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Abstract—Information transmission via nonverbal cues such
as a fright response can be quantified in a fish school by
reconstructing individual fish motion in three dimensions. In
this paper we describe an automated tracking framework to
reconstruct the full-body trajectories of densely schooling fish
using two-dimensional silhouettes in multiple cameras. Wemodel
the shape of each fish as a series of elliptical cross sectionsalong
a flexible midline. We estimate the size of each ellipse usingan
iterated extended Kalman filter. The shape model is used in a
model-based tracking framework in which simulated annealing is
applied at each step to estimate the midline. Results are presented
for eight fish with occlusions. The tracking system is currently
being used to investigate fast-start behavior of schoolingfish in
response to looming stimuli.

Index Terms—Target tracking, model-based tracking, school-
ing fish, giant danio

I. I NTRODUCTION

Animal aggregations in many species fascinate and inspire
engineers who study collective behavior [1], [2]. Engineering
tools have the potential to advance the understanding of animal
groups, and roboticists can use this improved understanding to
design bio-inspired robotic systems. Among the many animals
that demonstrate collective behavior, fish are particularly at-
tractive as a model system because a wide variety of schooling
fish are easy to procure and maintain in a laboratory setting.

While there are many bio-inspired algorithms that seek to
replicate collective behavior [3], [4], [5], we are not aware of
any algorithm that has been validated by experimental data.
One reason such experiments are lacking is that (markerless)
tracking of multiple organisms is inherently hard. The applica-
tion of computer-vision techniques has helped, but a technique
to track the pose (i.e., position and orientation) and shape
of individual animals in a group is not yet available. Even
in a laboratory setting, we must address challenges such as
underwater lighting, occlusions, and reflections.

Our interest in collective behavior lies in the rapid trans-
mission of information via a nonverbal cue such as a fright
response. An example of a fright response in fish is a fast
start, which is often the precursor to an escape or attack
[6]. Two behaviors associated with fast-start swimming are
C-starts and S-starts [7], named for the corresponding body
shape during the maneuvers, which take place in less than
100 ms. The propagation of startle responses in a fish school
may be indicative of the social transmission of information
[8].

Fish schools have been tracked in their natural environment
[9] and in laboratories [10], [11]. Positions of up to fourteen

fish have been tracked in two dimensions [11] and groups of
four and eight fish have been tracked in three dimensions [10].
In [9], an acoustic sensor is used on a moving platform to
track individual fish in a school. In [10], [11] least-squares
fitting is used to join track segments already matched in
sequential video images. In each instance, the fish are modeled
as point masses; orientation and shape information is ignored.
Shape kinematics have been tracked and studied for fewer
fish [12], [13] and the midline has been used previously to
describe fish movement [12], [13], [14]. For example, in [13],
a two-dimensional model built around the midline is used for
tracking.

Deformable objects such as a fish body can be detected in
images using active contours [15], [16]. A pre-defined contour
based on a decreasing energy function is wrapped around
the edges of regions of high-contrast. In three dimensions,
deformable objects are encountered in markerless human mo-
tion capture [17] and articulated hand tracking [18]. Most of
these techniques rely on a predefined three-dimensional model
to estimate pose and shape from two-dimensional images.
Changes in shape are captured by deforming the model along
degrees of freedom such as joint angles or principal compo-
nents. Methods to define a (deformable) shape use quadrics
[18], [19], superquadrics [20], and cubic splines [13]. In [21],
we propose approximating fish shape by a bendable ellipsoid.
We are able to track simple motion using this method, but not
C- or S-starts, which motivates the approach described here.

The number of fish or, more importantly, the density of
fish poses another challenge to tracking. For example, it is
desirable to preserve the identity of each fish through time
and between camera views, even during occlusions. Data-
association problems such as this can be addressed instan-
taneously using shape fitting [22] or over a section of the
target trajectory using motion coherence [23], [24], [25].These
problems have been addressed in tracking flies [26], [27], [28]
and ants [29]. Data association can be resolved using motion
coherence if the occlusions last for only a few frames and the
target size is relatively small (so that it is rare for a target to
change course while occluded). However, in the case of high
frame-rate tracking of fast-start behavior, occlusions can last
many frames and the fish often turn while occluded.

In this paper we describe a high-frame-rate tracking frame-
work for estimating the instantaneous shape of multiple fish
in a dense school (i.e., with sustained occlusions). We apply
methods from generative modeling to produce a shape model,
which is then used to reconstruct the fish body in three dimen-
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sions using two-dimensional silhouettes in multiple cameras.
The contributions of the paper are (1) a method to automati-
cally generate a three-dimensional model of a fish from two
orthogonal camera views; and (2) the design of a multi-layered
tracking system that reconstructs the position, orientation, and
shape of individual fish in a dense school. The technical
approach involves the application of tools from generative
modeling, nonlinear optimization, and Bayesian estimation.

In our tracking framework, we describe each fish by its
position, orientation, and shape (midline). The measurements
consist of images from multiple cameras that are each modeled
as a perspective-projection system. (A perspective projection
is a nonlinear mapping between a three-dimensional point in
space and its two-dimensional position in the image plane.)
In order to capture the C and S shapes associated with fast-
start behavior, we model the midline of the fish body as a
polynomial curve. We assign an orthogonal reference frame to
each point on the midline and use this frame to automatically
construct a three-dimensional shape profile for each fish. We
use simulated annealing to optimize the instantaneous state
estimate and Kalman filtering to smooth the estimate in time.

The paper is organized as follows. In Section II we introduce
the concepts of nonlinear estimation, generative modeling, data
association, and nonlinear optimization. Section III presents
the fish-midline representation and automatic model gener-
ation. Section IV describes a multi-layered approach to re-
construct midline trajectories, including the objective function
used in optimization. Section V presents tracking results with
up to eight giant danio (Danio aequipinnatus). We conclude
in Section VI with a description of our ongoing use of the
tracking system to study information transmission in danio.

II. BACKGROUND

A. Nonlinear estimation and data association

In the tracking framework described below, we perform
estimation in two stages. First, we estimate the shape geometry
of each fish, then we use the estimated shape for model-
based tracking. The shape-estimation process uses occluding
contours (silhouette boundaries) from multiple views. The
model-based tracking uses the shape geometry to reconstruct
the fish position, orientation, and midline.

In general, the state of a target at timek is described by
the vectorXk ∈ R

n. A measurement at timek is denoted
by Zk ∈ R

m. The stateXk+1 and measurementsZk+1 are
related to the stateXk according to

Xk+1 = F (Xk,wk+1)

Zk+1 = H(Xk+1,nk+1),
(1)

whereF represents the (nonlinear) motion model,H repre-
sents the (nonlinear) measurement model, andw andn are
the instantaneous disturbance- and measurement-noise values.
Given the state estimatêXk, the estimation error̂Xk −Xk

is a random quantity due to noise and approximation in
F and H . The conditional probability of a state estimate
p(X̂k|Z

k) given the measurements up to timek, Zk, is called
the posterior probability density function (pdf). An optimal
Bayesian solution recursively maximizes the posterior pdf.

Common applications use possibly sub-optimal solutions that
assume Gaussian noise distribution.

Our first application of nonlinear estimation is to estimate
the shape of each fish. We parameterize the body surface in
three dimensions using methods from generative modeling to
identify the model parameters. Generative modeling provides
a framework for reconstructing the shape of asymmetrical
objects. A generative model may be produced by rotating and
translating an object along a trajectory [30]. Formally, a con-
tinuous set of transformations are applied on an object shape
(also called the generator) to build a generative model. A curve
generator of the formγ(u) : R → R

3 is transformed through
a parameterized transformation,δ(γ(u), s) : R3 × R → R

3,
to form a shape. For example, a cylinder with radiusr is
produced by choosing

γ(u) =





cosu
sinu
0



andδ(γ(u), s) =





rγ1
rγ2
s



 , (2)

wheres ∈ [0, 1] andu ∈ [0, 2π]. Similarly a cone is produced
by decreasingr = 1− s linearly along the trajectory.

In a vision-based tracking system, a nonlinear estimator
such as the extended Kalman filter (EKF), the unscented
Kalman filter, or the particle filter is often used [31]. The EKF
updates the target estimate by linearizing the measurement
and target state about the current estimate. A single update
of the EKF is equivalent to a single step of a Gauss-Newton
optimization method [32]. We iterate the following EKF
algorithm to estimate the shape model of a fish.

Extended Kalman Filter (EKF) Algorithm

Input: Motion modelF , measurement modelH, covariance ma-
trices for measurement noiseR and disturbanceQ

Initialize: State estimateX−

1
and error covariance matrixP−

1
, prior

to the first measurement
For each time stepk = 1, 2, . . .

1: Compute gain matrix:Wk = P−

k
HT

k
S−1

k
whereSk = HkP

−

k
Hk +Rk

is the measurement prediction covariance andHk = ∂H
∂X

(X̂
−

k )

2: Update state estimate:̂Xk = X̂
−

k +Wk(Zk −H(X̂
−

k ,nk))
3: Update state covariance:Pk = (1−WkHk)P

−

k

4: Predict state prior to next measurement:X̂
−

k+1 = F (X̂k,wk+1)

5: Compute covariance:P−

k+1
= FkPkF

T
k

+Qk, whereFk = ∂F
∂X

(X̂k)

In an iterated EKF we loop steps (1)–(3) until a threshold is
reached on the matrix norm of the state covariancePk.

A multi-target tracking system requires measurements to
be matched to targets, a process called data association.
A simple and fast data-association strategy called nearest-
neighbor matching [24] assigns a measurement to the closest
(projected) estimate on the image plane. We compute a metric
for the distance between the measurement and the target as a
function of the complete midline. This metric makes a nearest-
neighbor association reliable, even when the targets are close
to one another.

B. Nonlinear optimization

In a high-frame-rate tracking system, the time difference
between successive measurements is small. As a result, track-
ing primarily entails processing the measurements, and does
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(Section III−A)

Generative modeling Shape reconstruction

by iterated EKF (Section III−B)
Estimate cross−sectional ellipses

annealing (Section IV−B)
Reconstruct shape by simulated

by Kalman filtering (Section IV−C)

by two−stage optimization
Estimate three−dimensional midline

Smooth shape trajectories

matching (Section IV−A)
association by nearest−neighbor
Perform measurement−target data

Fig. 1. Tracking framework. Generative modeling is used to parameterize a shape model; these parameters are estimated using an iterated EKF. Shape
reconstruction is performed by matching measurements fromsegmented images in multiple cameras to a three-dimensional shape estimate.

not require an accurate motion model. For tracking individual
fish, we cast the system (1) into a numerical optimiza-
tion problem and use simulated annealing to solve it. The
measurement model is represented by an objective function
‖Zk − H(Xk,nk)‖, which evaluates the match between
measurements and the estimate. Simulated annealing (SA) is
a probabilistic optimization method used to find the global
minimum of the objective function even if there are multiple
minima [33]. It mimics the annealing process by accepting a
jump out of a local minimum with a probability that decreases
as the search approaches a global minimum. The simulated
annealing algorithm is summarized in the following table.

Simulated Annealing Algorithm

Input: Cost functionC : R
n → R, perturbation functionr :

Rn → Rn, and a non-increasing cooling schedule
Initialize: State estimate at current time-step,X1 = Xk

Until a termination criteria is reached, iterate forj =
1, 2, . . .

1: Perturb the system̃X
j
= r(Xj) and compute the costsC(Xj) and

C(X̃
j
). Let δC be the change in cost.

2: Sample from a uniform distributionρ ∼ U(0, 1) and update the state:

Xj+1 =

{

X̃
j

if ρ ≤ min(1, exp(−δC/τ j ))
Xj otherwise,

whereτ j is the temperature.
3: Update the temperatureτ j based on the cooling schedule (for example,

τ j+1 = Kcτ j , where0 < Kc < 1.)

One or more termination criteria may be used such as reaching
a freezing temperatureτf , exceeding a maximum number
of unsuccessful function evaluations at a given temperature
Nmax, or attaining a minimum cost value.

III. G ENERATING THE FISH MODEL

This section describes a novel method for generating a fish-
shape model to be used for model-based tracking. The shape
model is based on the midline of the fish. There are several

TABLE I
NOMENCLATURE

s Midline coordinate,s ∈ [0, 1]
E(s) Elliptical cross section of fish body ats
a(s) Semi-major axis of cross section ats
b(s) Semi-minor axis of cross section ats
d(s) Displacement of cross section along normal axis ats
c Camera index, c=1,2,3

f(s) Midline at s in body-fixed reference frame
S The surface of a fish body
h Heading vector (orientation of head)
k Time index,k = 1, 2, . . .
L A line in three dimensions

m(s) Midline in world reference frame ats
cO Occluding contour in camerac
p Vector of polynomial coefficients
g Vertical axis in world frame

t(s) Tangent vector to the midline ats
x(s) Normal vector to the midline ats
y(s) Binormal vector to the midline ats
T 4× 4 transformation matrix
cu Measurement in pixels incth camera image
cû Projected estimate in pixels incth camera image
Xk State of a target at timek
Zk Measurements at timek
B Body frame fixed to head
C Camera reference frame
W World reference frame

ways to generate the midline. In [14], the midline is found
by projecting the top-view profile on a plane of orientation.
In [12], [13], the midline is generated manually. The midline
in our tracking system is generated automatically when the
fish is in clear view of all cameras, i.e., when there are no
occlusions and both head and tail are visible. The shape model
is generated automatically from the midline using an iterated
EKF. The relevant nomenclature is summarized in Table I.

A. Shape representation using the midline

For the purpose of model generation and tracking we make
the following assumptions about fish motion observed in our
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C1

C2

W

C3

Fig. 2. Camera viewsC1, C2, andC3, and world frameW . CamerasC1 and
C2 are used for tracking; CameraC3 is used for validation purposes.

B

h

Fig. 3. The body frameB is fixed to the head with the heading vectorh
pointing towards the tip of the nose. The pitch (green), roll(blue), and yaw
(red) axes complete the frame.

experiments:

A1) The fish in our tracking experiments bend laterally [14].
A2) The fish in our tracking experiments turn and pitch, but

rarely roll.
A3) The portion of the body from the eyes to the nose (the

head) does not bend.

A single fish is characterized by the position of the head, the
orientation of the head (the heading vector), and the midline.
The midline is a curve that runs from the head to the tail.
A surface is generated around the midline to approximate
the shape. We define the shape locally using a body-fixed
reference frameB. The origin of frameB is the center of the
head with one axis in the direction of the nose. The heading
h ∈ R

3 is a unit vector pointing from the center of the head
to the tip of the nose (see Fig. 3). Based on assumption (A2),
the body-frame axes are completed by performing the cross
product of the verticalg ,

[

0 0 1
]T

with the heading
h to get the pitching axis, followed by the cross product

between the heading and the pitching axis to get the yaw axis.
Given the position of the headr ∈ R

3, the complete body
frame in the world-frame coordinates can be represented by

the transformationWTB =

[

h g × h h× (g × h) r

0 0 0 1

]

.

The midline is parameterized in the body frame byf (s) =
[

f1(s) f2(s) f3(s)
]T

, where s ∈ [0, 1]. We assume the
functionsfi(s) are differentiable, which permits us to define
an orthonormal frame at each points on the midline. We use
this frame to define the body cross section ats.

To allow for up to two inflection points and the possibility
of a C-start or S-start, we modelf1(s) andf2(s) as quadratic
and quartic polynomials, respectively. We have

f1(s) = p1s+ p2s
2

f2(s) = p3s
2 + p4s

3 + p5s
4

f3(s) = 0,

(3)

where p =
[

p1, . . . , p5
]T

are the polynomial coefficients.
The midline is represented in world-frame coordinates using
transformationWTB, i.e,

[

m(s)
1

]

= WTB

[

f(s)
1

]

. (4)

The midlinem(s) is projected onto the image by perspective
projection, which uses the camera calibration parameters [35].
The projected midlinecû(s) on camerac is [36]

cû(s) =
[

cw1

cw3

cw2

cw3

]T

,

where cw(s) = cPm(s) and cP is the camera projection
matrix [36].

To automatically generate the midline, we locate the head,
nose, and tail of the fish from the top view (camera 1) based
on the following observations: (a) the center of the head is the
center of the largest circle that fits inside the silhouette;(b)
the nose is the highest curvature point on the portion of the
occluding contour near the head; and (c) the curvature of the
occluding contour is highest at the tail. (Curvature, defined in
Section V-C, represents the degree of bending.)

The location of the nose expressed in pixels in camera 1 is
denoted by1un, the tail by1ut, and the center of the head by
1uh. The distance of a point on the silhouette1u ∈ R

2 from
any point on the projected curve1û(s) ∈ R

2 is given by‖1u−
1û(s)‖. The side views (cameras 2 and 3) give orientation
information as well as position information. Letcl , (clm, clr)
be a line in camerac, whereclm is the slope andclr is the
intercept with the vertical axis of the image plane. A least-
squares fit on the silhouette in camerac establishes a line
from the head to the tail. The body frame is oriented so that
the heading is aligned with this line in the side view and with
the vector from the head to the nose in the top view. The head
and nose are marked in the top view. We use the following
additional constraints in the side view to build the body frame:

cû2,h = clm
cû1,h + clr

cû2,n = clm
cû1,n + clr,
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wherec ∈ {2, 3}. We solve these constraint equations in either
one of the side cameras for the position of the headm(0) ∈ R

3

and nose. We complete the body frame by applying the no-roll
assumption (A2).

The estimated midline parametersp̂ are found using a non-
linear cost function that measures the distance of the silhouette
to the midline. Letq∗i be the distance of the point1ui in
the top-view silhouette to the closest point on the projected
midline 1û(s). The midline parameterŝp are estimated by
solving

p̂ = argmin
p

∑

i

q∗i , where

q∗i = min
s

‖1ui −
1û(s)‖ subject to

1û(1) = 1ut.

(5)

We minimize (5) it by applying a two-stage optimization
process consisting of simulated annealing followed by a quasi-
Newton line search [37]. Once a midline is estimated, a surface
is generated around it to create a shape model as described
next.

B. Generating a shape model

We model the fish cross section at points on the midline
by an ellipseE(s) in the plane that is normal to the midline
at s. We compute the ellipse planes at each point using curve
framing [38]. The tangentt(s) to the midline at points forms
an axis of a local orthogonal frame

[

x(s) y(s) t(s)
]

. The
local frame at each point on the midline is completed as
follows: the normal axisx(s) is x(s) = g × t(s) and the
binormal isy(s) = t(s) × x(s) (see Fig. 4). A point on the
cross sectionE(s) can be represented in the world frameW
using the transformation matrix

WTE =

[

x(s) y(s) t(s) m(s)
0 0 0 1

]

, (6)

where
t(s) =

[

∂m1

∂s
∂m2

∂s
∂m3

∂s

]T
.

In order to generate the body surface, we estimate the major
a(s) and minorb(s) axes of each elliptical cross section. We
include a parameter,d(s), that allows us to displace the ellipse
alongy(s). Using candidate values fora(s), b(s), d(s), and the
transformation matrix above, we scale and transform the cross
section γ(u) =

[

cos(u) sin(u) 0
]T

, where u ∈ [0, 2π]
[30], [39]. The transformation is defined as (see (2))

δ(γ, s) = M(s)γ + T (s), (7)

where

M(s) =
[

x(s)a(s) y(s)b(s) 03×1

]

T (s) = m(s) + y(s)d(s).
(8)

The curvem(s) is formed using (4). Substituting (8) into (7),
we obtain the surface

S(s, u) , δ(γ(u), s) = m(s) + a(s) cos(u)x(s)+

(b(s) sin(u) + d(s))y(s),
(9)

wheres ∈ [0, 1] andu ∈ [0, 2π].

In order to generate an accurate surface model for each
fish, we measure the valuesa(s), b(s) andd(s) using the top-
view and side-view observations. These values are the state
variables in the model-estimation process. Each measurement
in this process is the length of the line segment contained in
the occluding contour and normal to the midline (see Fig. 4).

We substituteu = {0, π} in equation (9) to produce the
end points of the major axis,a(s); u = {π/2, 3π/2} produces
the values for the minor axis,b(s), andd(s). A perspective
projection of a surface pointS(s, u) on camerac is denoted
by cS(s, u). The measurement model is

pa(s) =
‖1S(s, 0)− 1S(s, π)‖

2
+ e1

pb(s) =
‖2S(s, π/2)− 2S(s, 3π/2)‖

2
+ e2

pd(s) =

∥

∥

∥

∥

2S(s, π/2) + 2S(s, 3π/2)

2
− 2û(s)

∥

∥

∥

∥

+ e2,

(10)

where pa(s), pb(s) and pd(s) are the measurements of
a(s), b(s), d(s) in the respective camera views, ande1 ande2
are the measurement noise in cameras1 and2, respectively.1

We use an iterated EKF to update our estimates. (An
iterated EKF updates the estimate about the last computed
value to minimize the measurement error.) A requirement for
generating a reliable model is that we have a clear view of
the fish including its nose and tail in all camera views at
least once. The EKF is initialized by selecting all fish in each
camera. Once the ellipse sizes are estimated, we can use them
to generate a shape in combination with the state of the fish
X =

[

rT hT pT
]T

∈ R
11, wherer = m(0).

IV. RECONSTRUCTING FISH MOTION

In this section we describe the steps for tracking individual
fish after a model is generated. We first describe the met-
ric used to associate target estimates to measurements, then
present the objective function used to estimate the position,
orientation, and shape trajectories.

The tracking algorithm associates the silhouette of a blob
in a camera image to a target based on the proximity of the
silhouette to the target’s projected midline. Once a match is
made, we use the estimated three-dimensional model to again
project the boundary of the fish body (i.e., the occluding
contour) onto a camera plane. This occluding contour is
compared with the silhouette boundary in multiple views while
varying the position, orientation, and shape until a best fitis
obtained. We use a numerical optimization algorithm to find
the best fit.

A. Finding measurement-target associations

In a multi-target tracking experiment, before we update a
target estimate using a new measurement, we must first asso-
ciate the measurement with a target. We use nearest-neighbor
matching, which associates a measurement to a target based on

1Note that the above measurement model assumes that the occluding
contour of a fish is a projection of the extreme ends of the elliptical cross
sections. Since the camera distance (1 m) is much larger thanthe fish cross
section (2.5 cm), this assumption introduces only sub-pixel measurement error.
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(a) (b) (c)

Fig. 4. Generating the fish shape model. (a) Midline fits and occluding contours in the top view and side view are used to generate a midline in three-
dimensions. The white circles are the measurements and red circles are the projected estimates of the end points of the ellipse axes. (b) Cross-sectional ellipse
normal to the midline. (c) The top profile and side profile are used to generate the final surface. (The black ellipse partitions the head and rest of the body.)

a generalized distance metric. The Euclidean distance between
centroid positions may not provide an accurate association
when the fish are close to one another, so we establish another
metric described here.

The measurements in our case are silhouettes on a camera
frame. Let the set of measurements on a camera frame be
indexed byj. Zj denotes a silhouette on the camera frame.
The points in a silhouette are indexed byi, i.e,uj

i ∈ Zj . Note
that uj

i ∈ R
2 is measured in pixels. To match a silhouette

with a target, we project the midline from each target onto the
camera image plane. We then assign a silhouette to the target
if it is the “closest” silhouette to the midline. The generalized
distance metric computes the sum of the minimum distance of
each point on the midline to a silhouette. Letcût(s) denote the
projected midline of targett. The measurementjt associated
to targett in framec is computed by solving

jt = argmin
j

∑

s

q∗s where

q∗s = min
i
‖cui −

cût(s)‖.
(11)

Note that in (11) the minimum distance from the midline
is computed. This is because we are not attempting to fit the
midline to a silhouette, but rather to find how far it is from a
given silhouette. In the case of an occlusion, two targets are
assigned the same silhouette. The search space is automatically
increased so that we now fit multiple shape projections to the
same silhouette.

B. Shape-matching cost function

Once a model is generated we produce a three-dimensional
line from each point on the occluding contourO. The distance
of each line to the model surfaceS is used to optimize the state
estimate [40]. We represent a lineL in three dimensions by
Plücker coordinates [40]. The advantage of this representation
is that it defines a line uniquely and its distance to a point
is a straightforward operation. LetL ,

[

lTv lTm
]T

, where

lv ∈ R
3 is the unit vector representing the direction of the

line and lm = lr × lv is the moment of any pointlr ∈ R
3

on the line. The distance of pointr from the lineL is given
by ‖r× lv − lm‖. The cost function is a measure of the total
distance of a surface from an occluding contour. We denote a
point on the surfaceS by Si. The state estimatêX is obtained
by solving

X̂ = argmin
X

∑

c∈(1,2)

∑

o∈cO

cD∗
o + g(∆l) where

cD∗
o = min

i∈S
‖Si ×

clv,o −
clm,o‖.

(12)

g(∆l) is a non-decreasing function of∆l, the difference
in length between the midline as computed from shape-
estimation and from the candidate stateX. In Section V we
chooseg(∆l) = Kg‖∆l‖2, whereKg > 0.

We use simulated annealing to search the state space. New
points are generated at each step of the optimization algorithm
using Gaussian disturbancew with known covariance. Unlike
an iterative closest-point algorithm [41], we do not perform a
prior association between the measurements and the surface.
This permits larger variation in pose and shape, which is
common during fast starts.

C. Filtering the state estimates

The optimization output is rarely smooth because errors
in the measurements are absorbed into the estimates. We
smooth the estimates by passing the output state through a
Kalman filter. Fish movement comprises change in position,
orientation, and shape. We model velocity and heading vector
as being subject to Gaussian disturbance

dṙ = dwr, dh = dwh, (13)

wherewr,wh ∈ R
3 indicate white noise processes.

The shape consists of the curve parametersp =
[

p1, . . . , p5
]T

. In a straight midline,p1 represents the length of
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TABLE II
PARAMETER VALUES USED FOR TRACKING

Parameter Value Description
α 0.05 Background update coefficient (initial)
α 0.0001 Background update coefficient (final)
λ 5 Coefficient of decay for midline parametersp
τ 1 Starting temperature for simulated annealing
e1 1 Noise variance in top view (pixels)
e2 2 Noise variance in side view (pixels)
Σw 1 Noise variance for generating new points in SA
Kg 10 Weighting factor in shape-matching cost function
τf 10−6 Freezing temperature for simulated annealing
Kc 0.9 Cooling coefficient for cooling schedule

Nmax 400 Max. unsuccessful evaluations at a temperature

the fish andp2, . . . , p5 are all zero. A bent midline corresponds
to non-zero values inp2, . . . , p5. We model the fish as having
constant length; the midline tends to straighten out after being
bent. We therefore model changes inp1 using Gaussian noise
wp,i, and modelp2, . . . , p5 as exponentially decaying variables
with rateλ > 0, i.e,

dp1 = dwp,1

dpi = −λpidt+ dwp,i, i = 2, . . . , 5.
(14)

V. EXPERIMENTAL VALIDATION

A. Materials and setup

In order to test our tracking framework, we filmed trials of
one, two, four, and eight giant danio (Danio aequipinnatus)
in a 0.61 m× 0.30 m× 0.40 m (24"×12"×16"), 20 gallon
tank. Each trial lasted for 1–3 seconds. Three cameras were
used to film the fish (see Fig. 2). Two cameras were used
for tracking and the third camera was used for validation.
A DRS Lightning RDT high-resolution camera was placed

(a)

(b)

Fig. 6. A multi-exposure image with estimated midlines projected on the
image plane. (a) Top and (b) side views of four fish.

above the tank to capture the top view at 250 frames per
second (fps) and 1280× 1024 pixel resolution. Two Casio
EX-F1 Pro cameras were placed orthogonal to each other
facing the tank sides. These cameras captured images at 300
fps and 512× 384 pixel resolution. To ensure an adequately lit
background, the remaining three sides of the tank were back-lit
by a 150W fluorescent light source diffused by 1/4 stop with a
diffuser fabric. Videos from the three cameras were synced by
marking a frame in each video with a distinct common event.
Simultaneous events during a trial were generated in the field
of view of all three cameras by a string of flashing LEDs.
The full videos were then synced and verified using a custom
Linux shell script. (Every fifth frame in the 250 fps video was
repeated.)

At the beginning of each experiment, a short video of the
tank was recorded without any fish, so that we could model
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(c)(b)(a)

Fig. 7. Tracking validation using an independent camera. The shape estimated from the (a) top and (b) side camera is projected onto a (c) multi-exposure
image from the independent camera.

the background for background subtraction. Each tracking
sequence starts with a set of background images, wherein the
background is modeled as a running average with a tuning
parametercα [43]:

cBk+1 = cBk(1−
cα) + cαcIk+1, (15)

wherecB0 is the first background image andcIk is the current
image of camerac. The value ofcα was kept high initially
to model lighting fluctuations and was lowered when there
were fish present. (See Table II for parameter values used for
tracking.)

Camera calibration was performed using the MATLAB
calibration toolbox [44]. A planar checkerboard was filmed
underwater at different orientations inside the tank. Extrinsic
calibration was performed by moving the checkerboard be-
tween the cameras and propagating the extrinsic parameters
between overlapping camera views until all camera positions
and orientations were known with respect to the world frame.
The reprojection error during calibration for each camera was
in subpixels. In three dimensions, the error was computed by
comparing the known distance between checkerboard points
(ranging between 30 mm and 210 mm apart) with the distance
between estimated position. The average error over 50 such
observations was 0.7± 0.37 mm. The world frame was chosen
to be directly below the top camera such that the vertical axis
pointed up (see Fig. 2). The top-view camera and the tank
were aligned using a bubble level.

Once the calibration was performed, fish were introduced
into the tank from a separate tank in sets of 1, 2, 4 and 8.
Three trials were conducted for each set. Filming was started
approximately ten minutes after the fish were introduced. The
input to the tracking system was a set of synced frames from
each camera (top and side) and the calibration parameters for
each camera. The output is a time series of the state vector
X for each fish. The number of fish was constant during each
trial.

B. Validation of tracking accuracy

Results for the tracking system are reported here for five
out of the twelve trials. In every trial, we were able to track
multiple fish shapes even during occlusions. The maximum
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Fig. 8. Error for midline fit. The midline was manually selected on a random
set of 100 top-view frames. The distance between the projected estimate and
the manually generated midline as measured in the top cameraframe. For
comparison with previous work, we also computed the mean error (dashed
line) for a fish shape modeled as a bent ellispoid [21].

density of the fish schools that we tracked was one fish
per 2.5 gallons. (The actual density was higher because the
fish schooled in only a fraction of the tank volume.) We
used two methods to determine the accuracy of our tracking
algorithm. First, the estimated shape and track reconstruction
were verified using an independent camera. Fig. 7 illustrates
the accuracy of the tracker using the projected estimate on the
third camera. Second, we randomly selected a set of frames
across multiple videos and manually marked ten control points
along the midline in the top view. The midline was then
manually generated by interpolating a curve between the ten
marked points. The orthogonal distance between each point on
the estimated midline and the manually generated midline was
computed at each point. Fig. 8 depicts the average, maximum,
and minimum error on the midline. Comparing the manually
generated midline and tracked midline in the top view for a
single fish shows a maximum average error of five pixels at the
tip of the tail. The tail error is primarily due to the inconsistent
appearance of the semi-transparent caudal fin in the silhouette
measurements.

Occlusions of two and three fish were tracked reliably as
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evidenced by Fig. 10. Since the tracking process depends
on the silhouettes in each camera frame to estimate the
fish position, orientation, and shape, the tracking accuracy
is affected by the number of fish in an occlusion. In our
setup, with the low-resolution side cameras, we found loss
of accuracy in occlusions with four or more fish (See Fig.
11). There were no data association errors, although these
are expected for dense occlusions. We intend to address this
problem by increasing the camera resolution and number so
that the views with the fewest occlusions can be used to
estimate shape.

C. Preliminary analysis of fast-start behavior

The shape-tracking system described in this paper yields
a new opportunity to study fish behavior. The full-body
reconstruction at every step allows one to automatically detect
and quantify fast-start behavior, which we are doing in ongoing
work outside the scope of this paper. Fig. 9 compares the
curvature profile for a coasting motion with the profile for
a fright response. We compute curvature and total curvature
from the midlinef(s) as [45]

κ =
|f ′

1f
′′
2 − f ′

2f
′′
1 |

(f ′2
1 + f ′2

2 )3/2
andκtotal =

∫ 1

0

κ(s)ds. (16)

In the first case, the fish was filmed without any disturbance.
The second case is a midline reconstruction of a single fish
from a multi-fish trial during which the fish was startled by a
visual stimulus.

When no fright stimulus was presented, the curvature is
high towards the tail. A coasting turn takes more than one
hundred milliseconds and the curvature profile is flat. In the
case of a fright response (an S-start), high curvature appears
along the midline. The turn occurs in approximately 40 ms
and appears as a dark band at 450 ms. A thin dark region
near body length 0.9 appears in the curvature plots due to
the combined effect of tail beat movement and inaccuracy in
the tail reconstruction due to inconsistent appearance of the
caudal fin. The three-dimensional reconstruction of each of
these turns shows the distance travelled by each fish during
the turn. The coasting fish travels 54 mm in 500 ms where as
the startled fish travelled 160 mm in the same time.

VI. CONCLUSIONS AND ONGOING WORK

In this paper we describe a three-dimensional tracking
framework for reconstructing the swimming kinematics of
individual fish in a school and present results for schools
with densities greater than one fish per 2.5 gallons. We used
model-based tracking to estimate fish shape with multiple
camera views. Using elliptical cross sections on the midline we
automatically generate a shape model that is used to track the
fish in three dimensions. A cost function that measures the
distance between a three-dimensional surface and occluding
contours on multiple camera planes is used in a simulated
annealing algorithm to estimate shape at each time step. The
output of the simulated annealing algorithm is passed through
a Kalman filter to further smooth the estimates.

Tracking results with up to eight fish are shown and
validated. The validation is performed using an independent
camera. We are currently using this system to study fish
schooling behavior by investigating fast-start time signatures
in the curvature profiles.

The inaccuracies in the tracker result primarily from (a) the
modeling assumption that the fish midline lies on an inclined
plane; (b) dense occlusions, during which the limited resolu-
tion of the cameras make it difficult to resolve the silhouettes
into individual shapes; and (c) the curve parameterization
which may be insufficient to represent complex curves. The
accuracy of the tracker can be further improved by segregating
the head and orientation tracking from shape tracking when
there are no occlusions. A particle filter may be run to track the
head and orientation while simulated annealing can be used
to estimate shape.

Inaccuracies may also result due to refraction between air
and water. In the case of our setup where the camera image
plane was parallel to the water surface and centered with
respect to the face of the tank, errors due to refraction were
low (Section V-A), however, mounting the cameras at an angle
to the water surface would require compensation for refraction
effects.

As part of ongoing work we are improving the tracking
speed. The tracking software has been developed in MATLAB
where it takes an average of four seconds per fish per frame on
a 2 GHz CPU with 4 GB of memory (The tracker is used as a
post-trial analysis tool.) The majority of the computationtime
is spent in the optimization step to find the shape fit. During
occlusions, the search space increasesn-fold, wheren is the
number of fish involved in an occlusion. The average time to
resolve a two-fish occlusion was twelve seconds per fish. A
realistic goal is to be able to track a single fish in 300 frames
within 60 seconds. That would allow a user to study the results
and make any changes for the next trial within several minutes.
A first step in this direction would be to parallelize the opti-
mization algorithm. For example, the annealing particle filter
[46] runs a simulated annealing algorithm at multiple points in
the state space to eventually reach the global minimum. Other
variants of simulated annealing algorithm include modifying
the sampling distribution and cooling schedule [47].
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