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Naval aviators use tethers to assist rotorcraft during ship board landing because of the

ability to increase robustness against wind turbulence and to center the rotorcraft on the landing

spot. Autonomous tethered landing with unmanned rotorcraft and automatic winch device

for applying the tether force requires the knowledge of how the tether force impacts the wind

affected dynamics of the rotorcraft. To this day, the inŕuences of applied tether force and wind

velocity on robustness and stability of the rotorcraft have been little explored. In this paper, we

present an analysis of the dynamics and stability of a nonlinear model of a small-scale tethered

rotorcraft. We develop a simpliőed model of a rotorcraft’s longitudinal dynamics and vary

model parameters including tether force, trim conditions, and the horizontal wind in order to

study the interdependence of those parameters and their impact on the model’s equilibrium

points and stability. This is a preliminary step towards design of an automatic control of an

unmanned rotorcraft capable of autonomous tethered landing and development of tether force

control laws for the winch device.

Nomenclature

𝑎 = Longitudinal ŕapping angle

𝐴 = Dynamic matrix

𝑏 = Lateral ŕapping angle

𝐵 = Input matrix

𝐼𝑦𝑦 = Moment of inertia

𝑚 = Mass

𝑀 = Torque around pitch axis

𝑀𝑙𝑜𝑛 = Pitch gain

𝑀0 = Static pitching moment

𝑞 = Pitch velocity

𝑅Ω = Rotor tip velocity

r𝑖/ 𝑗 = Radius vector of point 𝑖 with respect to origin 𝑗 in body frame

𝑇 = Tether force

𝑢, 𝑣, 𝑤 = Linear velocities in body frame

u = Input vector

𝑉𝑊 = Horizontal wind velocity
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𝑥 = Horizontal position

x = State vector

𝑋 = Horizontal force in body frame

𝑋𝑢 = Horizontal fuselage aerodynamic drag scaler

𝑋𝑟𝑑 = Horizontal rotor drag

𝑧 = Vertical position

𝑍 = Vertical force in body frame

𝑍0 = Static rotor thrust

𝑍𝑐𝑜𝑙 = Collective gain

𝑍𝑟𝑑 = Vertical rotor drag derivative

𝑍𝑤 = Vertical fuselage aerodynamic drag scaler

𝛼, 𝛽 = Tether angle

𝛿𝑙𝑎𝑡 , 𝛿𝑙𝑜𝑛, 𝛿𝑝𝑒𝑑 , 𝛿𝑐𝑜𝑙 = Roll, pitch, yaw, and thrust inputs

𝜃 = Pitch angle

𝜆 = Inŕow ratio

𝜇 = Advance ratio

𝜙 = Roll angle

I. Introduction
For many decades, the tethered ship board landing method assists helicopter pilots land on moving ship decks in severe

weather conditions. Crucial to the use of unmanned rotorcraft for ship board operations is the ability to safely and reliably

deploy and recover the rotorcraft in even severe weather conditions. Automation of tether guided recovery provides a way

to actively increase system robustness against weather and ship wake turbulence through the tether force and to center the

rotorcraft on the landing spot. The tether may also serve as a reliable sensor source for relative navigation to the ship deck.

(a) DLR unmanned demonstrator superARTIS lands

tether-guided on a ship deck.

(b) DLR meARTIS demonstrator on the left, intelligent winch

prototype on the right.

Fig. 1 Demonstrators for tethered ship board landing

The purpose of the tether in ship board landing is to support the rotorcraft in controlling its position and attitude

relative to the ship deck to ensure proper alignment for the landing. The winch device responsible for controlling

the tether force introduces new degrees of freedom to the dynamics. Control design for the winch force requires

understanding of how the tether force affects the ability to maintain a desired alignment with the ship. The tether also

introduces new constraints to the rotorcraft dynamics, which result in interdependence of tether length, tether force,

wind, and trim condition for a desired equilibrium. These interdependences have been observed but not followed up in

previous publications. Especially the impact of parameters other than the tether length need to be investigated. Thus, we

create a simpliőed nonlinear model of a tethered rotorcraft. We use this model to study the sensitivity of the model’s

equilibrium points to tether force, static horizontal wind, and trim condition in terms of their number and position for

different ratios of force to thrust. We then study the eigenvalues of the model to evaluate the tether’s impact on the
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model’s stability. We use the methods of sensitivity and stability analysis, based on the location of eigenvalues, to study

through a simple model whether the tether causes the model to bifurcate, i.e. unstable eigenvalues become stable or the

number of equilibria changes.

The German Aerospace Center (DLR) conducts research on tethered rotorcraft with the technology demonstrators

shown in Figure 1. superARTIS is a turbine-driven helicopter with intermeshing blades, and with 85 kg maximum take-off

mass, the largest member of the family of Autonomous Research Testbeds for Intelligent Systems (ARTIS). meARTIS is a

12 kg, fully electric helicopter with tail rotor and Bell-Hiller stabilizer. meARTIS is based on its predecessor midiARTIS,

a helicopter with the same rotor conőguration, but a methanol combustion engine, for which an identiőed model,

created by Lorenz and Chowdhary, is available in [1]. In [2], Schuchardt et al. present how a newly developed portable

winching device, shown in Fig. 1b, is able to establish a tethered connection to a ship deck for takeoff and landing.

The concept as well as the winch have been tested in ŕight tests on a ship deck in the harbor of Warnemünde, Germany. [2]

Tethered rotorcraft have been in the focus of various research communities and over several periods of time. Research

within the rotorcraft community in the 1960s and 1970s elaborated whether then state-of-the-art control methods are able

to stabilize a tethered rotorcraft. Kaufman and Schultz investigated [3] the hovering behavior of a tethered helicopter

using a linearized model extended by a rigid tether∗. Kaufman and Schultz found the tether produces an inőnite

number of steady hovering states and they identiőed two additional modes of longitudinal motion, that are introduced

by the degrees of freedom of the tether: the stable pitching mode and the unstable pendulum mode. The charac-

teristics of both modes are inŕuenced by the tether length and the unstable pendulum mode can be stabilized by a controller.

Research efforts within the robotics community starting in the 2000s focused on design and proof of stability of

control designs for the tethered rotorcraft. Oh et al. discovered in [4] that the tether allows control of the rotorcraft’s

attitude through linear motion and accordingly designed a cascaded controller with the ability to switch between

the control objectives of velocity and attitude control. Ahmed et al. used backstepping control [5] and Sandino et

al. designed a feed-forward extension to an existing controller [6] to counteract the observed coupling of linear and

rotational motion. Sandino et al. also proposed the existence of an optimal ratio of tether force and the rotorcraft’s mass

to maximize robustness against wind turbulence. Note, Ahmed et al. and Sandino et al. used the tether force as an input

variable to their ŕight controller.

In the context of the work of Sandino et al. in [7], Alarcón et al. showed in [8] a concept for position estimation using

a cable link to replace a satellite navigation system as source for helicopter position control. Alarcón demonstrated the

functionality of this method in ŕight experiments.[8] This work does not focus on the change of dynamics through the

tether, but demonstrates that tethered autonomous vehicles can be precisely controlled to perform landings on moving

platforms.

This paper presents the őrst steps on evaluation of the inŕuence of the tether force, tether length, horizontal

wind, and control inputs on a small-scale tethered rotorcraft. We also evaluate how the tether constraints impact the

interdependence of these variables. We design a nonlinear model of the tethered rotorcraft with reduced complexity. In

order to reduce the complexity, we consider only longitudinal motion. We also replace the complex dynamics of the

main rotor with a simple thrust and drag model for the beneőt of reducing the number of parameters. We evaluate

the equilibrium points and eigenvalues of the system as a function of tether force, tether length, wind velocity, and

trim inputs. Further research could expand upon the knowledge for designing control laws for winch and rotorcraft to

stabilize the system while maximizing the beneőts of the tether.

The contributions of this paper are (1) the construction of a nonlinear state space model with tether and wind

inŕuence and (2) the evaluation of the dependence of equilibrium points and eigenvalues of the linearized model to

changes of tether force, tether length, trim conditions, and wind velocity. The results can be used to identify setpoints

for tether force and helicopter thrust to alter the helicopter’s dynamics in a beneőcial way and to analyze the dynamic’s

dependency on the tether length, which decreases during the landing maneuver. The consideration of wind velocity

increases the robustness of the results regardless of different weather conditions.

∗Rigid tether refers to an applied force of constant value and its direction is deőned by the straight line between the anchor points on the rotorcraft

and the winch.
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Section II discusses modelling methods for small rotorcraft to motivate the use of a nonlinear model to represent the

tethered system. The basic assumptions for reduction of model complexity and state space form of the nonlinear model

is elaborated in Section III. Section IV identiőes parameters relevant for equilibrium and dynamical stability of the

model. The paper concludes with a summary and an outlook on ongoing and future research in Section V.

II. Background
This section provides background on existing models for small-scale rotorcraft. The őrst subsection focuses on

nonlinear models and the second subsection describes linear modelling approaches through linearization or model

identiőcation.

A. Nonlinear Modelling of Small Rotorcraft

Small rotorcraft typically possess high maneuvering capabilities and, relatively to their dimension, large ŕight

envelope as compared to large rotorcraft. A broad part of the ŕight envelope can be accurately represented by nonlinear

models. A typical use of nonlinear models is for simulation and controller synthesis for acrobatic ŕights [9]. Other

examples for elaboration of nonlinear models for comparable purposes are [10] and [11], where models for small

helicopters with a Bell-Hiller stabilizer are developed.

Nonlinear models use őrst principle mechanics to include all essential physical inŕuences responsible for rotorcraft

motion. A primary focus of the modelling efforts is the main rotor dynamics. The main rotor dynamics are usually

represented by aerodynamical models to determine rotor thrust, drag, and moments based on rotor inŕow and blade

motion (bending and torsion). Structural models of the blades describe the blade motion as a result of aerodynamic

loads, structural loads, and motion of the swashplate. The resulting models have parameters that cannot be directly

measured and need to be approximated. Also, the model’s state representation may contain some unobservable

states like the ŕapping angles, which describe the blade motion, or the rotor inŕow velocities. A drawback of the

rotor inŕow is that it needs to be approximated iteratively while solving the rotor dynamics, which increases com-

putational effort. Accurate representation of blade ŕapping angles requires solving second-order differential equations.[9]

Methods to reduce model complexity are linearization of the rotor dynamics or reduction of ŕapping angle dynamics

to őrst-order differential equations. Usually, ŕight experiments generate data to approximate the unknown parameters.

We reduce the model complexity even further as we want to study whether sensitivity and stability analysis lead to

new insights of the tether’s inŕuence on the model. The alternative to a nonlinear model is to use ŕight experiments to

identify parameters of a linear model, which is described in the next subsection.

B. Linear Modelling of Small Rotorcraft

Linear models of small scale rotorcraft can be obtained from dynamical identiőcation as in [12] or lineariziation of

an existing nonlinear model around an equilibrium [11]. Dynamical identiőcation similar to [12] has been conducted

for midiARTIS, a version of meARTIS with a combustion engine [1]. The linear model for midiARTIS uses the general

state space system form

¤x = Ax + Bu (1)

with state vector x = (𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝑎 𝑏 𝜃 𝜙)𝑇 and input vector u =
(
𝛿𝑙𝑎𝑡 𝛿𝑙𝑜𝑛 𝛿𝑝𝑒𝑑 𝛿𝑐𝑜𝑙

)𝑇
. The variables 𝑎 and 𝑏

represent the ŕapping angles for the longitudinal and lateral motion, respectively. The inputs 𝛿𝑙𝑎𝑡 , 𝛿𝑙𝑜𝑛, and 𝛿𝑐𝑜𝑙 refer to

motions of the main rotor swashplate to control roll, pitch, and vertical motion, respectively. The tail rotor input 𝛿𝑝𝑒𝑑
changes the tail rotor thrust to control yaw motion. We will adapt the notation for input and state variables of the linear

model to the description of our nonlinear model in Section III.

Linear models are widely used for ŕight controller synthesis in simulations and for model-based control. Based on

good ŕight test data, identiőcation methods can produce linear models of high dynamical accuracy and high bandwidth

and can be used to improve nonlinear models [12]. These beneőts come for the price of the model being only valid in

some close proximity to the equilibrium point the model was identiőed or linearized at, which limits investigations with

the model to a very small part of the ŕight envelope.
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In this work, the ŕight envelope represented by the model should be as large as possible, which favors development

of a nonlinear model. Also, the nonlinear model is most suitable for representing the nonlinear inŕuence of the tether,

because of the existence of multiple equilibrium points.

III. Nonlinear Dynamics of a Tethered Rotorcraft
This section presents the modelling approach for a tethered rotorcraft. First, we present mathematical formulations

for the kinematics and for acting forces and moments and introduce methods to simplify the dynamics where needed.

Then, we formulate a state space model representation of the system and introduce a transformation to express the

rotorcraft position in polar coordinates. In a last step, we present an estimate of model parameters.

A. Modelling Forces and Moments

The kinematics of the tethered rotorcraft model are expressed in the body frame B with respect to an inertial frame

I. For reduction of complexity, only the sideslip-free longitudinal motion with no roll angle in two dimensions is

deőned. The Eqs. 2 to 7 express the 2-dimensional kinematics for the position of the center of mass 𝐺 as 𝑥 and 𝑧, the

linear velocity as 𝑢 and 𝑤, the pitch angle 𝜃, and pitch velocity 𝑞. The mass of the rotorcraft is 𝑚 and its moment of

inertia around the pitch axis is 𝐼𝑦𝑦 . We have

𝑢 =
𝑑

𝑑𝑡
𝑥 = ¤𝑥 (2)

𝑤 =
𝑑

𝑑𝑡
𝑧 = ¤𝑧 (3)

𝑋 = 𝑋 𝑓 + 𝑋𝑚𝑟 + 𝑋𝑔 + 𝑋𝑡 = 𝑚 ¤𝑢 + 𝑚 𝑞 𝑤 (4)

𝑍 = 𝑍 𝑓 + 𝑍𝑚𝑟 + 𝑍𝑔 + 𝑍𝑡 = 𝑚 ¤𝑤 − 𝑚 𝑞 𝑢 (5)

𝑞 =
𝑑

𝑑𝑡
𝜃 = ¤𝜃 (6)

𝑀 = 𝑀 𝑓 + 𝑀𝑚𝑟 + 𝑀𝑡 = 𝐼𝑦𝑦 ¤𝑞 . (7)

The acting forces on the body are the aerodynamic drag on the fuselage 𝑓 , main rotor 𝑚𝑟 drag, thrust, and pitching

moment, the weight 𝑔, and the tether force 𝑡. Reference frames, forces, and moments are depicted in Fig. 2. The origin

of the inertia frame is denoted 𝑂. Main rotor forces are assumed to act at point 𝑅, deőned by the intersection of the

rotor disc plane and rotor mast. The aerodynamic forces acting on the fuselage attack at the neutral point 𝑁 . The tether

forces attack at the anchor point 𝐴. The position r of these points are deőned as follows:

r𝐺/𝑂 =

[
𝑥

𝑧

]
B

, r𝐴/𝐺 =

[
𝑥𝐴/𝐺

𝑧𝐴/𝐺

]
B

, r𝑁/𝐺 =

[
𝑥𝑁/𝐺

𝑧𝑁/𝐺

]
B

, r𝑅/𝐺 =

[
𝑥𝑅/𝐺

𝑧𝑅/𝐺

]
B

. (8)

The aerodynamic forces are simpliőed and modelled under the assumption of constant air density 𝜌, constant drag

coefficient 𝐶𝐷 , and constant reference surface 𝑆. The moment 𝑀 𝑓 ,0 around the neutral point 𝑁 is independent of

the angle of attack, but depends on the ŕow velocity. As this work focuses on the model dynamics in and around

the equilibrium point, non-essential change of the ŕow velocity can be assumed. Thus, assume the moment 𝑀 𝑓 ,0 is

constant and compensated by the trim moment. Consequentially, 𝑀 𝑓 ,0 is not used in any of the following equations for

the fuselage. The used drag coefficient is independent of the direction and velocity of the air ŕow. Assume that the

projected surface and drag coefficient in direction of the body axes 𝑥 and 𝑧 are different. The subscripts 𝑥, 𝑓 and 𝑧, 𝑓

denote the different values for 𝐶𝐷 and 𝑆 according to the body axis. For the fuselage, the aerodynamic forces acting at

point 𝑁 and their torque 𝑀 𝑓 with respect to 𝐺 are


𝑋 𝑓

𝑍 𝑓

𝑀 𝑓

B
=



−
𝜌

2
𝐶𝐷,𝑥, 𝑓 𝑆 𝑓 ,𝑥︸          ︷︷          ︸

=𝑋𝑢

(𝑢 +𝑉𝑊 cos 𝜃) |𝑢 +𝑉𝑊 cos 𝜃 |

−
𝜌

2
𝐶𝐷,𝑧, 𝑓 𝑆 𝑓 ,𝑧︸          ︷︷          ︸

=𝑍𝑤

(𝑤 +𝑉𝑊 sin 𝜃) |𝑤 +𝑉𝑊 sin 𝜃 |

𝑧𝑁/𝐺𝑋 𝑓 − 𝑥𝑁/𝐺𝑍 𝑓 + 𝑀 𝑓 ,0

B

. (9)

5



For transparency, the constant parameters 𝜌, 𝐶𝐷 , and 𝑆 are aggregated to the parameters 𝑋𝑢 and 𝑍𝑤 for the 𝑥 and 𝑧

directions, respectively.

The rotor dynamics of the rotorcraft are simpliőed to avoid iterations for inŕow approximation and solving for the

blade ŕapping motion. Assume the thrust force 𝑇𝑚𝑟 and pitching moment 𝑀𝑚𝑟 are independently controllable and

the rotor disc interaction with the ŕow is modelled by the drag force model introduced by Sun et al. in [13]. In the

following, we describe the adaptation of Sun et al.’s model to our model.

The main rotor thrust 𝑇𝑚𝑟 acts perpendicularly to the rotor frame and in the 𝑧-direction of the body frame. 𝑇𝑚𝑟

consists of a static thrust 𝑍0 for trimming and the thrust input 𝛿𝑐𝑜𝑙 with linear gain 𝑍𝑐𝑜𝑙 . The perpendicular ŕow through

the rotor 𝑤 +𝑉𝑊 sin 𝜃 changes the inŕow ratio 𝜆 through the rotor disc and causes a change of the rotor thrust. Thus, the

rotor thrust linearily increases or decreases with the parameter 𝑍𝑚𝑟,𝜆 and change of inŕow ratio Δ𝜆:

Δ𝜆 =
𝑤 +𝑉𝑊 sin 𝜃

𝑅Ω
, (10)

where the term 𝑅Ω denotes the rotor tip velocity. The main rotor thrust 𝑇𝑚𝑟 is

𝑇𝑚𝑟 = (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙)

©­­­­­
«
1 + 𝑍𝑚𝑟,𝜆

𝑤 +𝑉𝑊 sin 𝜃

𝑅Ω︸                  ︷︷                  ︸
=𝑍𝑟𝑑 (𝑤+𝑉𝑊 sin 𝜃 )

ª®®®®®
¬
. (11)

The parameters 𝑅Ω and 𝑍𝑚𝑟,𝜆 are combined in the new parameter 𝑍𝑟𝑑 . The tangential ŕow through the rotor 𝑢+𝑉𝑊 cos 𝜃

causes a ŕapping angle 𝑏 between the the rotor disc and the body frame and a tilt of the rotor thrust 𝑇𝑚𝑟 . Assuming

small angles for 𝑎, as also done in [9], leads to[
𝑋𝑚𝑟

𝑍𝑚𝑟

]
B

=

[
−𝑇𝑚𝑟 sin 𝑎

−𝑇𝑚𝑟 cos 𝑎

]
B

≈

[
−𝑇𝑚𝑟𝑎

−𝑇𝑚𝑟

]
B

. (12)

According to [13], the longitudinal ŕapping angle 𝑎 can be calculated using the advance ratio 𝜇 and a linear parameter

𝑋𝑚𝑟,𝑢

𝑎 = 𝑋𝑚𝑟,𝑢𝜇 = 𝑋𝑚𝑟,𝑢

𝑢 +𝑉𝑊 cos 𝜃

𝑅Ω
. (13)

The control of the main rotor pitching moment consists of a trim moment 𝑀0, pitch input 𝛿𝑙𝑜𝑛, and pitch input gain

𝑀𝑙𝑜𝑛. Forces and moments of the main rotor are


𝑋𝑚𝑟

𝑍𝑚𝑟

𝑀𝑚𝑟

B
=



−
𝑇𝑚𝑟

𝑅Ω
𝑋𝑚𝑟,𝑢︸        ︷︷        ︸

=𝑇𝑚𝑟𝑋𝑟𝑑

(𝑢 +𝑉𝑊 cos 𝜃)

−𝑇𝑚𝑟

𝑧𝑅/𝐺𝑋𝑚𝑟 − 𝑥𝑅/𝐺𝑍𝑚𝑟 + 𝑀0 + 𝑀𝑙𝑜𝑛 𝛿𝑙𝑜𝑛

B
. (14)

For transparency, constant parameters are aggregated to 𝑋𝑟𝑑 and 𝑍𝑟𝑑 for rotor forces in x and z direction, respectively.

Forces and moments at and around 𝐺 are 
𝑋𝑔

𝑍𝑔

𝑀𝑔

B
=


−𝑚 𝑔 sin 𝜃

𝑚 𝑔 cos 𝜃

0

B
. (15)

Neglecting tether dynamics, tether forces are modelled to be of constant force 𝑇 . The direction of 𝑇 is deőned by the

direction of r𝑂/𝐴 = −
(
r𝐴/𝐺 + r𝐺/𝑂

)
.


𝑋𝑡

𝑍𝑡

𝑀𝑡

B
=


𝑇

𝑟𝑂/𝐴,𝑥

| |𝑟𝑂/𝐴 | |2

𝑇
𝑟𝑂/𝐴,𝑧

| |𝑟𝑂/𝐴 | |2

𝑧𝐴/𝐺𝑋𝑡 − 𝑥𝐴/𝐺𝑍𝑡

B
=



−𝑇
𝑥+𝑥𝐴/𝐺√︃

(𝑥+𝑥𝐴/𝐺)
2
+(𝑧+𝑧𝐴/𝐺)

2

−𝑇
𝑧+𝑧𝐴/𝐺√︃

(𝑥+𝑥𝐴/𝐺)
2
+(𝑧+𝑧𝐴/𝐺)

2

𝑧𝐴/𝐺𝑋𝑡 − 𝑥𝐴/𝐺𝑍𝑡

B
(16)
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B. Equations of Motion

The combined dynamics and kinematics of the model yield a system of the form ¤x = f (x) + g (x) u with the state

vector x = (𝑥 𝑧 𝑢 𝑤 𝜃 𝑞)𝑇 and the input vector u = (𝛿𝑙𝑜𝑛 𝛿𝑐𝑜𝑙)
𝑇 . The state space form of the model is

¤𝑥 = 𝑢 (17)

¤𝑧 = 𝑤 (18)

¤𝑢 = −𝑞𝑤 − 𝑔 sin 𝜃 −
𝑋𝑢

𝑚
|𝑢 +𝑉𝑊 cos 𝜃 | (𝑢 +𝑉𝑊 cos 𝜃) −

𝑇

𝑚

𝑥 + 𝑥𝐴/𝐺√︃(
𝑥 + 𝑥𝐴/𝐺

)2
+
(
𝑧 + 𝑧𝐴/𝐺

)2 − . . .

+
𝑋𝑟𝑑

𝑚
(𝑢 +𝑉𝑊 cos 𝜃) (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙 + (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙) 𝑍𝑟𝑑 (𝑤 +𝑉𝑊 sin 𝜃)) (19)

¤𝑤 = 𝑞𝑢 + 𝑔 cos 𝜃 −
𝑍𝑤

𝑚
|𝑤 +𝑉𝑊 sin 𝜃 | (𝑤 +𝑉𝑊 sin 𝜃) −

𝑇

𝑚

𝑧 + 𝑧𝐴/𝐺√︃(
𝑥 + 𝑥𝐴/𝐺

)2
+
(
𝑧 + 𝑧𝐴/𝐺

)2 − . . .

−𝑍0 − 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙 − (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙) 𝑍𝑟𝑑 (𝑤 +𝑉𝑊 sin 𝜃) (20)

¤𝜃 = 𝑞 (21)

¤𝑞 = −
𝑇

𝐼𝑦𝑦

𝑥 + 𝑥𝐴/𝐺√︃(
𝑥 + 𝑥𝐴/𝐺

)2
+
(
𝑧 + 𝑧𝐴/𝐺

)2 𝑧𝐴/𝐺 +
𝑇

𝐼𝑦𝑦

𝑧 + 𝑧𝐴/𝐺√︃(
𝑥 + 𝑥𝐴/𝐺

)2
+
(
𝑧 + 𝑧𝐴/𝐺

)2 𝑥𝐴/𝐺 − . . .

−
𝑋𝑢

𝐼𝑦𝑦
|𝑢 +𝑉𝑊 cos 𝜃 | (𝑢 +𝑉𝑊 cos 𝜃) 𝑧𝑁/𝐺 + . . .

+
𝑍𝑤

𝐼𝑦𝑦
|𝑤 +𝑉𝑊 sin 𝜃 | (𝑤 +𝑉𝑊 sin 𝜃) 𝑥𝑁/𝐺 + . . .

−
1

𝐼𝑦𝑦
𝑋𝑟𝑑 (𝑢 +𝑉𝑊 cos 𝜃) (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙 + (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙) 𝑍𝑟𝑑 (𝑤 +𝑉𝑊 sin 𝜃)) 𝑧𝑅/𝐺 + . . .

+
1

𝐼𝑦𝑦
(𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙 + (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙) 𝑍𝑟𝑑 (𝑤 +𝑉𝑊 sin 𝜃)) 𝑥𝑅/𝐺 +

𝑀𝑙𝑜𝑛

𝐼𝑦𝑦
𝛿𝑙𝑜𝑛 + 𝑀0. (22)

The Cartesian representation of the model’s position by the variables 𝑢 and 𝑤 is commonly used and would

serve rotorcraft pilots as a intuitive reference to steer the vehicle with respect to the winch position. However, the

potentially important tether length 𝐿 would only be implicitly involved in the system model through the deőnition
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𝐿 =

√︃(
𝑥 + 𝑥𝐴/𝐺

)2
+
(
𝑧 + 𝑧𝐴/𝐺

)2
. A transformation from Cartesian coordinates 𝑥, 𝑧 to polar coordinates 𝐿, 𝛽, where 𝛽

denotes the tether force angle within B, includes the tether length 𝐿 as a system variable. The rotation of 𝛽 is deőned so

that 𝛽 > 0 refers to forward-acting tether force. The angle 𝛼 deőnes the tether angle with respect to I. Equation 23

deőnes the relation between 𝛼 and 𝛽, which is based on the rotation from I to B through the pitch angle 𝜃, i.e.,

𝛼 = 𝛽 + 𝜃 . (23)

The following equations formulate the necessary transformation rule:

𝑥 = −𝐿 sin 𝛽 − 𝑥𝐴/𝐺 (24)

𝑧 = −𝐿 cos 𝛽 − 𝑧𝐴/𝐺 . (25)

The revised state space model is denoted with underscore 𝑝 and is described by ¤x𝑝 = f𝑝
(
x𝑝

)
+ g𝑝

(
x𝑝

)
u with the state

vector x𝑝 = (𝐿 𝛽 𝑢 𝑤 𝜃 𝑞)𝑇 and the input vector u = (𝛿𝑙𝑜𝑛 𝛿𝑐𝑜𝑙)
𝑇 . The following equations represent the state space

form of the transformed model:

¤𝐿 = −𝑢 sin 𝛽 − 𝑤 cos 𝛽 (26)

¤𝛽 = −
𝑢

𝐿
cos 𝛽 +

𝑤

𝐿
sin 𝛽 − 𝑞 (27)

¤𝑢 = −𝑞𝑤 − 𝑔 sin 𝜃 −
𝑋𝑢

𝑚
|𝑢 +𝑉𝑊 cos 𝜃 | (𝑢 +𝑉𝑊 cos 𝜃) +

𝑇

𝑚
sin 𝛽 − . . .

𝑋𝑟𝑑

𝑚
(𝑢 +𝑉𝑊 cos 𝜃) (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙 + (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙) 𝑍𝑟𝑑 (𝑤 +𝑉𝑊 sin 𝜃)) (28)

¤𝑤 = 𝑞𝑢 + 𝑔 cos 𝜃 −
𝑍𝑤

𝑚
|𝑤 +𝑉𝑊 sin 𝜃 | (𝑤 +𝑉𝑊 sin 𝜃) +

𝑇

𝑚
cos 𝛽 − . . .

−𝑍0 − 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙 − (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙) 𝑍𝑟𝑑 (𝑤 +𝑉𝑊 sin 𝜃) (29)

¤𝜃 = 𝑞 (30)

¤𝑞 =
𝑇

𝐼𝑦𝑦
sin 𝛽 𝑧𝐴/𝐺 −

𝑇

𝐼𝑦𝑦
cos 𝛽 𝑥𝐴/𝐺 − . . .

−
𝑋𝑢

𝐼𝑦𝑦
|𝑢 +𝑉𝑊 cos 𝜃 | (𝑢 +𝑉𝑊 cos 𝜃) 𝑧𝑁/𝐺 + . . .

+
𝑍𝑤

𝐼𝑦𝑦
|𝑤 +𝑉𝑊 sin 𝜃 | (𝑤 +𝑉𝑊 sin 𝜃) 𝑥𝑁/𝐺 + . . .

−
1

𝐼𝑦𝑦
𝑋𝑟𝑑 (𝑢 +𝑉𝑊 cos 𝜃) (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙 + (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙) 𝑍𝑟𝑑 (𝑤 +𝑉𝑊 sin 𝜃)) 𝑧𝑅/𝐺 + . . .

+
1

𝐼𝑦𝑦
(𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙 + (𝑍0 + 𝑍𝑐𝑜𝑙 𝛿𝑐𝑜𝑙) 𝑍𝑟𝑑 (𝑤 +𝑉𝑊 sin 𝜃)) 𝑥𝑅/𝐺 +

𝑀𝑙𝑜𝑛

𝐼𝑦𝑦
𝛿𝑙𝑜𝑛 + 𝑀0. (31)

C. Model parameters

The choice of adequate parameter values is crucial to achieve comparable behavior of the model to the real vehicle.

Some parameters of the nonlinear model can be determined by simple measurements of the meARTIS rotorcraft or are

available in literature. Examples are the vehicle’s mass 𝑚 and the gravitational acceleration 𝑔. Other parameters, like

the position of the fuselage’s neutral point 𝑁 or the drag coefficients of rotor and fuselage cannot be easily determined.

The following paragraph describes a simple method to assume values for the unknown parameters by comparison of the

linearized model derivatives of the nonlinear model in hover with those derivatives of the identiőed model. This allows

a good guess for the unknown parameters and well comparable model behavior around the hover condition.

System identiőcation of the midiARTIS rotorcraft created a linear state space model for the hovering condition

which is available in [1]. The longitudinal motion of the linearized system is described below, where A𝑙𝑜𝑛 and B𝑙𝑜𝑛

denote longitudinal dynamics and input gains, respectively. We have

¤x = A𝑙𝑜𝑛x + B𝑙𝑜𝑛u . (32)
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The linearization of the nonlinear model deőned by Eqs. 26 to 31 around the hovering condition without wind and

without tether force makes it possible to compare the derivatives of both systems for the longitudinal motion. The

midiARTIS model was identiőed without any tether connection and its dynamics do not depend on the position.

Thus, the derviatives for the positon are not available and only the derivatives for 𝑢, 𝑤, 𝜃, and 𝑞 can be compared.

Consequently, The dimension of the matrix 𝐴𝑙𝑜𝑛 for the comparison reduces to 4 × 4. We chose the parameters of the

nonlinear system by hand to őt the derivatives of available experimental data of midiARTIS [1]. Equation 33 yields the

dynamics of the linearized nonlinear system.

A𝑙𝑜𝑛x =

©­­­­
«

−0.0589 0 −9.81 0

0 −0.4905 0 0

0 0 0 1.0

−0.1483 0 0 0

ª®®®®
¬

©­­­­
«

𝑢

𝑤

𝜃

𝑞

ª®®®®
¬

(33)

Table 1 in the Appendix lists the parameters for the nonlinear model. Some of the model parameters are varied in the

following sections so that a range of values is given instead of one őxed value.

IV. Stability Analysis of the Open-Loop Dynamics
This section formulates the equations deőning equilibrium states and identiőes parameters that have an inŕuence on

either the location of the equilibrium or the eigenvalues of the linearized system around the equilibrium. We vary the

identiőed parameters and plot the results.

A. Location of Equilibrium Points

To identify the equilibrium points of the system, set the left-hand side of Eqs. 26 to 31 can be set to zero. The inputs

𝛿𝑙𝑜𝑛 and 𝛿𝑐𝑜𝑙 are set to zero, so that equilibrium is maintained by the static inputs 𝑍0 and 𝑀0 (trimmed condition). From

Eq. 30 follows that the pitch velocity in equilibrium is 𝑞∗ = 0 and, from Eqs. 26 and 27, it follows that 𝑢∗ = 0 and

𝑤∗
= 0. The variables 𝑢∗ = 0, 𝑤∗

= 0, and 𝑞∗ = 0 plugged into the remaining Eqs. 28, 29, and 31 yield:

0 = −𝑔 sin 𝜃∗ −
𝑋𝑢

𝑚
𝑉2
𝑊 cos2 𝜃∗ +

𝑇

𝑚
sin 𝛽∗ −

𝑋𝑟𝑑

𝑚
𝑍0𝑉𝑊 cos 𝜃∗ (1 + 𝑍𝑟𝑑𝑉𝑊 sin 𝜃∗) (34)

0 = 𝑔 cos 𝜃∗ −
𝑍𝑤

𝑚
sgn (𝜃∗)𝑉2

𝑊 sin2 𝜃∗ +
𝑇

𝑚
cos 𝛽∗ −

𝑍0

𝑚
−

𝑍0

𝑚
𝑉𝑊 sin 𝜃∗ (35)

0 =
𝑇

𝐼𝑦𝑦
sin 𝛽∗ 𝑧𝐴/𝐺 −

𝑇

𝐼𝑦𝑦
cos 𝛽∗ 𝑥𝐴/𝐺 −

𝑋𝑢

𝐼𝑦𝑦
𝑉2
𝑊 cos2 𝜃∗ 𝑧𝑁/𝐺 + . . .

+
𝑍𝑤

𝐼𝑦𝑦
sgn (𝜃∗)𝑉2

𝑊 sin2 𝜃∗ 𝑥𝑁/𝐺 + 𝑀0 − . . .

−
𝑍0

𝐼𝑦𝑦
𝑋𝑟𝑑 (𝑉𝑊 cos 𝜃∗) 𝑍0 (1 + 𝑍𝑟𝑑𝑉𝑊 sin 𝜃∗) 𝑧𝑅/𝐺 +

𝑍0

𝐼𝑦𝑦
(1 + 𝑍𝑟𝑑𝑉𝑊 sin 𝜃∗) 𝑥𝑅/𝐺 . (36)

The tether length 𝐿 is not present in Eqs. 34 to 36. Thus, we can neglect 𝐿 when searching for the existence of

equilibrium points. Also, we can choose 𝐿 independently from the other state variables and parameters. This is one of

the advantages of transforming into polar coordinates. Note, the tether length still has an inŕuence on the dynamics and

must be included when investigating the stability of the equilibrium points.

Equations 34, 35, and 36 have only two unknowns, the tether angle 𝛽∗ and pitch angle 𝜃∗, which implies the system

is overdetermined. Also, the static pitching moment 𝑀0 is only present in the last of the equations. This means that the

precise choice of 𝑀0 decides whether the solutions to Eqs. 34 and 35 produce an equilibrium or not. Thus, the static

pitching moment 𝑀0 cannot be independently chosen from the state variables and other parameters and thus will no

longer be considered for sensitivity analysis.

The remaining model parameters of interest are the tether force 𝑇 , the static thrust 𝑍0 to trim the model, and wind

velocity 𝑉𝑊 . We examine the inŕuence of these parameters on the location and existence of equilibrium points. In the

following diagrams, we hold the trim 𝑍0 and wind 𝑉𝑊 constant, while varying the force 𝑇 . This approach evaluates the

system dynamics from the perspective of the winch, which controls the tether force. A different approach would be to
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vary the thrust 𝑍0, which would give the perspective of the ŕight controller. We are planning to add this perspective in

ongoing and future work.

Figures 3a and 3b show solutions for 𝛽∗, 𝜃∗, and their aggregate 𝛼∗ for an example choice of wind velocity𝑉𝑊 = 4 m/s

and a relatively low static thrust 𝑍0 = 108 N (a) and high static thrust 𝑍0 = 180 N (b), while the tether force 𝑇 is varied.

The necessary static pitching moment 𝑀0 for both cases is shown in Figs. 3c and 3d.
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(a) Static thrust 𝑍0 = 108 N, wind velocity 𝑉𝑊 = 4 m/s
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(c) Static pitching moment for 𝑍0 = 108 N and 𝑉𝑊 = 4 m/s case
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Tether Force, N

Static Pitching Moment M  0
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(d) Static pitching moment for 𝑍0 = 180 N and 𝑉𝑊 = 4 m/s case

Fig. 3 Solutions for tether angles, pitch angle, and static pitch moment and under variation of tether force 𝑇 .

The dots mark points where only one solution is obtained. Otherwise, one upwind and one downwind solution

exist.

Both őgures show a region to the left, in which the tether force is too low to produce an equilibrium of the system.

This can be explained by the choice of static thrust 𝑍0, which overcompensates the weight of the vehicle and thus
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Z  = 108 N0 130 N 160 N 180 N 200 N
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(a) Zero wind, various values for thrust 𝑍0.
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(b) Thrust 𝑍0 = 180N, various values for 𝑉𝑊 .

Fig. 4 Solutions for 𝛼∗ under variation of tether force 𝑇 . The dots mark where upwind and downwind solution

merge to a single solution.

requires a certain tether force to counteract. Otherwise, the vehicle would start climbing.

Equations 34 and 35 produce exactly one solution when the tether force and weight of th helicopter exactly

compensate 𝑍0. From this point on, increasing tether forces produce symmetrical solutions for 𝛼∗, 𝛽∗, and 𝜃∗. One

solution is upwind of the winch and one downwind of the winch. In the plots, we limited the maximum tether force to

the point where the tether angle 𝛼 exceeds 90°. An angle of 90° implies that the model hits the ship deck.

Figure 3 also shows that the position of the model (expressed by 𝛼∗) and the pitching moment 𝑀0 are sensitive to

changes of tether force 𝑇 when the model is operated closely to the single solution point. The sensitivity decreases

towards higher tether forces as 𝛼∗ approaches 90°. The sensitivity to changes of 𝑇 can be decreased by choice of higher

static thrust 𝑍0 (see Fig. 4a) and naturally changes with the horizontal wind 𝑉𝑊 as shown in Fig. 4b. Note that Fig. 4

uses dashed lines to indicate that the roots of the linearized system’s vertical and short term pitching motion indicate

damped oszillation. This is further discussed in Section IV.B.

Lowering the sensitivity of the position to changes of tether force 𝑇 may accomplish two things. First, the

requirements for the winching device to produce and maintain a precise and steady force could be lowered, which would

generally reduce system complexity and costs. Second, it simpliőes the problem for the ŕight controller to adjust the

trim to hold the position and/or attitude with respect to ship and winch.

Figure 4b shows the impact of wind on the sensitivity of 𝛼∗ to changes of tether force 𝑇 . The wind introduces

additional drag forces which require the model to use some of the thrust 𝑍0 to counteract. In consequence, the minimally

required tether force to establish equilibrium is lower and the solutions for 𝛼∗ move to the left for increasing wind

velocities.

The wind inŕuence shifts the region of highest sensitivity of 𝛼∗ to changes of 𝑇 towards negative values for 𝛼∗,

marked by the dots in Fig. 4b. This shift has two positive effects. Firstly, the position directly above the winch (𝛼∗
= 0)

becomes less sensitive to 𝑇 and the sensitivity decreases further for downwind positions. In downwind position,

the model is pitching upward and behaves similarly to a kite. The beneőts of operating tethered rotorcraft in the

downwind domain is actually not new to aviation. Liptrot describes in [14] how early German approaches to use

tethered rotorcraft as manned observation posts in the 1930s beneőted from the increased stability of a downwind position.

An interesting őnding of Fig. 4b is that the solutions for all wind velocities seem to intersect each other in a region
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at 𝛼∗
= 12° and 𝑇 = 81 N. This region has the advantage that changes to the wind velocity have only little effect on the

position whereas the thrust to force ratio is rather low.

The main results of our sensitivity analysis of the model’s equilibrium points are as follows:

• High values for the static thrust 𝑍0 and according tether force 𝑇 reduce the sensitivity to changes of wind and

tether force.

• A high horizontal wind velocity 𝑉𝑊 reduces the sensitivity to changes of tether force.

• Downwind positions of the rotorcraft to the winch are less sensitive to changes of wind and tether force than

upwind positions.

• One region of downwind position and tether force is less sensitive to changes of wind velocity than the other

regions.

B. Eigenvalues of the Linearized Open-Loop Dynamics

Linearization of the nonlinear system around an equilibrium x𝑝 yields the linear dynamics of the longitudinal motion

A𝑙𝑜𝑛. Figure 5a shows the roots of the linear dynamics for the model without tether inŕuence and for variation of wind

velocity. The roots for zero wind show the stable and oscillating phugoid for hover and one stable and one unstable root

for pitching motion. At wind velocity of 13 m/s, the pitching motion stabilizes and with little more increase of wind

velocity, the pitching motion begins to oscillate. The dot-dashed lines in Fig. 4 of the previous section indicate this

oscillation. The solid lines mean, that vertical motion and pitching motion do not oscillate. At wind velocity of 17 m/s,

the phugoid becomes unstable, while the frequency of oscillation continues to increase. Figure 5a shows also the roots

for the position deőned by tether length 𝐿 and tether angle 𝛽.

The most notable effect of the tether inŕuence is depicted in Fig. 5b. Here, the equilibrium points are deőned by a

őxed thrust of 𝑍0 = 130 N, őxed tether force 𝑇 = 27 N, tether length 𝐿 = 5 m, while the wind velocity is varied. When

compared with Fig. 5a, it becomes visible, that the poles of the model are much less sensitive to changes of the wind

velocity. This advantage is very useful for controller design.

Figure 5c shows the change of roots for no wind and variation of tether force while the thrust 𝑍0 is held at 130 N and

the tether length is 5 m. This diagram shows the dynamic stability of the system for the 𝑍0 = 130 N line in Fig. 4a. An

increase of tether force leads to lower oscillation frequencies of the pitching motion, but increases the oscillation of the

phugoid. Technically, the term phugoid is not valid since the tether inŕuence alters the exchange of potential and kinetic

energy, the deőning principle of the phugoid. For simplicity, we will still use the term phugoid to refer to the tether

inŕuenced coupling of the translational vertical and horizontal motion.

Figure 5d displays the inŕuence of the tether length on the dynamics. The diagram shows equilibrium points deőned

by a őxed thrust of 𝑍0 = 130 N, őxed tether force 𝑇 = 27 N and 𝛽∗ = 𝜃∗ = 0 in zero wind. The motion pattern of

the poles compares well to the results of Kaufman and Schultz [3]. Increasing tether length decreases the phugoid

oscillation (pendulum mode), and increases the stability of the pitching motion (pitching mode). The phugoid poles

shift slightly to the right.

V. Conclusion
This paper introduces a simpliőed model of a tethered rotorcraft and presents the modeling approach to create this

model. We use the model to identify equilibrium points and their sensitivity and stability under variations of tether

force, tether length, wind velocity, and trim conditions. In fact, our results show that the tether creates two unstable

equilibrium points, one downwind and one upwind, for a given ratio of thrust and tether force. Trivially, we cannot

obtain equilibrium if the tether force is too low to compensate the thrust. The downwind and upwind equilibrium

positions merge at a position deőned by the lowest possible tether force to thrust ratio and the wind velocity. Around

this point, the model’s equilibria react most sensitively to changes of the tether force. However, higher thrust and tether

forces generally robustify the equilibria to changes of tether force and also of wind velocity. The increase of robustness

against wind is to be expected as high tether forces overshadow the drag forces. However, we found a region of rather

small thrust to force ratio where a downwind position of the model appears to be robust to variations of the wind velocity.
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(b) 𝑍0 = 130 N, 𝑇 = 27 N, 𝐿 = 5 m, wind varies from 0 m/s to 20 m/s
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(c) 𝑍0 = 130 N, no wind, 𝐿 = 5 m, 𝑇 varies from 0 N to 80 N.
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(d) 𝑍0 = 130 N, 𝑇 = 27 N, 𝑉𝑊 = 0 m/s, 𝐿 varies from 1 m to 30 m.

Fig. 5 Poleśzero plots for variations of different parameters. The color gradient goes from light blue (small

parameter value) to dark blue (large parameter value).

The analysis of the open-loop system’s eigenvalues for the equilibrium points shows the impact of changes to

tether force, tether length, and wind velocity on the model’s stability. For the considered cases, the results show

that the tether is not capable of changing the stability of the model. The unstable phugoid motion remains un-

stable, thus requiring the design of an appropriate controller to stabilize the model. However, we observed that

increasing tether forces reduce the frequency of the unstable phugoid motion. Generally, our results indicate that a

high tether force should be applied to the rotorcraft to create robustness of the position to changes of tether force and wind.

Ongoing work focuses on implementation of the model into a simulation environment to study the model’s behavior

to time-varying tether force and wind velocity. This would allow us to complement our current investigations of the

static case. The simulation over longer periods of time requires stabilization of the model through the design and

implementation of a suitable controller for the tethered system. Further steps are the improvement of the model, e.g.,
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through integration of an accurate main rotor model, and parameter estimation based on experimental data. Model

improvement and controller design are preliminary steps in preparation for subsequent experimental tests.
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Appendix

Table 1 List of model parameters.

Symbol Name Unit Value

𝑚 Mass kg 10.5

𝑔 Grav. Acceleration m/s➨ 9.81

𝐼𝑦𝑦 Moment of Inertia kgm➨ 0.5[
r𝐴/𝐺

]
B

Tether anchor offset m [0, 0.15]𝑇[
r𝑅/𝐺

]
B

Rotor forces offset m [0,−0.12]𝑇[
r𝑁/𝐺

]
B

Neutral point of aerodynamic forces m [0.1, 0.1]𝑇

𝑋𝑢 Fuselage aerodynamic drag value in 𝑥 kg/m 0.028

𝑋𝑟𝑑 Horizontal rotor drag s/m -6e-3

𝑍0 Static rotor thrust N 108 to 200

𝑍𝑐𝑜𝑙 Collective gain N 283.5

𝑍𝑟𝑑 Vertical rotor drag derivative s/m 5e-2

𝑍𝑤 Fuselage aerodynamic drag value in 𝑧 kg/m 0.1108

𝑀𝑙𝑜𝑛 Pitch gain Nm -2.8

𝑀0 Static pitch moment Nm -15 to 15

𝑇 Tether force N 0 ś 100

𝑉𝑊 Horizontal wind velocity m/s 0 to 15
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