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Abstract—This paper presents a distributed, consensus-based
approach to optimize radar resource management for ballistic
missile surveillance and tracking. Each radar determines their
preferred radar-to-target assignment by balancing radar loading
and minimizing total radar usage. A unique global radar-to-
target assignment that is robust to resource estimation error is
generated by a distributed consensus algorithm. Performance is
validated via Monte Carlo simulations.

I. INTRODUCTION
Multifunction radar technology supports the simultaneous

execution of search and track functions [1]. To facilitate the
radar’s ability to dynamically prioritize its search and track
tasking, a radar resource manager must optimize the allocation
of radar resources to each function. Existing resource manage-
ment approaches for a single radar are addressed in [2], [3] to
reduce target state uncertainty. For multiple shipboard radars,
[4] balances the relative residual radar resource capacity to
minimize target migrations from one ship’s search sector
to another ship’s sector. However, it prevents a radar from
tracking targets outside its own search sector, which may be
beneficial in balancing the resource load.

This paper applies techniques from probabilistic optimiza-
tion, graph theory, and consensus control to design a theo-
retically justified, distributed framework for the assignment
of ballistic missile (BM) and air defense (AD) search and
track radar resources that balances and minimizes resource
usage while accounting for the resources required to reduce
target uncertainty to a desired level to support engagements.
Balancing the resource utilization prevents a single radar from
using all of its available resources, unless the other radars
are also at their maximum capacity, which is important if
a majority of the targets are detected by a subset of sen-
sors. Minimizing total resource usage allows the remaining
resources to be applied to additional search or track func-
tions. Radars reach agreement on the global optimal target-
assignment by exchanging and updating their individual target-
assignment solutions over a communication network in an
iterative fashion that yields consensus on a single solution.
Monte Carlo simulations demonstrate that the optimal radar-
to-target assignment solution allows for a greater number of
targets to be detected and tracked while preserving adequate
resources for AD search.

II. RADAR MODEL
Radar resource usage for search and track is modeled using

the radar range equation [5, pp. 30-35]. Each ballistic target is

modeled as a linear dynamical system. Target measurements
are processed by a tracking filter that provides the target’s state
and uncertainty. Tracking resources include the resources re-
quired to reduce the target uncertainty to support engagements.

A. Resource Allocation

The initial resource allocation is partitioned into AD Search,
AD Track, BM Search, BM Track, and Spare as shown
in Fig. 1(a). As BM targets are detected and tracked, BM
Track consumes Spare resources to track new targets and
reduce the uncertainty of existing BM targets (designated BM
Track-Engage). Once all Spare resources are consumed, as
depicted in Fig. 1(b), BM Track and BM Track-Engage may
consume additional resources initially reserved for AD Search
as illustrated in Fig. 1(c) and the AD search sector is redefined.
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Fig. 1. (a) Initial resource allocation prior to BM tracking; (b) resource al-
location after BM track consumes spare resources; and (c) resource allocation
after BM track resources consume spare and some AD search resources.

B. Surveillance and Tracking Model

The signal-to-noise ratio (SNR) is the standard measure of
a radar’s ability to detect a given target at a range ρ from the
radar. SNR is a linear function of the inverse search sector
solid angle1Ω and a quartic function of the inverse detection
range ρ [5, pp. 30-90]:

SNR =
PavgAeσTsearch

4πκT0Lsρ4Ω
, (1)

where Pavg is the average transmitted power, Ae is the
effective antenna area, σ is the target radar cross section, κ is
Boltzmann’s constant, T0 is the radar system temperature, Ls
are the total system losses, and Tsearch is the search scan time
for solid angle Ω at range ρ. Radar resource usage is expressed
in units of time by solving (1) for Tsearch = aρ4Ω, where

1The solid angle subtended by a surface is the surface area of the portion
of a unit sphere covered by the surface’s radial projection onto the sphere [6].
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a , 4πκTs(SNR)Ls/(PavgAeσ) is identical for all radars.
For multiple search sectors, let Sk represent the total number
of BM and AD sectors for radar k, where s ∈ {1, ..., Sk} is
the search sector index. The total search scan time T (tot)

search,k

dedicated to searching all Sk sectors of radar k is expressed

T
(tot)
search,k = a

Sk∑
s=1

ρ4s,kΩs,k. (2)

Let X = [x y z ẋ ẏ ż]T be the target position and
velocity and X(n) be the state at time n, where the time
step is T = t(n + 1) − t(n). The measurements collected
by a radar are the range ρ, the azimuth θ, and elevation φ,
subject to measurement noise with variance σ2

ρ, σ
2
θ , and σ2

φ,
respectively. Radar measurements are transformed to Cartesian
coordinates [7] so that the measurement equation is linear

Z(n) = H(n)X(n) + V (n), (3)

where Z = [x y z]T and V ∼ N (0, R) is the Gaussian
measurement error with covariance R referred to in Cartesian
coordinates.

One targets are detected, the array beam is steered directly
to the target for track updates, thus

SNR =
PtG

2λ2σTtrack
(4π)3κT0Lsρ4

, (4)

where Pt is the peak transmitter power, G is the antenna gain,
λ is the wavelength, and Ttrack is the amount of time the target
is in track per scan. Solving (4) for Ttrack yields Ttrack = cρ4,
where c , (4π)3κT0(SNR)Ls/(PtG

2λ2σ). Let Mk be the
number of targets tracked by radar k so that the total track
time is

T
(tot)
track,k = c

Mk∑
m=1

ρ4m,k, (5)

where m = {1, ...,Mk} is the target index.
Successive measurement updates reduce the target state

uncertainty to support an engagement. Motivated by [8], the
projected reduction in target uncertainty for each radar-target
pairing is found using the outputs of a minimum variance
linear tracking filter that approximates the resources required
to reduce target uncertainty to the engagement level.

Suppose radar j is tracking target m at time step n. Let
xm(n) represent the target state estimate and Σjm(n) be the
6×6 error covariance. For each radar k that can track target m,
let Σkm(n+1) represent the error covariance matrix that results
if tracking responsibilities for target m switched to radar k.
To account for the communication latency Tcom, we have

Σkm(n) =

{
Σjm(n) if k = j

(Φ(Tcom))
T

Σjm(n) (Φ(Tcom)) otherwise,
(6)

where Φ is the state transition matrix. Let Kk
m be the pro-

jected estimate of the Kalman gain if radar k were assigned
tracking responsibilities for target m, given by Kk

m(n +

1) = Σkm(n)HT
[
HΣkm(n)HT +Rkm(n+ 1)

]−1
. The pro-

jected state covariance for radar k and target m is

Σkm(n+ 1) =
(
I −Kk

m(n+ 1)H
)

Σkm(n), (7)

where I is the 6× 6 identity matrix. The track uncertainty for
each radar-to-target pairing is found by summing the diagonal
position elements of (7) to obtain

(TU)km(n) = Tr[ΦTΣkm(n)Φ]. (8)

The resources required to reach a desired engagement track
uncertainty (TU)eng are computed using a linear interpola-
tion between the current target uncertainty and the projected
uncertainty at the next time step

Tmeng,k =
(TU)km(n)− (TU)eng

∆(TU)km
Ttrack,k, (9)

where ∆(TU)km = (TU)km(n) − (TU)km(n + 1). The total
target engagement time is

T
(tot)
eng,k = c

Mk∑
m=1

Tmeng,k. (10)

Combining (2), (5), and (10) yields the total resources in units
of time required to complete the desired search, track, and
engagement requirements of radar k for all Mk targets. In what
follows, let Pk , (T

(tot)
search,k + T

(tot)
track,k + T

(tot)
eng,k + εk)/Tmax

denote the total normalized resources used for search and
track by radar k, where εk denotes the spare resources and
Tmax is the maximum available resource. The resource usage
constraint is expressed Pk ≤ 1.

III. TARGET ASSIGNMENT OPTIMIZATION

The radar communication network is modeled as a strongly
connected, balanced digraph Gcom with nodes N = {1, ..., N}
and edges Ecom ⊆ N × N. The edge set Ecom contains all
of the ordered (unweighted) pairs of directed communication
links between nodes designated by ejk , (j, k). The entries
akj in the binary N × N adjacency matrix A of Gcom are
defined as akj = 1 if ejk ∈ E and akj = 0 if k = j.
The Laplacian matrix Lcom of Gcom is defined by entries

lkj = −akj for k 6= j and lkk =
N∑
l=1

akj [9]. We also model

the target-assignment network Gtrack = (N ∪M,Etrack) as
a bipartite graph where N = {1, ..., N} represents the set
of radars, M = {1, ...,M} represents the set of targets, and
Etrack ⊆ M × N is the unweighted set of all possible radar-
to-target pairings. A target-assignment solution is the set of
radar-to-target pairings that assigns exactly one radar in the
set N to each detected target in the disjoint set M, represented
by the adjacency matrix of the bipartite graph Gtrack. Fig. 2
illustrates one possible target-assignment solution Gtrack for
M = 6 targets and Gcom for N = 4 radars.

The framework of the target-assignment optimization prob-
lem is based upon meeting the following two objectives: (i)
balancing radar resource tasking and (ii) minimizing total radar
resource usage. Objectives (i) and (ii) are formulated using
a quadratic form based on a weighted graph Laplacian that
reflects the priorities of balancing resource usage versus total
resource usage. The solution to the optimization problem is the
target-assignment graph Gtrack that best achieves the convex
combination of both objectives. A genetic algorithm [10]
is used to solve for the optimal target-assignment solution,
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Fig. 2. (a) Radar communication network Gcom for N = 4 radars and (b)
target assignment network Gtrack for M = 6 targets.

because an exhaustive search would yield excessive compu-
tational time requirements. An initial population of target-
assignment graphs is encoded as a binary solution as follows.
Let Gtrack,k be the target-assignment solution proposed by
radar k for all radars and targets and let Ak ∈RN×M be the
adjacency matrix of Gtrack,k such that

aij =

{
1, if Gtrack,k assigns target j to radar i
0, otherwise.

(11)

Note that Ak satisfies
N∑
j=1

ajk = 1 which represents the

constraint that each target is assigned to exactly one radar
and no (detected) targets are unassigned. Each local target-
assignment solution is evaluated based on an objective (fitness)
function described below.

Objective (i) of the target-assignment optimization is to
balance radar resources over the radar communication network
Gcom, (i.e., to minimize the differences in radar usage between
all pairs of communicating radars). Let P = [P1 P2 ... PN ]T

be the collection of all normalized radar resource allocations.
Let Lcom be the graph Laplacian of Gcom. The optimal target-
assignment network Gtrack balances radar tasking across
Gcom by minimizing the Laplacian quadratic form [9]

PTLcomP =
∑

(j,k)∈Ecom

(Pk − Pj)2. (12)

Objective (ii) of the target-assignment optimization problem
is to minimize the total tracking resource usage over all
radars in Gcom. Let IN be the N ×N identity matrix, which
represents the Laplacian of a balanced graph consisting of only
self-loops, i.e. [lij ] = 2 for all i = j, and [lij ] = 0 otherwise.
Minimizing total (squared) radar resources is equivalent to
minimizing the Laplacian quadratic form

PTP = PT INP. (13)

Objectives (i) and (ii) are combined into a single multi-
objective cost function by first normalizing each objective
function by its maximum value and then forming a combined
quadratic form. Let K, 0 ≤ K ≤ 1 be a weighting factor that
represents the priority of balancing as compared to minimizing
total resource usage. The overall cost function is the convex
combination

J(Gtrack;Gcom) , PT
[
K 2
N2(N−1)Lcom + (1−K) 1

N IN
]
P.

(14)
The target assignment solution that balances resource usage

and minimizes total resources is

G∗track = argmin
Gtrack

(J(Gtrack;Gcom)) . (15)

Reaching consensus ensures exactly one common target as-
signment solution and avoids the possibility that a target is not
tracked. The binary consensus algorithm [11] described here
also provides robustness to errors in radar resource estimation,
track uncertainty improvements, and communication noise.

Let Gtrack,k be the target assignment solution proposed
by radar k using (15) and define Āk ∈ RNM×1 to be the
elements of the adjacency matrix of Gtrack,k in (11) taken
column-wise and arranged as a single column. Let qjk(n) ∈ R
represent the zero-mean Gaussian receiver noise at the nth
time step in the transmission of the target assignment solution
from the kth radar to the jth one with constant variance σ2

w.
Let Nj represent the set of radars k that can communicate
with radar j and |Nj | be the size of Nj . Dec[·] denotes a
decision function for the binary 0-1 entry performed on each
element such that Dec[x] = 1 if x ≥ 0.5 and 0 otherwise.
Each radar updates its own target assignment solution based
on the received information as follows [11]:

Āj(n+ 1) =Dec

[
Āj(n)+

∑
k∈Nj

(Āk(n)+qjk(n))

2+|Nj |

]
. (16)

The update rate (16) is the binary form of a discrete consensus
algorithm [12].

IV. RADAR SYSTEM SIMULATION

Consider four identical radars with BM search sectors
optimized about the predicted target trajectories. Target mea-
surements are updated every T = 2 seconds; radars optimize
the target-assignment solution and reach consensus every 4
seconds with a communication latency of Tcom = 6 seconds.
For all search sectors, a five-second search revisit rate is
instructed. The engagement track uncertainty is 14.2 km2 [less
than 0.15 seconds of error for a BM target traveling at 200
km/s [13]]. Radar parameters used for this scenario are similar
to those in [13].

The target launch rate p(k) is modeled as a Poisson distri-
bution p(k) = (λk/k!)eλ, where λ is the expected number of
targets launched every T seconds and p(k) is the probability
that k = 0, 1, 2, ... targets will be launched every T seconds.
Each target has maximum life span of 300 seconds, and
vanishes on impact. Targets trajectories are chosen from a
set of four launch points and two aim points with a larger
percentage of the targets coming from the two launch points
located near (0,0), as shown in Fig. 3. Fig. 3 also plots the
target aim points (denoted by the black X’s) and the 2σ
ellipses of the impact point probability distribution. Targets
are detected with a single–look probability of detection of 0.9.
Coordinated radars broadcast the target state and uncertainty
over Gcom, solve for optimal target-assignment using (15), and
use this solution to initialize the binary consensus algorithm
(16) with noise variance σ2

w = 0.1. Coordinated radars are
compared with two uncoordinated alternatives: Independent
radars and Shared radars. Independent radars only track targets
detected within their own search sector. Shared radars may



4

Fig. 3. (Radar locations and BM search sectors with respect to the target
launch and impact point distributions.

track targets detected by a neighboring radar and multiple
radars may track the same target. Figs. 4(a)–4(b) plot the
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Fig. 4. Resource usage for all raid rates λ depends on gain K.
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Fig. 5. Total resource usage(a)–(b) and sum of pairwise difference in resource
usage (c)–(d). Worse case radar usage for Coordinated radars is less than
Independent and Shared radars (not shown) for all raid rates λ and K = 0.5.

maximum mean value of the total normalized radar resource
usage and the mean of the sum of pairwise differences in
resource usage for Coordinated radars over a range of launch
rates λ and gains K. Note that smaller values of K result
in less total resource usage as compared to larger values of
K, which result in a more balanced resource utilization as
expected from (14. To highlight the benefit of coordination in
terms of reducing the number of missed targets, Figs. 5(a)–
5(d) plot the mean-centered standard deviation (grey bar) and
single radar worst-case (dotted-line) total resource usage and
sum of pairwise differences in resource usage statistics from

the Monte Carlo simulations for all raid rates and a fixed
value K = 0.5, for both Coordinated and Independent radars.
(Shared radar performance is not shown since their maximum
resource usage is equal to one for all raid rates.) While
Independent radars are observed to use less resources, their
resource usage is unbalanced due to a lack of coordination
and leads to a greater number of missed targets as compared
to Coordinated radars(Table I).

TABLE I
TOTAL NUMBER OF MISSED TARGETS FOR K = 0.5

λ = 0.5 λ = 1.0 λ = 1.5 λ = 2.0
Coordinated 0 0 1 14
Independent 0 0 4 38

Shared 11 51 79 94

V. CONCLUSION

In this paper a distributed, consensus-based optimization ap-
proach to radar resource management for BM and AD search
and track is presented. The radar communication network and
target-assignment network is modeled using graph theory. A
target-assignment optimization algorithm that uses a binary
genetic algorithm to balance and minimize radar resource
usage across the radar network is developed. Radar resources
include the additional resources required to reduce track un-
certainty. A consensus-based approach to reaching agreement
on the optimal target-assignment is presented. Monte Carlo
simulations demonstrate that the distributed target-assignment
approach uses less total resources and remains more balanced
in resource usage than uncoordinated alternatives, reducing the
number of missed targets.
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