV video, control radio, gimbal, audio, ther-

mal, and illumination systems. The Ground Station Laptop can be any generic laptop running
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Figure 4.6: Intrigue UAS overview

Ubuntu 20.04 Operating System configured with ROS noetic, latest stable Rtabmap and corre-

sponding AliceVision software packages. We have successfully tested the software framework

on multiple laptops, but for the purpose of this manuscript, we used the Gigabyte Aero 15 XC

Laptop equipped with a 10th Gen Intel Core i7-10870H (2.2GHz) CPU, 16 GB DDR4 RAM, and

NVIDIA GeForce RTX 3070 Laptop GPU with 8 GB GDDR6 VRAM.

4.3.3 Multispectral Visual-Inertial Sensor System

A gimbaled multispectral visual-inertial sensor system was developed to provide complete

freedom for performing mapping from any desired pose. The gimbal provides pitch axis control
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Figure 4.7: UAS avionics hardware block diagram

and houses the FPV low-light camera, RGB camera, ToF camera’s IR emitter and receiver system,

and two IMUs. One of the IMUs is used by the gimbal controller to stabilize and control the

gimbal’s pitch angle, whereas the other IMU is used by the onboard computer to calculate the

poses of individual sensors in the camera system. It must be noted that the the ToF camera was

chosen because of its lower size, weight, and power benefits. A LiDAR on the other hand would

have been superior in terms of performance and range.

4.3.4 Avionics Cooling Considerations

Some avionics components inside the UAS generate a considerable amount of heat, and

hence, it is imperative to integrate proper cooling measures in the design to prevent damage and

improve runtime performance and stability. Appropriately sized aluminum heat sinks were in-

stalled on the Microhard Radio, VOXL2, and the FPV video transmitter. Ambient air is also

forced inside the avionics bay with the help of a 40 mm and a 20 mm fan mounted on the back
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and top side of the UAS respectively. Without active cooling from fans, we observed a maxi-

mum temperature of 93°C on the VTX, 79°C on the Microhard Radio, 71°C on VOXL2, and

45°C on the Gimbal motor during benchtop testing. With active cooling from the dual fans, the

temperatures were brought down to 70°C on the VTX, 42°C on the Microhard Radio, 44°C on

VOXL2, and 34°C on the Gimbal motor. Figure 4.8 shows a side view of the active vs cooling

performance of the UAV with a thermal heatmap overlaid. The heat from the internal avionics

heats up the 3D-printed side walls, and it’s the outer surface temperature that is plotted in the

images.

(a) Passive cooling (b) Active and passive cooling

Figure 4.8: Avionics cooling performance during benchtop tests

4.4 Experimental Testing Results

Rtabmap outputs map data into a database file (.db) format, which requires post-processing

to generate the final textured map files. This includes the conversion to a wavefront geometry

(.obj) file, material library (.mtl) file, and texture image (.jpg) file. Figure 4.9 illustrates the two

primary post-processing steps employed to enhance the fidelity of the mesh map. For the exper-
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iment, the Intrigue UAS flew in a straight line within a narrow corridor designated for NIST’s

UAS 3D Mapping Lane Test. The corridor featured fiducial foam structures for measuring map

dimensional accuracy, foam cubes on walls and floors to assess captured shape details, and NIST

ring targets on letter paper affixed to the wall to evaluate visual acuity. Figure 4.9a displays the

original mesh map without any post-processing. In contrast, Figure 4.9b exhibits the mesh map

after the bundle adjustment procedure. Bundle adjustment refines the map’s shape and texture by

minimizing the re-projection error of landmark features across the camera pose-graph data struc-

tures. This refinement enhances overall accuracy. The final step, depicted in Figure 4.9c, involves

Multiband Blending, a feature provided by AliceVision [77], an open-source Photogrammetric

Computer Vision tool. This process eliminates edges between adjacent texture patches and cor-

rects texture matching to individual mesh cells, resulting in increased sharpness and resolution

across the mesh map.
No post-processing With Bundle Adjustment With Bundle Adjustment and 

Multi-Band Blending

Map Post-Processing

(a) Before post-processing

No post-processing With Bundle Adjustment With Bundle Adjustment and 
Multi-Band Blending

Map Post-Processing

(b) After bundle adjustment

No post-processing With Bundle Adjustment With Bundle Adjustment and 
Multi-Band Blending

Map Post-Processing

(c) After multiband blending

Figure 4.9: Post-processed output map after each stage.

In industry, the most widely used technique for generated 3D maps is photogrammetry.
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This technique involves capturing multiple photographs from different angles, which are then

analyzed to create accurate 2D or 3D models of the subject. It is widely used in fields such as

cartography, architecture, engineering, geology, and archaeology, enabling detailed documenta-

tion and analysis of structures, landscapes, and historical sites. It leverages advancements in dig-

ital imaging and computer vision to provide precise spatial data and measurements. Figure 4.10

shows the results of the industry standard Photogrammetry pipeline and presents a side by side

comparison with the map output from our method. To generate the photogrammetry map the

1080p HD video from the onboard FPV camera was first extracted from the aircraft’s onboard

storage. Next, it was downsampled to 5 Hz and all individual frames were extracted and provided

as input to the photgrammetry pipeline inside the Meshroom software [77].

Similarly, a notable recent advancement in 3D capture techniques within academia is the

use of Neural Radiance Field (NeRF). NeRF is a neural network capable of reconstructing intri-

cate three-dimensional scenes from a limited collection of two-dimensional images. NeRF works

by optimizing a continuous volumetric scene function using a sparse set of input images along

with their corresponding camera poses. This allows it to model the light radiance in every direc-

tion from any point in a given scene. Essentially, NeRF can synthesize new views of a scene by

predicting the color and density at any point in 3D space, thereby creating a highly detailed and

accurate 3D representation from just a few 2D snapshots. Figure 4.11 shows the results of train-

ing a nerfacto model using Nerfstudio software [78]. The same downsampled images as those

used in the photgrammetry comparision was pre-processed by COLMAP [79, 80] and the resul-

tant frames and poses were supplied as input to Nerfstudio. Figure 4.11a shows a snapshot of

the volumetric rendering of the NeRF model. NeRF’s performance heavily relies on the quality

and quantity of the input images. Hence, the sparsely distributed images leads to a degradation

87



in quality of the reconstructed 3D scene. Figure 4.11b shows the mesh output exported from

the trained NeRF model. It’s inferior in quality since NeRF models the scene as a continuous

volumetric function, which is difficult to convert to mesh geometric representations.

The complete photogrammetry pipeline with default parameter values took about 15 min-

utes on the Ground Station Laptop. On the other hand the NeRF pipeline took about 10 minutes

to train on a powerful desktop computer equipped with RTX4090 GPU. Table 4.4 provides an

overview of the comparision of the two techniques against our method. However, it must be

noted that photogrammetry and NeRF have been developed to be a general purpose mapping tool

which doesn’t require any camera calibration steps and it’s output can be improved with careful

tuning of the pipeline parameters depending on the type of environment we are trying to map.

Neverthless, photogrammetry is unable to predict depth values of unfeatured surfaces which leads

to large gaps in the map as is evident in Figure 4.10a. On the other hand, NeRF is unable to fully

capture the scene information from the limited amount of images and camera viewpoints supplied

to it. In contrast, our technique based on RGB-D mapping results in a more complete map output

with less surface gaps as shown in Figure 4.10b.

Table 4.4: Comparison of pipeline properties of our mapping technique with photogrammetry
tool and NeRF technique.

Property Photogrammetry NeRF Our Method
Real-Time vs Offline Offline Offline Real-time
Image format used 1080p RGB 1080p RGB 480p RGB + 168p Depth
Post-processing time
of NIST 3D Mapping Lane 15 min 10 min < 1 min

Sensor Requirements
Uncalibrated RGB
Camera

Uncalibrated RGB
Camera

Calibrated RGB
and Depth cameras

Scale Ambiguity Present Present Absent

The development of the Intrigue UAS underwent meticulous testing across various sim-
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(a) Map using photogrammetry.

No post-processing With Bundle Adjustment With Bundle Adjustment and 
Multi-Band Blending

Map Post-Processing

(b) Map using our method.

Figure 4.10: Comparison of resultant maps from our mapping technique with the one from an
industry standard photogrammetry tool.

(a) NeRF viewport. (b) NeRF mesh output.

Figure 4.11: Mapping results from NeRF technique.
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ulated indoor missions to ensure optimal performance of both its hardware and software com-

ponents in real-world scenarios. These missions served as vital proving grounds, enabling the

team to assess the UAS’s capabilities and refine its functionalities. A primary focus during these

missions was achieving real-time mapping, target detection, and localization visualizations. To

accomplish this, tools like Rviz and Rtabmapviz were utilized, providing valuable insights into

the UAV’s surroundings for swift decision-making and course corrections as needed. Further-

more, a custom-designed user interface (UI) was developed to comprehensively analyze mission

outcomes. This UI served as a platform for post-processing analysis, presenting collected data

in a gallery-style format. Through this interface, team members could review detailed mesh rep-

resentations, pinpoint target locations, and assess the accuracy of target detections. A critical

aspect of the evaluation process involved comparing different rendering techniques. Figure 4.12

illustrates one such comparison, focusing on real-time map rendering details. By presenting the

same scene side by side, one with the display of point-cloud data and the other with the appli-

cation of the FastMesh algorithm, the figure highlights the significant enhancement in textural

detail achieved through the latter approach. The FastMesh procedure, detailed in FastMesh [81],

involves connecting neighboring points (pixels in depth image space) to construct a quad mesh.

This process enhances the visual fidelity of the mapped environment, providing a more detailed

picture of the surroundings and objects within it. However, in our current software state, local-

ized targets and objects in the map cannot be displayed in Rtabmapviz. Therefore, we utilize

Rviz to show the map point-cloud and target locations in real-time, while the custom-developed

UI displays the final post-processed mesh map along with the target locations.

The Intrigue UAS underwent a rigorous evaluation in a simulated indoor search and rescue

mission orchestrated by the National Institute of Standards and Technology (NIST) as part of
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(a) Real-time map rendered as a point cloud by Rviz. (b) Real-time FastMesh generation in rtabmapviz.

Figure 4.12: Comparison of real-time point-cloud and real-time mesh map rendering.

the NIST UAS 5.0 First Responder UAS 3D Mapping Challenge. This mission was designed to

assess the UAS’s mapping capabilities as well as detecting and localizing various objects within

a highly cluttered and hostile environment. In Figure 4.13, a snapshot from the Rviz visualiza-

tion tool showcases the UAS’s autonomous detection of a person mannequin in the RGB image.

Impressively, the system accurately localized the detected individual within the point-cloud map,

represented by distinctive red spheres. Similarly, Figure 4.14 presents another instance of suc-

cessful detection and localization, this time featuring NIST ring targets. The corresponding pink

spheres in the point-cloud map precisely indicate the locations of these targets, demonstrating

the UAS’s ability to identify and map objects of interest in real-time. Despite encountering

challenges during the mission, such as premature crashes leading to missed loop closures and

odometry drift errors, the resulting map, showcased in Figure 4.15, remained remarkably useful.

Despite these setbacks, the map retained numerous intricate details, as highlighted in Figure 4.16.

For instance, Figure 4.16a offers a detailed view of a mapped room containing a hidden person

behind a couch. The fidelity of the mapping captured the room’s shape and textures in great

detail, underscoring the UAS’s capability to provide detailed reconstructions of complex envi-
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ronments. Additionally, Figure 4.16b showcases another significant observation, illustrating a

narrow room featuring a NIST ring target positioned on the ceiling. The flexibility afforded by

the mapping sensors mounted on a gimbal proved invaluable in capturing intricate details, partic-

ularly in scenarios requiring upward or downward detection. A combined recorded video of the

GCS laptop screen and the FPV video feed for the NIST simulated indoor mission can be found

at [82]. Overall, despite encountering operational challenges, the Intrigue UAS demonstrated

significant capabilities in autonomous detection, localization, and detailed mapping of complex

indoor environments. These capabilities hold considerable promise for applications in search and

rescue operations, disaster response, and various other critical scenarios where precise spatial

awareness is paramount.

Figure 4.13: Real-Time detection and localization of a person

In addition to its evaluation in simulated search and rescue scenarios, the Intrigue UAS

underwent testing within a building located at the University of Maryland (UMD), where it en-

countered a controlled and cluttered environment containing mannequins. Figure 4.17 offers a
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Figure 4.14: Real-Time detection and localization of a NIST ring target

Figure 4.15: The final post-processed map generated during the NIST’s simulated indoor mission

glimpse into the post-processed map generated from a successful flight of the Intrigue UAS within

this building. Notably, the structure of the building comprises a series of cluttered interconnected

rooms along with a narrower corridor featuring considerably fewer distinctive features. During

the flight, the UAS demonstrated its robustness by executing successful loop closures, a vital pro-

cess that helped maintain the integrity of the map structure by rectifying Visual-Inertial Odometry
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(a) A person hidden behind the couch (b) A NIST ring target on the ceiling

Figure 4.16: Interesting viewpoints in the post-processed mesh map.

(VIO) drift errors. This ensured the accuracy and reliability of the mapped environment, even in

complex and cluttered indoor settings. A closer examination of the map, as depicted in Fig-

ure 4.18, reveals the textural details that enhance the fidelity of the reconstruction. Noteworthy

features such as objects positioned on desks, labels on trash cans, and even writing on a white-

board are discernible within the map. This level of detail serves as a testament to the efficacy

of both the custom-developed low-cost multispectral mapping sensor system and the associated

mapping framework deployed on the Intrigue UAS. The successful capture and representation

of such intricate details underscore the system’s capabilities in accurately mapping indoor envi-

ronments with diverse textures and objects. This achievement is particularly noteworthy given

the challenges posed by cluttered spaces and varying lighting conditions often encountered in

indoor settings. A combined recorded video of the GCS laptop screen and the FPV video feed

for this controlled indoor mapping experiment can be found at [83]. Overall, the performance of

the Intrigue UAS within the UMD building highlights its potential for a wide range of applica-

tions, including indoor surveillance, mapping, and reconnaissance tasks. Its ability to navigate

and map complex indoor environments while preserving detailed textural information positions

it as a valuable tool for various domains, including urban planning, facility management, and
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emergency response.

Figure 4.17: Detailed post-processed map of a set of cluttered interconnected rooms and a narrow
corridor of a building at UMD.

Figure 4.18: Another view of the map showing the quality of textural details captured by the
custom developed low-cost multispectral mapping sensor system.
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Chapter 5: Conclusion

This dissertation detailed three key research ventures aimed at improving UAS capabili-

ties: enhancing quadrotor control performance through in-flight calibration, developing systems

for wind rejection, and advancing indoor aerial 3D mapping. The first venture focused on improv-

ing the control performance of quadrotors by employing in-flight calibration techniques, ensuring

more precise and stable flight dynamics. The second venture developed robust systems for wind

rejection, allowing UAS to maintain performance and stability even in adverse wind conditions.

The third venture advanced indoor aerial 3D mapping, enabling UAS to create detailed and accu-

rate maps of indoor environments, which is crucial for effective navigation and situational aware-

ness. These endeavors contribute to the overall goal of maximizing the efficacy of UAS in rescue

operations, thereby enhancing the safety of human responders and increasing the success rate

of missions in compromised indoor environments. The resilience, reliability, and performance of

UAS can be further enhanced through ongoing research and development efforts. The dissertation

research integrated interdisciplinary concepts and techniques from Aerospace Engineering, Com-

puter Science, Robotics, and Estimation and Control Theory, addressing important challenges in

aerial robotics. The integration of these diverse fields facilitated the development of sophisticated

solutions and advancements, with the findings published in peer-reviewed journals, underscoring

the significance and impact of the research. Chapter 2 described a UAV self-calibration frame-
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work that estimates vehicle state, external wind, drag coefficients, center of pressure, and sensor

bias using IMU and ground velocity measurements, with optimized calibration trajectories en-

hancing tracking performance and estimation accuracy, particularly in unsteady wind conditions.

Chapter 3 presented the development and experimental evaluation of a UAV system identifica-

tion framework, combining rotorcraft, robotics, and nonlinear control tools to enhance parameter

estimation accuracy and wind gust rejection, with improved tracking performance and compu-

tational efficiency using a custom, low-cost flight controller. Chapter 4 detailed the design and

implementation of a cost-effective UAS for first responders, featuring advanced 3D mapping and

target detection capabilities, validated by success and multiple awards in the NIST 2023 First

Responder UAS 3D Mapping Challenge, demonstrating significant improvements in data acqui-

sition speed and system stability.

5.1 Summary of Contributions

This section offers a succinct overview of the primary outcomes of this dissertation. Firstly,

it provides a condensed summary of the findings detailed in Chapter 2, elucidating the contribu-

tions and results. Secondly, it distills the essence of Chapter 3, highlighting the improvements

made over conventional methods. Lastly, key insights from Chapter 4 are encapsulated, laying a

robust groundwork for development of advanced, reliable, real-time 3D mapping, and autonomy

capabilities of UAS.
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Estimation for Improved Control Performance via In-flight Calibration

The research showcased in Chapter 2 described a UAV self-calibration framework that es-

timates the vehicle state, external wind, drag coefficients, center of pressure, and sensor bias

using IMU and ground velocity measurements, such as obtained via visual-inertial odometry or

lidar-based odometry. The observability of the system is also analyzed and trajectory optimiza-

tion performed to maximize the observability with feasible control inputs during calibration. The

improvements in tracking performance due to the estimator are evaluated in simulation using

a model-based controller. The self-calibration trajectory provided by the optimization compare

favorably with a manually selected calibration trajectory, demonstrating the improvements in

tracking and estimation performance. Optimizing the calibration trajectories makes the estima-

tion framework more numerically stable; the parameters are calibrated faster and more accu-

rately. Post-calibration simulation demonstrates the framework’s ability to estimate unsteady

winds without directly sensing the wind.

Experimental Implementation of System Identification for Wind Rejection

The study detailed within Chapter 3 presented the development and experimental evalua-

tion of a combined approach toward system identification of a UAV by synthesizing tools from

rotorcraft, robotics, and nonlinear control and estimation. The frequency-domain linear system

identification tool CIFER® was used to accurately estimate the inertial parameters from an auto-

mated frequency sweep data. By sensing the motor RPM, accurate control values were obtained.

Comparison with the traditional approach of using controller-generated commands revealed im-

provements in identification accuracy. A reduced version of the square-root unscented Kalman
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filter and a nonlinear model-based controller were utilized to recursively estimate the drag coef-

ficient and external wind in separate experiments. The computational requirements of the non-

linear estimation and control frameworks were satisfied by designing a custom, low-cost flight

controller. System identification accuracy of both linear and nonlinear techniques is evaluated

by comparing parameter estimates with true value beliefs obtained from various sources. Experi-

mental evaluation of the drag coefficient estimation showed rapid improvement in the controller’s

tracking performance. Additionally, wind estimation experiments demonstrated the framework’s

ability to reject wind gusts without directly sensing the wind.

Indoor Aerial 3D Mapping with a custom built visual-inertial sensor system

The investigation outlined in Chapter 4 detailed the design and implementation of a robust

and cost-effective Unmanned Aerial System (UAS) specifically engineered for first responder

use in search and rescue operations. The innovative 3D mapping, target detection, and localiza-

tion framework, combined with a distributed computing approach, has demonstrated significant

improvements in data acquisition speed and system stability. The system’s performance was

validated through its success in the National Institute of Standards and Technology (NIST) 2023

First Responder UAS 3D Mapping Challenge, where it earned notable accolades, including Third

Place Overall and multiple Best-in-Class awards. These achievements, along with independent

testing results, underscore the UAS’s reliability and effectiveness in real-world scenarios.

5.2 Suggestions for Ongoing and Future Work

This section offers some forward-looking suggestions for future research trajectories.
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Continuing the work in Chapter 2, one can seek to address the inaccuracies in the estima-

tion of the z-component of certain parameters. This might involve refining the estimation frame-

work to include additional parameters such as mass, inertia, and the center of gravity, which are

critical for achieving more accurate and reliable performance of UAS. Additionally, exploring

non-probabilistic approaches may offer increased numerical stability and ensure convergence,

thereby enhancing the robustness of the estimation process.

Work done in Chapter 3 can be extended by demonstrating the recursive, in-flight estima-

tion of additional model parameters. By implementing the frequency-domain system identifica-

tion procedure directly on the onboard computer, it might be possible to achieve robust, accurate,

and periodic updates of inertial parameters, ensuring the UAS remains calibrated and responsive

to changing conditions. Further improvements in wind estimation and gust rejection performance

can be pursued through several means. Upgrading the Inertial Measurement Unit (IMU) will pro-

vide more precise measurements, while reducing sensor delay will enhance the responsiveness of

the system. Additionally, incorporating control delay into the estimation framework will result in

a more accurate representation of the system’s dynamics, leading to better control and stability in

windy conditions.

Proceeding with the work in Chapter 4 research is ongoing focusing on expanding the

system’s autonomous capabilities, including autonomus navigation and exploration. These en-

hancements are aimed at providing even greater support for first responders in critical situations,

enabling UAS to operate independently in complex environments and deliver vital information

for rescue operations. By improving autonomous navigation, UAS can more effectively map and

explore damaged indoor environments, identifying hazards and locating survivors without putting

human responders at risk. Furthermore, bringing the framework in outdoors environments such
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as under forested canopy, over water bodies and in windy environments will be the ultimate test

of the UAS’s capabilities.

Overall, these efforts should be directed towards making UAS more reliable, resilient, and

effective tools for rescue operations. The integration of advanced estimation techniques, im-

proved hardware, and sophisticated control algorithms will significantly enhance the performance

of UAS, ensuring they can operate effectively in the most challenging conditions. The contin-

ued research and development in this field hold promise for even greater advancements in aerial

robotics, ultimately contributing to safer and more efficient rescue missions.
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