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Recent advancements in space technology have increased the demand for larger spacecraft,
which are prone to structural oscillations that can complicate attitude control and degrade
performance. Mitigating these oscillations requires sophisticated control laws and state
estimation methods that are difficult to perform in real-time with limited computation power.
This paper proposes a flexible spacecraft model consisting of a hub and flexible appendage.
The flexible appendage is modeled via discretization into flexibly connected rigid elements.
To facilitate computational feasibility of real time estimation, dynamic mode decomposition
(DMD) applied to numerical simulation data of the system yields a reduced-order linear model.
A Kalman filter estimates the DMD mode amplitudes of the system from a limited set of
measurements which, using the DMD modes, are used to estimate the full state of the spacecraft.
Numerical simulations demonstrate that this framework yields accurate state estimates for
significantly reduced computational cost.

Nomenclature

Φ = DMD modes
Λ = DMD eigenvalues
𝜼 = spacecraft state vector
𝒙 = vector of unmeasured states
𝒚 = vector of measured states
𝒛 = vector of mode amplitudes
𝐶 = observer matrix
𝐶𝑥 = observer matrix for 𝒙
𝐶𝑦 = observer matrix for 𝒚
𝐹 = state transition matrix for 𝒛 dynamics
𝐿 = panel side length
𝒓𝑖 = position of spacecraft component 𝑖
𝒗𝑖 = velocity of spacecraft component 𝑖
𝑅𝑖 = Rotation matrix representation of attitude of spacecraft component 𝑖
𝝎𝑖 = angular velocity of spacecraft component 𝑖
𝜁𝑖 = position of panel 𝑖 in 𝒂̂3 direction

I. Introduction
Recent advancements in space technology such as decreasing launch costs, deployable technology, and flexible

materials, have facilitated the demand for larger spacecraft. Large spacecraft often possess inherent flexibilities that can
be excited by maneuvers, leading to structural oscillations. These oscillations may pose problems to attitude control,
cause structural damage, or degrade the intended function of the spacecraft. Effective mitigation of induced oscillations
is crucial and can be approached in several ways.

One mitigation strategy involves using more sophisticated control laws to minimize structural excitation or to directly
try to suppress induced oscillations. Research investigating vibration suppression includes a piezoelectric actuation
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and associated robust control schemes as in [1, 2], control of actuators at the interface between connected elements
of the spacecraft, [3], and distributed control moment gyros to counteract unwanted motion [4, 5]. However, in order
for many of these control laws to be effectively applied, the shape of the spacecraft must be known. In the case of a
deployable structure with connected segments, the state of each of the segments may be required for distributed control.
However, if a high-dimensional state is needed to represent the structural dynamics, this can require an increasingly
significant amount of computation power to perform state estimation. Due to the limited computation power available to
a spacecraft in orbit and the need to perform estimation in real time, a high-dimensional state may make some of these
types of control laws infeasible. In [6] an Eigensystem Realization Algorithm is used to generate a reduced-order model
of a flexible spacecraft in order to estimate shape in real time, although it is focused primarily on modeling between
input and output space which may not be sufficient for implementing control. To estimate the dynamics of a flexible
spacecraft an adaptive scheme is used in [7] to learn unknown physical parameters of the spacecraft.

Modal decomposition encompasses a common class of methods for making algorithms on high-dimensional systems
more computationally tractable. The goal of modal decomposition is to represent a high-dimensional system with a
relatively small number of modes that capture the relevant behavior of the system. One method that has gained popularity,
particularly in the field of fluid mechanics, is dynamic mode decomposition (DMD) [8]. DMD is a data-driven algorithm
that was first developed for analyzing fluid flows. It is closely related to the Koopman operator, which is a way to
represent a finite-dimensional nonlinear system as an infinite-dimensional linear system. The goal of DMD is to
decompose data from time-series measurements into modes that capture the underlying dynamics of the system [9].
DMD may also be used to perform state estimation by using measurements of the system to estimate the DMD mode
amplitudes using a Kalman filter, which can be used to estimate the full system state. This framework, described in
[10], is referred to as the DMD Kalman filter and, if the DMD modes are an approximation of the Koopman modes, is
equivalent to the Koopman-Kalman filter [10]. While DMD is popular in the field of fluid mechanics, it has not received
the same level of attention or use in other fields. However, the model-order reduction and linear estimation framework it
enables make it a promising approach to apply to shape estimation of flexible spacecraft.

The contributions of this paper are as follows: (1) a state-space representation of the dynamics of a spacecraft
consisting of a hub and a flexible appendage modeled by a discretized set of flexibly connected elements; (2) the
application of dynamic mode decomposition to the flexible spacecraft model to produce a reduced-order representation;
and (3) using the reduced-order model to enable full state estimation with a limited set of measurements. State estimation
of a flexible spacecraft using a reduced-order model enables complex flexible dynamics to be estimated in real time,
which in turn enables monitoring and control of vibration.

The paper is organized as follows. Section II introduces dynamic mode decomposition and how a Kalman filter may
be used to estimate mode amplitudes. Section III develops a three-dimensional dynamic model of a flexible spacecraft
and how DMD is applied to the model. Section IV uses the Kalman filter to perform state estimation of the dynamic
model and includes performance results. Section V summarizes the paper and ongoing and future work.

II. Preliminaries

A. Dynamic Mode Decomposition
Consider a sequence of evolving measurements arising from either simulated or experimental data. Each individual

measurement is referred to as a snapshot and the the snapshots at time 𝑡𝑘 are denoted 𝜒(𝑡𝑘). Assume that the time step
between each snapshot is constant, i.e., 𝑡𝑘+1 − 𝑡𝑘 = Δ𝑡 for all 𝑘 . If there are 𝑚 snapshots, a matrix can be formed from
these snapshots such that 𝑘th column corresponds to the vector of measurements at time 𝑘 , i.e.,

𝑋 =


| | |

𝜒(𝑡1) 𝜒(𝑡2) . . . 𝜒(𝑡𝑚)
| | |

 . (1)
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Next, two data matrices are formed from the sequence of snapshots such that the 𝑘th column in the second matrix
corresponds to the advancement in time of the 𝑘th column of the first matrix by Δ𝑡.

𝑋0 =


| | |

𝜒(𝑡1) 𝜒(𝑡2) . . . 𝜒(𝑡𝑚−1)
| | |

 (2)

𝑋1 =


| | |

𝜒(𝑡2) 𝜒(𝑡3) . . . 𝜒(𝑡𝑚)
| | |

 (3)

The goal of dynamic mode decomposition is to find an eigendecomposition of the matrix 𝐴 that linearly approximates
the evolution of the dynamics of the system by one time step Δ𝑡, i.e,. 𝑋1 = 𝐴𝑋0. The best fit in the least-squares sense
for 𝐴 can be computed using the psuedoinverse denoted †, i.e., 𝐴 = 𝑋1𝑋

†
0 . However, if the dimension of 𝑋0 is very

large, this may become unreasonable to compute. Instead, the singular value decomposition (SVD) of 𝑋0 is taken, i.e.,

𝑋0 = 𝑈Σ𝑉∗ (4)

where ∗ denotes the conjugate transpose. The psuedoinverse of the SVD may be taken as 𝑋†
0 = 𝑉Σ−1𝑈∗, yielding

𝐴 = 𝑋1𝑉Σ
−1𝑈∗. (5)

An optimal low-dimensional representation of 𝐴 denoted 𝐴̃ defined by the columns of𝑈 is [8]

𝐴̃ = 𝑈∗𝐴𝑈 = 𝑈∗𝑋1𝑉Σ
−1. (6)

Let Λ be the eigenvalues of 𝐴̃ in matrix form and𝑊 the matrix of right eigenvectors of 𝐴̃. The DMD eigenvalues
are given by Λ and the DMD modes given by [8]

Φ = 𝑈𝑊. (7)

Let 𝛼(𝑡𝑘) represent the mode amplitudes of the vector snapshot 𝜒(𝑡𝑘) in the DMD basis, i.e., 𝜒(𝑡𝑘) ≈ Φ𝛼(𝑡𝑘). Then
the approximate solution for the time evolution of snapshots can be reconstructed by [8]

𝜒(𝑡𝑘) ≈ ΦΛ(𝑡𝑘−𝑡1 )/Δ𝑡𝛼(𝑡1) (8)

The degree to which the DMD modes and eigenvalues represent the system dynamics depends on the linearity of the
system. If the system is linear, only the mode amplitudes depend on the initial condition and the system dynamics may
be accurately reconstructed via Eq. (8). The more nonlinear the system is, the more that the modes and eigenvalues
obtained via DMD will also depend on the initial condition of the dataset [11].

B. Mode Amplitude Kalman Filter
According to the Koopman observer framework [10], a subset of measurements from the system can be utilized in

conjunction with the DMD modes in a linear observer to estimate the mode amplitudes of the DMD representation.
These estimated amplitudes can be then used to reconstruct the complete state of the original system. This process is
performed as follows.

Consider a matrix 𝐶 that is formed from the columns of the DMD modes Φ [10]

𝐶𝑖 = 𝝓𝑖

}
if 𝝓𝑖 is real

𝐶𝑖 = Re(𝝓𝑖)
𝐶𝑖+1 = Im(𝝓𝑖)

}
if 𝝓𝑖 and 𝝓𝑖+1 are complex conjugates.

(9)

Let 𝒛𝑘 denote a vector of DMD mode amplitudes. The state 𝜼𝑘 of the underlying system at timestep 𝑘 can be estimated
from the mode amplitudes by

𝜼̂𝑘 ≈ 𝐶𝒛𝑘 . (10)
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Consider also a block diagonal matrix 𝐹 that is formed from the DMD eigenvalues [10] such that F has a diagonal entry
𝐹𝑖,𝑖 = 𝜆𝑖 , if 𝜆𝑖 is real, and block diagonal entry[

𝐹𝑖,𝑖 𝐹𝑖,𝑖+1

𝐹𝑖+1,𝑖 𝐹𝑖+1,𝑖+1

]
=

[
Re(𝜆𝑖) Im(𝜆𝑖)
−Im(𝜆𝑖) Re(𝜆𝑖)

]
(11)

if 𝜆𝑖 and 𝜆𝑖+1 are complex conjugates. The matrix F represents a linear operator that advances the vector of mode
amplitudes 𝒛𝑘 forward in time by one timestep, i.e.,

𝒛𝑘 = 𝐹𝒛𝑘−1. (12)

The matrices Eqs. (10) and (12) define a linear dynamical system where the state is the DMD mode amplitudes and
the observation is the state of the underlying system. Assume also that only some subset of the state of the underlying
system is measured. Let 𝒚𝑘 ∈ R𝑛𝑥 denote the portion of the state vector that is measured and 𝒙𝑘 ∈ R𝑛𝑦 denote the
portion that is to be estimated. The state vector 𝜼 is reordered such that the observed portion of the state is partitioned
from the unobserved portion of the state [10], i.e.,

𝜼𝑘 =



|
𝒚𝑘

|
𝒙𝑘

|


. (13)

Note that when performing DMD, the snapshot matrix containing the training data must similarly be reordered.

𝑋 =



| | |
𝒚(𝑡1) 𝒚(𝑡2) . . . 𝒚(𝑡𝑚)
| | |

𝒙(𝑡1) 𝒙(𝑡2) . . . 𝒙(𝑡𝑚)
| | |


. (14)

The C matrix is reordered the same way and partitioned such that the first 𝑛𝑦 rows corresponding to the measured states
are denoted 𝐶𝑦 and the remaining 𝑛𝑥 row corresponding to the unmeasured states are denoted 𝐶𝑥 . The linear dynamical
system may now be written as [10]

𝒛𝑘 = 𝐹𝒛𝑘−1 (15a)
𝒚𝑘 ≈ 𝐶𝑦 𝒛𝑘 (15b)
𝒙𝑘 ≈ 𝐶𝑥 𝒛𝑘 (15c)

If the system given by Eq. (15) is observable, then a state observer may be applied to estimate the DMD mode
amplitudes. For a linear system subject to Gaussian process and measurement noise, the Kalman filter represents an
optimal observer. Consequently, a Kalman filter may be used to estimate the mode amplitude amplitudes given a set of
measurements of the underlying system. The Kalman filter of the mode amplitudes is as follows [12]:

Estimate propagation:

𝒛 𝑘̄ = 𝐹𝒛𝑘−1 (16)
𝑃𝑘̄ = 𝐹𝑃𝑘−1𝐹

𝑇 +𝑄 (17)
(18)

Kalman Gain:
𝐾𝑘 = 𝑃𝑘̄𝐶𝑦

(
𝐶𝑦𝑃𝑘̄𝐶

𝑇
𝑦 + 𝑅

)−1
(19)
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Measurement assimilation:

𝒛𝑘 = 𝒛 𝑘̄ + 𝐾 (𝒚𝑘 − 𝐶𝑦 𝒛 𝑘̄) (20)
𝑃𝑘 = (𝐼 − 𝐾𝐶𝑦)𝑃𝑘̄ (21)

Estimate of 𝒙:
𝒙̂𝑘 = 𝐶𝑥 𝒛𝑘 (22)

where ¯ denotes an a priori estimate. The DMD Kalman filter provides a framework for generating a reduced-order
model of a system and enabling state estimation with a limited subset of measurements [10].

III. Dynamic Mode Decomposition of a Flexible Spacecraft
This section derives the modeling of a flexible spacecraft and applies the DMD algorithm to the proposed model to

yield a modal decomposition. The projection error as a function of the number of modes used in the decomposition is
also examined.

A. Flexible Spacecraft Model
Consider a spacecraft consisting of a hub and a large flexible appendage connected to the hub. This appendage could

represent a large solar array, antenna, solar sail, or other relevant structure. To model the flexibility of the structure,
assume that the appendage is modeled as a discretized set of flexibly connected rigid square elements referred to as
panels. This modeling choice can represent a deployable structure that is folded for launch and deployed in space, but by
varying the size of the panel discretization and the flexibility of the panel connections, can be generalized to represent a
continuous flexible planar structure.

Fig. 1 Spacecraft with a hub and a flexible appendage modeled as 𝑁 flexibly connected panels

Consider an Earth-centered inertial frame I = (𝑂, ê𝑥 , ê𝑦 , ê3), a body-fixed frame affixed to the central hub of
the spacecraft A = (𝐶, â1, â2, â3), and body-fixed frames affixed to each of the component panels of the appendage
B (𝑖) = (𝐵 (𝑖) , b̂(𝑖)

1 , b̂(𝑖)
2 , b̂(𝑖)

3 ), 𝑖 = 1, ..., 𝑁 . The panels are assumed to all be the same size with side length 𝐿, and their
body-fixed reference frames are such that the origin is at the center of the panel, and the 1 and 2 axes are aligned with
the panel edges.

The state of the hub consists of its position, velocity, attitude, and angular velocity, i.e.,

𝜼𝐶 =
[
r𝐶/𝑂 v𝐶/𝑂 𝑅𝐶 𝝎𝐶

]𝑇
, (23)

where the attitude is represented by a rotation matrix. To better capture the shape of the flexible appendage with the
states of the panels, the position and velocity of the panels relative to and in the reference frame of the hub are used, i.e.,

𝜼𝑖 =
[
r𝑖/𝐶 v𝑖/𝐶 𝑅𝐵𝑖

𝝎𝐵𝑖

]𝑇
. (24)
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The state of the full spacecraft model is then a concatenation of the hub and all panels making up the appendage, i.e.,

𝜼 = [𝜼𝐶 𝜼1 𝜼2 . . . 𝜼𝑁 ]𝑇 , (25)

where 𝑁 is the number of elements composing the appendage.

Spacecraft Dynamics
The dynamics for the state of the hub are as follows:

¤r𝐶/𝑂 = ¤v𝐶/𝑂 (26)

¤v𝐶/𝑂 =
𝑭𝐶

𝑚𝐶

(27)

¤𝑅𝐶 = 𝑅𝐶𝝎
×
𝐶 (28)

𝐽𝐶 ¤𝝎𝐶 = −𝝎×
𝐶𝐽𝐶𝝎𝐶 + 𝑴𝐶 (29)

where the × operator is a mapping from R3 to a 3× 3 skew-symmetric matrix such that 𝑎×𝑏 = 𝑎 × 𝑏 and where 𝝉𝐶 is the
total external torque experienced by the hub and the derivatives are taken with respect to the inertial frame.

To derive the dynamics of each panel in the reference frame of the hub, the inertial frame dynamics must first be
considered. The position of panel 𝑖 in the inertial frame is

r𝑖/𝑂 = r𝐶/𝑂 + r𝑖/𝐶 . (30)

Differentiating twice yields the acceleration of each panel in the inertial frame, i.e.,

𝒂𝑖/𝑂 = 𝒂𝐶/𝑂 + 𝒂𝑖/𝐶 + ¤𝝎𝐶 × 𝒓𝑖/𝐶 + 2𝝎𝐶 × 𝒗𝑖/𝐶 + 𝝎𝐶 × (𝝎𝐶 × 𝒓𝑖/𝐶 ). (31)

Rearranging and substituting in 𝑭𝐶 = 𝑚𝐶 𝒂𝐶 and 𝑭𝑖 = 𝑚𝑖𝒂𝑖 , where 𝑭𝐶 and 𝑭𝑖 are the total forces on the hub and 𝑖th
panel, respectively, yields

𝒂𝑖/𝐶 =
𝑭𝑖

𝑚𝑖

− 𝑭𝐶

𝑚𝐶

− ¤𝝎𝐶 × 𝒓𝑖/𝐶 − 2𝝎𝐶 × 𝒗𝑖/𝐶 − 𝝎𝐶 × (𝝎𝐶 × 𝒓𝑖/𝐶 ). (32)

The dynamics for the 𝑖th panel are

¤r𝑖/𝐶 = ¤v𝑖/𝐶 (33)

¤v𝑖/𝐶 =
𝑭𝑖

𝑚𝑖

− 𝑭𝐶

𝑚𝐶

− ¤𝝎𝐶 × 𝒓𝑖/𝐶 − 2𝝎𝐶 × 𝒗𝑖/𝐶 − 𝝎𝐶 × (𝝎𝐶 × 𝒓𝑖/𝐶 ) (34)

¤𝑅𝐵𝑖
= 𝑅𝐵𝑖

𝝎×
𝐵𝑖

(35)
𝐽𝐵𝑖

¤𝝎𝐵𝑖
= −𝝎×

𝐵𝑖
𝐽𝐵𝑖

𝝎𝐵𝑖
+ 𝑴𝑖 (36)

Internal Force and Moment Model
Assume that each of the panels are connected to each adjacent panel and at each connection there is a torsional

spring that generates a restoring moment for adjacent panels with offset attitudes. In order to avoid the unnecessary
complexities associated with explicitly considering the panel connections as constraints, the attachment force of each
panel is modeled as a stiff damped spring with spring coefficient 𝑘𝑠 and damping coefficient 𝑐𝑠 . Assume the torsional
springs at adjacent panels are linearly proportional to the relative angle between the panels that it connects, with spring
coefficient 𝑘𝑡 and damping coefficient 𝑐𝑡 . With the spring modeling, the attachment force and resulting moment between
two adjacent panels can be computed from the relative position and velocity of the panel edges. The position of an edge
in a panel’s reference frame is

L = ±
[
𝐿
2 0 0

]
or ±

[
0 𝐿

2 0
]
. (37)

The relative position between the edges of two adjacent panels 𝑖 and 𝑗 is

r𝑖, 𝑗/edge = r𝑖/𝐶 + 𝑅𝐶/𝐵𝑖
L − (r 𝑗/𝐶 − 𝑅𝐶/𝐵𝑖

L), (38)
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where 𝑅𝐶/𝐵𝑖
is the rotation matrix from 𝐵𝑖 to 𝐶 computed by 𝑅𝐶/𝐵𝑖

= 𝑅𝑇
𝐶
𝑅𝐵𝑖

. The relative velocity between the edges
of panels 𝑖 and 𝑗 is derived by taking the derivative of r𝑖, 𝑗/edge, which yields

v𝑖, 𝑗/edge = v𝑖/𝐶 + 𝑅𝐶/𝐵𝑖
(𝝎𝑖 − 𝑅𝐵𝑖/𝐶𝝎𝐶 ) × L − (v 𝑗/𝐶 + 𝑅𝐶/𝐵𝑖

(𝝎 𝑗 − 𝑅𝐵𝑖/𝐶𝝎𝐶 ) × (−L)). (39)

The force on panel 𝑖 resulting from panel 𝑗 is

F𝑖, 𝑗 = −𝑘𝑠r𝑖, 𝑗/edge − 𝑐𝑠v𝑖, 𝑗/edge, (40)

where 𝑭𝑗 ,𝑖 = −𝑭𝑖, 𝑗 . The moment on 𝑖 resulting from the attachment with 𝑗 is

T𝑖, 𝑗 = L × (𝑅𝐵𝑖/𝐶F𝑖, 𝑗 ). (41)

Similarly, the moment arising from the torsional spring between two adjacent panels is computed from the relative
attitude and angular velocity of adjacent panels. Assume that the restoring moment opposes the relative orientation
of adjacent panels. The matrix logarithm of a rotation matrix parameterizes a rotation in three-dimensional space by
a direction 𝝃 and magnitude 𝜃 of rotation providing a convenient way to define the magnitude and direction of the
restoring moment induced by the torsional spring. The matrix logarithm of a rotation matrix 𝑅 is

logm(𝑅) =


𝜃 = cos−1 ( Trace(𝑅)−1

2 ) ∈ R

𝝃 = 1
2 sin 𝜃


𝑟32 − 𝑟23

𝑟13 − 𝑟31

𝑟21 − 𝑟12

 ∈ R3 (42)

The relative orientation between adjacent panels 𝑖 and 𝑗 is computed by taking logm(𝑅𝐵𝑖/𝐵 𝑗
) to get 𝜃𝑖, 𝑗 and 𝝃𝑖, 𝑗 . The

relative angular velocity between adjacent panels 𝑖 and 𝑗 is the difference between their angular velocities given in
reference frame 𝐵𝑖 , i.e.,

𝝎𝑖, 𝑗 = 𝝎𝑖 − 𝑅𝐵𝑖/𝐵 𝑗
𝝎 𝑗 . (43)

The resulting moment is
M𝑖, 𝑗 = −𝑘𝑡𝜃𝝃𝑖, 𝑗 − 𝑐𝑡𝝎𝑖, 𝑗 . (44)

Assume that the spacecraft is subject to gravity from Earth, that there is some 3-axis control system on the hub, e.g.,
a set of reaction wheels, and that the appendage is connected to the hub via a single panel indexed 𝑖 = 1. Then the total
force and moment exerted on the hub via the flexible appendage is

𝑭𝐶 = −𝜇𝑚𝐶

r𝐶/𝑂

∥r𝐶/𝑂 ∥3 + 𝑭𝐶,1 (45)

𝑴𝐶 = 𝑻𝐶,1 + 𝑴𝐶,1 + 𝒖𝐶 . (46)

The total force and moment on each panel comprising the appendage is

𝑭𝑖 = −𝜇𝑚𝑖

r𝑖/𝑂
∥r𝑖/𝑂 ∥3 +

∑︁
𝑗∈N𝑖

𝑭𝑖, 𝑗 (47)

𝑴𝑖 =
∑︁
𝑗∈N𝑖

(
𝑻𝑖, 𝑗 + 𝑴𝑖, 𝑗

)
, (48)

where N𝑖 is the set of all panels connected to panel 𝑖. Consider the term 𝑭𝑖

𝑚𝑖
− 𝑭𝐶

𝑚𝐶
appearing in the translational dynamics

32 of each panel. Substituting the total forces into this expression yields

𝑭𝑖

𝑚𝑖

− 𝑭𝐶

𝑚𝐶

= −𝜇
r𝑖/𝑂

∥r𝑖/𝑂 ∥3 + 𝜇
r𝐶/𝑂

∥r𝐶/𝑂 ∥3 + 1
𝑚𝑖

∑︁
𝑗∈N𝑖

𝑭𝑖, 𝑗 −
1
𝑚𝐶

𝑭𝐶,1. (49)

For a large spacecraft, the difference between r𝑖/𝑂 and r𝐶/𝑂 might be on the order of 10s of meters at most while
their magnitude is on the order of thousands of kilometers. Consequently, the gravitational influence on each term
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differs minimally, allowing for the approximation r𝑖/𝑂 ≈ r𝐶/𝑂. As a result, the gravitational contributions cancel out in
Eq. (49), i.e.,

𝑭𝑖

𝑚𝑖

− 𝑭𝐶

𝑚𝐶

≈ 1
𝑚𝑖

∑︁
𝑗∈N𝑖

𝑭𝑖, 𝑗 −
1
𝑚𝐶

𝑭𝐶,1 (50)

Any relative acceleration between panel 𝑖 and the hub induced by the differing gravitational forces is negligible compared
to the system’s structural dynamics. With this approximation, the dynamics of the appendage no longer depend on
the inertial position and velocity of the spacecraft. As a result, the attitude and shape of the flexible spacecraft can be
written as a state-space system independent of the translational dynamics of the hub. The state of this reduced system is

𝜼 = [𝑅𝐶 𝝎𝐶 𝜼1 𝜼2 . . . 𝜼𝑁 ]𝑇 (51)

and its dynamics can be written entirely as a function of its state, i.e.,

¤𝜼 = 𝒇 (𝜼). (52)

This reduced state that represents the attitude and shape of the flexible spacecraft is considered for estimation.

B. Modal Decomposition of Spacecraft Model
To perform DMD on the flexible spacecraft model, a training dataset is required. To generate training data, a

time-varying control input profile is applied to the system via 𝒖𝐶 (𝑡) for some amount of time, and the resulting unforced
dynamics are measured and collected as a training dataset. For DMD to accurately capture the behavior of the underlying
system, it is important that the training data contain all relevant modes. Because different magnitudes and frequencies
of the control input will excite different modes of the structure, using a single set of data would likely not yield a
representative modal decomposition. To mitigate this, many different datasets resulting from varying control input
profiles were collected. These datasets were concatenated to form a single dataset that ideally reflects all the relevant
modes of the system to which can DMD can be applied.

The training dataset is generated in simulation via a Monte Carlo approach as follows: (1) a control input profile
bounded in magnitude and time is randomly generated and applied to the system; (2) the resulting unforced dynamic
response is measured and collected for the subsequent 1200 seconds (about a fifth of a period of a low Earth orbit). This
procedure is performed a number of times and each of the resulting datasets is concatenated together.

Training datasets were generated for a spacecraft model with two different discretization sizes of the flexible
appendage. In both cases, the flexible appendage is a 15 meter by 15 meter square structure. The coarse discretization
consists of a 6x6 grid of larger panels, whereas the finer discretization consists of an 18x18 grid of smaller panels. The
snapshot matrices are constructed from the compiled training data and DMD was performed via the procedure described
in Section II.A to obtain a modal decomposition for each discretization size. To rank the relative importance of each
mode, the procedure described in [13] computing projection coefficients over all snapshot data is applied here. The 9
mode shapes of the appendage that contribute most to the system’s response for each discretization are shown below.
The hub is located at (0, 0).
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Fig. 2 First 9 modes of spacecraft model with the 6x6 discretization of the flexible appendage.

Fig. 3 First 9 modes of spacecraft model with the 18x18 discretization of the flexible appendage.

C. Impact of Mode Selection on Reconstruction Error
To evaluate how well the decomposition captures the underlying behavior of the system, dynamics of the spacecraft

model from an initial condition separate from any in the training dataset can be projected onto the DMD modes. The
projection, defined by 𝜼̂ = 𝐶𝐶†𝜼 is used to quantify the information lost due to projecting onto a lower-dimensional
model. A separate dataset is generated using the same procedure as before and the projection computed. To compute
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the error of a projection compared to the actual state, the following metrics are used. For position, the distance between
the projected and actual position of an element is

𝜀𝑟𝑖 = | |𝑟𝑖 − 𝑟𝑖 | |. (53)

For velocity, the magnitude of the difference in the projected and actual velocity vectors of an element is

𝜀𝑣𝑖 = | |𝑣̃𝑖 − 𝑣𝑖 | |. (54)

For attitude, the angle between the attitudes of the actual and projection is

𝜀𝑅𝑖
= cos−1 Tr(𝑅̂𝑇

𝑖
𝑅𝑖) − 1
2

. (55)

For angular velocity, the magnitude of the difference between the actual and projected angular velocity is

𝜀𝜔𝑖
= | |𝜔̃𝑖 − 𝜔𝑖 | |. (56)

To quantify the projection error for each type of panel state (position, velocity, attitude, and angular velocity), the
root mean square (RMS) error for each is taken over time and averaged over all the panels comprising the appendage.
The results are shown in Fig. 4. To quantify error with a single quantity, a normalized root mean square error (NRMSE)
metric is used. The error for each state type is normalized by the maximum of the absolute value of the measured values
of that state type for the simulation, i.e., for position

𝑟err =
1
𝑁

𝑁∑︁
𝑖=1

∥𝒓𝑖 − 𝒓𝑖 ∥
max( |𝒓𝑖 |)

. (57)

The normalized quantities for position, velocity, attitude, and angular velocity are summed to represent the total
projection error of a simulation.

The sum and contribution of each state type is shown in Fig. 5. These metrics illustrate the effect of using different
numbers of modes to represent the system dynamics. The resulting number of modes represents a significant reduction
in the size of the original state-space model, which has 660 states.

Fig. 4 Projection error of the position, velocity, attitude, and angular velocity resulting from using varying
numbers of DMD modes to represent the underlying system dynamics.
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Fig. 5 Normalized projection error resulting from using varying numbers of DMD modes to represent the
underlying system dynamics.

The projection error results show that differing numbers of modes are required for different state quantities. For
example, with about 50 modes, the position of each panel can be almost fully recovered from the reduced order model.
For angular velocity, about 150 modes are required for minimal projection loss. In the sum of normalized errors, the
angular velocity contributes most to the total error. There are also two elbows occurring around 50 and 150 modes.
Until around 50 modes, significantly less error is incurred with each additional mode added. At 150 modes, there is very
little benefit to adding additional modes.

To assess whether the decomposition described in Section III.B captures all relevant modes, the total projection
error resulting from different initial conditions can be compared. total projection error is computed using the same
procedure. If the decomposition is representative, the total error across a variety of samples should only vary by small
magnitudes. However, if certain initial conditions result in significantly larger projection errors than others, it suggests
that those initial conditions may be exciting a mode not captured by the modal decomposition. To conduct this evaluation,
simulations were conducted across 150 samples of randomly generated initial conditions. The Monte Carlo-generated
modal decomposition, using a fixed number of modes, is then employed to compute the total projection error for each
simulation. The results are presented in a histogram illustrating the distribution of projection errors, as shown in Fig. 6.
The standard deviation of the projection error is 7.25 × 10−5. The extremely small variance in projection error suggests
that the modal decomposition successfully captures all relevant modes of the system. Additionally, this consistency in
error distribution provides evidence that the underlying structural dynamics can be accurately represented as linear.
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Fig. 6 Normalized projection error resulting from using varying numbers of DMD modes to represent the
underlying system dynamics.

IV. State Estimation via a Mode Amplitude Kalman Filter
In this section, a DMD Kalman filter shown in Section II.B is applied to the flexible spacecraft model to perform

state estimation given a limited set of measurements. A measurement function is proposed and numerical simulations
are performed to evaluate the performance of the observation.

Assume that there are sensors on the hub that measure the attitude and angular velocity of the hub. Assume also that
there is a sensor package such as an optical sensor on the hub or some array of differential GPS sensors distributed across
the appendage that capture the shape deformation of the appendage. Specifically, assume that the relative offset of a
subset of the panels along the 𝒂̂3 axis, i.e., 𝜁𝑖 = 𝒓𝑖/𝐶 · 𝒂̂3, is measured. If there are 𝑀 panels measured, the measurement
vector of the system is

𝒚 =

[
𝜼𝐶 𝜁M1 . . . 𝜁M𝑀

]𝑇
, (58)

where M is the set of panels that are measured and 𝑀 is the cardinality of M.
To perform state estimation, the unforced dynamics of the system are simulated in response to an angular impulse

imparted by the reaction wheels. The modal decomposition shown in Section III.B generates the mode amplitude state
transition matrix 𝐹 and observation matrix 𝐶. The initial state estimate assumes that the initial state of the appendage is
flat and unmoving relative to the hub. Other simulation parameters are shown the appendix. The DMD Kalman filter
algorithm is then applied to the measurements of the test simulation data to estimate the mode amplitudes from the
shape measurements in Eq. (58), which in turn are used to estimate the full state of the system. To evaluate the effect
of model reduction on the quality of the resulting state estimate, the elbows shown in Fig. 5 at 50 and 150 modes are
selected to represent the system. For each discretization size, the measurements are taken at the same locations on the
appendage. For the 6x6 discretization, M is selected to be all 36 panels. For the 18x18 discretization, M corresponds
to measuring the center panel in each 3x3 group of panels. The spacecraft parameters for each discretization size and the
parameters used for the DMD Kalman filter are shown in the appendix. Gaussian measurement noise with a standard
deviation of 0.5 cm is applied to the panel measurements.

To quantify the performance of the DMD Kalman filter, the state estimate is compared to the true state values. The
same metrics as in Eqs. (53) to (56) are used (with the state estimate instead of the projected state) to quantify the state
estimate error. Specifically, the magnitude of the difference in position, velocity, and angular velocity between the
estimated and real states and the angle between the real and estimated attitude estimate are computed and averaged over
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each panel. The results are shown in Fig. 7 for the coarse discretization and Fig. 8 for the fine discretization. The total
normalized error is again computed by normalizing each of these quantities by the maximum measured value as in
Eq. (57). The procedure is applied to the position, velocity, attitude, and angular velocity estimates, and the normalized
quantities are summed. The summed normalized error plots are shown in Fig. 9a and Fig. 9b.

Fig. 7 Average estimation error of the position, velocity, attitude, and angular velocity of each panel for the 6x6
discretization of the flexible appendage.

Fig. 8 Average estimation error of the position, velocity, attitude, and angular velocity of each panel for the
18x18 discretization of the flexible appendage.
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(a) 6x6 discretization (b) 18x18 discretization

Fig. 9 Normalized estimation error of the state of each panel of the flexible appendage compared using 50 and
150 modes for the (a) 6x6 discretization and (b) 18x18 discretization.

The results demonstrate that the estimator is able to reconstruct the states accurately, particularly when using 150
modes. For 150 modes, the position error is on the order of millimeters, the velocity error is on the order of millimeters
per second, the attitude error is on the order of hundredths of a radian, and the angular velocity error is on the order of
milliradians per second.

The difference in performance between the number of modes in estimation corresponds to what is seen in the
projection error in Fig. 4. For position and velocity, the projection error suggests only marginal improvement going
from 50 to 150 modes, whereas in attitude and angular velocity, the improvement is more substantial. This is seen in the
estimation error, as the estimation of attitude and angular velocity improves more significantly by increasing to 150
modes.

Impact of Model Fidelity and Mode Number on Computation Time
The results from Section IV also suggest that despite using a finer discretization, the estimator is able to accurately

estimate the underlying dynamics with a similar number of modes as the coarser discretization. Consequently, the
computation savings from using DMD to perform state estimation becomes more valuable the larger the original state
size is. For the 6x6 discretization, there are 660 states, which can be represented using 150 modes and both can be
estimated using 36 measurements. For the 18x18 discretization, there are 5844 states, which also can be represented
using 150 modes and estimated with only 36 measurements. Whereas estimation of such a high-degree system in real
time on space hardware would be computationally infeasible, the computational burden is significantly reduced using
DMD and the DMD Kalman filter. To illustrate the comparison of performance versus computation time and steady
state error, the computation time to perform state estimation for the 1200 second simulation on a Dell Precision 3570
laptop with an Intel Core i5-1235U processor is shown in Fig. 10.
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Fig. 10 Computation time compared with performance of state estimation across different modes and discretiza-
tion sizes

V. Conclusion
This paper proposes a dynamic spacecraft model consisting of a hub and flexible appendage modeled by a discretized

series of flexibly connected rigid elements. Using numerical simulation data, dynamic mode decomposition is performed
yielding a modal representation of the system dynamics. A reduced-order model of the system is formed using the
modal representation by selecting the most relevant modes. The impact of information lost using the reduced-order
representation as a function of the number of modes selected is shown. The DMD Kalman filter is applied using the
reduced order model to perform full state estimation. Numerical simulations demonstrate accurate state estimation with
significantly reduced-order models, resulting in significant savings in computation time.

Ongoing work includes further characterizing the trade-off between computation time and performance using
various numbers of modes and fidelity of appendage discretization. Additionally, with the linear dynamical system
characterized by the mode amplitude state transition matrix and the observer matrix, observability may be computed for
a given set of measurements. With this, one might determine various combinations of states that need to be measured to
ensure that the system is observable. This information provides a spacecraft designer the type and number of sensors
required to perform real time shape estimation. This idea may be extended by optimizing the location of sensors on the
appendage according to the quality of state estimates a particular configuration can provide.

Appendix

Simulation Parameters

parameter 𝑘𝑠 𝑐𝑠 𝑘𝑡 𝑐𝑡 𝑚𝐶 𝑚𝑖 L
value 1000 5 0.1 0.05 1000 100 2.5
unit N

m
Ns
m

Nm
rad

Nms
rad kg kg m

Table 1 6x6 simulation parameters
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parameter 𝑘𝑠 𝑐𝑠 𝑘𝑡 𝑐𝑡 𝑚𝐶 𝑚𝑖 L
value 1000 5 0.1 0.05 1000 11.11 0.83
unit N

m
Ns
m

Nm
rad

Nms
rad kg kg m

Table 2 18x18 simulation parameters

Estimation Parameters

𝑄 = 0.1 I𝑛𝑚x𝑛𝑚

𝑅 =

[
0.01 I9𝑥9 0

0 0.1 I𝑚x𝑚

]
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