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Abstract—We describe a novel tracking system for recon-
structing three-dimensional tracks of individual mosquitoes in
wild swarms and present the results of validating the system
by filming swarms and mating events of the malaria mosquito
Anopheles gambiae in Mali. The tracking system is designed
to address noisy, low frame-rate (25 frames per second) vide
streams from a stereo camera system. Because flyidgh. gambiae

mosquitoes may inform the first steps towards strategies of
vector control [7], [8].

Multi-target tracking systems have been developed forrothe
animals. In two dimensions, ants have been tracked using a
joint-state particle filter and interaction models [26].thtee-
dimensions, up to a hundred bats have been tracked with three

move at 1-4 m/s, they appear as faded streaks in the imagescameras using a Kalman filter in conjunction with a multi-

or sometimes do not appear at all. We provide an adaptive
algorithm to search for missing streaks and a likelihood furction
that utilizes streak endpoints to extract velocity information.
A modified multi-hypothesis tracker probabilistically addresses
occlusions and a particle filter estimates the trajectories The
output of the tracking algorithm is a set of track segments wih
an average length of 0.6—1 seconds. The segments are verifadl
combined under human supervision to create individual traks up
to the duration of the video (90 s). We evaluate tracking peidr-
mance using an established metric for multi-target trackirg and
validate the accuracy using independent stereo measuremisrof a
single swarm. Three-dimensional reconstructions ofAn. gambiae
swarming and mating events are presented.

I. INTRODUCTION

dimensional assignment strategy [18], [19]. Fruit flies énav
been tracked in an acrylic box by setting up the problem
of data association across views and time in the form of a
global optimization problem that is solved at every step.[20
Real-time tracking systems for flies were developed using an
extended Kalman filter in [21], [22]. Each of these track-
ing systems implements a nonlinear filtering or optimizatio
method with specialized likelihood functions, data asstan
strategies, and/or experimental design. However, theetsirg
are large with a dark center or appear in an arena constructed
to minimize noise, unlike wild mosquitoes.

Filming wild mosquitoes poses special challenges such as
low natural lighting and a cluttered dynamic background.
At least two cameras are needed to reconstruct the three-

Quantitative observations of the flight patterns of wildimensional position of individual mosquitoes. A multi-

mosquitoes are critical to expanding our understanding cimera setup with a large baseline reconstructs positions
swarming and mating behavior [1], [2], [3], [4], [5], [6]. accurately, but may be difficult to implement in the field.
Female Anopheles gambiae find male swarms in order to In a multi-target scenario, one must also address the data-
mate [7], [5]. A single mating event results in all of theassociation problem, which entails assigning image blobs
fertilized eggs that a female mosquito lays in her lifetimto targets across multiple views and time steps. With the
[8], [9]. Although the basis of mate selection has generat#pical number of mosquitoes in the swarms we stutji¢ite
much interest [7], [10], [11], [8], [6], generation of three data-association problem is non-trivial. The challengs in
dimensional trajectory data of mosquitoes in wild swarntsacking small, highly maneuverable targets that appedots
has not been previously accomplished. As in earlier work @ faded streaks in noisy images with frequent occlusions.
midges [12], such trajectory data can provide valuableghitsi  This paper describes an automated multi-target trackiag sy
into the dynamical aspects of collective behavior [13],][14tem that reconstructs the three-dimensional flight kineraatf
Past studies on swarming insects [2], [3], [5], [15] focused individual mosquitoes in wild swarms. We collect data using
two-dimensional trajectories or three-dimensional pos#. two cameras operating synchronously at 25 frames per second
Recent advancements in high-resolution filming, computéfhe frame rate is limited by the ambient light.) The cameras
vision, and estimation techniques have increased the d@jreand a laptop are powered by an uninterrupted power supply
automation in data collection, and have made availableslarJPS) for up to thirty minutes. The mosquitoes appear as dark
datasets for subsequent analysis, such as those develmpedtfeaks or dots on a light background. At high speeds, the
starlings [16] and fruit flies [17]. Similar analyses of maéh mosquito streaks fade, making them hard to detect and even
harder to track. Because the swarms are dense, occlusens ar
frequent and often appear in both camera frames. We tested th
system by filming swarms and mating eventsAof gambiae

in a rural village in Mali in August 2010. Fig. 1 shows a
pair of magnified and enhanced sample frames from this field
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experiment. Il. PROBABILISTIC TRACKING AND DATA ASSOCIATION

Our aim in designing the mosquito tracking system was
to combine nearly indistinguishable measurements availab
from stereo images recorded at discrete times into trajesto

i that represent real mosquitoes (targets). We represegettar
: i at time stepk by the state vectorX;[k] € RS, which
contains the target’s instantaneous three-dimensiorsitipo
iy and velocity. In a Bayesian framework, a tracking algorithm
E‘:’ : 18 Aug, 2010 recursively iterates through two steps: the update stepttend
- predict step. The update step uses a measurement model to
Fig. 1. The pair of images above are magnified and enhancaibmerof '€ViS€ the estimate based on new observations. The predict
raw footage obtained from the authors’ field work in Mali. step integrates a motion model to obtain the target stateeat t
time of the next measurement. The measurenigfit| € RS
In order to track each insect in a wild swarm, we imin our case consists of the two-dimensional positions of the

plemented a probabilistic multi-target tracking framekvor Midpoint and two endpoints of an elongated blob in an image
Specifically, the contributions of this paper are as follpgeg that corresponds to the motion-blurred silhouette of a gyin
we provide a measurement likelihood function that utilize®0Squito in each of the two images. Assuming motion model
the properties of image streaks such as midpoint and endpdin@nd measurement modél, the state of target satisfies
locations to extract insect position and velocity; (2) wevide L] — Th
methods to improve data association in noisy images by Xilh) = F(Xilk = 1], w)
adaptively seeking missing measurements and splitting oc- Zi[k] = H(Xi[k],n),
cluded blobs into individual measurements; and (3) we pitesgvherew andn denote disturbance and noise values, respec-
validated tracking results in the form of three-dimenslongvely.
trajectories of wild mosquito swarming and mating events Because of noise, disturbances, and approximationg' in
filmed in Mali in August 2010. Although we describe theand H, the state estimate is a random quantity represented in
experimental method and tracking algorithm for mosquitge form of a probability density function (pdf). We recwedy
swarms, the techniques presented in this paper may be befighstruct the filtering pdfp(X[k]|Z*) of the joint state
ficial for generating trajectory data for other insect swaim X[k at timestepk given the setZ* of all measurements
the field or laboratory. up to k using the conditional probabilities(Z;[k]| X;[k])

The tracking system is implemented in MATLAB and conand p(X; (k]| Z*~!). The probabilityp(Z; (k]| X;[k]), known
sists of two parts: an automated component that outputk trags a likelihood function, is the conditional probability of
segments called tracklets and a human-supervised compomeeasuremeng; (k| given the stateX;[k]. The filtering pdf
that is used to verify and combine the tracklets into fullean be obtained with minimum mean-square error provided the
length tracks. Tracklets produced by the automated conmgonmodelsF and H are linear and the noise valuesandn are
typically range between 15-25 frames (0.6-1 s) long and c@awussian. Otherwise, it is possible to use suboptimal ndstho
be used to extract position and velocity data for 80% of thgich as an extended Kalman filter [23], which predicts and
swarm. The human-supervised component uses a particte filipdates the estimate using a first-order linearization pfdi
to combine tracklets into individual mosquito tracks. lkea a particle filter [24], [25], which represents the targetestas
approximately 20 minutes to generate a 10-second track (25foint-mass distribution. A particle filter is attractivethat it
frames). When validated using data filmed in Mali in Augustlaxes most restrictions on the target and measuremerglmod
2010, the tracking system produced 30-40 second trajestornd the disturbance and measurement noise, but a particle
of individual mosquitoes in swarms of 6-25 mosquitoes. Weter is computationally burdensome for a large, jointteta
have reconstructed six swarms and six mating events fr@pace. We address the computation-size problem by making
these data. We evaluate the performance of the automatied assumption that the targets do not interact at shorttime
component of the tracking system using an established enetales €40 ms), which allows us to use a separate filter
based on position error and the number of targets trackied each target. Particle-filtering methods also allow us to
(cardinality); tracking accuracy was also evaluated usimgy encode extra information such as the velocity of the mosquit
independent rigs to simultaneously track the same swarm. using the streak endpoints. (See Supplementary document fo

The paper is organized as follows: Section Il provides @ description of particle filtering.)
background on multi-target tracking, data associatiord an A multi-target tracking system must associate measuresnent
tracking performance evaluation. Section Il presentgibvel and targets. A target-based method associates each target t
components of the tracking system, including the likelithooa measurement [23], whereas a measurement-based method
function and occlusion reasoning. Section IV describes thssociates each measurement to a target [27]. A measurement
data collection, validation methods, and performanceuwevabased method can inherently handle a variable number of
ation; it also includes representative kinematic data fdd w targets, which may appear and disappear from the field of view
mosquito swarming and mating events. Section V summariZeise reliability of the association depends on the proxiroity
the paper and our ongoing analyses of the kinematic data.the actual measurement to the predicted measurement, ishich

(1)



produced from the target estimate using the motion model aj3d]. We evaluate the performance of our tracking algorithm
the measurement model; measurement proximity is detetminesing manually generated ground-truth as well as filminggisi
using the position likelihood function. two independent camera systems. For comparing tracking

Our choice of a data-association strategy is based on speegults with ground truth we use the Optimal SubPattern
variability, and density of targets in the image. A nearesfssignment (OSPA) metric [34], which is a well-established
neighbor association is target-based and associates ¢ie pretric for evaluating multi-target tracking algorithms3]3
dicted measurement to the nearest measurement. It wottkat allows comparison of sets with differing cardinalifgee
well in low-target densities with high frame rates [28], [21 Supplementary document for details on computing OSPA.)
but results in duplicate tracks and incorrect associatiains
high target densities. A global nearest-neighbor (GNNpass
ciation avoids duplicate assignments by minimizing a globa
assignment [29]. GNN has been successful in tracking dens&’'he mosquito tracking system takes a sequence of stereo
aggregations [17], [30] in which the number of targets aieage pairs as input and produces three-dimensional tracks
fixed and move in two dimensions (so that target overlags output. Fig. 2 depicts a block diagram of the tracking
is rare), however, the possibility of a variable number afystem, which was created in MATLAB and includes an auto-
targets and frequent occlusions make it difficult to use GNMated tracking algorithm and a human-supervised component
without additional heuristics. Short-duration occlusi@an be Image streaks are modeled as straight lines; we extract the
addressed using motion coherence [31], [18], [20], whereasdpoint and endpoints as measurements. We find missing
long-duration occlusions can be overcome by methods thmeasurements using a gating volume generated around pre-
minimize a global cost function over all measurements in dicted measurements. Measurement pairs, i.e., one from eac
sliding window [19]. However, it is not clear how an offlinecamera, that satisfy the epipolar constraint [38] are $edec
global optimization method might address a low probabilitior data association. We again use a gating volume to assign
of detection which is common in our datasets. Instead, weeasurements and targets to independent sets calledrsluste
selected a measurement-based method called the multiptestead of generating definite tracks, hypotheses commgecti
hypothesis tracker (MHT), which looks into future assigmine measurements to targets are propagated to the next step usin
probabilities before making a decision on the current assiga particle filter. Based on the probability of each hypothesi
ment [27]. Within the MHT we use a motion model at eacthe current time step, the number of hypotheses at a previous
step to search for missing measurements. time step are reduced to a single assignment. A particle filte

A hypothesis in MHT is a combination of measuremeniserifies and combines tracklets under human supervision and
target assignments that satisfy the following two rules]:[27the combined tracks are passed through a Kalman smoother.
(i) a target is not associated to more than one measurem€hé tracking algorithm is summarized in Table |.
and (ii) a target is only associated to a measurement that lie
within its gating volume. The gating volume or validation TABLE |
region is generated from the difference = uw — f(r)
between the position measurement R? and the predicted : .

" 5 . Input: Sequence of synced images from a stereo-camera setup,

position measuremenf(r) € R*. Let S be the covariance camera calibration matrices, parameters in Table I
of v, which is also called the innovation. If a measurementOutput:  Estimated three-dimensional mosquito trajectories

that is normally distributed about the true value lies withilF‘;dea;h time Ste'&:t Vodel each bioh Caicht e and find
. . . . 2 _ Tao-—1 . ract measurements: odel eac 0D as a stralg Ine ana tin e
the validation region, the weighted norfiwv||* = v* S~ 'v midpoint and endpoints.

satisfies||v|| < tgate. (The quantity||v|| is also called the 2: Find missing measurements, if any: Ensure that each hypothesized target
Mahalanobis distance [32].) For example, a threshold valuehas at least one measurement within the gating volume; iflaatr the

o . . . intensity threshold. If a measurement is found append ihéoeixisting set
tgate = 16 defines a region around a predicted measurement ;2 rements.

with 99.97% probability of containing the actual measureimes: validate: Use the epipolar constraint (3) to generate valid measureme
[23]. A measurement may be assigned to an existing targetpairs, one from each camera view.

. Cluster: Use gating volume of each target within a cluster to add
a new target, or a false alarm. As time progresses ea easurements to that cluster. A cluster is the smallestf seeasurements

hypothesis gives rise to successive hypotheses resufting i and targets that exist independently; combine/divide tiejsclusters as
exponential growth in time. Hypothesis reduction straegi  needed.

include applying a threshold on track probability, chogsin 5: ;:%nkglétﬁtirggoth@es: Generate hypotheses for each cluster, and compute

few best hypothesis [32]' and C|UStering the targets [8¢e( — Resolve occlusions: If an occlusion is detected split the image blob

IIl. THE MOSQUITO TRACKING SYSTEM

Mosquito tracking algorithm

Supplementary document for a description of MHT.) into individual streaks as described #ill-C and recompute the
Measures of effectiveness to evaluate a multi-target inack hypotheses. _
algorithm include the foIIowing [33]. track initiation dﬂ' 6: Hypothesis reduction: Based on the most probable hypothesiskaand
. . " . ’ scanback rangeVs, reduce the number of hypotheseskat- N to a
(timeliness), position and velocity errors (accuracyagfnen- single assignment.

tation and identity swaps (continuity), and number of tésge7: Initialize & update: Initialize tentative targets from unassociated measure-

tracked (cardinality). Performance evaluation also idekivi- ~ Ment pairs; resample target states based on hypotheses thsirthree-
A . . . dimensional estimate and velocity likelihood function. (Zach new target

sual verification, running the algorithm on simulated dai] ] forms a new cluster.

comparison with manually generated ground truth, and recdh Predict: Use the constant velocity motion model with random (Gamgsia

structing the same event from independent camera system&isturbance to propagate hypotheses to timestepl.
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Fig. 2. Block-diagram of the mosquito tracking system.

The remainder of this section describes the novel aspetiiseshold on the blob area. (See Table Il for the values of
of the tracking system that we designed to improve its accilne threshold parameters.)
racy and level of automation. First, we describe an image-Due to the duration of the camera exposui & 25 msY,
processing technique to find missing measurements duriiagt mosquitoes (1-4 m/s) appear as elongated image blobs or
image segmentation. We then describe the measurement matielaks. Depending on the mosquito speed, the streaks ihay fa
that is used to extract velocity information from streakastly, to appear in the foreground for a given valuetgf;. Existing
we present the data-association method, including theegiya strategies for low signal-to-noise environments inclutle t
to detect and address mosquito occlusions. track-before-detect approach [36], which permits raw sens
data as the input. The success for track-before-deteetsreli
on the low target density and relatively straight movement
of targets in the measurement space [37]. However, using
During observation of mosquito swarms, which typicallyaw sensor data is not a viable option for mosquito tracking,
appear silhouetted in front of swaying trees under a clougécause it generates more false targets than observed in a
sky, it may not be possible to use a static (mosquito-freghgle noisy image. Instead, we search for the missinglstrea
background to segment the mosquitoes out of the imageew foreground generated using a threshfld= 0.75t,,;.
stream. Instead we create a dynamic background by choosit{e search is performed within the gating volume of the
the highest intensity point within a sliding window [35]. e predicted measurement. If a missing measurement is found,

B,,, be the background image value at the pixel positiev) it is added to the list of existing measurements.
andt,, = 2d+1 be the width of the sliding window centered A measuremenz¢ — ¢, uc, e )T from camerac con-

A. Extracting measurements

at time stept. The background value at timeis tains the image locations of a streak’s staft, midpoint
Buokl= max Byl @) u®, an_d er_lde % Thesg valu_es are extracted f_rom a blob by
' i€lk—d.k+d] modeling it as a straight line along the major axis of the

bounding ellipse. The streak therefore represents a petigpe
dprojection of the mosquito trajectory for the duration of
exposuredt.. Let a¢ = [(u®)?,1]7 be the homogeneous
representation ofi¢. A pair of measurements with midpoints
u! andu?, one from each camera, must satisfy the epipolar
I%nstraint [38]:

The foreground-' is obtained by subtracting the background
from the current imagd and applying an intensity threshol
tint, 1.€., Fy k] = max(Iyu[k] — Buylk], tint). We auto-
matically select the value af,,; by running the background
subtraction algorithm recursively on different segmeritthe
image sequence until the number of blobs detected are witl§ o1
an acceptable range of the expected number of mosquitoes. |(“ )" Fa } <te, ®3)
We_ extract blobs using theegionprops routine in MATLAB, where F' € R3*3 is the fundamental matrix for the stereo
which performs connected-component labeling to extraaet fe

tures S_UCh as Centm"dv area, and bounding ellipse. We T®MOVThe duration of exposure (25 ms) is less than the time betvieenes
large insects and birds from the foreground by applying (@ ms). The remaining time (15 ms) is for image processing.



camera calibration antl < 1 is a value that depends on cali- 4
bration accuracy. Measurement pairs from a true targedfgati ss
the above constraint; clutter or mismatched measuremeénst pa s
should not. We use the midpoint and endpoint locations t s

™

define a likelihood functions for position and velocity. &,
1.5
B. Position and velocity likelihood functions 1

A constant-velocity model suffices to describe the mosquit °°
motion during the exposuré¢. = 25 ms. (The streaks are 0 ! 2 8
well approximated by straight lines on the image plane.) Let
r € R? be the three-dimensional location of the midpoint ofig. 3.  Top-down view of the (a) position and (b) velocity diihood

a streak. The start and end of the streak are located at functions on a plane orthogonal to the image and paralléh¢ocamera axis.
Ste Ste The camera is located &t1,72) = (0, 0); the black circle is the true value.

r—7% andr, = r + 752, respectively. The corresponding

point on the image plane is given by the perspective prajacti

model [38], ey (W1 w2 the actual measurements. We compared the absolute velocity
for) = (w_3’ w_3)’ (4) estimation error between a standalone position likelihood

function and the combined position and velocity likelihood
Let N(u; f(r),X) denote a normal density function evaluate(q’lnCtIO.n (7). To.create ground-truth data we isolated alsing

. ; . axa Mosquito track in both camera frame for 8 seconds. We then
at w with mean f(r) and covariance matriXz € R#*2. . o

: ) _ interpolate the position values to every 1/800th of a second
Assuming that the measurement is normally distributed talbolun e .
the true value. the likelihood of midooint® aiven r is ese values were then used to create an artificial mosquito

' P 9 T streak during the time of exposuse. from a 1 cm sphere. We
p;w(uﬂr) = N(u® £(r), Zmp), (5) then projectthe streak on a pair of white synthetic left aghitr

) i camera images with resolution 13921024 pixels. To achieve
We set the diagonal entries &, equal to the length of the a faded-streak effect, we reduce the intensity value of alpix

major and minor axes_of the streak’s bounding ellipse in “Tﬁ/ 30 every time it is visited on the screen during the time of

streak f_rame; the_ off-_dlagonz_sll entries are zero. exposure. Mosquito motion normal to the image plane results
As with the midpoint likelihood function, we assume the, yaryer shorter streaks, where as motion parallel tortizge

endp_omt likelihood function is ba_sed on a normgl dens'téflane results in lighter, longer streaks (Fig. 4a). We teadkis

function. However, due to uncertainty In th.e Iqbehng of t,haataset using multiple Monte-Carlo runs of a particle filfdre

start and end of t_he s_treak, the_ er_1dp_0|nt I'ke_l'hOOd fumctio s mpined position and velocity likelihood function perfoed

is bimodal. The directional ambiguity is described by a SUBktter than the standalone position likelihood functioithwan

of conditional probabilities on the order of endpoints. BB, 5erage improvement in mean absolute velocity error of 27%
be the covariance of the endpoint position in pixels (coreput(see Fig. 4b)

empirically). The endpoint likelihood function is

wherew = Pr € R3, and P is the camera projection matrix.

Py (e, efr,7) =N(e%; f(r-), Zep)N(€e$; f4(r4), Sep)+ M g
E
N(e® 5 (1), Sep)N(eSs (), Sep), Yyt
(6) ®
A, Qor
wherery = r + #(dt./2). The combined effect of usinga o E
pair of points in the endpoint likelihood function (6) is ta .~ (,%1-'
reduce the set of velocity values along the camera axis,;whi g
is otherwise unobservable. § o %
The combined position and velocity likelihood function is time(s)
(a) (b)
P(z1X) = [ Ple,u eflr,7)
=1,2 Fig. 4. (a) Two dimensional projection of a 1 cm sphere tmcthe
. (7) interpolated path of a mosquito. (b) Mean of absolute vgloeistimate
= H Pﬁw(uclr)Pecp(ec_, e |r, 7). error over multiple Monte-Carlo runs using a standaloneitjoslikelihood
c=1,2 function (dash-dot) compared to a combined position andcit likelihood

. . . S function (solid).
Fig. 3 shows the combined position and velocity likelihood

function. The likelihood function (7) is used to weight therp
ticles in the resample step of the particle filter. We updaée t
position estimates using triangulation [39], thereby dffely
marginalizing out the position from the combined positiomla Prior to weighting a target distribution with a likelihood
velocity filtering pdf. function, we must first address the data-association pmoble
A velocity likelihood function improves the reliability of The mosquito data-association problem is challenging due t
data association by placing predicted measurements dosethe variable number of targets. To mitigate the uncertainty

C. Data association and occlusion resolution



in association (for example, did the paths of two mosquito@mdividual streaks is used as an initial guess to soft-eldst
cross each other, or was it a close encounter?), we us¢he pixels into more accurate overlapping streaks. Usirg th
deferred-logic method called the multiple hypothesiskesic shortest distance of a pixel from the line that passes throug
(MHT) [27]. Each assignment of measurements to targetstie split streak, we allow multiple assignments of each Ipixe
set aside as a hypothesis and acted upon in a future time-stendividual streaks. Fig. 5 shows four instances of spitt
when we are more certain. The certainty is computed usiag occluded blob into two individual mosquito streaks.

the probability of a hypothesis that depends on the innowmati
v¢ = u® — f¢(r) of each measurement-target assignment |
the hypothesis, the probability of detection of actual ¢ésg
and the covariance of the predicted measurensent

We reduce the number of hypotheses by clustering ana

prune them by selecting a few best hypotheses based 15, Four examples of occlusion resolution by soft-etisg the occluded
their probability at each step. Clustering is performed b3fobs into two individual mosquito streaks. Each strealeisaded by a marker
dividing the measurement and hypothesized targets at edOR:
step into independent sets. At each time step, measurements
are associated to each cluster based on the combined gating
volume of all targets within the cluster. Measurements that
do not belong to any cluster form their own clusters. Two To validate the mosquito-tracking system and film mosquito
clusters that consist of the same measurement are comhinegwarms in the field, we used a pair of phase-locked Hitachi
form a single cluster. Similarly, we split clusters that sishof KP-F120CL cameras in a stereo configuration. Each camera
targets only assigned to a single measurement. Hypothesescaptured 10-bit images at 25 frames per second and %392
computed for each cluster independently. Hypotheses mitHi040 pixel resolution. Fig. 6 shows a schematic of the data
a large cluster (more than 10 measurements) are limited o@llection system. The video streams were recorded using a 2
a single localized global nearest neighbor assignment [2§Hz quad core laptop, an Imperx FrameLink Express frame
Using a single scanback [27] at each step, we choose @i@bber (Imperx Inc, Boca Raton, FL USA), and Streampix
hypothesis with the highest probability to reduce to one tffesoftware (Norpix Inc, Quebec, Canada). Each camera was
number of hypotheses at the previous step. Child hypothe§edibrated onsite using a checkerboard and the MATLAB Cal-

resulting from a pruned parent hypotheses are also removdeation Toolbox [41]. Reprojection error, which is a meeesu
of calibration accuracy, was in sub-pixels for each camera.

New targets are automatically initialized from unassigne@elative camera orientation and position was determined by
measurements and confirmed if they are tracked for masgtrinsic calibration by taking multiple pictures of a sbaary
than three frames. New target distributions are sampleu freaheckerboard with both cameras. During filming, the camera
a normal distribution with a low standard deviation in pasit height, azimuth, and elevation were recorded to create a
(5 mm) about the triangulated point, and a large standagébund-fixed reference frame. We used a Kestrel 4500 pertabl
deviation in velocity (500 mm/s) about zero. The combinegeather station (Nielsen-Kellerman, Boothwyn, PA USA) to
likelihood function resamples the distribution to equédlyor sample other environmental factors such as wind velocity an
particles getting projected on either side of the streakh# thumidity at 0.1 Hz.
next timestep. Filming was done in the village of Donéguébogou, Mali

) . in Western Africa. Donéguébogou is 29 km north of Bamako
Occlusions are not directly addressed as part of any daig;

- o . id has been the site of previous researchAnngambiae
association strategy, because existing strategies astuwanhe mosquitoes [5], [10]. Swarms formed approximately 20 min-
motion coherence will automatically associate the rightks

: . i : utes after sunset, initially with only one or two males then
in a future timestep. In our case, occlusions undermine tnf'creasing in numbers, and lasted for 20 minutes. Most &supl

velocity estimate, making future associations less riiabn | e seen 5-10 minutes after the swarm was first observed.
occlusion_ is detgcted if (&) two measurement pairs withi.n @ouples formed only for a few minutes during this period,

hypothesis consist of the same measurement from a singlg, \ere no longer observed, though the males continued to
camera, or (b) multiple hypotheses assign the same measy(esym for many minutes after the last couple had formed. We

ment to two or more targets. We interpret an occlusion agneq swarms ofan. gambiae that formed over bare ground
a combination of individual streaks, which are then used {9 1 orkers.

extract velocity information as described gHI-A.

IV. DATA COLLECTION & TRACKING RESULTS

Female mosquitoes are difficult to detect and track because
In order to cluster the pixels in an occlusion blob we use tﬁgey fly faster than the average male (see tracking resatts),

information about the number of mosquitoes hypothesized pear as "’_If"?“m s_treak much of the time. However, a mo_sq_ulto
the occlusion as well as their position and velocity estimatCOUple is distinguishable to the human eye due fo its distinc

to model the blob as a mixture of Gaussians. An expectatiowmg_ pattern arlld darker a(ljpphearfnce agalnbst tr:f slky. l(.ijon
minimization algorithm [40] uses position estimates fdtiah spotting a couple we noted the frame number displayed on

means and velocity e.stima.tes f(?r c_oyariance in each (_jimBnSi 33oft clustering allows a single pixel to be assigned to méwntone
to hard-cluster the pixels into individual streaks. This @B cluster, whereas hard-clustering assigns each pixel tetlgxane cluster.
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for maximum coverage. Since the majority of swarms were
filmed with 1.5 < 2z < 2.5 m, we selected a baseline of 20 cm
to achieve 80-90% overlap and 3-5 pixel difference between
two mosquitoes that are 3 cm apart (approx. 2 body lengths)
along the camera axis.

In addition to the intensity thresholg,; described ir§llI-A,
foreground segmentation requires setting the sliding aind
twin @and a threshold on area of the blohs.,. We selected
twin = 7 frames centered on the current frame, although
swarms filmed at short ranges required a sliding window
in the range of 3-5. We computed the area-threshold limits
20 < tarea < 150 from several different swarms to achieve

weather station the best rejection of noise as well as large insects.

LTI The covariancé&., = diag{4, 4} pixels’ for endpoints was

computed by manually selecting the endpoints of streaks in a
Fig. 6. The data collection system consists of the sterececmmig and a random sampllng of frames and comparing Wlt_h the calculated
laptop powered by an uninterrupted power supply (UPS). Awapsignal Value. The disturbanca for the constant-velocity model was
is sent from the frame grabber to record frames in sync. Aresteather  sampled fromiN(0, 100 m2/s4), whose covariance was found
Zﬁagf’lnljgf’ords environmental factors such as temperandewind velocity 1y, fitting a normal distribution to the acceleration valuds o

manually generated tracks.

data

stereo camera SyS[CIll

compass !

/D
JojoWOUT[oUl

the laptop screen. The couples were located after filming By Validation and performance of tracking system
manually reviewing the video footage at the designated dram -

Out of the two mating mosquitoes, the female mosquito was Ve tested the position accuracy of our tracking system using
identified as the mosquito that entered the swarm last. \Recalibration checkerboard with squares of known dimerssion
tracked the pair, first as a couple and then individually, By manually clicking pairs of points whose separation disea
playing the sequence backwards. Parameter values used8g in the range 3-40 cm. This method yielded an error of 5
data collection and tracking are described below and ineTatsk 5 mm for 50 pairs. Average position error by tracking an

Il. The validation and evaluation of tracking performanc@tificial mosquito projected on the stereo images a§llin
follow. B over multiple runs was 5 4 mm. We also reconstructed

tracks from a single swarming event on Aug. 29 using two in-
TABLE I dependent stereo camera rigs. We created a common reference
PARAMETER VALUES USED FOR DATA COLLECTION AND TRACKING . . . .
frame by measuring the height, azimuth and elevation of the
cameras. The videos were time-synced using a laser pointer

Paré;)meter ;’g'“e gfsc”pﬂon — flashed at the end of the sequence. The mean distance between
cm ereo camera conriguration baseline . . .
bain 7 frames Sliding window for segmentation independent tracks of the same mosquito (200 data points) wa
Lep diag{4,4} pixel® | Covariance of endpoint error 4.4+ 1.3 cm, although up to 3 cm error can be attributed to
ow 100 n¥/s* Covariance of disturbance the inter-frame time difference between the camera systems
Ote 25 ms Duration of camera exposure (caused due to delay within a single frame that was used to
tgate 16 Threshold for gating volume . .
to 5 Threshold on epipolar constraint match the Ia;er flash). A mpsquno flying at an average speed
tarea (20, 150) Minimum and maximum blob areas  of 1.5 m/s will cover 3 cm in 1/50th of a second.
N 1 frames Scanback for MHT : . .
N, 200 Number of samples in particle filter Fig. 7 shows the results of using the OSPA metric (see

Supplementary document, equation (4)) to compare tracks
from the multi-target tracking system to the manually gen-
erated ground-truth. We tested two swarms with 10 and 20
mosquitoes, respectively. The order parameter and the cut-
off parameter for computing OSPA values were set 2 and
The camera baseling i.e., the distance between camera§0 mm respectively. Decomposing OSPA into position and
affects the disparityAw in pixel positions of an object in a cardinality errors shows that the average root mean square
stereo camera setup [38]. A large disparity reduces uringrta (RMS) position errors in the 10- and 20-mosquito swarms
along the camera axis, which in turn improves accuraeyere 2.17+ 0.58 cm and 2.3t 0.46 cm, respectively. Corre-
as well as the ability to resolve occlusions. For a sterespondingly, average absolute position errors for the 16-24n
camera configuration with focal lengtli and no vertical mosquito swarms were 1.74 0.56 cm and 2.03: 0.47 cm,
offset between centers, the baseline and disparity aréedelarespectively. A low cardinality error was often accomparig
according toAu = (bf)/z [38], wherez is the distance along relatively high position error during periods when the swar
the camera axis of the target from the stereo setup. Theagvenvas dense, because of occlusions and false tracks. As would
between camera views i€, — Au)/I,,, where I, is the be expected for a stereo setup, position error was highest
image width resolution in pixels. A large overlap is desieab (44%) in the range measurement (along the camera optical

A. Parameters used for data collection and tracking



axis) as compared to either of the other two dimensionsf few trees or houses in the background (i.e., in the divecti
OSPA was larger for the 20-mosquito swarm, mainly due tf the setting sun). Once filming began, 60-90 s stereo video
cardinality errors. The position error is likely a consegee sequences were recorded as 10-bit synchronized tiff imaiges
of image noise, which resulted in partially segmented kseaseparate solid state drives. (The drives were backed up dail
(We mitigate this problem by filtering trajectory data usig on to two separate disks.) A filming session typically prastlic
Kalman smoother.) Average reprojection error on the imagbs8 video sequences before it became too dark to film.

was less than 2 pixels.

The labeling error, which captures track continuity an
identity swaps, was computed separately. An identity sw
results in a labeling error of 2 before or after the sw
in the sequence. Track fragmentation results in a labeli
error of 1 after the disconnect occurs. We randomly selecté =
100 instances of 25 continuous frames in a swarm of
mosquitoes. The average labeling error (most of which w
due to track fragmentation) was 241 1.4 tracks. A simple
average of track lengths across six swarms ranged betw
15-25 frames corresponding to 0.6—1 s. Track fragmentati
occurs due to early terminations, which can be caused by t
following:

« Partially segmented Stre?‘ks due to noise, CIOUdy_ ba%. 8. GPS measurements of filming locations in Mali, Afri@2012
ground, and clutter. Partially segmented streaks in oeogle,©2012 DigitalGlobe.

frame often violate the epipolar constraint. Decreasing
the intensity threshold to get full streaks adds noise to theTO Create representative trajectory dataset, we selected s
measurements. (A possible solution that we are exploriMifleo sequences that contain a mating event. We call these
in ongoing work is to reconstruct the streak using velocitjie mating sequences. We refer to the mating mosquitoes as
estimates.) the female and the focal male. We also selected six other
« Occlusion between a tracked and untracked target. Oideo sequences with no female present, called the male-
clusions between a tracked (known) targets and an @8ly sequences, to produce full-length trajectories ofraviag
yet uninitialized target are not detected. The success r@@havior. Trajectory data presented here are from swarms
of surviving such an occlusion depends on the motidimed on August 20, 21, 25, 26, 28, and 29 and September
of the tracked target after the occlusion. A maneuver dr Male-only sequences last between 20-35 seconds, whereas
successive occlusion may terminate the track. mating sequences start a few seconds prior to the detedtion o
female within the field of view and end when the couple flies
out of field of view (0-5 s).

Fig. 9 shows the position and velocity of a randomly
This section presents a subset of the three-dimensiosalected malén. gambiaein the Aug. 29 male-only sequence,
trajectory data generated using the mosquito trackingesyst which was a swarm that formed over bare ground (S molecular
We filmed twenty-one swarms and thirteen mating evenfisrm). The swarm consisted of 20 mosquitoes at the beginning
between August 17, 2010 and September 3, 2010. Out aff the sequence and dropped to 19 after 10 seconds. The

the twenty-one swarms, eighteen formed over bare groummsquito movement is characterized by quasi-periodicanoti
and three formed over natural markers. (A natural markeriis each of the three spatial dimensions. The instantaneous
an area of high contrast with the rest of the ground suchean position of the mosquitoes in the swarm, i.e., the swarm
as a patch of grassAn. gambiae can be divided into two centroid, is also shown. The origin of the inertial frame is
incipient species namely the M and S molecular forms [43bcated at ground level under the camera rig; the inertial
In [10] a strong association between the swarming markieame is oriented along east-west, north-south, and \atrtic
type and molecular form has been found. The M form watirections. The 3 bounds for position and velocity of all
found to swarm over natural markers, whereas the S fomh mosquitoes in this swarm are shown in gray. Swarm size
swarms over bare ground [10]. We collected a few mosquito@wice the 3 bounds) averaged 1.17 m in the horizontal plane
from each swarm and performed a polymerase chain reactanmd 0.56 m in the vertical. The average swarm size across all
(PCR) test to determine the molecular form. All sequence$anes ranged between 0.52-1.86 m. The average height of the
presented in this paper were of type S. Each day two teaswarm was 1.89 m. The average velocity along each dimension
of 3-5 people with identical camera rigs selected separddeclose to zero with a highest standard deviation in the-east
swarming sites for filming. The swarming sites were usuallyest direction (0.514 m/s) followed by the north-south 823
within a few hundred meters of each other. Swarming sites/s) and the vertical (0.281 m/s).

were surveyed the day before to record average swarm siz&ig. 10 shows the ratio between horizontal and vertical
and location. Filming locations spread throughout theagdl speed for each swarm. The Aug. 28 sequence was filmed on a
(see Fig. 8) were chosen based on swarm size (less than aloayt with relatively high wind (approx. 0.8 m/s) as compared
100 mosquitoes for tractability in tracking) and the pre&sento other sequences. The mosquito movement for that swarm

£

C. Tracking results
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Fig. 7. (a) Position (dashed blue) and cardinality errofigsgreen) for a swarm of 10 mosquitoes. (b) OSPA error fofedéint methods and swarm sizes:
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Fig. 9. Instantaneous three-dimensional (a) position &)d/€locity tracks of a male mosquito (black solid) in the A@9 sequence (S molecular form).
Mean (dotted blue) and @ bounds (gray) for all mosquitoes also shown. Also see Supmiary video 1.

was characterized by a rolling motion in the direction of the Fig. 11 shows the position and velocity of a female mosquito
wind and relatively higher vertical velocities. In five out othat formed a successful couple in the Aug. 29 sequence. The
the six swarms that we used to generate male-only sequenceating sequence was filmed about a minute after the male-only
we witnessed mating events at a later time. The horizont#quence on the same date. The female appeared in the field of
and vertical speeds of female mosquito that formed couplsw 5 seconds prior to couping. The movement of the female
are also plotted in Fig. 10. Non-parameteric Kruskal-Wallicrosses the @ boundaries of the swarm in the north-south
tests on each dataset show that the average male and ferdateension. The average speed of the female was higher than
speeds in the same sequence are significantly differenafdr ethe male mosquito until just before the couple forms, when th
sequence. The maximum p-value among all mating sequenfmsal male speeds up. The vertical movement shows that the
was 0.0003. (In contrast the maximum p-value for male speddsnale stayed predominantly at heights correspondingéo th
during the same mating sequence was 0.051.) lower half of the swarm. A three-dimensional reconstructio
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Fig. 10. Instantaneous horizontal versus vertical speedadé mosquitoes in six sequences (black dots). Female sifesticircles) and average wind speed
(blue dashed lines) are shown, if available.

of the mating mosquitoes in six mating sequences is shownAs part of ongoing work on the tracking system we are
in Fig. 12. Across all mating sequences, the female mosquiorking to include the streak intensity in the image as pért o
covered an average 59% more distance than the focal m#ile likelihood function. This will help predict the appeace
during the same time interval. of a mosquito on the image plane as a function of its velocity,
Fig. 13 shows the separation distance and speeds frmreby allowing the possibility of streak retrieval. Suzh
six mating sequences. The amount of time we observed tgproach would for example reduce track terminations and
females in the swarm before forming a couple was up tocseate longer tracklets. Another aspect of the trackingesys
seconds. In each mating sequence that lasted longer thantbs we are investigating is the automatic detection of mgati
seconds, the number of close encounters (moments whenelents. In order to avoid sifting through video streams to
separation distance between the mating mosquitoes dropfmshte mating events, the distinct flying pattern and apgrese
below 3 body lengths, or 4 cm) with the successful malef the mating couple can be used for automatic detection
mosquito was in the range 3-6. and backwards tracking of the female. With enough mating
events a higher-order motion model (that depends on more
than one previous time-step) will automatically predictian
detect mating events.

We describe a tracking system to reconstruct the three-
dimensional trajectories of wild mosquito swarms. We adslre VI. ACKNOWLEDGEMENT
noisy images by adaptively seeking missing measurement:
and exploit streak orientation and length to extract véjoci
information. A probabilistic data association method thsgs

V. CONCLUSIONS AND ONGOING WORK
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mosquito swarms at the University of Bamako in Mali.
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tracking metric and validate using independent measuresne, nd Vector Research at the National Institute of Allergy and
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form of_three-dlmensmnal trajectories of swarming andingat the PCR tests. Finally, we would like to thank the residents
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system described in this paper are an order of magnitude
larger (97 trajectories and 55,000 position points) tham th
last published result [5] on reconstruction of wild mosquit
swarms, and the first to contain three-dimensional trajesgo [1] J. Charlwood and M. Jones, “Mating in the mosquitanopheles
rather than three-dimensional positions. In ongoing weonk, gambiae sl,” Physiological Entomology, vol. 5, no. 4, pp. 315-320, 1980.

. . . h . . h . . [2] G. Gibson, “Swarming behaviour of the mosquiBulex pipiens quin-
are investigating these trajectories to characterize raway quefasciatus: a quantitative analysisPhysiological Entomology, vol. 10,

and mating behavior. no. 3, pp. 283-296, Sep. 1985.
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Fig. 12. Three-dimensional reconstruction Asf. gambiae mating events in the wild. The female mosquito track (red) emale mosquito track (blue) are

shown. The couple is shown in purple. Pre-coupling tracles papjected onto two-dimensional planes on each side. (Timg 29 mating event is shown
magnified in Supplementary document. Also see Supplementdeo 2.)
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