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Abstract—We describe a novel tracking system for recon-
structing three-dimensional tracks of individual mosquitoes in
wild swarms and present the results of validating the system
by filming swarms and mating events of the malaria mosquito
Anopheles gambiae in Mali. The tracking system is designed
to address noisy, low frame-rate (25 frames per second) video
streams from a stereo camera system. Because flyingAn. gambiae
move at 1–4 m/s, they appear as faded streaks in the images
or sometimes do not appear at all. We provide an adaptive
algorithm to search for missing streaks and a likelihood function
that utilizes streak endpoints to extract velocity information.
A modified multi-hypothesis tracker probabilistically addresses
occlusions and a particle filter estimates the trajectories. The
output of the tracking algorithm is a set of track segments with
an average length of 0.6–1 seconds. The segments are verifiedand
combined under human supervision to create individual tracks up
to the duration of the video (90 s). We evaluate tracking perfor-
mance using an established metric for multi-target tracking and
validate the accuracy using independent stereo measurements of a
single swarm. Three-dimensional reconstructions ofAn. gambiae
swarming and mating events are presented.

I. I NTRODUCTION

Quantitative observations of the flight patterns of wild
mosquitoes are critical to expanding our understanding of
swarming and mating behavior [1], [2], [3], [4], [5], [6].
Female Anopheles gambiae find male swarms in order to
mate [7], [5]. A single mating event results in all of the
fertilized eggs that a female mosquito lays in her lifetime
[8], [9]. Although the basis of mate selection has generated
much interest [7], [10], [11], [8], [6], generation of three-
dimensional trajectory data of mosquitoes in wild swarms
has not been previously accomplished. As in earlier work on
midges [12], such trajectory data can provide valuable insight
into the dynamical aspects of collective behavior [13], [14].
Past studies on swarming insects [2], [3], [5], [15] focusedon
two-dimensional trajectories or three-dimensional positions.
Recent advancements in high-resolution filming, computer
vision, and estimation techniques have increased the degree of
automation in data collection, and have made available large
datasets for subsequent analysis, such as those developed for
starlings [16] and fruit flies [17]. Similar analyses of malarial
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mosquitoes may inform the first steps towards strategies of
vector control [7], [8].

Multi-target tracking systems have been developed for other
animals. In two dimensions, ants have been tracked using a
joint-state particle filter and interaction models [26]. Inthree-
dimensions, up to a hundred bats have been tracked with three
cameras using a Kalman filter in conjunction with a multi-
dimensional assignment strategy [18], [19]. Fruit flies have
been tracked in an acrylic box by setting up the problem
of data association across views and time in the form of a
global optimization problem that is solved at every step [20].
Real-time tracking systems for flies were developed using an
extended Kalman filter in [21], [22]. Each of these track-
ing systems implements a nonlinear filtering or optimization
method with specialized likelihood functions, data association
strategies, and/or experimental design. However, the targets
are large with a dark center or appear in an arena constructed
to minimize noise, unlike wild mosquitoes.

Filming wild mosquitoes poses special challenges such as
low natural lighting and a cluttered dynamic background.
At least two cameras are needed to reconstruct the three-
dimensional position of individual mosquitoes. A multi-
camera setup with a large baseline reconstructs positions
accurately, but may be difficult to implement in the field.
In a multi-target scenario, one must also address the data-
association problem, which entails assigning image blobs
to targets across multiple views and time steps. With the
typical number of mosquitoes in the swarms we studied1, the
data-association problem is non-trivial. The challenge lies in
tracking small, highly maneuverable targets that appear asdots
or faded streaks in noisy images with frequent occlusions.

This paper describes an automated multi-target tracking sys-
tem that reconstructs the three-dimensional flight kinematics of
individual mosquitoes in wild swarms. We collect data using
two cameras operating synchronously at 25 frames per second.
(The frame rate is limited by the ambient light.) The cameras
and a laptop are powered by an uninterrupted power supply
(UPS) for up to thirty minutes. The mosquitoes appear as dark
streaks or dots on a light background. At high speeds, the
mosquito streaks fade, making them hard to detect and even
harder to track. Because the swarms are dense, occlusions are
frequent and often appear in both camera frames. We tested the
system by filming swarms and mating events ofAn. gambiae
in a rural village in Mali in August 2010. Fig. 1 shows a
pair of magnified and enhanced sample frames from this field

1Typical swarms in the field site where we filmed ranged between30–100
mosquitoes, however other sites are known to have swarms of up to 1000
mosquitoes.



experiment.

Fig. 1. The pair of images above are magnified and enhanced versions of
raw footage obtained from the authors’ field work in Mali.

In order to track each insect in a wild swarm, we im-
plemented a probabilistic multi-target tracking framework.
Specifically, the contributions of this paper are as follows: (1)
we provide a measurement likelihood function that utilizes
the properties of image streaks such as midpoint and endpoint
locations to extract insect position and velocity; (2) we provide
methods to improve data association in noisy images by
adaptively seeking missing measurements and splitting oc-
cluded blobs into individual measurements; and (3) we present
validated tracking results in the form of three-dimensional
trajectories of wild mosquito swarming and mating events
filmed in Mali in August 2010. Although we describe the
experimental method and tracking algorithm for mosquito
swarms, the techniques presented in this paper may be bene-
ficial for generating trajectory data for other insect swarms in
the field or laboratory.

The tracking system is implemented in MATLAB and con-
sists of two parts: an automated component that outputs track
segments called tracklets and a human-supervised component
that is used to verify and combine the tracklets into full-
length tracks. Tracklets produced by the automated component
typically range between 15–25 frames (0.6–1 s) long and can
be used to extract position and velocity data for 80% of the
swarm. The human-supervised component uses a particle filter
to combine tracklets into individual mosquito tracks. It takes
approximately 20 minutes to generate a 10-second track (250
frames). When validated using data filmed in Mali in August
2010, the tracking system produced 30–40 second trajectories
of individual mosquitoes in swarms of 6–25 mosquitoes. We
have reconstructed six swarms and six mating events from
these data. We evaluate the performance of the automated
component of the tracking system using an established metric
based on position error and the number of targets tracked
(cardinality); tracking accuracy was also evaluated usingtwo
independent rigs to simultaneously track the same swarm.

The paper is organized as follows: Section II provides a
background on multi-target tracking, data association, and
tracking performance evaluation. Section III presents thenovel
components of the tracking system, including the likelihood
function and occlusion reasoning. Section IV describes the
data collection, validation methods, and performance evalu-
ation; it also includes representative kinematic data for wild
mosquito swarming and mating events. Section V summarizes
the paper and our ongoing analyses of the kinematic data.

II. PROBABILISTIC TRACKING AND DATA ASSOCIATION

Our aim in designing the mosquito tracking system was
to combine nearly indistinguishable measurements available
from stereo images recorded at discrete times into trajectories
that represent real mosquitoes (targets). We represent target
i at time stepk by the state vectorXi[k] ∈ R

6, which
contains the target’s instantaneous three-dimensional position
and velocity. In a Bayesian framework, a tracking algorithm
recursively iterates through two steps: the update step andthe
predict step. The update step uses a measurement model to
revise the estimate based on new observations. The predict
step integrates a motion model to obtain the target state at the
time of the next measurement. The measurementZi[k] ∈ R

6

in our case consists of the two-dimensional positions of the
midpoint and two endpoints of an elongated blob in an image
that corresponds to the motion-blurred silhouette of a flying
mosquito in each of the two images. Assuming motion model
F and measurement modelH , the state of targeti satisfies

Xi[k] = F (Xi[k − 1],w)

Zi[k] = H(Xi[k],n),
(1)

wherew andn denote disturbance and noise values, respec-
tively.

Because of noise, disturbances, and approximations inF

andH , the state estimate is a random quantity represented in
the form of a probability density function (pdf). We recursively
construct the filtering pdfp(X[k]|Zk) of the joint state
X[k] at timestepk given the setZk of all measurements
up to k using the conditional probabilitiesp(Zi[k]

∣

∣Xi[k])
and p(Xi[k]

∣

∣Z
k−1). The probabilityp(Zi[k]

∣

∣Xi[k]), known
as a likelihood function, is the conditional probability of
measurementZi[k] given the stateXi[k]. The filtering pdf
can be obtained with minimum mean-square error provided the
modelsF andH are linear and the noise valuesw andn are
Gaussian. Otherwise, it is possible to use suboptimal methods
such as an extended Kalman filter [23], which predicts and
updates the estimate using a first-order linearization of (1), or
a particle filter [24], [25], which represents the target state as
a point-mass distribution. A particle filter is attractive in that it
relaxes most restrictions on the target and measurement models
and the disturbance and measurement noise, but a particle
filter is computationally burdensome for a large, joint, state
space. We address the computation-size problem by making
the assumption that the targets do not interact at short time-
scales (<40 ms), which allows us to use a separate filter
for each target. Particle-filtering methods also allow us to
encode extra information such as the velocity of the mosquito
using the streak endpoints. (See Supplementary document for
a description of particle filtering.)

A multi-target tracking system must associate measurements
and targets. A target-based method associates each target to
a measurement [23], whereas a measurement-based method
associates each measurement to a target [27]. A measurement-
based method can inherently handle a variable number of
targets, which may appear and disappear from the field of view.
The reliability of the association depends on the proximityof
the actual measurement to the predicted measurement, whichis



produced from the target estimate using the motion model and
the measurement model; measurement proximity is determined
using the position likelihood function.

Our choice of a data-association strategy is based on speed,
variability, and density of targets in the image. A nearest-
neighbor association is target-based and associates the pre-
dicted measurement to the nearest measurement. It works
well in low-target densities with high frame rates [28], [21],
but results in duplicate tracks and incorrect associationsat
high target densities. A global nearest-neighbor (GNN) asso-
ciation avoids duplicate assignments by minimizing a global
assignment [29]. GNN has been successful in tracking dense
aggregations [17], [30] in which the number of targets are
fixed and move in two dimensions (so that target overlap
is rare), however, the possibility of a variable number of
targets and frequent occlusions make it difficult to use GNN
without additional heuristics. Short-duration occlusions can be
addressed using motion coherence [31], [18], [20], whereas
long-duration occlusions can be overcome by methods that
minimize a global cost function over all measurements in a
sliding window [19]. However, it is not clear how an offline
global optimization method might address a low probability
of detection which is common in our datasets. Instead, we
selected a measurement-based method called the multiple-
hypothesis tracker (MHT), which looks into future assignment
probabilities before making a decision on the current assign-
ment [27]. Within the MHT we use a motion model at each
step to search for missing measurements.

A hypothesis in MHT is a combination of measurement-
target assignments that satisfy the following two rules [27]:
(i) a target is not associated to more than one measurement
and (ii) a target is only associated to a measurement that lies
within its gating volume. The gating volume or validation
region is generated from the differenceν = u − f(r)
between the position measurementu ∈ R

2 and the predicted
position measurementf(r) ∈ R

2. Let S be the covariance
of ν, which is also called the innovation. If a measurement
that is normally distributed about the true value lies within
the validation region, the weighted norm‖ν‖2 = νTS−1ν
satisfies‖ν‖ < tgate. (The quantity‖ν‖ is also called the
Mahalanobis distance [32].) For example, a threshold value
tgate = 16 defines a region around a predicted measurement
with 99.97% probability of containing the actual measurement
[23]. A measurement may be assigned to an existing target,
a new target, or a false alarm. As time progresses each
hypothesis gives rise to successive hypotheses resulting in an
exponential growth in time. Hypothesis reduction strategies
include applying a threshold on track probability, choosing a
few best hypothesis [32], and clustering the targets [27]. (See
Supplementary document for a description of MHT.)

Measures of effectiveness to evaluate a multi-target tracking
algorithm include the following [33]: track initiation delay
(timeliness), position and velocity errors (accuracy), fragmen-
tation and identity swaps (continuity), and number of targets
tracked (cardinality). Performance evaluation also includes vi-
sual verification, running the algorithm on simulated data [18],
comparison with manually generated ground truth, and recon-
structing the same event from independent camera systems

[31]. We evaluate the performance of our tracking algorithm
using manually generated ground-truth as well as filming using
two independent camera systems. For comparing tracking
results with ground truth we use the Optimal SubPattern
Assignment (OSPA) metric [34], which is a well-established
metric for evaluating multi-target tracking algorithms [33]
that allows comparison of sets with differing cardinality.(See
Supplementary document for details on computing OSPA.)

III. T HE MOSQUITO TRACKING SYSTEM

The mosquito tracking system takes a sequence of stereo
image pairs as input and produces three-dimensional tracks
as output. Fig. 2 depicts a block diagram of the tracking
system, which was created in MATLAB and includes an auto-
mated tracking algorithm and a human-supervised component.
Image streaks are modeled as straight lines; we extract the
midpoint and endpoints as measurements. We find missing
measurements using a gating volume generated around pre-
dicted measurements. Measurement pairs, i.e., one from each
camera, that satisfy the epipolar constraint [38] are selected
for data association. We again use a gating volume to assign
measurements and targets to independent sets called clusters.
Instead of generating definite tracks, hypotheses connecting
measurements to targets are propagated to the next step using
a particle filter. Based on the probability of each hypothesis at
the current time step, the number of hypotheses at a previous
time step are reduced to a single assignment. A particle filter
verifies and combines tracklets under human supervision and
the combined tracks are passed through a Kalman smoother.
The tracking algorithm is summarized in Table I.

TABLE I

Mosquito tracking algorithm

Input: Sequence of synced images from a stereo-camera setup,
camera calibration matrices, parameters in Table II

Output: Estimated three-dimensional mosquito trajectories
For each time stepk:

1: Extract measurements: Model each blob as a straight line and find the
midpoint and endpoints.

2: Find missing measurements, if any: Ensure that each hypothesized target
has at least one measurement within the gating volume; if not, lower the
intensity threshold. If a measurement is found append it to the existing set
of measurements.

3: Validate: Use the epipolar constraint (3) to generate valid measurement
pairs, one from each camera view.

4: Cluster: Use gating volume of each target within a cluster to add
measurements to that cluster. A cluster is the smallest set of measurements
and targets that exist independently; combine/divide existing clusters as
needed.

5: Compute hypotheses: Generate hypotheses for each cluster, and compute
probabilities.
→֒ Resolve occlusions: If an occlusion is detected split the image blob

into individual streaks as described in§III-C and recompute the
hypotheses.

6: Hypothesis reduction: Based on the most probable hypothesis atk and
scanback rangeNs, reduce the number of hypotheses atk − Ns to a
single assignment.

7: Initialize & update: Initialize tentative targets from unassociated measure-
ment pairs; resample target states based on hypotheses using the three-
dimensional estimate and velocity likelihood function (7). Each new target
forms a new cluster.

8: Predict: Use the constant velocity motion model with random (Gaussian)
disturbance to propagate hypotheses to timestepk + 1.



Fig. 2. Block-diagram of the mosquito tracking system.

The remainder of this section describes the novel aspects
of the tracking system that we designed to improve its accu-
racy and level of automation. First, we describe an image-
processing technique to find missing measurements during
image segmentation. We then describe the measurement model
that is used to extract velocity information from streaks. Lastly,
we present the data-association method, including the strategy
to detect and address mosquito occlusions.

A. Extracting measurements

During observation of mosquito swarms, which typically
appear silhouetted in front of swaying trees under a cloudy
sky, it may not be possible to use a static (mosquito-free)
background to segment the mosquitoes out of the image
stream. Instead we create a dynamic background by choosing
the highest intensity point within a sliding window [35]. Let
Bu,v be the background image value at the pixel position(u, v)
andtwin = 2d+1 be the width of the sliding window centered
at time stepk. The background value at timek is

Bu,v[k] = max
i∈[k−d,k+d]

Bu,v[i]. (2)

The foregroundF is obtained by subtracting the backgroundB
from the current imageI and applying an intensity threshold
tint, i.e., Fu,v[k] = max(Iu,v[k] − Bu,v[k], tint). We auto-
matically select the value oftint by running the background
subtraction algorithm recursively on different segments of the
image sequence until the number of blobs detected are within
an acceptable range of the expected number of mosquitoes.
We extract blobs using theregionprops routine in MATLAB,
which performs connected-component labeling to extract fea-
tures such as centroid, area, and bounding ellipse. We remove
large insects and birds from the foreground by applying a

threshold on the blob area. (See Table II for the values of
the threshold parameters.)

Due to the duration of the camera exposure (δte = 25 ms)2,
fast mosquitoes (1–4 m/s) appear as elongated image blobs or
streaks. Depending on the mosquito speed, the streaks may fail
to appear in the foreground for a given value oftint. Existing
strategies for low signal-to-noise environments include the
track-before-detect approach [36], which permits raw sensor
data as the input. The success for track-before-detect relies
on the low target density and relatively straight movement
of targets in the measurement space [37]. However, using
raw sensor data is not a viable option for mosquito tracking,
because it generates more false targets than observed in a
single noisy image. Instead, we search for the missing streak in
a new foreground generated using a thresholdt′int = 0.75tint.
The search is performed within the gating volume of the
predicted measurement. If a missing measurement is found,
it is added to the list of existing measurements.

A measurementZc = [ec−,u
c, ec+]

T from camerac con-
tains the image locations of a streak’s starte

c
−, midpoint

u
c, and endec+. These values are extracted from a blob by

modeling it as a straight line along the major axis of the
bounding ellipse. The streak therefore represents a perspective
projection of the mosquito trajectory for the duration of
exposureδte. Let ũ

c = [(uc)T , 1]T be the homogeneous
representation ofuc. A pair of measurements with midpoints
u
1 andu

2, one from each camera, must satisfy the epipolar
constraint [38]:

∣

∣(ũ2)TF ũ
1
∣

∣ < te, (3)

whereF ∈ R
3×3 is the fundamental matrix for the stereo

2The duration of exposure (25 ms) is less than the time betweenframes
(40 ms). The remaining time (15 ms) is for image processing.



camera calibration andte ≪ 1 is a value that depends on cali-
bration accuracy. Measurement pairs from a true target satisfy
the above constraint; clutter or mismatched measurement pairs
should not. We use the midpoint and endpoint locations to
define a likelihood functions for position and velocity.

B. Position and velocity likelihood functions

A constant-velocity model suffices to describe the mosquito
motion during the exposure,δte = 25 ms. (The streaks are
well approximated by straight lines on the image plane.) Let
r ∈ R

3 be the three-dimensional location of the midpoint of
a streak. The start and end of the streak are located atr− =
r− ṙ

δte
2 andr+ = r+ ṙ

δte
2 , respectively. The corresponding

point on the image plane is given by the perspective projection
model [38],

f c(r) =
(w1

w3
,
w2

w3

)

, (4)

wherew = Pr ∈ R
3, andP is the camera projection matrix.

Let N(u; f(r),Σ) denote a normal density function evaluated
at u with mean f(r) and covariance matrixΣ ∈ R

2×2.
Assuming that the measurement is normally distributed about
the true value, the likelihood of midpointuc given r is

P c
mp(u

c
∣

∣r) = N(uc; f c(r),Σmp), (5)

We set the diagonal entries ofΣmp equal to the length of the
major and minor axes of the streak’s bounding ellipse in the
streak frame; the off-diagonal entries are zero.

As with the midpoint likelihood function, we assume the
endpoint likelihood function is based on a normal density
function. However, due to uncertainty in the labeling of the
start and end of the streak, the endpoint likelihood function
is bimodal. The directional ambiguity is described by a sum
of conditional probabilities on the order of endpoints. LetΣep

be the covariance of the endpoint position in pixels (computed
empirically). The endpoint likelihood function is

P c
ep(e

c
−, e

c
+

∣

∣r, ṙ) =N(ec−; f
c(r−),Σep)N(e

c
+; f

c(r+),Σep)+

N(ec−; f
c(r+),Σep)N(e

c
+; f

c(r−),Σep),
(6)

wherer± = r ± ṙ(δte/2). The combined effect of using a
pair of points in the endpoint likelihood function (6) is to
reduce the set of velocity values along the camera axis, which
is otherwise unobservable.

The combined position and velocity likelihood function is

P (Z|X) =
∏

c=1,2

P (ec−,u
c, ec+|r, ṙ)

=
∏

c=1,2

P c
mp(u

c
∣

∣r)P c
ep(e

c
−, e

c
+

∣

∣r, ṙ).
(7)

Fig. 3 shows the combined position and velocity likelihood
function. The likelihood function (7) is used to weight the par-
ticles in the resample step of the particle filter. We update the
position estimates using triangulation [39], thereby effectively
marginalizing out the position from the combined position and
velocity filtering pdf.

A velocity likelihood function improves the reliability of
data association by placing predicted measurements closerto

Fig. 3. Top-down view of the (a) position and (b) velocity likelihood
functions on a plane orthogonal to the image and parallel to the camera axis.
The camera is located at(r1, r2) = (0, 0); the black circle is the true value.

the actual measurements. We compared the absolute velocity
estimation error between a standalone position likelihood
function and the combined position and velocity likelihood
function (7). To create ground-truth data we isolated a single
mosquito track in both camera frame for 8 seconds. We then
interpolate the position values to every 1/800th of a second.
These values were then used to create an artificial mosquito
streak during the time of exposureδte from a 1 cm sphere. We
then project the streak on a pair of white synthetic left and right
camera images with resolution 1392× 1024 pixels. To achieve
a faded-streak effect, we reduce the intensity value of a pixel
by 30 every time it is visited on the screen during the time of
exposure. Mosquito motion normal to the image plane results
in darker, shorter streaks, where as motion parallel to the image
plane results in lighter, longer streaks (Fig. 4a). We tracked this
dataset using multiple Monte-Carlo runs of a particle filter. The
combined position and velocity likelihood function performed
better than the standalone position likelihood function, with an
average improvement in mean absolute velocity error of 27%
(see Fig. 4b).
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Fig. 4. (a) Two dimensional projection of a 1 cm sphere tracing the
interpolated path of a mosquito. (b) Mean of absolute velocity estimate
error over multiple Monte-Carlo runs using a standalone position likelihood
function (dash-dot) compared to a combined position and velocity likelihood
function (solid).

C. Data association and occlusion resolution

Prior to weighting a target distribution with a likelihood
function, we must first address the data-association problem.
The mosquito data-association problem is challenging due to
the variable number of targets. To mitigate the uncertainty



in association (for example, did the paths of two mosquitoes
cross each other, or was it a close encounter?), we use a
deferred-logic method called the multiple hypothesis tracker
(MHT) [27]. Each assignment of measurements to targets is
set aside as a hypothesis and acted upon in a future time-step
when we are more certain. The certainty is computed using
the probability of a hypothesis that depends on the innovation
νc = u

c − f c(r) of each measurement-target assignment in
the hypothesis, the probability of detection of actual targets,
and the covariance of the predicted measurementS.

We reduce the number of hypotheses by clustering and
prune them by selecting a few best hypotheses based on
their probability at each step. Clustering is performed by
dividing the measurement and hypothesized targets at each
step into independent sets. At each time step, measurements
are associated to each cluster based on the combined gating
volume of all targets within the cluster. Measurements that
do not belong to any cluster form their own clusters. Two
clusters that consist of the same measurement are combined to
form a single cluster. Similarly, we split clusters that consist of
targets only assigned to a single measurement. Hypotheses are
computed for each cluster independently. Hypotheses within
a large cluster (more than 10 measurements) are limited to
a single localized global nearest neighbor assignment [29].
Using a single scanback [27] at each step, we choose the
hypothesis with the highest probability to reduce to one the
number of hypotheses at the previous step. Child hypotheses
resulting from a pruned parent hypotheses are also removed.

New targets are automatically initialized from unassigned
measurements and confirmed if they are tracked for more
than three frames. New target distributions are sampled from
a normal distribution with a low standard deviation in position
(5 mm) about the triangulated point, and a large standard
deviation in velocity (500 mm/s) about zero. The combined
likelihood function resamples the distribution to equallyfavor
particles getting projected on either side of the streak in the
next timestep.

Occlusions are not directly addressed as part of any data-
association strategy, because existing strategies assumethat
motion coherence will automatically associate the right tracks
in a future timestep. In our case, occlusions undermine the
velocity estimate, making future associations less reliable. An
occlusion is detected if (a) two measurement pairs within a
hypothesis consist of the same measurement from a single
camera, or (b) multiple hypotheses assign the same measure-
ment to two or more targets. We interpret an occlusion as
a combination of individual streaks, which are then used to
extract velocity information as described in§III-A.

In order to cluster the pixels in an occlusion blob we use the
information about the number of mosquitoes hypothesized in
the occlusion as well as their position and velocity estimates
to model the blob as a mixture of Gaussians. An expectation-
minimization algorithm [40] uses position estimates for initial
means and velocity estimates for covariance in each dimension
to hard-cluster the pixels into individual streaks. This set of

individual streaks is used as an initial guess to soft-cluster3

the pixels into more accurate overlapping streaks. Using the
shortest distance of a pixel from the line that passes through
the split streak, we allow multiple assignments of each pixel
to individual streaks. Fig. 5 shows four instances of splitting
an occluded blob into two individual mosquito streaks.

Fig. 5. Four examples of occlusion resolution by soft-clustering the occluded
blobs into two individual mosquito streaks. Each streak is denoted by a marker
type.

IV. DATA COLLECTION & T RACKING RESULTS

To validate the mosquito-tracking system and film mosquito
swarms in the field, we used a pair of phase-locked Hitachi
KP-F120CL cameras in a stereo configuration. Each camera
captured 10-bit images at 25 frames per second and 1392×
1040 pixel resolution. Fig. 6 shows a schematic of the data
collection system. The video streams were recorded using a 2.8
GHz quad core laptop, an Imperx FrameLink Express frame
grabber (Imperx Inc, Boca Raton, FL USA), and Streampix
5 software (Norpix Inc, Quebec, Canada). Each camera was
calibrated onsite using a checkerboard and the MATLAB Cal-
ibration Toolbox [41]. Reprojection error, which is a measure
of calibration accuracy, was in sub-pixels for each camera.
Relative camera orientation and position was determined by
extrinsic calibration by taking multiple pictures of a stationary
checkerboard with both cameras. During filming, the camera
height, azimuth, and elevation were recorded to create a
ground-fixed reference frame. We used a Kestrel 4500 portable
weather station (Nielsen-Kellerman, Boothwyn, PA USA) to
sample other environmental factors such as wind velocity and
humidity at 0.1 Hz.

Filming was done in the village of Donéguébogou, Mali
in Western Africa. Donéguébogou is 29 km north of Bamako
and has been the site of previous research onAn. gambiae
mosquitoes [5], [10]. Swarms formed approximately 20 min-
utes after sunset, initially with only one or two males then
increasing in numbers, and lasted for 20 minutes. Most couples
were seen 5-10 minutes after the swarm was first observed.
Couples formed only for a few minutes during this period,
then were no longer observed, though the males continued to
swarm for many minutes after the last couple had formed. We
filmed swarms ofAn. gambiae that formed over bare ground
or markers.

Female mosquitoes are difficult to detect and track because
they fly faster than the average male (see tracking results),and
appear as a faint streak much of the time. However, a mosquito
couple is distinguishable to the human eye due to its distinct
flying pattern and darker appearance against the sky. Upon
spotting a couple we noted the frame number displayed on

3Soft clustering allows a single pixel to be assigned to more than one
cluster, whereas hard-clustering assigns each pixel to exactly one cluster.



Fig. 6. The data collection system consists of the stereo camera rig and a
laptop powered by an uninterrupted power supply (UPS). A capture signal
is sent from the frame grabber to record frames in sync. A Kestrel weather
station records environmental factors such as temperatureand wind velocity
at 0.1 Hz.

the laptop screen. The couples were located after filming by
manually reviewing the video footage at the designated frame.
Out of the two mating mosquitoes, the female mosquito was
identified as the mosquito that entered the swarm last. We
tracked the pair, first as a couple and then individually, by
playing the sequence backwards. Parameter values used for
data collection and tracking are described below and in Table
II. The validation and evaluation of tracking performance
follow.

TABLE II
PARAMETER VALUES USED FOR DATA COLLECTION AND TRACKING

Parameter Value Description
b 20 cm Stereo camera configuration baseline

twin 7 frames Sliding window for segmentation
Σep diag{4,4} pixels2 Covariance of endpoint error
σw 100 m2/s4 Covariance of disturbance
δte 25 ms Duration of camera exposure
tgate 16 Threshold for gating volume
te .5 Threshold on epipolar constraint

tarea (20, 150) Minimum and maximum blob areas
Ns 1 frames Scanback for MHT
Np 200 Number of samples in particle filter

A. Parameters used for data collection and tracking

The camera baselineb, i.e., the distance between cameras,
affects the disparity∆u in pixel positions of an object in a
stereo camera setup [38]. A large disparity reduces uncertainty
along the camera axis, which in turn improves accuracy
as well as the ability to resolve occlusions. For a stereo-
camera configuration with focal lengthf and no vertical
offset between centers, the baseline and disparity are related
according to∆u = (bf)/z [38], wherez is the distance along
the camera axis of the target from the stereo setup. The overlap
between camera views is(Iw − ∆u)/Iw, where Iw is the
image width resolution in pixels. A large overlap is desirable

for maximum coverage. Since the majority of swarms were
filmed with 1.5 ≤ z ≤ 2.5 m, we selected a baseline of 20 cm
to achieve 80–90% overlap and 3–5 pixel difference between
two mosquitoes that are 3 cm apart (approx. 2 body lengths)
along the camera axis.

In addition to the intensity thresholdtint described in§III-A,
foreground segmentation requires setting the sliding window
twin and a threshold on area of the blobstarea. We selected
twin = 7 frames centered on the current frame, although
swarms filmed at short ranges required a sliding window
in the range of 3–5. We computed the area-threshold limits
20 ≤ tarea ≤ 150 from several different swarms to achieve
the best rejection of noise as well as large insects.

The covarianceΣep = diag{4, 4} pixels2 for endpoints was
computed by manually selecting the endpoints of streaks in a
random sampling of frames and comparing with the calculated
value. The disturbancew for the constant-velocity model was
sampled fromN(0, 100 m2/s4), whose covariance was found
by fitting a normal distribution to the acceleration values of
manually generated tracks.

B. Validation and performance of tracking system

We tested the position accuracy of our tracking system using
a calibration checkerboard with squares of known dimensions
by manually clicking pairs of points whose separation distance
was in the range 3–40 cm. This method yielded an error of 5
± 5 mm for 50 pairs. Average position error by tracking an
artificial mosquito projected on the stereo images as in§III-
B over multiple runs was 5± 4 mm. We also reconstructed
tracks from a single swarming event on Aug. 29 using two in-
dependent stereo camera rigs. We created a common reference
frame by measuring the height, azimuth and elevation of the
cameras. The videos were time-synced using a laser pointer
flashed at the end of the sequence. The mean distance between
independent tracks of the same mosquito (200 data points) was
4.4 ± 1.3 cm, although up to 3 cm error can be attributed to
the inter-frame time difference between the camera systems
(caused due to delay within a single frame that was used to
match the laser flash). A mosquito flying at an average speed
of 1.5 m/s will cover 3 cm in 1/50th of a second.

Fig. 7 shows the results of using the OSPA metric (see
Supplementary document, equation (4)) to compare tracks
from the multi-target tracking system to the manually gen-
erated ground-truth. We tested two swarms with 10 and 20
mosquitoes, respectively. The order parameter and the cut-
off parameter for computing OSPA values were set 2 and
50 mm respectively. Decomposing OSPA into position and
cardinality errors shows that the average root mean square
(RMS) position errors in the 10- and 20-mosquito swarms
were 2.17± 0.58 cm and 2.3± 0.46 cm, respectively. Corre-
spondingly, average absolute position errors for the 10- and 20-
mosquito swarms were 1.74± 0.56 cm and 2.03± 0.47 cm,
respectively. A low cardinality error was often accompanied by
relatively high position error during periods when the swarm
was dense, because of occlusions and false tracks. As would
be expected for a stereo setup, position error was highest
(44%) in the range measurement (along the camera optical



axis) as compared to either of the other two dimensions.
OSPA was larger for the 20-mosquito swarm, mainly due to
cardinality errors. The position error is likely a consequence
of image noise, which resulted in partially segmented streaks.
(We mitigate this problem by filtering trajectory data usinga
Kalman smoother.) Average reprojection error on the images
was less than 2 pixels.

The labeling error, which captures track continuity and
identity swaps, was computed separately. An identity swap
results in a labeling error of 2 before or after the swap
in the sequence. Track fragmentation results in a labeling
error of 1 after the disconnect occurs. We randomly selected
100 instances of 25 continuous frames in a swarm of 10
mosquitoes. The average labeling error (most of which was
due to track fragmentation) was 2.1± 1.4 tracks. A simple
average of track lengths across six swarms ranged between
15–25 frames corresponding to 0.6–1 s. Track fragmentation
occurs due to early terminations, which can be caused by the
following:

• Partially segmented streaks due to noise, cloudy back-
ground, and clutter. Partially segmented streaks in one
frame often violate the epipolar constraint. Decreasing
the intensity threshold to get full streaks adds noise to the
measurements. (A possible solution that we are exploring
in ongoing work is to reconstruct the streak using velocity
estimates.)

• Occlusion between a tracked and untracked target. Oc-
clusions between a tracked (known) targets and an as
yet uninitialized target are not detected. The success rate
of surviving such an occlusion depends on the motion
of the tracked target after the occlusion. A maneuver or
successive occlusion may terminate the track.

C. Tracking results

This section presents a subset of the three-dimensional
trajectory data generated using the mosquito tracking system.
We filmed twenty-one swarms and thirteen mating events
between August 17, 2010 and September 3, 2010. Out of
the twenty-one swarms, eighteen formed over bare ground
and three formed over natural markers. (A natural marker is
an area of high contrast with the rest of the ground such
as a patch of grass.)An. gambiae can be divided into two
incipient species namely the M and S molecular forms [43].
In [10] a strong association between the swarming marker
type and molecular form has been found. The M form was
found to swarm over natural markers, whereas the S form
swarms over bare ground [10]. We collected a few mosquitoes
from each swarm and performed a polymerase chain reaction
(PCR) test to determine the molecular form. All sequences
presented in this paper were of type S. Each day two teams
of 3–5 people with identical camera rigs selected separate
swarming sites for filming. The swarming sites were usually
within a few hundred meters of each other. Swarming sites
were surveyed the day before to record average swarm size
and location. Filming locations spread throughout the village
(see Fig. 8) were chosen based on swarm size (less than about
100 mosquitoes for tractability in tracking) and the presence

of few trees or houses in the background (i.e., in the direction
of the setting sun). Once filming began, 60–90 s stereo video
sequences were recorded as 10-bit synchronized tiff imageson
separate solid state drives. (The drives were backed up daily
on to two separate disks.) A filming session typically produced
5–8 video sequences before it became too dark to film.

Fig. 8. GPS measurements of filming locations in Mali, Africac©2012
Google, c©2012 DigitalGlobe.

To create representative trajectory dataset, we selected six
video sequences that contain a mating event. We call these
the mating sequences. We refer to the mating mosquitoes as
the female and the focal male. We also selected six other
video sequences with no female present, called the male-
only sequences, to produce full-length trajectories of swarming
behavior. Trajectory data presented here are from swarms
filmed on August 20, 21, 25, 26, 28, and 29 and September
1. Male-only sequences last between 20–35 seconds, whereas
mating sequences start a few seconds prior to the detection of
female within the field of view and end when the couple flies
out of field of view (0–5 s).

Fig. 9 shows the position and velocity of a randomly
selected maleAn. gambiae in the Aug. 29 male-only sequence,
which was a swarm that formed over bare ground (S molecular
form). The swarm consisted of 20 mosquitoes at the beginning
of the sequence and dropped to 19 after 10 seconds. The
mosquito movement is characterized by quasi-periodic motion
in each of the three spatial dimensions. The instantaneous
mean position of the mosquitoes in the swarm, i.e., the swarm
centroid, is also shown. The origin of the inertial frame is
located at ground level under the camera rig; the inertial
frame is oriented along east-west, north-south, and vertical
directions. The 3σ bounds for position and velocity of all
of mosquitoes in this swarm are shown in gray. Swarm size
(twice the 3σ bounds) averaged 1.17 m in the horizontal plane
and 0.56 m in the vertical. The average swarm size across all
planes ranged between 0.52–1.86 m. The average height of the
swarm was 1.89 m. The average velocity along each dimension
is close to zero with a highest standard deviation in the east-
west direction (0.514 m/s) followed by the north-south (0.332
m/s) and the vertical (0.281 m/s).

Fig. 10 shows the ratio between horizontal and vertical
speed for each swarm. The Aug. 28 sequence was filmed on a
day with relatively high wind (approx. 0.8 m/s) as compared
to other sequences. The mosquito movement for that swarm



Fig. 7. (a) Position (dashed blue) and cardinality error (solid green) for a swarm of 10 mosquitoes. (b) OSPA error for different methods and swarm sizes:
nearest neighbor [42] (dotted) for a swarm of 20 mosquitoes and single-scan MHT for two swarms of sizes 10 (crosses) and 20(circles), respectively.

Fig. 9. Instantaneous three-dimensional (a) position and (b) velocity tracks of a male mosquito (black solid) in the Aug. 29 sequence (S molecular form).
Mean (dotted blue) and 3σ bounds (gray) for all mosquitoes also shown. Also see Supplementary video 1.

was characterized by a rolling motion in the direction of the
wind and relatively higher vertical velocities. In five out of
the six swarms that we used to generate male-only sequences,
we witnessed mating events at a later time. The horizontal
and vertical speeds of female mosquito that formed couples
are also plotted in Fig. 10. Non-parameteric Kruskal-Wallis
tests on each dataset show that the average male and female
speeds in the same sequence are significantly different for each
sequence. The maximum p-value among all mating sequences
was 0.0003. (In contrast the maximum p-value for male speeds
during the same mating sequence was 0.051.)

Fig. 11 shows the position and velocity of a female mosquito
that formed a successful couple in the Aug. 29 sequence. The
mating sequence was filmed about a minute after the male-only
sequence on the same date. The female appeared in the field of
view 5 seconds prior to couping. The movement of the female
crosses the 3σ boundaries of the swarm in the north-south
dimension. The average speed of the female was higher than
the male mosquito until just before the couple forms, when the
focal male speeds up. The vertical movement shows that the
female stayed predominantly at heights corresponding to the
lower half of the swarm. A three-dimensional reconstruction



Fig. 10. Instantaneous horizontal versus vertical speed ofmale mosquitoes in six sequences (black dots). Female speeds (red circles) and average wind speed
(blue dashed lines) are shown, if available.

of the mating mosquitoes in six mating sequences is shown
in Fig. 12. Across all mating sequences, the female mosquito
covered an average 59% more distance than the focal male
during the same time interval.

Fig. 13 shows the separation distance and speeds from
six mating sequences. The amount of time we observed the
females in the swarm before forming a couple was up to 5
seconds. In each mating sequence that lasted longer than 0.5
seconds, the number of close encounters (moments when the
separation distance between the mating mosquitoes dropped
below 3 body lengths, or 4 cm) with the successful male
mosquito was in the range 3–6.

V. CONCLUSIONS AND ONGOING WORK

We describe a tracking system to reconstruct the three-
dimensional trajectories of wild mosquito swarms. We address
noisy images by adaptively seeking missing measurements
and exploit streak orientation and length to extract velocity
information. A probabilistic data association method thatuses
multiple hypothesis (MHT) is modified to address occlusions.
We evaluate the system using an established multi-target
tracking metric and validate using independent measurements
of the same swarm. Tracking results are presented in the
form of three-dimensional trajectories of swarming and mating
mosquitoes. To date, the data produced from the tracking
system described in this paper are an order of magnitude
larger (97 trajectories and 55,000 position points) than the
last published result [5] on reconstruction of wild mosquito
swarms, and the first to contain three-dimensional trajectories
rather than three-dimensional positions. In ongoing work,we
are investigating these trajectories to characterize swarming
and mating behavior.

As part of ongoing work on the tracking system we are
working to include the streak intensity in the image as part of
the likelihood function. This will help predict the appearance
of a mosquito on the image plane as a function of its velocity,
thereby allowing the possibility of streak retrieval. Suchan
approach would for example reduce track terminations and
create longer tracklets. Another aspect of the tracking system
that we are investigating is the automatic detection of mating
events. In order to avoid sifting through video streams to
locate mating events, the distinct flying pattern and appearance
of the mating couple can be used for automatic detection
and backwards tracking of the female. With enough mating
events a higher-order motion model (that depends on more
than one previous time-step) will automatically predict and
detect mating events.
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[10] A. Diabaté, A. Dao, A. S. Yaro, A. Adamou, R. Gonzalez, N. C.
Manoukis, S. F. Traore, R. W. Gwadz, and T. Lehmann, “Spatial
swarm segregation and reproductive isolation between the molecular
forms of Anopheles gambiae,” Proceedings of the Royal Society B:
Biological Sciences, pp. 4215–42 222, Sep. 2009. [Online]. Available:
http://rspb.royalsocietypublishing.org/content/276/1676/4215.short

[11] C. Pennetier, B. Warren, K. R. Dabiré, I. J. Russell, and G. Gibson,
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Fig. 12. Three-dimensional reconstruction ofAn. gambiae mating events in the wild. The female mosquito track (red) and male mosquito track (blue) are
shown. The couple is shown in purple. Pre-coupling tracks are projected onto two-dimensional planes on each side. (The Aug. 29 mating event is shown
magnified in Supplementary document. Also see Supplementary video 2.)



Fig. 13. Relative distance (a) and speeds (b) of mating male and femaleAn. gambiae mosquitoes (a) in six mating sequences. Time 0 s occurs when the
separation distance first drops below 2 cm. Arrows depict close encounters (separation distance less than 4 cm).


