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This paper describes the application of a principled estimation method that generates
full flowfield estimates using data obtained from a limited number of pressure sensors on
an actuated airfoil, based on Dynamic Mode Decomposition (DMD). DMD is a data-driven
algorithm that approximates a time series of data as a sum of modes that evolve linearly. DMD
is used here to create a linear system that approximates the flow dynamics and pressure sensor
output from Particle Image Velocimetry (PIV) and pressure measurements of the flowfield
around the airfoil. Sparsity Promoting DMD (SPDMD) selects a reduced number of modes
in order to simplify the system while providing a sufficiently accurate approximation of the
flowfield. A DMD Kalman Filter (DMD-KF) uses the pressure measurements to estimate the
evolution of this linear system, and thus produce an approximation of the flowfield from the
pressure data alone. The DMD-KF is implemented for experimental data from two different
setups: a pitching cambered ellipse airfoil and a surgingNACA0012 airfoil. Filter performance
is evaluated using the original flowfield PIV data, and compared with a DMD reconstruction.

Nomenclature

DMD Dynamic Mode Decomposition
SPDMD Sparsity Promoting DMD
POD Principal Orthogonal Decomposition
SVD Singular Value Decomposition
PIV Particle Image Velocimetry
ψ(t) Vector of observables at time t
Ψ, Ψ′ Matrices of data snapshots
m Number of snapshot pairs in original data
n Dimension of ψ
A Approximate time evolution operator for ψ
Ã SVD projection of A
UΣV∗ SVD of Ψ
φi ith DMD eigenmode
Φ Matrix of DMD eigenmodes
λi ith DMD eigenvalue
Λ Diagonal matrix of DMD eigenvalues
α Vector of DMD mode amplitudes
γ SPDMD parameter
Jγ SPDMD cost function
m∗ Number of modes chosen for reduced-order model
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x Vector of states
y Vector of measurements
z Vector of mode amplitudes in modal form
F State transition matrix for z dynamics
Cy y observer matrix
Cx x observer matrix
ẑ Estimate of z
P Estimate covariance
Q Process noise covariance
R Measurement noise covariance
K Kalman gain
t∗ Time, normalized by period of actuation
Amp Normalized surging amplitude
k Reduced frequency of actuation

I. Introduction
Unsteady flow structures play an important role in the generation of lift at high angles of attack [1]. For example,

during dynamic stall, the lift coefficient increases beyond its value found in the static stall condition, due to the formation
of a leading edge vortex (LEV). As the angle of attack increases further, the LEV sheds and the lift coefficient falls [2].
To avoid large, undesirable variations in lift, feedback control may be applied to enhance or regularize unsteady lift
production. A prerequisite for feedback control based on flow dynamics is estimation of the flowfield. Estimation can
be achieved by a dynamic observer operating on a model of the flowfield. Common approaches include linearization of
the Navier-Stokes equations [3], fitting a reduced-order model to experimental data, such as the Goman-Khrabrov model
[1], or using modal decompositions [4].

Modal decomposition methods extract a small number of modes that contain most of the information of a set of
high-dimensional data. For example, Proper Orthogonal Decomposition (POD) [5] provides a set orthogonal modes
that minimize the difference (in the least-squares sense) between the original data and its projection onto the span of
modes. While POD modes optimally reproduce the original dataset, they do not necessarily correspond to coherent
structures in the flow, nor do they contain any information about the time evolution of the flow [5]. Balanced POD
(BPOD) [6] finds modes that are the most controllable and observable, making it very useful for feedback control as in
[7]. However, computing BPOD requires prior knowledge of the dynamics of the system.

An alternative modal decomposition that focuses on describing the time evolution is Dynamic Mode Decomposition
(DMD). DMD is a data-driven algorithm initially developed for modal decomposition and analysis of fluid flows [8].
In the context of fluid mechanics, DMD decomposes the flow into modes of oscillation and, thus, provides a useful
dynamical description of the system. DMD has been commonly used to analyze the behavior of unsteady flow [4]. The
traditional procedure used for analyzing a flow using DMD is to assimilate velocity data obtained either computationally
or through Particle Image Velocimetry (PIV). Modal decomposition generates a reduced-order, approximate model in
terms of the DMD modes, which may be used for estimation.

If DMD is performed with both state and output data, a linear system that approximates the dynamics and the output
equation can be constructed, and a Kalman Filter (KF) may be applied to estimate the states [9]. We refer to this filter as
a DMD Kalman Filter (DMD-KF). To be useful for estimation, the DMD modes found should not only represent the
dataset in which DMD was performed, but also the ensemble of flow trajectories from which the dataset was obtained.
Ideally, we wish to obtain modes that are physically significant to the underlying dynamics and, thus, should generalize
to different realizations of the same system. DMD may be able to provide such a general model of the dynamics even if
the system is nonlinear.

DMD has a close relationship with an operator-theoretic description of dynamical systems based on the Koopman
operator [10]. The Koopman operator is an operator that advances observables of a dynamical system linearly in time
[11]. It serves as a way to represent a nonlinear system as a linear system [11]. If the DMD modes are able to correctly
approximate the Koopman modes of the underlying dynamics, then the DMD-KF is equivalent to the Koopman Kalman
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Filter (KKF) [9].

Obtaining physically significant modes is a goal of many DMD related papers: Extended DMD [12] uses a dictionary
of functions to better approximate the Koopman operator of the underlying dynamics; Total DMD [13][14] seeks to
correct for the effect of noisy data; [5] shows that Spectral POD optimally accounts for the variation in an ensemble
of DMD modes; and Sparsity Promoting DMD (SPDMD) [15] finds the most relevant DMD modes for a set of data.
Implementing these variations of DMD could potentially improve the perfomance of the DMD-KF, however such an
exploration lies beyond the scope of this paper.

This paper applies the DMD-KF to generate full flowfield estimates using DMD modes and data obtained from
a limited number of pressure sensors. We define the original data set as the training set, which contains PIV data
and pressure measurements. Sparsity Promoting DMD (SPDMD) selects a reduced number of modes in order to
simplify the system, while providing a sufficiently accurate approximation of the flowfield. The DMD-KF uses pressure
measurements as inputs to estimate a system in which the states are the amplitudes of the DMD modes. With knowledge
of the modes and an estimate of the amplitudes, the flowfield is reproduced. We evaluate the performance of the
estimator with the original, training data set, and a test data set consisting of a different realization of the same system.
Although our analysis was conducted offline, the estimator may be useful for real-time analysis and control of the
flowfield when in-situ PIV measurements are not available.

The main contribution of this paper is to apply the DMD-KF to experimental flowfield and pressure sensor data
generated by actuated airfoils at high angles of attack, an unsteady condition of interest for the application of feedback
control. The first experiment, a pitching cambered ellipse, illustrates the selection of modes for the reduced-order model
and shows the effect of the number of modes on the performance of the estimator. The second experiment, a surging
NACA 0012, is evaluated to characterize the performance of the estimator for various flow conditions. Various sources
of estimation error are analyzed and we suggest strategies to identify them.

The paper is organized as follows. Section II summarizes DMD, SPDMD, and DMD-KF. Section III describes
the implementation of the SPDMD algorithm on two experimental data sets. It includes the experimental setups, and
provides an overview of the process of selecting the number of DMD modes. Section IV evaluates the DMD-KF per-
formance via comparison to the original andDMD reconstructed data. SectionV summarizes the paper and ongoingwork.

II. Data-driven model reduction and estimation
DMD is a data-driven algorithm to compute the eigenvalues and eigenmodes of a linear model that approximates the

dynamics of data [16]. There are many variations of and additions to DMD [17]. This paper uses Schmid’s algorithm
[8] to obtain the DMD modes and eigenvalues and SPDMD by Jovanović, Schmid and Nichols [15] to select the most
relevant modes for a reduced-order model. The Koopman Observer Form by Surana and Banaszuk [9] creates an
observer matrix for the reduced-order model to be used in the DMD-KF for estimation [18].

A. Dynamic Mode Decomposition
Consider a dataset of m + 1 snapshots, where each snapshot corresponds to a vector of observables ψ(tk) ∈ Rn at

time step k for k = 1, ...,m + 1. The time between steps must be constant, i.e., tk+1 − tk = ∆t. It is common for n (the
dimension of the snapshot vector) to be much bigger than m + 1 (the number of snapshots). For example, in fluids
simulations or PIV data there are often more measurements than time steps. Form two matrices with these snapshots;
the columns of these matrices contain the snapshot sequence, offset by one time step, such that

Ψ =


| | |

ψ(t1) ψ(t2) · · · ψ(tm−1)
| | |

 and Ψ
′ =


| | |

ψ(t2) ψ(t3) · · · ψ(tm)
| | |

 . (1)

DMD yields an approximation of a linear operator A that advances the dynamics of the system one step forwards
in time, i.e., Ψ′ = AΨ. The best fit for this operator can be found using the pseudoinverse †, so A = Ψ′Ψ†. However,
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if n � m, this approach may not be practical. Instead, the eigenvalues and eigenvectors of A are obtained without
computing A explicitly, using a projected version of A. Consider the Singular Value Decomposition (SVD)

Ψ = UΣV∗, (2)

where ∗ indicates the conjugate transpose. The columns of U form the POD modes of the data set Ψ. The pseudoinverse
of the SVD satisfies Ψ† = VΣ−1U∗, which implies

A = Ψ′VΣ−1U∗. (3)

Ã is a low-dimensional projection onto the POD basis [8] defined by the columns of U, i.e.,

Ã = U∗AU = U∗Ψ′VΣ−1. (4)

If m < n, computing the eigendecomposition of Ã (m × m) is easier than computing the eigendecomposition of
A (n× n). Let Λ be the diagonal matrix of eigenvalues of Ã and W the matrix of right eigenvectors of Ã. The eigenvalues
of A are the same as the eigenvalues of Ã [19] and represent the DMD eigenvalues. The matrix of DMD modes

Φ = UW (5)

corresponds to the approximate eigenvectors of A [19]. Note that the DMD modes in (5) are a linear combination of
POD modes.

Let the vector α(t) of DMDmode amplitudes denote the approximate representation of the vector ψ(t) of observables
in the DMD-mode basis, so ψ(t) ≈ Φα(t). The time evolution is α(tk+1) = Λα(tk), which implies the approximate
solution for the dynamics of the vector observable is [17]

ψ(t) ≈ Φα(t) = ΦΛ(t−t1)/∆tα(t1), (6)

where ∆t = tk+1 − tk . using the decomposition (5) and (6) allows us to approximate the original data or data coming
from the same dynamical system, but with different initial conditions . Note the DMD modes and eigenvalues are
inherent to the dynamics, whereas the mode amplitudes depend on the initial conditions.

B. Sparsity Promoting Dynamic Mode Decomposition
DMD creates a sufficiently accurate reconstruction of data with only a few modes. To find those modes and their

initial amplitudes, we employ the Sparsity Promoting DMD (SPDMD) algorithm developed by Jovanović [15], which
consists of finding the mode amplitudes that minimize the cost function

Jγ (α(t1)) =
m∑
k=1
| |ψ(tk) − ΦΛtk /∆tα(t1)| |2 + γ |αk(t1)|. (7)

The first term in (7) corresponds to the difference between the original data and the DMD reconstruction, the second
term is a penalty on non-zero mode amplitudes, and γ is a positive parameter that weights this penalty. After minimizing
(7) for a particular value of γ, the modes with non-zero amplitudes are the modes chosen for the reconstruction; these
modes correspond to the most influential modes. Then (7) is minimized again with γ = 0, using only the chosen modes,
to obtain the optimal mode amplitudes to reconstruct the data with the reduced set of modes [15]. Although fewer
modes yield a less accurate reconstruction, only a few modes may reproduce the dynamics of the system with a sufficient
level of accuracy. The value of γ dictates the number m∗ of chosen modes, so it represents the desired balance between
the number of modes and the quality of the reproduction [15]. This process is illustrated in Section III.

C. Dynamic Mode Decomposition Kalman Filter
SPDMD is able to obtain the mode amplitudes that best fit a time series of training data. Determining the DMD

mode amplitudes provides an estimate of the data, even in real time. A Kalman filter is a dynamic observer that gives
real-time estimates of the system state given a dynamic model and noisy linear measurements from sensors. This section
describes a method to estimate the mode amplitudes and thus the whole data set using only a subset of the measurements.
Based on Surana’s Koopman Observer Form [9], the main idea is to use DMD on the training data to generate a linear
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dynamical system that represents the dynamics we observe and to use a Kalman Filter to estimate this system from
sensor measurements in the test data.

When constructing the snapshot matrices from the training data, every snapshot ψ(tk) must contain the states
(x ∈ Rnx ) to be estimated concatenated together with the observables (y ∈ Rny ) that will be readily available as
measurements. Here, x corresponds to PIV measurements and y corresponds to pressure sensor measurements. The
snapshot matrices are

Ψ =



| |
x(t1) · · · x(tm)
| |
| |

y(t1) · · · y(tm)
| |


Ψ
′ =



| |
x(t2) · · · x(tm+1)
| |
| |

y(t2) · · · y(tm+1)
| |


. (8)

Next, apply the DMD and SPDMD algorithms to obtain a tuple of m∗ DMD eigenvalues (λi) and DMD modes (φi)
and arrange them so complex conjugates are grouped together. The amplitudes obtained from SPDMD are not required
to create a DMD-based observer, however it is useful to have as reference the best possible reconstruction using the
chosen set of modes. Form observation matrix C by letting Ci be the ith column of C with [9]

Ci = φi if φi is real, and
Ci = Re (φi) and Ci+1 = Im (φi) if φi and φi+1 are complex conjugates.

(9)

Form the dynamics matrix F as a block diagonal matrix such that F has a diagonal entry Fi,i = λi , if λi is real, and
block diagonal entry [9] [

Fi,i Fi,i+1

Fi+1,i Fi+1,i+1

]
=

[
Re (λi) Im (λi)
− Im (λi) Re (λi)

]
, (10)

if λi and λi+1 are complex conjugates. Split C into Cx and Cy , corresponding to the first nx and the last ny rows of C,
respectively. Let z denote the vector of DMD amplitudes expressed in block modal form. These matrices define the
linear dynamical system [9]

zk = F zk−1 (11a)
yk ≈ Cy zk (11b)
xk ≈ Cx zk . (11c)

If the system given by equations (11a) and (11b) is observable, then a linear state observer such as a Kalman filter
will estimate z given measurements y. The Kalman filter is the optimal algorithm to estimate the states of a linear
system subject to Gaussian process noise with covariance Q and measurement noise with covariance R [18]. It involves
propagating the current estimate ẑ and covariance P of the current estimate in time using knowledge of the dynamics
and updating these values based on measurements. In this particular implementation, an extra step is added to compute
the estimate of x using (11c). Given the system described by (11), the filter equations are [18]

Estimate Propagation ẑ−k = F ẑk−1 (12a)
P−k = FPk−1FT +Q (12b)

Kalman Gain Kk = P−k Cy(CyP−k CT
y + R)−1 (12c)

Assimilating measurements ẑk = ẑ−k + K(yk − Cy ẑ
−
k ) (12d)

Pk = (I − KCy)P−k (12e)
Estimate of x x̂k = Cx ẑk . (12f)

The superindex − refer to the estimate before assimilating measurements. The symbol ˆ indicates the quantity is an
estimate, not the true value.
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D. Sources of Error in the Dynamic Mode Decomposition Kalman Filter
The system dynamics (11) can be written as

xk+1 = CxFC†xxk + wk ; yk = CyC†x xk + vk . (13)

The process noise wk and measurement noise vk include the inherent noise from the dynamics and the loss of information
due to the approximation. The process noise can be split into components either in, or orthogonal to, the span of DMD
modes: i.e.,

wk, = CxC†xwk ; wk,⊥ = wk − wk, . (14)

The terms wk, and vk correspond to the process and measurement noise in the reduced-order model and are related to
the uncertainty induced by assuming a linear model for the reduced order dynamics. We compute Q and R as

Q = Cov
[
C†x xk+1 − FC†x xk

]
; R = Cov

[
yk − CyC†x xk

]
. (15)

In contrast, wk,⊥ is unrelated to the filtering process and corresponds to the inability of the chosen DMD modes to
account for the variability in the states to be estimated. The DMD-KF will only produce estimates in the span of DMD
modes, so the best possible estimate for the state, in the least squares sense, is x̃ = CxC†xx. We denote this quantity as
DMD projection. The DMD projection is useful to quantify the information lost from projecting into a low-dimensional
model.

We distinguish between three different ways to recreate the evolution of a flowfield from a modal decomposition:
projection, reconstruction, and estimation. Projection refers to projecting the test data into the span of the modes
generated from the training data. This process yields the least possible `2 norm of the difference between instantaneous
test data snapshot and a representation in terms of the selected modes, and thus can serve as a lower bound for the error.
Reconstruction refers to finding the initial mode amplitudes that produce a trajectory, given by (6) (i.e., propagation of
DMD modes assuming no process noise), which minimizes the difference from the test data. Estimation refers to the
result of implementing a DMD-KF to obtain an approximation of the test data using only a limited set of measurements.
A large difference between the projection and the reconstruction may indicate a large process noise covariance, which
can be attributed to inherently noisy dynamics, or a flawed dynamic model. If the reconstruction error is small, but the
estimation error is large, the problem may be due to a flawed measurement model.

III. Dynamic Mode Decomposition on an actuated airfoil
This section describes the application of the DMD and SPDMD procedures described in Sections II.A and II.B to

two different experimental datasets from airfoils in periodic unsteady flow conditions. Both datasets consist of a time
series of phase-averaged PIV data and pressure data from sensors embedded in the airfoils. Phase averaging means that
several actuation cycles were done experimentally, then data corresponding to the same phase at different cycles was
averaged together to produce a single cycle. This procedure reduces the noise in the data, but it also smooths out flow
features that do not occur periodically. Getting rid of such features may or may not be desirable, but analyzing them is
beyond the scope of this paper. We refer to these phase averaged datasets as the training datasets, as these are the sets
from which the DMD modes for the DMD-KF are obtianed.

Experiment 1 consists of a pitching cambered ellipse in reverse flow, with 17 pressure sensors on the suction side of
the airfoil and 13 pressure sensors on the high pressure side [20]. The states to estimate correspond to the velocity
components at predetermined grid points in the airfoil frame of reference. Since the airfoil was pitching while the PIV
cameras were stationary, the region around the airfoil where data could be gathered varied during the pitching cycle.
DMD requires information about every state in every snapshot, so only the points for which there is data during the
whole pitching cycle are included in the area of interest shown in Figure 2a, which is the largest area fixed in the body
frame that remains in the field of view through a complete pitching cycle. Table 1 shows the parameters used in the
experiments.
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Parameter Experiment 1 [20] Experiment 2 [21]

Reynolds number 165000 40000
Free stream velocity 11.9 m/s 0.34m/s
Angle of attack 180°–200° 25°
Airfoil Cambered ellipse NACA 0012
Actuation Pitching sinusoidally Surging sinusoidally
PIV data points 16907 10369
Pressure sensors 30 8
Time steps 100 84–255

Table 1 Summary of experimental parameters. Fig. 1 Actuation trajectories for
Experiment 2.

(a) Experiment 1 (b) Experiment 2

Fig. 2 Configuration of Experiments 1 and 2. a) Experiment 1: The area of interest is fixed in the airfoil frame
[20]. b) Experiment 2: The camera moves with the airfoil so the area of interest is the field of view minus the
airfoil and PIV shadow [21]. The teal arrows indicate the actuation direction.

Experiment 2 consists of a surging NACA 0012 airfoil with 8 pressure sensors on the suction side of the airfoil [21].
The Experiment 2 data set includes four different cases that vary the reduced frequency (k) and amplitude (Amp) of
the surging motion, as shown in Figure 1. The amplitude is relative to the nominal Reynolds number and the reduced
frequency is the actuation frequency ω nondimensionalized by the freestream velocity v0 and the chord length c as

k =
ωc
2v0

. (16)

The first step is to construct snapshot matrices as presented in (8), with x corresponding to PIV measurements
arranged in a column vector and y corresponding to the pressure sensor data. The DMD modes and eigenvalues
are obtained following the algorithm described in Section II.A. This algorithm produces m DMD modes, where
m + 1 is the number of time steps in the data, which is usually more than needed to accurately represent the system
dynamics. Using fewer modes makes the estimation process run faster, so it is desirable to use only a small number
of relevant modes. The SPDMD algorithm described in Section II.B is used for this purpose. Varying the sparsity
promoting parameter γ provides a wide range of different mode numbers. Part of the SPDMD algorithm involves
reconstructing the training data, which consists of finding the mode amplitudes that minimize the square of the
difference between (6) evaluated at every time step and the original data. The reconstruction is important because it
provides the best fit using (6) and thus can be used to evaluate if the system dynamics are well represented by a linear
time evolution. The best number of modes can be chosen by looking at the percentage loss accuracy of the recon-
struction (Figure 3b), or by plotting the reconstruction and comparing it qualitatively to the training data set (see Figure 4).
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(a) Experiment 1 (b) Experiment 1 (c) Experiment 1 (d) Experiment 2

Fig. 3 (a) Number of modes chosen by SPDMD for different values of γ for Experiment 1. (b, d) Percent
performance loss versus number of modes for Experiments 1 and 2. For Experiment 1: 5, 13 and 99 (all) modes
are chosen for comparison. For Experiment 2: 19 modes are chosen for all cases. (c) Comparison of projection
error for DMD and POD modes from the test set and POD modes from the training set for Experiment 1.

Figure 3a shows how the number of modes changes with γ in experiment 1. The percent performance loss from
reconstruction of the data with DMD modes is defined as 100

√
J0(α)
J0(0) [15]. Figure 3b shows the percent loss of accuracy

drops rapidly between 0 and 13 modes, which implies there are diminishing returns from using additional modes. Figure
4 shows the original data from Experiment 1 and the reconstruction at half the actuation period, when the leading edge
vortex is about to be shed. The original data and the reconstruction with all the modes look nearly identical. In the
reconstruction with 13 modes, the vortex can still be seen, but it is not as clearly defined. In the reconstruction with just
five modes, the leading edge vortex does not appear; only the leading and trailing shear layers are visible.

Fig. 4 Training set data and reconstructions with different number of modes for Experiment 1 at half the
actuation period (t*=0.5). The reconstruction with all modes looks nearly identical to the original. With 13
modes some detail is lost but the main structures remain; with 5 modes the leading edge vortex indicated by the
black box is not reproduced.

For estimation, the chosen modes are not used to represent the same data set from which the modes were obtained
(the training set) but rather new data from the same dynamical system (the test set). To quantify the information lost
from using a set of modes to represent a different realization of the system, we compute the projection of the test set into
the span of the modes obtained from the training data. Fig. 3c shows the projection error using DMD and POD modes
of the training set and POD modes of the test set for Experiment 1. Note that the test set consists of instantaneous PIV
data, representative of a case of real-time estimation. POD modes form a more accurate projection of the data; the
difference corresponds to using three or four more DMD modes for the same level of accuracy, similar to the result
obtained in [2]. The projection error from the POD modes of the training and test data are very close for the first 10
modes, suggesting that they contain very similar information. For more modes obtained from the training set, the
projection error stays almost constant. Even with the set of POD modes obtained from the test data, the projection error
decreases slowly with the number of modes. Attaining an error below 5% requires over 60 POD modes.

8



IV. Dynamic Mode Decomposition Kalman Filter estimation results
After an appropriate number of modes is chosen, an observer is created following the procedure described in Section

II.C. The DMD Kalman Filter estimates the mode amplitudes from pressure measurements in order to generate the
corresponding estimate of the flowfield. For illustration purposes, we use Experiment 1 to show the results of choosing
different numbers of modes and Experiment 2 to present results for different actuation cases. In both experiments,
the DMD-KF is designed using phase-averaged data, but for Experiment 1, the estimation is tested using both phase
averaged (from the training set) and instantaneous (from the test set) measurements. For Experiment 2, the test data
consists of phase-averaged measurements, so only one period is available. The time t∗ indicated in the results is the time
normalized by the period of the actuation.

A. Experiment 1: Pitching cambered ellipse
We apply the DMD-KF to both the training and the test data to compare performance and identify if the model is

overfitting the data. A plot of the estimation, reconstruction and projection error over a period is used to evaluate the
estimator quantitatively. A plot of the flowfield is shown to identify if flow structures are being identified properly and
to evaluate the performance of the estimator qualitatively.

Figures 5a to 5c show the normalized error the reconstruction, projection, and estimation of training data. The
normalized error is defined as the average magnitude of the difference between the estimated (or reconstructed) field and
the original flowfield, normalized by the average velocity during the period. At the initial time step, the reconstruction
and estimation differ, but then quickly converge. The error in both the estimation and reconstruction with 5 modes rises
around the middle of the period, which is consistent with the reconstruction being unable to properly reproduce the
leading edge vortex that is shed around this time. The error also increases when using 13 modes but not as drastically as
with 5 modes. The estimation using all modes takes more time to converge, and does not achieve the low error of the
corresponding reconstruction using all the modes, but it does achieve the lowest error overall. A downside of using all
modes is the increased computational time to compute the estimate, since the computational burden of computing a
Kalman filter is highly dependent on the number of states [18].

Figures 5d to 5f show the corresponding normalized errors for the test data. Both the reconstruction and the
estimation error increase, but the reconstruction error increased noticeably more. The reconstruction assumes no noise
in the dynamics, so it is unable to correct for noisier dynamics and the difference in the evolution of the system between
the test and the training data. The high value for the error in the case with 99 modes indicates that the extremely low
value obtained in the reconstruction of training set data may be due to overfitting. When applied to the test data, the
advantage of using more modes is lost. In fact, the reconstruction and estimation errors for 99 and 13 modes look nearly
identical, which suggests that most modes beyond the first 13 are irrelevant for reproducing the dynamics of the new
data set. It should also be noted that the estimation error approaches the projection error, so to improve the performance,
it is necessary to find a set of modes that better account for the variation in the test data. As shown in Figure. 3c, many
modes are needed to reduce the error significantly.

It is possible that the difference between the estimation and the test data is not a useful metric for the performance of
the estimator. The test data contains turbulent flow, which might need to be filtered out to perform feedback control based
on coherent flow structures. In this case, a new error metric should be developed, to quantify the filter’s ability to identify
flow features useful for feedback control. Motivated by this, the performance of the estimator is studied qualitatively.
Figure 6 shows the results of implementing a DMD-KF choosing 13 modes for the estimation. For times t∗ = 0 and
t∗ = 0.2, the estimation is able to reproduce the test data fairly accurately. For t∗ = 0.5 the turbulent behaviour is not cap-
tured in detail, but themain flow features, such as the shear layers and the leading edge vortex, are present in the estimation.

B. Experiment 2: Surging NACA 0012
The DMD-KF was applied independently to four cases of Experiment 2, with the same number of modes, for

comparison purposes. The number of modes m∗ = 19 was chosen by looking at Figure 3d, which shows the percent
performance loss versus number of modes. There is little improvement in performance by adding more than 19 modes
in any of the cases. The estimation is performed on the same data from which the DMD modes are obtained, i.e., the
training and the test data are the same.
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(a) All modes, training data (b) 13 modes, training data (c) 5 modes, training data

(d) All modes, test data (e) 13 modes, test data (f) 5 modes, test data

Fig. 5 Experiment 1: Estimation, reconstruction and projection error. The normalized error is the mean
error in the velocity field, normalized by the average velocity. For estimation of the training data with all modes,
error begins high but decreases consistently. In all other cases, the error increases near t∗ = 0.5 due to inability
to reproduce the highly turbulent separated flow. The vertical lines in (e) correspond to the frames shown in
Figure 6.

Figure 7 shows the projection, reconstruction, and estimation error for all actuation cases in Experiment 2. In all
cases, the initial estimation error was high. There are fewer sensors than modes, so the modes can not be inferred
instantly, rather by comparing the predicted dynamics with the observations. The reconstruction error is also high at
the initial time for most cases, while the projection error is low. It is possible that there are initial transients with a
time evolution that is not well captured by the chosen modes. In the cases with Amp = 1; there is a secondary peak in
estimation error; however in this case the reconstruction error is low. This result implies the system is evolving in a
manner that is well approximated by the DMD linear model, but the DMD-KF is unable to capture the time evolution,
possibly due to a flaw in the measurement model.

As a representative example, Figure 8 shows the flowfield for Case 3 at several points of interest. At the initial time
there are large differences, especially around the tail of the airfoil. Around t∗ = 0.2 the flow speed is low, which might
mean the flow is hard to observe; there is a peak in error observed in Figure 7d. Around t∗ = 0.6, the original and the
estimation look nearly identical. During the remainder of the cycle, the shedding of the leading edge vortex occurs, a
process with more turbulence, so it is expected that the error in both the estimate and the reconstruction will be higher.
Nonetheless, it is possible to see on the frame corresponding to t∗ = 1 that the estimate reproduces the main features in
the flow.
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Fig. 6 Experiment 1: Test set data, training set data, and estimation of the test data with 13 modes at several
times of interest. For t∗ = 0 and t∗ = 0.2, the estimation approximates the test data with very little error. For
t∗ = 0.5 and t∗ = 0.6 there is more error overall, but the main flow structures, such as the shear layers and the
leading edge vortex are reproduced.
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(a) Case 1: Amp = 0.25 k = 0.160 (b) Case 2: Amp = 0.25 k = 0.511

(c) Case 3: Amp = 1.00 k = 0.160 (d) Case 4: Amp = 1.00 k = 0.511

Fig. 7 Experiment 2: Estimation, reconstruction error and projection. Normalized error is as defined in figure
5. Initial error was consistently high but decreased rapidly. In some cases the estimation diverges from the
reconstruction in the first half of the period, but in all cases they converge near the end. The vertical lines in
Case 3 indicate the frames shown in Figure 8.

V. Conclusion
ADynamic Mode Decomposition Kalman Filter (DMD-KF) was applied to estimate the unsteady flowfield around an

actuated airfoil, using information from pressure sensors. This estimation method consists of using Sparsity Promoting
Dynamic Mode Decomposition (SPDMD) [15] and the Koopan Observer Form [9] to create a linear system that
approximates the dynamics of the unsteady flow, and a Kalman Filter to estimate the states in this linear system using
pressure measurements.

The process of mode selection using SPDMD, and the effects of varying the number of modes, was shown using
experimental results from a pitching cambered ellipse. There is a trade off with the number of modes: more modes
increases the time for estimation convergence, both by increasing computational time and by taking more time steps to
converge. In general, using more modes yields a better estimation, but using a small number of modes is enough to
provide a fast and accurate representation of the flowfield.

The DMD reconstruction, DMD projection, and the DMD-KF estimation use DMD modes to approximate a
flowfield. However the reconstruction and projection require complete knowledge of the flowfield to reproduce it with
DMD modes, whereas the DMD-KF estimation uses pressure sensor measurements only. Estimation error may arise
from the DMD modes not spanning the features of the data to estimate, or the dynamics may not be well approximated
by a linear system. The DMD projection is useful to distinguish between both sources of error, since the projection is
independent of the modeled dynamics.

Ogoing work is focused on using the DMD-KF flow estimation to obtain useful information, such lift or the position
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Fig. 8 Experiment 2: Original and estimated flowfield and estimation error using 19 modes at several times of
interest for case 3. Error in estimation increases when the leading edge vortex is shed, but main features are still
reproduced. For the original and estimation flowfields, the color red (blue) indicates positive (negative) vorticity.
For the difference field, the color red indicates magnitude.

of the leading edge vortex, and evaluating the performance of the estimator in terms of these quantities. Note that the
error measure presented in this paper is defined by comparing the velocity at every grid point, which does not necessarily
reflect the quality of the estimation of specific flow features that may needed in practice for an effective feedback control.
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