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Abstract— This paper presents a state-space description using
planar discrete elastic rod theory of a soft robotic appendage
with torque input at one end. We design a linear output
feedback controller to balance the appendage in an unstable
vertical configuration with an angle sensor and torque input co-
located at the base. Gains are tuned through simulations of the
nonlinear system and hardware experiments are performed to
verify performance. Simulation results suggest that the resulting
control design balances some appendages that would otherwise
buckle under their own weight.

I. INTRODUCTION

Robotic systems designed with soft components have
decreased weight, size, and mechanical complexity as com-
pared to traditional rigid robots [1]. Soft robots have been
used in many tasks, including gripping delicate objects [2],
as well as in underwater locomotion [3]. However, soft and
flexible systems are challenging to model because they may
be highly nonlinear, have infinite degrees of freedom, and
are generally described by partial differential equations [4].
Much of the existing literature in the field of flexible manip-
ulators focuses on relatively stiff structures with sufficiently
well-defined vibration modes, which can be modeled with
the Assumed Modes Method (AMM) [5]. However, existing
models break down when soft materials such as silicone
rubber undergo large deformations [5]. In this case, state-
space modeling and principled control design is possible
using elastic rod theory [6].

As a representative problem, this paper considers the
stabilization of a soft appendage mounted on a rotating
base with a torque input as shown in Fig. 1. The nonlinear
behavior and complexity of existing models that describe
the dynamics of flexible beams complicate traditional control
design [7]. Prior work has been done in modeling inverted
cantilever beams on carts with tip masses [8], [9]. In [10]
and [11], a pendulum is free to rotate at a pivot on a moving
cart. Singla [12] models a cart-pole system as a series of two
rigid rods linked by torsional springs.

To model the dynamics of the soft appendage we employ a
planar discrete elastic rod (PDER) formulation in state-space
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form [6]. We first design a full-state feedback controller for
the system linearized about the upwards vertical equilibrium
and apply that controller to simulations of the full nonlinear
system. We then design a linear observer using a standard
Kalman filter design and stabilize the up equilibrium using
observer-based feedback with only one angle measurement
collected at the base of the appendage only.

The contributions of this paper are (1) a state-space
description of a soft swinging appendage with torque in-
put using planar discrete elastic rod theory; (2) a state-
feedback control design for balancing the soft appendage in
an unstable vertical configuration; and (3) a dynamic output-
feedback control design using a linear observer that relies
only on measurements of the orientation of the base of the
rod. Performance is illustrated using numerical simulations
of the nonlinear system and hardware experiments using a
silicone rubber appendage. The parameters of the hardware
system are chosen to satisfy the conventional self-buckling
condition; simulations suggest that the feedback control de-
sign balances some appendages that would otherwise buckle
under their own weight even with the base angle fixed.

The outline of the paper is as follows. Section II derives
the nonlinear mathematical model. Section III presents a
feedback control design based on the model linearized about
the unstable equilibrium. Section IV presents experimental
data and discuss system performance. Finally, Section V
summarizes the results and ongoing work.

II. NONLINEAR MATHEMATICAL MODEL

A soft appendage is a continuum structure with an infinite
number of degrees of freedom [9]. In order to characterize
the behavior of a soft appendage, we utilize a discrete model
of an elastic rod. The behavior of the elastic rod is suitably
approximated using a planar discrete elastic rod formulation
(PDER) [6], which is a specialization of three-dimensional
discrete elastic rod theory [13], [14]. The rod is discretized
into a series of N + 1 nodes (labeled 0 to N ) and N edges
(labeled 1 to N ). The more nodes, the more closely the
PDER agrees with analytical models [14].

For our derivation of the PDER equations of motion, we
follow the conventions of [6]. The position of the kth node
is xk = xkE1 + ykE2, where xk and yk are Cartesian
coordinates, E1 is a unit vector in the horizontal direction,
and E2 is a unit vector in the vertical direction. It follows
that E3 = E1 × E2 is directed out of the plane. Edge
vectors ek = xk − xk−1 connect neighboring nodes, and
have associated unit tangent and normal vectors,

tk =
ek

‖ek‖
, and nk = E3 × tk, (1)



respectively. The discrete curvature κk of the rod at internal
node k is defined in terms of the signed turning angle ϕk =
θk+1−θk formed as follows between the neighboring edges:

κk =
2 sin(ϕk)

1 + cos(ϕk)
= 2 tan

(ϕk
2

)
, (2)

where cosϕk = tk−1 · tk and sinϕk = nk−1 · tk, for k =
1, . . . , N − 1.

The resting shape of a PDER is defined by the set of
intrinsic lengths l̄i of each edge and intrinsic curvatures κ̄i
at each node. Assume a naturally straight rod with κ̄i = 0 for
all nodes and evenly spaced nodes with l̄i = l for all edges.
Consider a flexible rod of rectangular cross section and
uniform density, with total length Ltot, density ρ, thickness
h, and width w (out of the plane in the E3 direction). The
intrinsic length of each edge is thus l = Ltot/N and the
mass of each edge is m = ρwhl. The mass mk associated
with the kth node is the average mass of the edges meeting
at this node, i.e., m0 = mN = m/2 and mk = m for
k = 1, . . . , N − 1.

Fig. 1. The PDER model represents a continuous flexible rod as a chain of
point mass nodes connected by edges. Edges are modeled as linear elastic
springs and nodes are modeled as nonlinear elastic torsional springs. The
input to the system is a torque at the base of the appendage.

The PDER dynamics incorporate the various forms of
potential energy within the system as follows. The curvatures
κk determine the elastic bending energy Eb. The change in
length of each edge determines the elastic stretching energy
Es. The elastic energies together with the gravitational
potential energy Eg form the total potential energy,

Et = Es + Eb + Eg, (3)

with [6]

Es =
1

2

N∑
k=1

EAl̄k
(
‖ek‖
l̄k
− 1

)2

Eb =
1

2

N−1∑
j=1

EI

l̄k
(κj − κ̄j)2

Eg = g

N∑
i=0

miyi,

(4)

where E is the elastic modulus of the rod, A = wh is the
cross-sectional area of the rod, and I = 1

12wh
3 is the area

moment of inertia of the rod.
To write the dynamics in state-space form, let q =

[x0 y0 . . . xN−1 yN−1]T represent the Cartesian coor-
dinates of all of the nodes. The state-space model of the
PDER is [6]

ẍk = − 1

mk

(
∂Et
∂xk

+ Fxk

)
ÿk = − 1

mk

(
∂Et
∂yk

+ Fyk

)
, (5)

where Fxk and Fyk are the components of all external
forces acting on the nodes. For the swinging rod considered
here with node 0 fixed in place, the only external (non-
conservative) forces are the forces of constraint acting at
node 0 and the forces at node 1 that produce the input torque.
The stretching, bending, and gravitational forces at each node
are conservative and arise from the partial derivative with
respect to q of the corresponding potential energy. For an
additional description of these forces refer to [14].

An alternative discretized rod approach was presented in
[15]. It is similar to DER except that it uses a definition of
curvature that is proportional to the turning angle. At small
deformations the models behave similarly, but the model in
[15] has bounded curvature (and thus bounded elastic forces),
whereas κi ∈ R for the PDER used here.

TABLE I
APPENDAGE PARAMETER VALUES

Name Parameter Value Units
Number of edges N 5

Gravitational accel. g 9.81 [ m
s2 ]

Total length Ltot 0.155 [m]
Rod width w 0.06 [m]

Rod thickness h 0.01 [m]
Density ρ 1.08× 103 [ kg

m3 ]

Elastic Modulus E 5.93× 105 [Pa]
Damping coefficient d 0.001

A. Inextensible Rod State-Space Form

Although the PDER model provides a suitable approxi-
mation to the elastic rod, for the purposes of control design
we further simplify the appendage model as a multi-link rod
with inextensible links and nonlinear torsional springs at the
nodes. The edge length of the multi-link rod is constant, i.e.,
‖ei‖ = ‖ēi‖ = li, where li is the length of the ith link. The
equations of motion for the inextensible nonlinear model are
found using the PDER potential energy (3), neglecting the
stretching energy, which we find to be one or more orders of
magnitude smaller than the bending energy in simulations.

The equations of motion for the inextensible elastic rod
follow a recursive pattern that allows the equations to be
written for any number of nodes. To incorporate the constant
edge-length constraints, it is convenient to describe the
system in polar coordinates corresponding to the absolute
orientation of each edge. In order to convert from the PDER



state vector (q,v) to the state vector of the inextensible
model, define θ =

[
θ1, . . . , θN

]T
and θ̇ =

[
θ̇1, . . . , θ̇N

]T
,

where

θi = tan−1
(
−xi − xi−1
yi − yi−1

)
,

θ̇i =
ẋi − ẋi−1
‖ei‖

cos θi +
ẏi − ẏi−1
‖ei‖

sin θi,

(6)

for i = 1, . . . , N .
The Euler-Lagrange formulation of (5) yields the follow-

ing equations of motion:

θ̈ = −M−1(θ)
(
C(θ, θ̇) + V(θ) +D(θ̇)−F(T )

)
= h(θ, θ̇, T ), (7)

where T is the torque input at the base of the rod. The terms
M, C,V, and F in (7) generalize to N links in the following
form:

Mij = lilj cos(θi − θj)
N∑

k=max{i,j}

mk

= ml2 cos(θi − θj)(n+ 1
2 −max{i, j}), (8)

Ci =

N∑
j=1

lilj θ̇2j sin(θi − θj)
N∑

k=max{i,j}

mk


= ml2

N∑
j=1

θ̇2j sin(θi − θj)(n+ 1
2 −max{i, j}), (9)

V1=
2EI

l

(
κ̄1−tan

(
θ2−θ1

2

))
sec2

(
θ2−θ1

2

)
+(N− 1

2 )mglsin(θ1),

Vi=
2EI

l

(
κ̄i−tan

(
θi+1−θi

2

))
sec2

(
θi+1−θi

2

)
−2EI

l

(
κ̄i−1−tan

(
θi−θi−1

2

))
sec2

(
θi−θi−1

2

)
+(N−i+ 1

2 )mglsin(θ1), for i=2,...,N−1,

VN=−2EI

l

(
κ̄N−1−tan

(
θN−θN−1

2

))
sec2

(
θN−θN−1

2

)
+ 1

2mglsin(θ1), (10)

D1 = −d(θ̇2 − θ̇1)

Di = d(−θ̇i−1 + 2θ̇i − θ̇i+1), i = 2, ..., n,

Dn = d(θ̇n − θ̇n−1), (11)

for damping coefficient d, and

F =
[
T 0 . . . 0

]T
. (12)

Let qθ =
[
θ θ̇

]T
. The first-order state-space representation

of the inextensible rod dynamics is

q̇θ = f(θ, θ̇, T ) =

[
θ̇

h(θ, θ̇, T )

]
, (13)

where h(θ, θ̇, T ) is from (7).

III. FEEDBACK CONTROLLER DESIGN

This section presents a hybrid control design for the
flexible appendage that consists of a linear feedback con-
troller near the up equilibrium and an open-loop swing-up
controller. The design of the linear controller uses a PDER
state-space representation of the inextensible flexible rod.
Simulation results show the swing up and stability behavior
of the controlled system for rods above and below the self-
buckling threshold.

To emphasize the necessity of closed-loop feedback con-
trol for the task of balancing a flexible rod, Fig. 2 compares
zero input (no control torque applied), clamped base (angle
of first edge fixed at θ1 = π), and the full-state feedback
controller derived next.

A. Linear Control Design

For the purpose of stabilizing the up equilibrium, (13) is
linearized about q∗θ such that θi = π and θ̇i = 0 for all i and
T ∗ = 0. Define the coordinate transformation z = qθ − q∗θ
and u = T − T ∗. Linearization about the up equilibrium
yields

ż = Az +Bu, (14)

where A = ∂f
∂qθ

∣∣∣
(q∗
θ ,T

∗)
and B = ∂f

∂T

∣∣∣
(q∗
θ ,T

∗)
are

A =

[
0N×N IN×N

EI

ml3
Ab +

g

l
Ag

d

ml2
Ab

]
and B =


0N×1

1
ml2

− 1
ml2

0N−2×1

 ,
(15)

with banded matrices

Ab =



−2 3 −1 0 · · · 0
3 −6 4 −1 0

−1 4 −6 4 −1 0
...

0
. . . . . . . . . . . . . . . 0

... 0 −1 4 −6 4 −1
0 −1 4 −6 3

0 · · · 0 −1 5 −4


(16)

and

Ag =


a1 b1 0 0

c1
. . . . . . 0

0
. . . . . . bN−1

0 0 cN−1 aN

 , (17)

having entries a1 = N − 1
2 , aN = 3

2 , ai = 2(N − i) + 1 for
i = 2, .., N − 1; bi = i − N + 1

2 , and ci = i − N − 1
2 for

i = 1, ..., N − 1.
The rows of matrix Ab representing the bending dynamics

take the form of finite-difference coefficients for the fourth
spatial derivative, such that the linearized system may be con-
sidered a spatial discretization of the linear Euler-Bernoulli
model for deflection of a beam [16].



Fig. 2. Snapshots of simulations of the inextensible nonlinear model with N = 20 and L = 12 cm. Time increases along rows starting from the upper
left, showing 2 s in total. Blue: In the zero-input case, the rod acts similar to a rigid pendulum. Red: The first link is clamped at a constant angle θ1 = π
and the rod oscillates about the vertical. Yellow: State feedback control brings the rod to vertical with minimal overshoot, faster than the clamped case.
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Fig. 3. Simulated swing up and output feedback control performance for
system parameter values used in the hardware experiment. Top : Angles
over time, with vertical red line denoting the time of switching from swing
up to output feedback control. Middle: Torque input over time. Bottom:
Error between angles θi and estimates θ̂i from the time the output feedback
control is switched on.
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Fig. 4. Simulated full-state feedback control performance of rods below,
at, and above the critical self-buckling length of Lcrit ≈ 0.158 m. Dashed
lines show trajectories with clamped base for comparison. All use N = 5
with initial conditions (θi, θ̇i) = (5π/6, 0) for all i.

The linearized model (14) is used to design a Linear
Quadratic Regulator, which minimizes the cost function [17]

J =

∫ ∞
0

(
zTQz + uTRu

)
dt, (18)

where Q and R are weighting matrices on the state and input,
respectively. The feedback control law that minimizes J is
u = −Kz, where K = R−1BTP . The matrix P is found by
solving the continuous time algebraic Riccati equation [17].
In practice, the state-feedback gain matrix K is calculated
using the Matlab function lqr, with

Q =

[
QθIN×N 0N×N

0N×N Qθ̇IN×N

]
. (19)

For all simulations and experiments presented here, the LQR
weights are chosen as Qθ = 0.5, Qθ̇ = 0.1, and R = 1.

B. Output-Feedback Control
In practice, it is unlikely to have perfect knowledge of

the state of the system and more likely to be reliant on
information from sensors. Consider a linear output equation
y = Cz, that maps the state of the system to the signals
y ∈ RM measured by the M sensors. In this system, y
represents the output of an encoder that measures the angle
of the base. The filtered sensor data, in conjunction with the
model of the system, yields an estimate of the state using a
Luenberger observer [17]:

˙̂z = Aẑ +Bu+ L(y − ŷ) (20)

where ẑ is the estimated state, ŷ = Cẑ is the estimated
output and L is the observer gain matrix such that A−LC is
Hurwitz. The C matrix used to design the observer assumes
measurements of only the angle of the base of the rod, i.e, the
matrix C ∈ R1×n has all zero entries except C1,1 = 1, such
that y = θ1. The pair (A,C) is observable. The observer
gain matrix L is chosen optimally using the Matlab function
lqr for the dual system (AT , CT ) based on weight matrices

Q =

[
0.05IN 0

0 0.01IN

]
, R = 1.

Let e = z − ẑ be the observer error. Implementing the
observer (20) for the linearized state-space system (13) yields[

ż
ė

]
=

[
A−BK BK

0 A− LC

] [
z
e

]
, (21)



Fig. 5. Experimental performance of output-feedback controller compared to experiment with clamped base. Time increases along rows starting from the
upper left, showing three seconds in total. Red: Real-time state estimate based on base angle measurements based on the N = 5 linearized model. Yellow:
Ground-truth rod shape from visual tracking. Blue: Motion of clamped-end rod from visual tracking.
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Fig. 6. Experimental performance of output feedback controller compared
to clamped base in hardware, plotting the orientation of each edge over time
with angles in degrees from vertical. Only θ1 is measured using the angle
sensor for the feedback control (shown as black line).

which is Hurwitz as long as A − BK and A − LC are
Hurwitz, i.e., have eigenvalues in the left-half of the complex
plane.

C. Swing-up and Hybrid Control Design

We propose a simple swing-up controller to drive the
swinging appendage to the effective region of the LQR
controller. As the rod swings back and forth across the region
of the downward equilibrium, a constant torque is applied in
the direction of motion to add energy to the system.

u =

{
uswing sign (θ̇1), |θi| < θswing,

0, otherwise,
(22)

for some chosen amplitude uswing and angle limit θswing .
Once the base angle θ1 reaches a threshold value near the

up equilibrium, the estimator is initialized and the output
feedback control is activated. Figure 3 shows a simulation
of the swing-up hybrid control, for a rod with N = 5 edges

and material parameters based on the rod in our hardware
experiment, from Table I. Here the swing-up region is taken
to be θswing = 30◦, amplitude uswing = 0.01 N-m, and
the output feedback switches on once θ1 is within 30◦ of
vertical. At that instant in time, we initialize the estimator
with the values θ̂i = θ1, ˙̂

θi = θ̇1 for i = 1, ..., N .
The problem of stabilizing an inverted flexible appendage

becomes more challenging when the appendage is itself
inherently unstable. At certain parameter values, an elastic
rod is subject to a phenomena known as self-buckling, i.e., it
fails to stand under its own weight. A vertical column with
base angle clamped and a rectangular cross section of density
ρ, Young’s modulus E, and thickness h, will buckle above
a critical length of [18]

Lcrit =

(
16Eh2B2

3ρg

) 1
3

, (23)

where g is the acceleration due to gravity and B ≈ 1.866 is
the first zero of the Bessel function of the first kind of order
-1/3. The analytical buckling expression (23) predicts self
buckling for a critical length of Lcrit ≈ 15.8 cm, based on
the parameters of the 1 cm by 6 cm cross section Dragonskin
rod. In simulations, our output feedback controller is able to
stabilize rods of lengths at and above the critical buckling
length, as shown in Fig. 4.

IV. HARDWARE EXPERIMENTS

To verify the performance of our proposed control design,
we built a hardware testbed consisting of a soft appendage
cast from Dragonskin 30 silicone rubber attached to the shaft
of a 12 V DC motor on a fixed frame. The controller and
estimator were implemented on a Teensy 3.5 development
board to control the motor through a MAX14870 motor
driver. The measured output was taken through the built-in
quadrature encoder with 48 counts per revolution attached to
the motor. With a gearing ratio of 20.4:1, the total number
of counts per revolution of the motor shaft is 979.2. This
measurement device provides an angular resolution of 0.368
degrees. The controller test setup is shown in Fig. 7.

The length of the flexible appendage is taken from the
center of the DC motor shaft as 15.5 cm. The Dragonskin
30 material has material properties as specified in Table I.



Fig. 7. Experimental setup for the swinging soft appendage, featuring
DC motor and Teensy microcontroller. The pink dots are used for visual
tracking. In the clamped experiment the base angle is held fixed.

The experiment uses lqr controller and estimator weights
as described in Sec. III, identical to the simulation.

Comparisons of data from visual tracking and the onboard
state estimate from an initial condition of a straight rod at
angle θi = 30◦ are shown in Fig. 5 as snapshots of the shape,
and in Fig. 6 as a time series. The experimental controller
and estimator stabilize the flexible appendage about the up
equilibrium, though some oscillations are present. Visually
tracked data for an experiment with clamped end are also
included in Figs. 5 and 6, demonstrating that the closed-
loop control reaches the upward equilibrium faster with lower
amplitude oscillations than an open-loop clamped rod.

The difference between state estimate and visual ground
truth in the closed-loop experiment can be primarily at-
tributed to discrepancies between the model and the realized
testbed. For example, in the mathematical model used in the
controller design, the torque input u is modeled as acting
directly on the first edge. In reality, the motor shaft transfers
the torque to the base of the rod at the bottom of the
first edge. As a result, the behavior of the first edge does
not directly follow the PDER model, though this may be
improved by including a higher number of nodes in the
model. Additionally, the quadrature encoder discretizes the
rotation of the appendage to 979.2 counts per revolution. The
granular sensor measurement introduces a lack of precision
in base link angle, with an angular resolution ∆θ ≈ 0.368◦.

V. CONCLUSION

This work provides a state-space description of a swinging
flexible appendage based on planar discrete elastic rod the-
ory. State-feedback and output-feedback hybrid controllers
stabilize the unstable up equilibrium with measurements
taken only at the base of the rod. Simulations suggest
that the state-feedback hybrid control and output-feedback

hybrid control designs are successful at swinging up and
stabilizing the up equilibrium, even for some rods that would
otherwise buckle under their own weight. Ongoing work
seeks to upgrade our experimental setup to provide improved
estimator convergence.
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