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Abstract

We provide a cooperative control algorithm to stabilize symmetric formations to

motion around closed curves suitable for mobile sensor networks. This work extends

previous results for stabilization of symmetric circular formations. We study a planar

particle model with decentralized steering control subject to limited communication.
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type of curve that includes circles, ellipses, and rounded parallelograms.
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1 Introduction

Cooperative control is an emerging field of study that has many applica-

tions including modeling biological aggregations and designing mobile sensor

networks. In particular, coordinated sensing with autonomous underwater ve-

hicles (AUV) motivates our work, although the main result is sufficiently de-

coupled from this application to justify its use in other settings. We describe a

multiple vehicle control algorithm to stabilize symmetric formations on a pa-

rameterized family of trajectories suitable for oceanographic sampling. Sym-

metric formations, in which vehicles are uniformly arranged on one or more

closed paths, minimize the collective mapping error of a dynamic ocean pro-

cess like temperature or salinity [1]. Oceanographers prefer closed paths with

long, nearly straight sides because they can interpret the sensor measurements

collected along repeated orbits without using a complex ocean model. We treat

the design of collective trajectories for ocean sampling as a decentralized prob-

lem and use cooperative control laws subject to limited communication.

This paper utilizes and contributes to the literature on cooperative control

algorithms. We model each autonomous vehicle as a Newtonian point mass

(particle) constrained to a plane and subject to a gyroscopic steering force,

after [2]; this is a second-order, under-actuated, and constant speed particle

model. Particle models with limited communication have received much at-

tention; there is a large literature on multi-agent consensus, agreement, and

rendezvous on Euclidean spaces [3,4,5,6]. We study synchronization, which is

consensus on the torus, and a complementary notion that we call balancing.

Our framework enables synchronization and balancing of particle formations

using curvature and arc length separation as feedback in a coupled oscillator
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model; this approach differs from other multi-vehicle control algorithms for

boundary tracking [7,8] and pattern formation [9].

This paper extends our previous results for stabilization of symmetric cir-

cular formations with all-to-all communication [10] and limited communica-

tion [11]. The design and demonstration of a real-time, multiple AUV control

framework that implements the algorithms here are described in [12]. The

main contribution of this paper is a cooperative control law to stabilize sym-

metric formations on convex, closed curves (convex loops). In Section 2, we

describe the motion and communication models as well as introduce our curve

framework. In Section 3, we present algorithms to (i) control particles to the

same curve; (ii) control relative spacing along the curve; and (iii) control to

formations on the same curve with symmetric relative spacings.

2 Model descriptions

Particle and phase models We model N Newtonian point masses (par-

ticles) subject to the constraint that the positions rk = xk + iyk ∈ C, k =

1, . . . , N , and velocities ṙk ∈ R
2 ≡ C. The force acting on each particle is

orthogonal to its velocity, which implies that the particles travel at constant

speed. If the initial speed of each particle is equal to one, then the velocity

of the kth particle is the unit phasor eiθk , where θk ∈ T is the phase angle

that describes the direction of motion of the kth particle. We denote by T the

one-torus, that is θk ∈ T implies we identify θk + 2π with θk. The steering

control uk ∈ R is the magnitude of the force on the kth particle.

We adopt the following notation. We drop the subscript and use bold to
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represent a vector of length N such as r , (r1, . . . , rN)T ∈ CN and θ ,

(θ1, . . . , θN)T ∈ TN . Analogously, eiθ , (eiθ1, . . . , eiθN )T ∈ CN . For vectors

w ∈ C
N and z ∈ C

N , we use the inner product 〈w, z〉 , Re{w∗z}, where ∗

denotes conjugate transpose; for w ∈ C and z ∈ C we write 〈w, z〉 , Re{w∗z}.

Next we write down the particle motion models and provide several simple

examples. The particle model is [2]

ṙk = eiθk

θ̇k = uk(r, θ), k = 1, . . . , N.

(1)

In our approach, we find it useful to also consider the phase model given by

θ̇k = uk(θ), k = 1, . . . , N. (2)

If the control uk = 0, then phase θk is constant and particle k moves in a

straight line. If the control uk = ω0 6= 0, then phasor eiθk revolves around the

unit circle and particle k travels around a circle with radius |ω0|
−1 and center

ck , rk + ω−1
0 ieiθk .

We formalize important terminology for phase arrangements θ. Let 1 ,

(1, . . . , 1)T ∈ RN . If θ = θ01, θ0 ∈ T, then θ is synchronized. In the phase

model, synchronization implies all the phases are equal; in the particle model,

phase synchronization implies all particles move in the same direction. If θ

satisfies 1T eiθ = 0, then θ is balanced. In the phase model, balancing im-

plies that the phasor centroid is zero; in the particle model, phase balancing

implies that average particle velocity is zero and the center of mass is fixed.

We refer to synchronization and balancing of mθ, m ∈ N , {1, 2, 3, . . .}, as

synchronization and balancing modulo 2π
m

.
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Communication model The communication between particles may be

limited in the sense that each particle receives information from only some

of the other particles. The implication of this limitation is that the control uk

is a function of the positions and velocities of the set of particles from which

particle k receives information. We call this set the neighbors of k and denote

it by Nk. The collective communication topology is a graph, G(t), which, in

general, may be time-varying and directed. Each node or vertex in the graph

corresponds to a particle; an edge from the jth to the kth node represents

information flow from j to k.

We use two matrix representations of the graph G(t), which are the inci-

dence matrix B(t) and Laplacian matrix L(t). Assume that the edges of G(t)

all have unit weight. Let e(t) denote the number of edges. The incidence ma-

trix at time t has dimensions N × e(t). Each column of the incidence matrix

corresponds to an edge; if the edge connects the j to the kth node, then the

jth element of the column is −1, the kth element is 1 and all other elements

are zero. The elements of the Laplacian matrix, which is a square N × N

matrix, are: [L]k,j , −1, j 6= k, if there is an edge from j to k at time t and

zero otherwise; and [L]k,k , |Nk|, which is the number of neighbors of k.

Next, we describe several well known properties of the graph Laplacian that

result from assumptions about the graph G(t). If G(t) is undirected, which

means that j is a neighbor of k if and only if k is a neighbor of j, then L(t) =

L(t)T = B(t)B(t)T . Secondly, if G(t) is strongly connected, which means that

there is a path along edges between any two distinct nodes that respects edge

direction, then the kernel of L(t) is spanned by 1, that is L(t)x = 0 if and

only if x = x01. Let Ḡ denote a time-invariant graph that is undirected and

strongly connected. Graph Ḡ is complete if there is an edge between every
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pair of nodes. A complete graph is circulant; in general, Ḡ is circulant if its

Laplacian matrix is a circulant matrix [13].

Curve-phase model We now derive the open-loop control uk that drives

particle k around a smooth, convex and closed curve C that has definite cur-

vature. In this setting, the velocity of particle k is tangent to C. Let ck denote

the center of C. We parameterize C in a reference frame with origin ck using

ρ : [0, 2π) → C, φ 7→ ρ(φ), where φ : T → [0, 2π), θk 7→ φ(θk), is a smooth

map. The tangent vector to C is dρ

dφ
, which implies the velocity constraint

ṙk = eiθk =
∣

∣

∣

dρ
dφ

∣

∣

∣

−1 dρ
dφ

.

Next, we consider the curvature of C. The arc length along the curve is

σ(φ) ,

∫ φ

0

∣

∣

∣

∣

∣

dρ

dφ̄

∣

∣

∣

∣

∣

dφ̄. (3)

Under the velocity constraint, the local curvature of C is

κ(φ) , ±
dθk

dσ
, (4)

where the sign determines the sense of rotation. By assumption, the curvature

of C is bounded and definite, that is 0 < |κ(φ)| <∞. Using (3) and (4),

κ−1(φ) =
1

κ(φ)
= ±

dσ

dθk
= ±

dσ

dφ

dφ

dθk
= ±

∣

∣

∣

∣

∣

dρ

dφ

∣

∣

∣

∣

∣

dφ

dθk
. (5)

Consequently, using (5) and the velocity constraint,

dρ

dθk
=
dρ

dφ

dφ

dθk
= ±eiθkκ−1(φ). (6)

The curve-phase ψ is the angular displacement of a point along the curve,

ψ(φ) ,
2π

Ω
σ(φ), (7)
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where Ω = σ(2π) > 0 is the perimeter [9]. The definitions for synchronization

and balancing of phase arrangement θ apply to the curve-phase arrangement

ψ , (ψ1, . . . , ψN)T ∈ TN . Using (5) and (7), we obtain

dψ

dt
=

2π

Ω

dσ

dθk

dθk

dt
= ±

2π

Ω
κ−1(φ)θ̇k. (8)

Let ρk , ρ(φ(θk)), κk , κ(φ(θk)), and ψk , ψ(φ(θk)) for k ∈ {1, . . . , N}. By

analogy to the phase model (2), the curve-phase model is

ψ̇k = ±
2π

Ω
κ−1
k uk(ψ). (9)

The center of C is ck , rk ∓ ρk. The definition for the center of circular

motion of radius |ω0|−1 is a special case with ρk = −iω−1
0 eiθk . Using (1) and

(6), the center velocity is

ċk = eiθk(1 − κ−1
k uk). (10)

Using equations (10) and (9), we obtain an expression for the open-loop control

that drives particle k around curve C with a fixed center. The curve control

is uk = κk, which implies ċk = 0 and ψ̇k = ±2π
Ω

. We illustrate the curve-phase

and center of an ellipse in Figure 1.

As a more general example, we consider the (skewed) superellipse, a class

of curves that includes circles, ellipses, and rounded parallelograms. We have

ρ(φ) = a(cosφ)
1
p + (i+ µ)b(sin φ)

1
p (11)

where µ ∈ R is the skew parameter. The semi-major axis length a and semi-

minor axis length b satisfy a ≥ b > 0. The parameter p = 1, 3, 5, . . . determines

the corner sharpness. For µ = 0 and a > b (resp. a = b), setting p = 1 yields

an ellipse (resp. circle) and setting p ≥ 3 yields a rounded rectangle (resp.
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rounded square). Setting µ 6= 0 and p > 1 yields a rounded parallelogram. In

Appendix A, we solve for the parametrization ρ in (A.2) and the curvature κ

in (A.1). For example, setting µ = 0 and p = 1 yields the ellipse curvature

κk =
1

a2b2

(

a2 sin2 θk + b2 cos2 θk
) 3

2
. (12)

Setting b = a in (12) yields the constant curvature of a circle with radius a,

κk = 1
a
. The curves and curvatures for p = 1 and 3 are illustrated in Figure

2 for µ = 0 and positive (κk > 0) rotation. Without loss of generality, we

assume κk > 0 in the rest of the paper.

3 Control of particle formations

In this section, we generalize previous results for stabilization of symmetric

circular formations of the particle model (1) with all-to-all [10] and limited

communication [11]. In the current setting, we provide feedback controls to

stabilize symmetric formations on curve C. We present here the case when

the communication graph Ḡ is fixed, undirected, and strongly connected; this

case and its extension to time-varying and directed graphs build on [11].

We derive stabilizing controls by designing Lyapunov functions that are

minimum in the desired configuration. Let L be the Laplacian of Ḡ and z ∈

CN . The Laplacian quadratic form Q(z) , 1
2
〈z, Lz〉 is zero for z = z01, z0 ∈ C,

and positive otherwise; thus, Q(eiψ) = 0 if and only if ψ is synchronized.

Curve control In order to drive the particles to curve C with a common

center, we choose a stabilizing control that minimizes the Laplacian quadratic
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form

S(r, θ) , Q(c) =
1

2
〈c, Lc〉. (13)

Note, S(r, θ) is zero if all centers coincide, that is c = c01, c0 ∈ C, and is

positive otherwise. The time-derivative of S(r, θ) along the solutions of (1)

is Ṡ(r, θ) =
∑N
k=1〈e

iθk , Lkc〉(1 − κ−1
k uk), where Lk denotes the kth row of L.

Choosing the Laplacian curve control

uk = κk(1 +K0〈e
iθk , Lkc〉), K0 > 0 (14)

results in Ṡ(r, θ) = −K0
∑N
k=1〈e

iθk , Lkc〉2 ≤ 0. The closed-loop particle model

with control (14) depends only on the particle (absolute) phases and the rel-

ative position of the curve centers of neighboring particles. Therefore, the

closed-loop system is invariant to rigid translation of all curve centers. Lya-

punov analysis provides the following.

Theorem 1 All solutions of the particle model (1) with Laplacian curve con-

trol (14) converge to the set in which each particle orbits curve C with a

common center.

Proof: The function S(r, θ) is positive definite and proper in the co-dimension

2 reduced space of the N particle phases θk and the N−1 relative positions of

the curve centers ck. Since S(r, θ) is nonincreasing, by the LaSalle Invariance

principle, solutions in the reduced space converge to the largest invariant set

where 〈eiθk , Lkc〉 ≡ 0 for k = 1, . . . , N . In this set, θ̇k = κk and ck is constant,

which means the invariance condition holds only if Lc ≡ 0, that is c = c01,

c0 ∈ C. We conclude each particle orbits curve C with a common center c0

that depends only on initial conditions. 2
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Curve-phase control To control the (relative) curve-phase, we use the

Laplacian quadratic form

Wm(ψ) , Q(
1

m
eimψ) =

1

2m2
〈eimψ, Leimψ〉. (15)

Note, Wm(ψ) is zero for ψ synchronized modulo 2π
m

and positive otherwise.

The gradient of Wm(ψ) is ∂Wm

∂ψk
= 1

m
〈ieimψk , Lke

imψ〉, k = 1, . . . , N . In the

curve-phase model (9), choosing the Laplacian curve-phase control

uk = Kmκk
∂Wm

∂ψk
, Km 6= 0 (16)

yields Ẇm(ψ) = Km

m
2π
Ω

∑N
k=1〈ie

imψk , Lke
imψ〉2. The closed-loop curve-phase

model with control (16) depends only the relative curve-phases of neighboring

particles. Therefore, the closed-loop curve-phase model is invariant to rigid

rotation of all curve-phases. Lyapunov analysis provides the following.

Theorem 2 All solutions of the curve-phase model (9) with Laplacian curve-

phase control (16) converge to the set of critical points of Wm(ψ). For Km < 0,

the set of curve-phase arrangements that are synchronized modulo 2π
m

is locally

exponentially stable.

Proof: The function Wm(ψ) is positive definite in the compact, N−1 dimen-

sional space of relative curve-phases. The evolution of Wm(ψ) is monotonic

along the solutions of (9). In particular, Wm(ψ) is nonincreasing (nondecreas-

ing) for Km < 0 (Km > 0). Using the LaSalle Invariance principle, solu-

tions converge to the largest invariant set where < ieimψk , Lke
imψ >≡ 0 for

k = 1, . . . , N , which is the set of critical points of Wm(ψ). The set of curve-

phase arrangements that are synchronized modulo 2π
m

is an isolated global

minimum of Wm(ψ) in the reduced space of relative curve-phases; as a re-

sult, this set is asymptotically stable for Km < 0. Exponential stability of
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the set follows from linearization of the closed-loop curve phase model about

mψ = ψ01, ψ0 ∈ T. 2

If Ḡ is complete, then the set of curve-phase arrangements that are balanced

modulo 2π
m

is a global maximum of Wm(ψ) in the reduced space of relative

curve-phases; this set is asymptotically stable for Km > 0 [10]. If Ḡ is not

complete, a sufficient condition for Wm(ψ) to have critical points other than

synchronization is if Ḡ is a circulant graph, which implies L is a circulant

matrix. All circulant matrices are diagonalized by the unitary discrete Fourier

transform matrix [13], which yields the following lemma.

Lemma 3 [11] Let Ḡ be a circulant graph. Set φk , (k − 1)2π
N

for k =

1, . . . , N . Then the vectors f (l) , ei(l−1)φ, l = 1, . . . , N , define a basis of

N orthogonal eigenvectors of the Laplacian L. The unitary matrix F whose

columns are the N (normalized) eigenvectors 1√
N
f (l) diagonalizes L, that is,

L = FΛF ∗, where Λ , diag{0, λ2, . . . , λN} ≥ 0 is the eigenvalue matrix of L.

Using the notation of Lemma 3, let ψ(l) = (l − 1)φ, l ∈ 1, . . . , N . If Ḡ

is circulant, then eiψ
(l)

is an eigenvector of the Laplacian L, which implies

ψ(l) is a critical point of the Laplacian quadratic form Wm(ψ(l)). If l = 1,

then ψ(1) = 0 , (0, . . . , 0)T ∈ RN , which implies ψ(1) is synchronized and

f (1) = eiψ
(1)

= 1. If l 6= 1, by orthogonality of the f (l), then 1T eiψ
(l)

= 0, which

implies ψ(l) is balanced. In fact, ψ(l) is a symmetric curve-phase pattern.

Symmetric formations In this section, we combine the results from Sec-

tions 3 and 3 to stabilize symmetric formations on curve C. Particles in a

symmetric formation have a curve-phase arrangement that is a symmetric

pattern. An (M,N)-pattern is a symmetric (curve-)phase arrangement that
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has M clusters of N
M

synchronized phases, where M is a divisor of N [10]. For

any N ≥ 2 phases, it is always possible to form at least two (M,N)-patterns:

the synchronized (1, N)-pattern and the splay (N,N)-pattern. The splay pat-

tern is an arrangement in which the phasors are uniformly distributed around

the unit circle separated by multiples of 2π
N

. Note, if eiψ is a (M,N)-pattern

then ψ is synchronized modulo 2π
M

and balanced modulo 2π
m

, m = 1, . . . ,M−1.

To isolate symmetric curve-phase arrangements, we consider the sum of

Laplacian quadratic forms

W
M,N
L (ψ) , −

N
∑

m=1

Km

m
Wm(ψ) (17)

where Wm(ψ) is defined by (15). The gains must satisfy Km > 0, m =

1, . . . ,M − 1, and KM < −M
∑M−1
m=1

Km

m
. If Ḡ is complete, then the set of

curve-phase arrangements that are (M,N)-patterns is an isolated global min-

imum of WM,N
L (ψ) in the reduced space of relative curve-phases [10]. In the

case of limited communication, we have the corresponding local result, adapted

from [11]. The proof of Lemma 4 appears in Appendix B.

Lemma 4 If Ḡ is circulant, then the set of curve-phase arrangements that

are (M,N)-patterns is an isolated local minimum of WM,N
L (ψ) in the reduced

space of relative curve-phases.

In order to drive the particles to a symmetric formation on curve C, we

choose a stabilizing control that minimizes the composite Lyapunov function

V (r, θ) , K0S(r, θ) +
Ω

2π
W

M,N
L (ψ) (18)

where S(r, θ) is defined by (13) and W
M,N
L (ψ) is defined by (17). The time-

derivative of V (r, θ) along the solutions of (1) is
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V̇ (r, θ) =
N
∑

k=1

(

K0〈e
iθk , Lkc〉(1 − κ−1

k uk) + κ−1
k uk

∂W
M,N
L

∂ψk

)

=
N
∑

k=1

(

K0〈e
iθk , Lkc〉 −

∂W
M,N
L

∂ψk

)

(1 − κ−1
k uk)

where we used
∑N
k=1

∂Wm

∂ψk
= 〈ieimψ, BBT eimψ〉 = 〈iBT eimψ, BT eimψ〉 = 0.

Choosing the Laplacian formation control

uk = κk

(

1 +K0〈e
iθk , Lkc〉 −

∂W
M,N
L

∂ψk

)

, K0 > 0 (19)

yields V̇ (r, θ) =
∑N
k=1

(

K0〈e
iθk , Lkc〉 −

∂W
M,N

L

∂ψk

)2

≤ 0. The closed-loop particle

model with control (19) is invariant to rigid translation of all the curve centers.

Lyapunov analysis provides the following.

Theorem 5 Let Ḡ be circulant and L be the corresponding Laplacian matrix.

All solutions of the particle model (1) with Laplacian formation control (19)

converge to the set in which (i) each particle orbits curve C with a common

center and (ii) the curve-phase arrangement is a critical point of WM,N
L (ψ).

The control locally exponentially stabilizes the set of curve-phase arrangements

that are (M,N)-patterns.

Proof: The proof is a straightforward adaptation of Theorem 7 in [11]. The

function V (r, θ) is positive definite in the co-dimension 2 reduced space of the

N particle phases θk and N−1 relative positions of the curve centers ck. Since

V (r, θ) is nonincreasing, by the LaSalle Invariance principle, solutions in the

reduced space converge to the largest invariant set Λ where

K0〈e
iθk , Lkc〉 ≡

∂W
M,N
L

∂ψk
, k = 1, . . . , N. (20)

In the set Λ, θ̇k = κk and ψ̇k = 2π
Ω

, which implies that WM,N
L (ψ) is constant

and ċk = 0. Therefore, differentiating (20) with respect to time in Λ gives
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〈ieiθk , Lkc〉κk ≡ 0 for k = 1, . . . , N which can hold only if Lc ≡ 0, i.e., all

particles orbit curve C with a common center. Consequently, the invariance

condition (20) becomes
∂W

M,N

L

∂ψk
≡ 0 for k = 1, . . . , N , which is satisfied by the

set of critical points of WM,N
L (ψ). Therefore, the particles orbit curve C with

common center c0 in a curve-phase arrangement ψ that is a critical point of

W
M,N
L (ψ). By Lemma 4, the set of curve-phase arrangements that are (M,N)-

patterns is exponentially stable because it is an isolated local minimum of

W
M,N
L (ψ) in the reduced space of relative curve-phases. 2

We further examine the Laplacian formation control through simulation.

Theorem 5 does not exclude convergence to formations that correspond to

other critical points of WM,N
L (ψ). Simulations indicate that the size of the

basin of attraction depends on the connectivity of the communication graph.

In fact, we don’t observe convergence to a different critical point in simulations

for a complete graph. Simulations also suggest that the magnitude of the gain

KM < 0 that is necessary to prove Lemma 4 is conservative. For example,

simulations show local convergence to the desired symmetric pattern for all

|Km| identical. We illustrate selected simulation results in Figure 3.

4 Conclusion

We present a cooperative control algorithm that stabilizes symmetric for-

mations on a parameterized family of trajectories. The algorithm uses de-

centralized control of a planar particle model with limited communication.

Particles converge to the set of trajectories that orbit a single closed curve. In

our approach, we require the curve to be convex with definite curvature. Un-

der this assumption, we exponentially stabilize symmetric patterns of relative
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curve-phase, which is the arc length spacing along the curve.

This work, which extends previous results for stabilizing symmetric circular

formations, was motivated by the application to autonomous ocean sampling

networks. Other application extensions, which are described in [11], include

spatial symmetry breaking using reference particles and the design of the

communication graph for multi-scale sampling. In ongoing work, we seek to

develop cooperative control algorithms on non-planar surfaces, like the sphere,

to support large-area ocean surveys.
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A Curvature and parameterization of skewed superellipse

Using (11), we have dρ
dφ

= −a
p
(cosφ)

1−p

p sinφ+ (i+ µ) b
p
(sin φ)

1−p

p cos φ and,

using the velocity constraint,

tan θk =
b
p
(sin φ)

1−p

p cosφ

−a
p
(cosφ)

1−p

p sinφ+ µ b
p
(sin φ)

1−p

p cos φ
.

From these we compute cot θk = −a
b
(cotφ)

1−p

p tanφ+µ and cotφ =
(

b
a
(µ− cot θk)

)
p

1−2p .

Consequently,

dφ

dθk
=

1 + cot2 θk

a
b

(

2p−1
p

) (

b
a
(µ− cot θk)

)
1−3p

1−2p

(

1 +
(

b
a
(µ− cot θk)

)
2p

1−2p

)

and

dρ

dφ
=

a
p

(

b
a
(µ− cot θk)

)
p

2p−1 (−1 + (i+ µ)(µ− cot θk)
−1)

(

1 +
(

b
a
(µ− cot θk)

)
2p

2p−1

)
1
2p

Using dρ
dθk

= dρ
dφ

dφ
dθk

, we obtain

dρ

dθk
=

aeiθk

2p− 1









sin θk(µ sin θk − cos θk)
2



1 +

(

b

a
(µ− cot θk)

)
2p

2p−1





1
2p

×



1 +

(

b

a
(µ− cot θk)

)
2p

1−2p









−1

Using dρ
dθk

= eiθkκ−1
k , we obtain

κk =
2p− 1

a
sin θk(µ sin θk − cos θk)

2



1 +

(

b

a
(µ− cot θk)

)
2p

2p−1





1
2p

×



1 +

(

b

a
(µ− cot θk)

)
2p

1−2p



 . (A.1)
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We also find

ρk =
a(sin θ)

1
2p−1 + (i+ µ)b

(

b
a
(µ sin θ − cos θ)

) 1
2p−1

(

(sin θ)
2p

2p−1 +
(

b
a
(µ sin θ − cos θ)

)
2p

2p−1

) 1
2p

. (A.2)

B Proof of Lemma 4

Let ψ̄ be a (M,N)-pattern. First we prove that ψ̄ is a critical point of

W
M,N
L (ψ) [11, Lemma 2]. Modulo a uniform rotation and using the notation

of Lemma 3, a (M,N)-pattern is characterized by the phase arrangement

ψ̄ = N
M
φ. This means that the vector eimψ̄ = eim

N
M
φ is the l-th eigenvector of

L, with l = 1 +
(

mN
M

)

mod N . But if eimψ̄ is an eigenvector of L, then ψ̄ is

a critical point of Wm(ψ), m ∈ {1, . . . ,M}.

Next we show that ψ̄ is a local minimum of WM,N
L (ψ) in the reduced space

of relative curve-phases. We expand W
M,N
L (ψ) about ψ̄ as

W
M,N
L (ψ̄ + δψ) = W

M,N
L (ψ̄) + δψTH

M,N
L (ψ̄)δψ + O(‖δψ‖3), (B.1)

where HM,N
L (ψ) is the Hessian of WM,N

L (ψ). To find the Hessian, we evaluate

∂2Wm

∂ψ2
k

=
1

m

∑

j∈Nk

〈eimψk , eimψj 〉 (B.2)

and, for j 6= k,

∂2Wm

∂ψj∂ψk
=































− 1
m
〈eimψk , eimψj〉, j ∈ Nk,

0, otherwise.

(B.3)

Evaluating (B.2) and (B.3) at ψ̄ yields the weighted Laplacian matrixHM,N
L (ψ̄) =

−BΦM,N
L (ψ̄)BT with the weight matrix ΦM,N

L (ψ) =
∑M
m=1

Km

m
diag(cos(mBTψ)).

17



Using KM < −M
∑M−1
m=1

Km

m
, we have ΦM,N

L (ψ̄) < 0, which implies HM,N
L (ψ̄) ≥

0. The zero eigenvalue is simple and corresponds to rigid rotation of all curve

phases. Using (B.1), we have W
M,N
L (ψ̄ + δψ) > W

M,N
L (ψ̄) in the reduced

space, which completes the proof. 2
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Fig. 1. The curve notation for the kth particle: the position and velocity direction

of the particle are rk and θk, respectively. The curve is centered at ck.
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Fig. 2. Top, left to right: unskewed (µ = 0) superellipses with p = 1, a = b = 10

(circle); p = 1, a = 10, b = 5 (ellipse); and p = 3, a = 10, b = 5 (rounded rectangle).

Bottom: curvature κk as a function of tangent angle θk for a circle (solid), ellipse

(dashed), and rounded rectangle (dash-dot). The open-loop control uk = κk drives

particle k around the corresponding curve.
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Fig. 3. Numerical simulations of the Laplacian formation control. Each particle is

a black circle with an arrow to denote velocity; the trajectories are gray. We used

N = 12, K0 = Km = 0.1, m = 1, . . . ,M , and random, local initial conditions. The

communication graph Ḡ is circulant; each particle has four neighbors. The panels

show six symmetric patterns on a superellipse with µ = 0, p = 3 and M = 1

(synchronized), 2, 3, 4, 6, and 12 (splay pattern). The steady-state curve-phase

differences between the clusters in each simulation are equal to 2π
M

.
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