Three-dimensional reconstruction of the fast-start
swimming kinematics of densely schooling fish

Sachit Butait and Derek A. Paley?

!Department of Aerospace Engineerirfleuroscience and Cognitive Science Program,
University of Maryland, College Park, MD 20742, USA

Abstract—Information transmission via nonverbal cues such fish have been tracked in two dimensions [11] and groups of
as a fright response can be quantified in a fish school by four and eight fish have been tracked in three dimensions [10]
reconstructing individual fish motion in three dimensions. In In [9], an acoustic sensor is used on a moving platform to

this paper we describe an automated tracking framework to L . :
reconstruct the full-body trajectories of densely schoolig fish ~rack individual fish in a school. In [10], [11] least-square

using two-dimensional silhouettes in multiple cameras. Wenodel  fitting is used to join track segments already matched in
the shape of each fish as a series of elliptical cross secticleng sequential video images. In each instance, the fish are edel

a flexible midline. We estlm_ate the size of each elll_pse usirgn  as point masses; orientation and shape information is éghor
iterated extended Kalman filter. The shape model is used in a Shape kinematics have been tracked and studied for fewer

model-based tracking framework in which simulated annealng is . . .
applied at each step to estimate the midline. Results are psented fish [12], [13] and the midline has been used previously to

for eight fish with occlusions. The tracking system is curretly — describe fish movement [12], [13], [14]. For example, in [13]
being used to investigate fast-start behavior of schoolindish in  a two-dimensional model built around the midline is used for

response to looming stimuli. tracking.
Index Terms—Target tracking, model-based tracking, school- Deformable objects such as a fish body can be detected in
ing fish, giant danio images using active contours [15], [16]. A pre-defined canto
based on a decreasing energy function is wrapped around
|. INTRODUCTION the edges of regions of high-contrast. In three dimensions,

Animal aggregations in many species fascinate and inspiteformable objects are encountered in markerless human mo-
engineers who study collective behavior [1], [2]. Engimegr tion capture [17] and articulated hand tracking [18]. Mot o
tools have the potential to advance the understanding ofalni these techniques rely on a predefined three-dimensionatimod
groups, and roboticists can use this improved understgridin to estimate pose and shape from two-dimensional images.
design bio-inspired robotic systems. Among the many arsim&hanges in shape are captured by deforming the model along
that demonstrate collective behavior, fish are particulatt degrees of freedom such as joint angles or principal compo-
tractive as a model system because a wide variety of sclpolitents. Methods to define a (deformable) shape use quadrics
fish are easy to procure and maintain in a laboratory setting.8], [19], superquadrics [20], and cubic splines [13]. 1],

While there are many bio-inspired algorithms that seek tge propose approximating fish shape by a bendable ellipsoid.
replicate collective behavior [3], [4], [5], we are not awarf We are able to track simple motion using this method, but not
any algorithm that has been validated by experimental da€z. or S-starts, which motivates the approach described here
One reason such experiments are lacking is that (markgrlessThe number of fish or, more importantly, the density of
tracking of multiple organisms is inherently hard. The @gl fish poses another challenge to tracking. For example, it is
tion of computer-vision techniques has helped, but a tegleni desirable to preserve the identity of each fish through time
to track the pose (i.e., position and orientation) and shapsd between camera views, even during occlusions. Data-
of individual animals in a group is not yet available. Eveassociation problems such as this can be addressed instan-
in a laboratory setting, we must address challenges suchtageously using shape fitting [22] or over a section of the
underwater lighting, occlusions, and reflections. target trajectory using motion coherence [23], [24], [ZH}ese

Our interest in collective behavior lies in the rapid trangaroblems have been addressed in tracking flies [26], [28], [2
mission of information via a nonverbal cue such as a friglnd ants [29]. Data association can be resolved using motion
response. An example of a fright response in fish is a fagtherence if the occlusions last for only a few frames and the
start, which is often the precursor to an escape or attaekget size is relatively small (so that it is rare for a targe
[6]. Two behaviors associated with fast-start swimming ahange course while occluded). However, in the case of high
C-starts and S-starts [7], named for the corresponding bofigme-rate tracking of fast-start behavior, occlusions Izest
shape during the maneuvers, which take place in less thaany frames and the fish often turn while occluded.

100 ms. The propagation of startle responses in a fish schooln this paper we describe a high-frame-rate tracking frame-
may be indicative of the social transmission of informatiowork for estimating the instantaneous shape of multiple fish
[8]. in a dense school (i.e., with sustained occlusions). Weyappl

Fish schools have been tracked in their natural environmenéthods from generative modeling to produce a shape model,

[9] and in laboratories [10], [11]. Positions of up to fowete which is then used to reconstruct the fish body in three dimen-



sions using two-dimensional silhouettes in multiple caamer Common applications use possibly sub-optimal solutioas th
The contributions of the paper are (1) a method to automatissume Gaussian noise distribution.

cally generate a three-dimensional model of a fish from two Our first application of nonlinear estimation is to estimate
orthogonal camera views; and (2) the design of a multi-kegerthe shape of each fish. We parameterize the body surface in
tracking system that reconstructs the position, orieoatand three dimensions using methods from generative modeling to
shape of individual fish in a dense school. The techniciaentify the model parameters. Generative modeling prewid
approach involves the application of tools from generative framework for reconstructing the shape of asymmetrical
modeling, nonlinear optimization, and Bayesian estinmatio objects. A generative model may be produced by rotating and

In our tracking framework, we describe each fish by itganslating an object along a trajectory [30]. Formally,ca<
position, orientation, and shape (midline). The measungsnetinuous set of transformations are applied on an objecteshap
consist of images from multiple cameras that are each mdde(elso called the generator) to build a generative model. A&eu
as a perspective-projection system. (A perspective piiojec generator of the formy(u) : R — R? is transformed through
is a nonlinear mapping between a three-dimensional pointanparameterized transformatio(y(u), s) : R?* x R — R3,
space and its two-dimensional position in the image plan¢o) form a shape. For example, a cylinder with radiuss
In order to capture the C and S shapes associated with fgsduced by choosing
start behavior, we modell the midline of the fish body as a oS UL e
ponnom_laI curve. Wg assign an orthqgonal reference frqnet y(u) = |sinu| andé(y(u),s) = [, @)
each point on the midline and use this frame to automatically 0 s
construct a three-dimensional shape profile for each fish. We
use simulated annealing to optimize the instantaneous stéheres € [0, 1] andw € [0, 27]. Similarly a cone is produced
estimate and Kalman filtering to smooth the estimate in timRy decreasing = 1 — s linearly along the trajectory.

The paper is organized as follows. In Section Il we introduce In @ Vision-based tracking system, a nonlinear estimator
the concepts of nonlinear estimation, generative modetiaga  Such as the extended Kalman filter (EKF), the unscented
association, and nonlinear optimization. Section Il prgs Kalman filter, or the particle filter is often used [31]. The EK
the fish-midline representation and automatic model genédates the target estimate by linearizing the measurement
ation. Section IV describes a multi-layered approach to rahd target state about the current estimate. A single update
construct midline trajectories, including the objectivaétion ©f the EKF is equivalent to a single step of a Gauss-Newton
used in optimization. Section V presents tracking resulth w Optimization method [32]. We iterate the following EKF
up to eight giant danioQfanio aequipinnatus We conclude algorithm to estimate the shape model of a fish.
in Section VI with a description of our ongoing use of the : _
tracking system to study information transmission in danio Fxtended Kaiman Filter (EKF) Algorithm

Input: Motion model F', measurement moddH, covariance ma-
trices for measurement noige and disturbance)
II. BACKGROUND Initialize: ~ State estimateX; and error covariance matri®; , prior
. . . L to the first measurement
A. Nonlinear estimation and data association For each time step = 1,2, . ..

In the tracking framework described below, we perforr: Compute gain matrixvy, = P, HI'S; ! whereSy, = Hy, P, Hy, + Ry,
estimation in two stages. First, we estimate the shape gepme is the measurement prediction covariance &hd= 25 (X )
of each fish, then we use the estimated shape for mod&l|-Update state estimatek , = X, + Wy (Z), — H(X} ,n))
based tracking. The shape-estimation process uses augludi Update state covariancéy, = (1 — Wi Hy) P
contours (silhouette boundaries) from multiple views. Th Predict state prior to next measuremeRly ., = F(Xy, wye1)
model-based tracking uses the shape geometry to reconsttucCOmPUte covariance?y, = FiPiFy + Qx, whereFi = 55 (Xx)
the fish position, orientation, and midline.
In general, the state of a target at tirheis described by In an iterated EKF we loop steps (1)—(3) until a threshold is
the vectorX, € R™. A measurement at timé is denoted reached on the matrix norm of the state covariafige
by Z, € R™. The stateX ., and measurementg,, are A multi-target tracking system requires measurements to
related to the staté&;, according to be matched to targets, a process called data association.
A simple and fast data-association strategy called nearest
X1 = F(Xp, wit1) neighbor matching [24] assigns a measurement to the closest
Zit1 = H(X g1, np41), (projected) estimate on the image plane. We compute a metric
where F' represents the (nonlinear) motion modH, repre- for th.e distance between thg measurement and the target as a
sents the (nonlinear) measurement model, andnd n are function of the complete midline. This metric makes a ndares

the instantaneous disturbance- and measurement—noisfsvalneighbor association reliable, even when the targets asecl
Given the state estimati ,,, the estimation erroX, — X, © One another.

is a random quantity due to noise and approximation in ) o

F and H. The conditional probability of a state estimatd3- Nonlinear optimization

p(Xk|Zk) given the measurements up to tileZ*, is called In a high-frame-rate tracking system, the time difference
the posterior probability density function (pdf). An optin between successive measurements is small. As a resuk; trac
Bayesian solution recursively maximizes the posterior. pdhg primarily entails processing the measurements, and doe




Generative modeling Shape reconstruction
Estimate three—dimensional midline —| Perform measurement—target data
by two—stage optimization association by nearest—neighbor
(Section III-A) matching (Section IV-A)

Estimate cross—sectional ellipses

by iterated EKF (Section [1-B) Reconstruct shape by simulated

annealing (Section IV-B)

Smooth shape trajectories
by Kalman filtering (Section IV-C)

Fig. 1. Tracking framework. Generative modeling is used aoameterize a shape model; these parameters are estinsiedan iterated EKF. Shape
reconstruction is performed by matching measurements fegmented images in multiple cameras to a three-dimensibape estimate.

: : L TABLE |
not require an accurate motion model. For tracking indigidu NOMENCLATURE

fish, we cast the system (1) into a numerical optimiza-

tion problem and use simulated annealing to solve it. The o _

. L . s Midline coordinate,s € [0, 1]
measurement model is represented by an objective function £(s) Elliptical cross section of fish body at
|Zr — H(X,nt)|, which evaluates the match between a(s) Semi-major axis of cross section at
measurements and the estimate. Simulated annealing (SA) is b(s) | _ Semi-minor axis of cross section at =

- S . d(s) Displacement of cross section along normal axis at
a probabilistic optimization method used to find the global v Camera index, c=1.2.3
minimum of the objective function even if there are multiple £f(s) Midline at s in body-fixed reference frame
minima [33]. It mimics the annealing process by acceptinga < The surface of a fish body
. . . ; h Heading vector (orientation of head)
jump out of a local minimum with a probability that decreases & Time index.k = 1,2, ...
as the search approaches a global minimum. The simulated L A line in three dimensions
annealing algorithm is summarized in the following table. m(s) Midline in world reference frame at
o Occluding contour in camera
_ _ _ p Vector of polynomial coefficients
Simulated Annealing Algorithm g Vertical axis in world frame
Input: Cost functionC : R™ — R, perturbation functionr : t(s) Tangent vector to the midline at
R"™ — R™, and a non-increasing cooling schedule x(s) Normal vector to the midline at
Initialize:  State estimate at current time-steX;! = X, y(s) Binormal vector to the midline at
Until a termination criteria is reached, iterate fgr = T 4 x 4 transformation matrix
1.9, ‘u Measurement in pixels inth camera image
7 _j . _ cq Projected estimate in pixels itth camera image
1: Perturb the systenX” = r(X7) and compute the cost§'(X”) and X1, State of a target at timé
C(X”). Let 6C be the change in cost. Zy, Measurements at time
2: Sample from a uniform distributiop ~ U(0, 1) and update the state: B Body frame fixed to head
. ) c Camera reference frame
X+ _ { X7 if p < min(1, exp(—6C/77)) w World reference frame

X7 otherwise,
where77 is the temperature.
3: Update the temperature’ based on the cooling schedule (for exampleways to generate the midline. In [14], the midline is found
T/t = Ker?, where0 < Ke < 1) by projecting the top-view profile on a plane of orientation.
In [12], [13], the midline is generated manually. The midlin
One or more termination criteria may be used such as reachingour tracking system is generated automatically when the
a freezing temperature;, exceeding a maximum numberfish is in clear view of all cameras, i.e., when there are no
of unsuccessful function evaluations at a given tempegatwcclusions and both head and tail are visible. The shapelmode
Nopaz, OF attaining a minimum cost value. is generated automatically from the midline using an ietat
EKF. The relevant nomenclature is summarized in Table I.

Ill. GENERATING THE FISH MODEL

This section describes a novel method for generating a figh- Shape representation using the midline
shape model to be used for model-based tracking. The shapEor the purpose of model generation and tracking we make
model is based on the midline of the fish. There are sevethé following assumptions about fish motion observed in our



8 Ci between the heading and the pitching axis to get the yaw axis.
Given the position of the head € R3, the complete body
frame in the world-frame coordinates can be represented by

the transformatiodVTz = h gxh hx(gxh) r )
e 0 0 0 1
.

The midline is parameterized in the body frame i) =
[fi(s)  fa(s) fg(SﬂT, wheres € [0,1]. We assume the
{ functions f;(s) are differentiable, which permits us to define

S _Vf an orthonormal frame at each poinbn the midline. We use
this frame to define the body cross sectiors at
To allow for up to two inflection points and the possibility
of a C-start or S-start, we modg¢](s) and f»(s) as quadratic
and quartic polynomials, respectively. We have
020; 2
f1(s) = p1s + pa2s
Ja(s) = p3s® + pas® + pss’ 3)
Fig. 2. Camera view€,C2, andCs, and world frame/). Camerag’; and f3(3) =0

Co are used for tracking; Cameta is used for validation purposes.

T . ..
wherep = [p1,...,ps]  are the polynomial coefficients.
The midline is represented in world-frame coordinates gisin
transformationV 7y, i.e,

) 2w [109). "

The midlinem(s) is projected onto the image by perspective
projection, which uses the camera calibration parame8sis [
The projected midlinéd(s) on camera: is [36]

N c c T
“uls) = [ w2
where “w(s) = “Pm(s) and “P is the camera projection
matrix [36].

To automatically generate the midline, we locate the head,
nose, and tail of the fish from the top view (camera 1) based
Fig. 3. - The body frames is fixed to the head with the heading vector o the following observations: (a) the center of the heatigs t
pointing towards the tip of the nose. The pitch (green), ¢olue), and yaw . . .

(red) axes complete the frame. center of the largest circle that fits inside the silhoue(ig;
the nose is the highest curvature point on the portion of the
occluding contour near the head; and (c) the curvature of the
experiments: occluding contour is highest at the tail. (Curvature, defiire
ection V-C, represents the degree of bending.)
The location of the nose expressed in pixels in camera 1 is

Al) The fish in our tracking experiments bend laterally [14]$

A2) The fish in our tracking experiments turn and pitch, buo}enoted by'u,, the tail by 'u,, and the center of the head by

rarely roll. 1 . : . 5
A3) The portion of the body from the eyes to the nose (thaer‘;;'pzlnet gf:ﬁgcri O?L(iep(; ::nl}r\(;g(tgees%g()il;e;sei Iéiy”zr;)T
head) (.joe.s not bend.. N La(s)||. The side views (cameras 2 and 3) give orientation
A single fish is characterized by the position of the head, therormation as well as position information. L&t2 (°1,,, L,
orientation of the head (the heading vector), and the nedlinge 3 fine in camera, where®l,, is the slope andl, is the
The midline is a curve that runs from the head to the tajhtercept with the vertical axis of the image plane. A least-
A surface is generated around the midline to approximadgyares fit on the silhouette in camerastablishes a line
the shape. We define the shape locally using a body-fixggm the head to the tail. The body frame is oriented so that
reference framd. The origin of frameZ3 is the center of the the heading is aligned with this line in the side view and with
head with one axis in the direction of the nose. The headifgs vector from the head to the nose in the top view. The head
h € R is a unit vector pointing from the center of the headng nose are marked in the top view. We use the following

to the tip of the nose (see Fig. 3). Based on assumption (AZ}ditional constraints in the side view to build the bodyrfea
the body-frame axes are completed l%y performing the cross

product of the verticalg £ [0 0 1]° with the heading “lg,p = “lm U ,n + Ly
h to get the pitching axis, followed by the cross product “lo.pn = U U1n + lr,



wherec € {2,3}. We solve these constraint equations in either In order to generate an accurate surface model for each
one of the side cameras for the position of the heg@) € R®  fish, we measure the valueés), b(s) andd(s) using the top-
and nose. We complete the body frame by applying the no-relew and side-view observations. These values are the state
assumption (A2). variables in the model-estimation process. Each measmteme
The estimated midline parametgrsare found using a non- in this process is the length of the line segment contained in
linear cost function that measures the distance of thewsétie the occluding contour and normal to the midline (see Fig. 4).
to the midline. Letg’ be the distance of the poirtu; in We substitutew = {0, 7} in equation (9) to produce the
the top-view silhouette to the closest point on the proggctend points of the major axig,s); u = {7/2,37/2} produces
midline *a(s). The midline parameterg are estimated by the values for the minor axig(s), andd(s). A perspective
solving projection of a surface poin§(s,u) on camera is denoted

by ¢S(s,u). The measurement model is
p= aurgmian;‘7 where y“S(s,u)

p 7 (S)* ||1S(830)_1S(577T)H +
qr *mmHlu — L4(s)|| subject to & P , 2 ,
S(s,7/2) —=8(s,37/2
La(1) = uy. n(s) = PECT2 =Sl (10)
We minimize (5) it by applying a two-stage optimization (s) = 2S(s,m/2) +28(s,37/2) —2()| +
process consisting of simulated annealing followed by asigua N 2 »

Newton line search [37]. Once a midline is estimated, a serf h
is generated around it to create a shape model as descri {e
next.

re pa pb (s) and p4(s) are the measurements of
) in the respective camera views, andandes
are the measurement noise in camdrasd?2, respectively!

We use an iterated EKF to update our estimates. (An
B. Generating a shape model iterated EKF updates the estimate about the last computed
We model the fish cross section at poinbn the midline Value to minimize the measurement error.) A requirement for
by an ellipse&(s) in the plane that is normal to the midlinegenerating a reliable model is that we have a clear view of
at s. We compute the ellipse planes at each point using cud# fish including its nose and tail in all camera views at

framing [38]. The tangent(s) to the midline at point forms least once. The EKF is initialized by selecting all fish inteac

an axis of a local orthogonal fran{@ y(s) t(s )] The camera. Once the ellipse sizes are estimated, we can use them
local frame at each point on the midline is completed 48 generate a shape in combination with the state of the fish
follows: the normal axis(s) is z(s) = g x t(s) and the X = [rT A" pT] € R, wherer = m/(0).

binormal isy(s) = t(s) x x(s) (see Fig. 4). A point on the

cross sectiorf(s) can be represented in the world frame V. RECONSTRUCTING FISH MOTION
using the transformation matrix In this section we describe the steps for tracking individua
w x(s) y(s) t(s) m(s) fish after a model is generated. We first describe the met-
Te = 0 0 0 1 | (6) ric used to associate target estimates to measurements, the
where present the objective function used to estimate the positio

 romi ome  omalT orientation, and shape trajectories.
t(s) = [ 9s  9s s ] The tracking algorithm associates the silhouette of a blob
In order to generate the body surface, we estimate the mdjpr@ camera image to a target based on the proximity of the
a(s) and minorb(s) axes of each elliptical cross section. Wéilhouette to the target's projected midline. Once a masch i
include a parameteti,s), that allows us to displace the ellipsemade, we use the estimated three-dimensional model to again
alongy(s). Using candidate values faxs), b(s), d(s), and the Project the boundary of the fish body (i.e., the occluding

transformation matrix above, we scale and transform thescrgontour) onto a camera plane. This occluding contour is
sectiony(u) = [cos(u) sin(u) O}T, wherew € [0,2x] compared with the silhouette boundary in multiple viewslevhi

[30], [39]. The transformation is defined as (see (2)) varying the position, orientation, and shape until a besifit
obtained. We use a numerical optimization algorithm to find
where
M(s) = [@(s)a(s) y(s)b(s) Ogxi] A. Finding measurement-target associations
T(s) = m(s) + y(s)d(s). (8) In a multi-target tracking experiment, before we update a

_ _ o _ target estimate using a new measurement, we must first asso-
The curvem(s) is formed using (4). Substituting (8) into (7).ciate the measurement with a target. We use nearest-neighbo
we obtain the surface matching, which associates a measurement to a target based o

A
S(s,u) = 6(v(u), 5) = m(s) + als) cos(u)z(s)+ 9) INote that the above measurement model assumes that thediagclu
(b(s) sin(u) + d(s))y(s), contour of a fish is a projection of the extreme ends of thetehl cross
sections. Since the camera distance (1 m) is much largerttigafish cross
wheres € [0,1] andu € [0, 27]. section (2.5 cm), this assumption introduces only subkpi@asurement error.



(a) (b) (©)

Fig. 4. Generating the fish shape model. (a) Midline fits anclugling contours in the top view and side view are used to geéaea midline in three-
dimensions. The white circles are the measurements androdescare the projected estimates of the end points of figselaxes. (b) Cross-sectional ellipse
normal to the midline. (c) The top profile and side profile asedito generate the final surface. (The black ellipse marsitthe head and rest of the body.)

a generalized distance metric. The Euclidean distancedegtwl, € R? is the unit vector representing the direction of the

centroid positions may not provide an accurate associatime andil,, = I, x I, is the moment of any point. € R?

when the fish are close to one another, so we establish anottrerthe line. The distance of poimtfrom the line L is given

metric described here. by ||r x 1, — 1,,,]|. The cost function is a measure of the total
The measurements in our case are silhouettes on a cantiséance of a surface from an occluding contour. We denote a

frame. Let the set of measurements on a camera frame gmnt on the surfac& by S;. The state estimatX is obtained

indexed byj. Z? denotes a silhouette on the camera framby solving

The points in a silhouette are indexedby.e, u! € Z7. Note . ) o

thatw/ € R? is measured in pixels. To match a silhouette ~ X = argmin > D °D;+g(Al) where

with a target, we project the midline from each target onto th c€(1,2) 0€°0 (12)

camera image plane. We then assign a silhouette to the target ~ “D; = min||S; x L, o — L ol|-

if it is the “closest” silhouette to the midline. The genéatl s

distance metric computes the sum of the minimum distance®fA!) is a non-decreasing function oA/, the difference

each point on the midline to a silhouette. L&t (s) denote the in length between the midline as computed from shape-

projected midline of target. The measuremery associated estimation and from the candidate staXe In Section V we

to targett in framec is computed by solving chooseg(Al) = K,4[|Al|]?, where K, > 0.
We use simulated annealing to search the state space. New
Jt = argminz q; where points are generated at each step of the optimization #fgori
. J_ L (11) using Gaussian disturbaneewith known covariance. Unlike
qs = miln|| u; — “ag(s)||- an iterative closest-point algorithm [41], we do not peinficat

Note that in (11) the minimum distance from the midlin ror assoqatlon betwee_n _the _measurements and the gurfa_\ce
his permits larger variation in pose and shape, which is

is computed. This is because we are not attempting to fit tggmmon during fast starts
midline to a silhouette, but rather to find how far it is from a 9 '
given silhouette. In the case of an occlusion, two targets ar

assigned the same silhouette. The search space is autaligati€. Filtering the state estimates

increasgd so that we now fit multiple shape projections to thetpe optimization output is rarely smooth because errors
same silhouette. in the measurements are absorbed into the estimates. We

smooth the estimates by passing the output state through a
B. Shape-matching cost function Kalman filter. Fish movement comprises change in position,

Once a model is generated we produce a three-dimensiogpégntation, and shape. We model velocity and heading vecto
line from each point on the occluding conta@r The distance @S being subject to Gaussian disturbance
of each line to the model surfaceis used to optimize the state dir = dw,, dh = dwp, (13)
estimate [40]. We represent a lide in three dimensions by
Plicker coordinates [40]. The advantage of this represiemt wherew,., w; € R? indicate white noise processes.
is that it defines a line uniquely and its distance to a point The shape consists of the curve parametgrs =
is a straightforward operation. Let = [1] lﬁ]T, where [p1,... ,pg,}T. In a straight midlinep, represents the length of
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Fig. 5. Time series plots of position, orientation, and ltaarvature for
a single fish. The plots are shown before filtering (dashees)irand after
filtering (solid lines). The two peaks in the total curvatamerespond to turns.
Kiotal 1S defined in Section V-C.

TABLE Il
PARAMETER VALUES USED FOR TRACKING

Parameter| Value Description

« 0.05 Background update coefficient (initial)

« 0.0001 | Background update coefficient (final)

A 5 Coefficient of decay for midline parameteps

T 1 Starting temperature for simulated annealing

el 1 Noise variance in top view (pixels)

€2 2 Noise variance in side view (pixels)
Yw 1 Noise variance for generating new points in SA
Ky 10 Weighting factor in shape-matching cost function
Tf 106 Freezing temperature for simulated annealing
K. 0.9 Cooling coefficient for cooling schedule

Nmax 400 Max. unsuccessful evaluations at a temperature

(b)

the fish ang,, . . ., ps are all zero. A bent midline correspondgig- 6. | A mU"i-l;XPOSU(fje ti)ma_%e with eStif"f'atedf_ T}id””es povgd on the
to non-zero values ips, . . ., ps. We model the fish as having ™29¢ Plane. (&) Top and (b) side views of four fish.
constant length; the midline tends to straighten out afééndp

bent. We therefore model changespinusing Gaussian noise ;. e the tank to capture the top view at 250 frames per

Wp,i» and modepg, -++» P> s exponentially decaying Va”ablessecond (fps) and 128& 1024 pixel resolution. Two Casio
with rate A > 0, i.e,

EX-F1 Pro cameras were placed orthogonal to each other
dp1 = dwyp 1 facing the tank sides. These cameras captured images at 300
) (14) ) . ;

dp; = —Apidt + dwy;, i =2,...,5. fps and 512« 384 pixel resolution. To ensure an adequately lit
background, the remaining three sides of the tank were biack-
by a 150W fluorescent light source diffused by 1/4 stop with a
diffuser fabric. Videos from the three cameras were synged b
marking a frame in each video with a distinct common event.

In order to test our tracking framework, we filmed trials oSimultaneous events during a trial were generated in the fiel
one, two, four, and eight giant dani®#nio aequipinnatus of view of all three cameras by a string of flashing LEDs.
in a 0.61 mx 0.30 mx 0.40 m (24 x12"' x16"), 20 gallon The full videos were then synced and verified using a custom
tank. Each trial lasted for 1-3 seconds. Three cameras weiaux shell script. (Every fifth frame in the 250 fps video was
used to film the fish (see Fig. 2). Two cameras were usegpeated.)
for tracking and the third camera was used for validation. At the beginning of each experiment, a short video of the
A DRS Lightning RDT high-resolution camera was placethnk was recorded without any fish, so that we could model

V. EXPERIMENTAL VALIDATION
A. Materials and setup



(a) (b) (©)

Fig. 7. Tracking validation using an independent camera 3liepe estimated from the (a) top and (b) side camera iscfgdj@ento a (c) multi-exposure
image from the independent camera.

the background for background subtraction. Each tracking 0.157

sequence starts with a set of background images, wherein tt
background is modeled as a running average with a tunin
parametefa [43]:

=
5 0.1F
“Bry1 = “Br(1 — “a) + “aIry1, (15) &
>
©
where B, is the first background image afid, is the current @
image of camera. The value of°a was kept high initially 5 0.05
to model lighting fluctuations and was lowered when therew ="\ .-

were fish present. (See Table Il for parameter values used f

tracking.)
Camera calibration was performed using the MATLAB
calibration toolbox [44]. A planar checkerboard was filmed % 1

underwater at different orientations inside the tank. iBstc Body position (s)

calibration was performed by moving the checkerboard be-
P y 9 égé 8. Error for midline fit. The midline was manually sektton a random

tween the camere_ls and propa_gatmg the extrinsic parar_n_e %f 100 top-view frames. The distance between the pegjeestimate and
between overlapping camera views until all camera postiothe manually generated midline as measured in the top cafrere. For

and orientations were known with respect to the world framg2mparison with previous work, we also computed the meaor ddashed
.. . . . line) for a fish shape modeled as a bent ellispoid [21].

The reprojection error during calibration for each camess w

in subpixels. In three dimensions, the error was computed by

comparing the known distance between checkerboard points | . .

(ranging between 30 mm and 210 mm apart) with the distan@8NSity of the fish schools that we tracked was one fish

between estimated position. The average error over 50 sigj 2-> gallons. (The actual density was higher because the

observations was 0 0.37 mm. The world frame was choserfiSh Schooled in only a fraction of the tank volume.) We

to be directly below the top camera such that the vertica a#S&d two methods to determine the accuracy of our tracking

pointed up (see Fig. 2). The top-view camera and the talg0rithm. First, the estimated shape and track recortsiruc

were aligned using a bubble level. were verified using an independent camera. Fig. 7 illusrate

Once the calibration was performed, fish were introducd§® accuracy of the tracker using the projected estimatéen t

into the tank from a separate tank in sets of 1, 2, 4 and third camera. Second, we randomly selected a set of frames

Three trials were conducted for each set. Filming was startacross multiple videos and manually marked ten controltsoin
approximately ten minutes after the fish were introducee: TRION the midiine in the top view. The midline was then
input to the tracking system was a set of synced frames frdhnually generated by interpolating a curve between the ten
each camera (top and side) and the calibration parametersitked points. The orthogonal distance between each point o
each camera. The output is a time series of the state vedft estimated midline and the manually generated midiire wa

X for each fish. The number of fish was constant during eafAMPUted at each point. Fig. 8 depicts the average, maximum,
trial. and minimum error on the midline. Comparing the manually

generated midline and tracked midline in the top view for a
single fish shows a maximum average error of five pixels at the
B. Validation of tracking accuracy tip of the tail. The tail error is primarily due to the incostgnt
Results for the tracking system are reported here for fig@pearance of the semi-transparent caudal fin in the siteoue
out of the twelve trials. In every trial, we were able to trackneasurements.
multiple fish shapes even during occlusions. The maximumOcclusions of two and three fish were tracked reliably as



evidenced by Fig. 10. Since the tracking process dependd§racking results with up to eight fish are shown and
on the silhouettes in each camera frame to estimate wadidated. The validation is performed using an indepehden
fish position, orientation, and shape, the tracking acguracamera. We are currently using this system to study fish
is affected by the number of fish in an occlusion. In owchooling behavior by investigating fast-start time stgnes
setup, with the low-resolution side cameras, we found lossthe curvature profiles.
of accuracy in occlusions with four or more fish (See Fig. The inaccuracies in the tracker result primarily from (& th
11). There were no data association errors, although thesedeling assumption that the fish midline lies on an inclined
are expected for dense occlusions. We intend to address filane; (b) dense occlusions, during which the limited nesol
problem by increasing the camera resolution and number tgan of the cameras make it difficult to resolve the silhoegtt
that the views with the fewest occlusions can be used ito individual shapes; and (c) the curve parameterization
estimate shape. which may be insufficient to represent complex curves. The
accuracy of the tracker can be further improved by segnegati
the head and orientation tracking from shape tracking when
there are no occlusions. A patrticle filter may be run to tréek t
The shape-tracking system described in this paper yieldsad and orientation while simulated annealing can be used
a new opportunity to study fish behavior. The full-bodyo estimate shape.
reconstruction at every step allows one to automaticaltgade  Inaccuracies may also result due to refraction between air
and quantify fast-start behavior, which we are doing in ango and water. In the case of our setup where the camera image
work outside the scope of this paper. Fig. 9 compares tplane was parallel to the water surface and centered with
curvature profile for a coasting motion with the profile forespect to the face of the tank, errors due to refraction were
a fright response. We compute curvature and total curvatuegv (Section V-A), however, mounting the cameras at an angle
from the midline f(s) as [45] to the water surface would require compensation for refsact
L . 1 effects.
K= M and Kol :/ k(s)ds.  (16) As part of ongoing work we are improving the tracking
(f7? + f32)3/2 0 speed. The tracking software has been developed in MATLAB
In the first case, the fish was filmed without any disturbanc&here it takes an average of four seconds per fish per frame on
The second case is a midline reconstruction of a single fidt¢ GHz CPU with 4 GB of memory (The tracker is used as a
from a multi-fish trial during which the fish was startled by #£0St-trial analysis tool.) The majority of the computatione
visual stimulus. is spent in the optimization step to find the shape fit. During
When no fright stimulus was presented, the curvature clusions, the search space increasdsld, wheren is the
high towards the tail. A coasting turn takes more than ofg/mber of fish involved in an occlusion. The average time to
hundred milliseconds and the curvature profile is flat. In tH§SOIVe @ two-fish occlusion was twelve seconds per fish. A
case of a fright response (an S-start), high curvature appealistic goal is to be able to track a single fish in 300 frames
along the midline. The turn occurs in approximately 40 m&ithin 60 seconds. That would aIIowgusgrt_o study the r_esult
and appears as a dark band at 450 ms. A thin dark regffd make any changes for the next trial within several maute
near body length 0.9 appears in the curvature plots due/Adirst step in this direction would be to parallelize the epti
the combined effect of tail beat movement and inaccuracy fiZation algorithm. For example, the annealing particleril
the tail reconstruction due to inconsistent appearancéef {46] runs a simulated annealing algorithm at multiple point
caudal fin. The three-dimensional reconstruction of each % State space to eventually reach the global minimum.rOthe
these turns shows the distance travelled by each fish durif@jiants of simulated annealing algorithm include modifyi
the turn. The coasting fish travels 54 mm in 500 ms where B sampling distribution and cooling schedule [47].
the startled fish travelled 160 mm in the same time.

C. Preliminary analysis of fast-start behavior
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