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Chapter 1: Introduction

1.1 Motivation

Robotics represents the forefront of inter-disciplinary engineering and innovation.

The last half century has seen a monumental rise in computational capabilities and conse-

quently a burst of technological innovation that has led to robots being a part of everyday

life. Yet until the recent decade, robotics research has been mostly restricted to rigid ma-

terials and convention actuation mechanisms. Soft robotics remains relatively unexplored

with potential for game-changing ideas.

The main challenges of using soft or flexible materials are their non linearity and the

need for a computationally viable continuum model to analyze these non linear dynamics.

Further, these hyper-elastic materials need to produce large bending motions that are

difficult to characterize. This in turn leads adds complexity to the control algorithms

needed to perform tasks.

However, soft materials do have several advantages that simply cannot be mimicked

by traditional materials. Soft materials are lightweight, affordable and can be easily

customized. When coupled with fluidic actuation, they offer modular architectures that

can be rapidly fabricated. Recent advancements in rapid manufacturing techniques has

enabled the fabrication of parts with complex geometries, which in turn has contributed
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to the growth in the popularity of soft robots.

Hence, from an engineering perspective, soft robots and, in particular, bio-inspired

soft robots present a challenge that brings out the very best of inter-disciplinary research

and creativity that is too good to pass up. This thesis explores the dynamics and control

of such soft robots in underwater and terrestrial domains.

The next natural step is to look into the existing literature on soft robot locomotion.

1.2 Literature review

1.2.1 Bio-inspired soft robots

Bio-inspired robotics is a well-explored research domain. With potential for appli-

cation in areas such as underwater rescue missions, equipment maintenance and surveil-

lance [3], the last two decades has seen a significant rise in publications in this domain,

especially in snake-like robots. The long and slender segmented structure of such robots

provide superior capabilities for access through narrow openings and within confined

areas [4].

In nature, evolution is driven by need and generally increases a species’ chances of

survival. We see a plethora of living creatures surviving in harsh climates across the globe

each with their own physiological adaptations. Amongst these, many flaunt soft, flexible

exoskeletons [5].

Though most models of snake-like robots view the structure as a discrete series

of rigid links [6] a geometrically exact continuous model was investigated in [7]. A

few examples of soft robotic snake-like robots exist, including a super-thin transparent
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device based on dielectric elastomer actuators [8], and a fiber-reinforced fluidic actuator

design [9]. Passive bending dynamics are found to aid locomotion of snakes over obstacle-

filled terrain [10].

Segmented robots can be robust to mechanical failure because they are modular

and highly redundant. On the other hand, one of the main drawbacks is their poor power

efficiency for locomotion [4].

While soft actuators themselves are lightweight and flexible, they often require

rigid or heavy electronic or mechanical components to provide power, including batteries,

circuit boards, and pumps for fluidic actuators. For example, one soft snake-like robot [9]

must include a large rigid head to house a fluid pressure source. Recent examples of

advances in remote power delivery in soft robotics include wireless electric charging

for a shape-memory alloy (SMA) caterpillar robot [11] and light-based energy delivery

in a tensegrity rolling robot with liquid-crystal elastomer actuators [12]. In additional,

chemical reactions have been utilized as a source for fluidic pressure in order to build an

octopus robot out of entirely flexible materials [13].

The scope of this thesis is limited to virtual simulations of a soft segmented robot.

Hence, the choice of actuation mechanism holds little influence over the nature of the

control input to the system.

1.2.2 Undulating locomotion in soft robots

Due to the inherent non-holonomic constraint on wheels, existing snake-like robots

[6] present a control design challenge that has led to the development of several novel
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locomotion algorithms algorithms.

Early research in experimental biology [14] [15] studied severalmodes of locomotion

in desert snakes and identified four common gaits: serpentine, side winding, concertina,

and rectilinear. Fundamentally, the four gaits can be thought of variations of a wave-like

motion moving though the body that is explored in chapter 2. Subsequently, further

mechanical analysis helped [16] [17] quantify this travelling wave behaviour and develop

empirical relationships between wave parameters and snake locomotion velocity.

The serpenoid-curve formulation of Hirose [18] states that the joint angles in a

modular, snake-like terrestrial [19] or underwater [3, 20] robot vary sinusoidally in time

using the same frequency and amplitude at each segment, with a constant phase difference

between neighboring segments. Serpenoid trajectories have been applied to a variety

of segmented robot morphologies over time, including wheeled and sliding designs on

land [19] and snake-inspired underwater robots with rigid rotating joints [3, 20].

1.3 Thesis contributions

The primary contribution of this work is the mathematical model for feedback

control of traveling-wave locomotion in underwater and terrestrial domains. The Planar

Discrete Elastic Rod (PDER) framework results in an attractive and numerically efficient

model that includes external forces and user inputs. A computationally tractable fluid force

model is used to capture the influence of external environment. The proposed framework

models both the added mass and inertial fluid forces acting on each soft segment in a fluid.

(The work on underwater locomotion of soft segmented robot was previously published
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as part of [2].)

The work on terrestrial locomotion incorporates a stick-slip friction model. Similar

to the underwater case, the PDER framework is used to describe the dynamics of the

system, now including frictional force from the stick-slip model. By modeling both static

and dynamic friction, a computationally viable and physically accurate mathematical

description of surface friction is proposed.

This work proposes a feedback-control algorithm based on a travelling wave to

control the states of the soft segmented robot. An open-loop parameter study serves as the

baseline against which the closed-loop performance is compared. The control strategy is

decentralized, i.e, each segment can only interact with its neighboring nodes. Hence, the

control law is computationally efficient, and impose fewer sensing and communication

requirements that a centralized model.

The performance of the soft-segmented robot is dependent on various physical and

control variables. An extensive parameter study is done to quantify the dependence of

the performance metrics on these factors. This parameter study is intended to be used as

a look-up table for future design changes or new developments in similar soft segmented

robots.

1.4 Thesis organization

Chapter 2 of the thesis outlines the mathematical and conceptual background upon

which the following chapters of the thesis are built. Chapter 3 introduces the control

algorithm and procedure that serves the rest of the thesis. The concept of a travelling wave
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is introduced here and the fundamentals of centralized and decentralized network control

architectures are outlined.

Chapter 4 explores underwater locomotion. Concepts from Chapters 2 and 3 are

used to develop the state space model of the snake-like robot. Open-loop dynamics are

first analysed to construct a parameter study aimed at identifying the open-loop optimal

performance region. Next, the centralized and the decentralized feedback control algo-

rithms are implemented. Finally the performance of the closed loop system is compared

to the open-loop system.

Chapter 5 explores terrestrial locomotion of soft segmented worm-like robots. It

follows a similar structure as Chapter 4 in which we look at the open-loop dynamics of

the system followed by the application of a decentralized feedback control algorithm to

the system.

Chapter 6 summarizes the findings of the thesis and discusses the implications of

the results. We also discuss possible future directions of work in this area.
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Chapter 2: Dynamics of a soft segmented robot

This chapter presents a mathematical model for locomotion in a flexible underwater

robot. The Planar Discrete Elastic Rod (PDER) formulation is used to describe the robot’s

state as a discrete series of nodes and edges, with internal forces arising from stretching

and bending deformation. The external forces to the system are the fluid and frictional

forces, which are discussed in detail later in the chapter. (The material in this chapter was

previously published as part of [2].)

2.1 Bending and stretching of elastic rods

Anelastic rod is a continuum structurewith an infinite number of degrees of freedom.

However, from the perspective of computation, this is far from ideal. A discrete model is a

computationally tractable approach to the elastic-rod problem. The behavior of the elastic

rod is suitably approximated using a planar discrete elastic rod formulation [1], which is

a specialization of three-dimensional discrete elastic rod theory [21].

The Discrete Elastic Rod (DER) formulation by Bergou et al. [21] exploits concepts

from discrete differential geometry resulting in an attractive and numerically efficient

avenue tomodel the three-dimensional dynamics of elastic rods that are capable of bending,

stretching and twisting. The advantages of using the DER model include generation of
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ordinary differential equations for the motion of the soft robot that can interface with

control schemes and contact algorithms, ability to incorporate a hierarchy of rod models,

and ease of interpretation and measurement of kinematic quantities.

Figure 2.1: Notations used for labeling nodes and edges [1]

The rod is discretized into a series of # nodes connected by # − 1 edges. The

position of the : th node is [1]

x: = G:K1 + H:K2, (2.1)

where G: and H: are Cartesian coordinates, K1 is a unit vector in the horizontal direction,

and K2 is a unit vector in the vertical direction. It follows that K3 = K1 × K2 is directed

out of the plane. Edge e: connects nodes x: and x:+1. (Note, edges are denoted with

superscript indexing and nodes are denoted by subscript indexing.) We have [1]
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e: = x:+1 − x: , t: =
e:e: , and n: = K3 × t: . (2.2)

The vectors t: and n: are the unit tangent and unit normal of the : th edge, respectively.

Figure 2.2: Curvature calculation at each node [1]

The discrete curvature at a node ^8 is defined as a function of the turning angle q: ,

where [1]

i: = cos−1 (
t:−1 · t:

)
,

^: =
2 sin(q: )

1 + cos(q: )
= 2 tan

(
q:

2

)
,

(2.3)

for : = 1,...,# − 2, the internal nodes of the rod.

The intrinsic shape of a PDER is defined by the set of intrinsic lengths ;̄8 of each

edge and intrinsic curvatures ¯̂8 at each node. This represents the resting or undeformed

shape of the rod. Following Bergou et al. [21], the mass <: associated with the : th node

9



is the average mass of the edges meeting at this node, i.e.,

<0 =
1
2
<0 (2.4)

<: =
1
2

(
<: + <:−1

)
, : = 1, . . . , # − 2 (2.5)

<#−1 =
1
2
<#−2. (2.6)

The mass matrix " takes the form [1]

" =



<0 0 . . . 0 0

0 <0 . . . 0 0

...
...

. . .
...

...

0 0 . . . <#−1 0

0 0 . . . 0 <#−1



. (2.7)

Conservative elastic forces arising in the deformed rod are derived via scalar poten-

tial functions, where bending energy �1 is a function of the deviation between intrinsic

and actual node curvatures and stretching energy �B is a function of the deviation in length.

The total elastic energy �4 is [1]

�4 = �B + �1, (2.8)
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where [1]

�B =
1
2

#−2∑
:=0

��:
©«
e:
;̄:
− 1

ª®®¬
2

;̄: (2.9)

�1 =
1
2

#−2∑
9=1

�� 9

;̄ 9
(^ 9 − ¯̂ 9 )2 (2.10)

Here � is the elastic modulus of the rod, �: is the cross-sectional area of the : th edge, � 9

is the area moment of inertia of the 9 th node, and ;̄ 9 = 1
2 (
e 9 +e 9−1

) is the length of

the Voronoi region of the 9 th node. The area moment of inertia in the bending energy is

based on the average area moment of inertia of neighboring edges, � 9 = 1
2

(
� 9 + � 9−1

)
.

The conservative elastic force acting on node 9 is given by �4;0BC82, 9 = −m�4/mr 9

[21]. Stretching forces are tangent to the edges, whereas bending forces are normal to the

edges. The force due to stretching at a node is a function of its own position, along with

the positions of its nearest neighbor to either side, and the force due to bending at a node

is a function of its two nearest neighbors to either side. The localized nature of the force

computation gives the Jacobian matrix of the system a banded structure, which allows for

the use of efficient numerical solvers [21]. Figure 2.3 illustrates the directions that forces

act on the nodes due to stretching and bending deformation. For a full derivation of the

force expressions, see [1].
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Figure 2.3: Illustration of the stretching and bending forces acting on each link [2]

2.2 State-space model of the elastic rod model

To write the dynamics in state-space form, let q = (G1, H1, . . . , G# , H# )) ∈ R2#

represent the Cartesian coordinates of all of the nodes and v = ( ¤G1, ¤H1, . . . , ¤G# , ¤H# )) ∈ R2#

the node velocities. Let +̄ ∈ R#−2 be the vector of intrinsic curvatures of the interior nodes

and l̄ ∈ R#−1 the vector of intrinsic lengths of the edges.
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The state-space model of the PDER is [21]

¤q = v

¤v = −"−1
(
m�C

mq
+ L4GC

)
¤̄+ = �^u^

¤̄l = �;u; , (2.11)

where L4GC is the columnmatrix containing the components of all external forces acting on

the nodes, including the fluid and/or friction forces discussed in later sections. Consider

two types of input to the system, corresponding separately to the stretching and bending

motions. Input u^ controls the rate of change of the intrinsic curvature, with matrix �^

describing how the inputs are mapped to individual nodes, such that a single input may

control curvature at many nodes, and a single node may be affected by multiple inputs.

Similarly input u; controls the rate of change of the intrinsic length of the edges, with

matrix �; describing which input maps to which edge. In the remainder of this thesis,

we take �: and �; to be # − 2 by # − 2 identity matrix, such that each internal node

(8 = 2, ..., # − 1) has a single unique bending/stretching input associated with it.

The elastic stretching and bending forces at each node are conservative and arise

from the partial derivative with respect to q of the corresponding potential energy. (For

an additional description of these forces refer to [22].)
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2.2.1 Fluid force model

This section provides the framework for modeling hydrodynamic forces acting on

a multi-link swimmer. Hydrodynamic forces induced by the motion of a body in an

underwater environment are complex and nonlinear. For control design purposes, a

simplified hydrodynamic model written in a closed form is preferred. Here, we use the

model presented by Kelasidi et al. [23] to describe hydrodynamic forces in terms of the

instantaneous velocities and accelerations of the edges in the PDER model. We choose

our system parameters (see Table 4.1) to be similar to an rigid eel-like swimming robot,

which operates with Reynolds number in the range 104 to 105 [23].

The proposed hydrodynamicmodel is based onMorison’s equations [24] andmodels

the forces between the fluid and the cylindrical links of underwater snake robots. The

assumptions underlying the modelling approach are [23]:

1. The fluid is viscid, incompressible, and irrotational in the inertial frame.

2. The robot is neutrally buoyant, such that it operates in a horizontal plane within a

volume of water.

3. The fluid is at rest in the inertial frame, such that there are no time-varying currents.

Fluid forces are calculated separately for each cylindrical link in the robotmodel [23],

which here we associate with an edge in the PDER model. Let v8 = (v8 + v8+1)/2 represent

the velocity of edge 8 in the inertial frame. The scalar tangential and normal components

of the 8Cℎ edge velocity are E8C = v8 · t8 and E8= = v8 · n8, respectively. Fluid drag forces are

14



calculated using separate drag coefficients, 2C for tangential and 2= for normal directions:

2C =
1
4
dc� 5 (0 + 1);, (2.12)

2= = d��0;, (2.13)

where 0 is the half-height and 1 is the half-width of the elliptical cross section of the robot

and ; is the length of the edge. Drag coefficients � 5 = 0.3 and �3 = 1.75 come from

studies of drag on a cylinder [23].

The fluid drag force acting on an edge L8
�
contains a linear term and a nonlinear

quadratic term in each of the tangential and normal directions [23], i.e.,

L8� = −2C (E8C + E8C |E8C |) t8 − 2= (E8= + E8= |E8= |)n8 . (2.14)

Additionally, the fluid force model includes an added mass term acting only in the

normal direction,

L8� = −`=08= = −`= ¤E8=, (2.15)

with coefficient `= = dc��02; and added mass coefficient �� = 1.5.

For the PDER model assume that the fluid forces acting on an edge are evenly

distributed to the two nodes associated with the edge, such that the fluid force at each node

15



is

L 5 ;D83

1 =
1
2
(L1

� + L1
�),

L 5 ;D83

8
=

1
2
(L8−1

� + L
8−1
� + L

8
� + L

8
�), 8 = 2, ..., # − 1,

L 5 ;D83

#
=

1
2
(L#−1

� + L#−1
� ). (2.16)

Although the fluid force model is idealized, the difference in drag coefficients for

tangential and normal directions are sufficient to induce locomotion under a traveling wave

gait, thus serving as a useful starting point for feedback control design in an underwater

soft robot.

2.2.2 Friction force model

Developing a realistic model for frictional forces is tricky. Theoretically, the friction

between two surfaces depends on several parameters like surface roughness, direction of

relative motion, surface impurities, surface temperature, and so on. Hence, friction can

rarely be modeled accurately and instead we try to understand friction as a function of

known system parameters. The snake-like robot needs friction to perform locomotion. In

the PDER model, the frictional force is included in the external force and is crucial for

locomotion.

Broadly, there are two types of friction. Static friction is friction between two

surfaces in contact that are not moving relative to each other. An object needs to overcome

this resistance in order to move. For example, static friction is what prevents an object

from sliding down an inclined surface. The static friction coefficient is represented by `BC .
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Kinetic friction on the other hand, occurs between two surfaces that are moving

relative to each other. This dynamic friction results in a resistive force acting in a direction

opposing the direction of movement. The dynamic friction coefficient is represented by

`3H=.

The friction model to be adopted in this thesis is commonly referred to as the stick-

slip friction model. The model transitions between static and dynamic friction based on

a tolerance velocity (+C>;). In air, the normal force �# on each link is constant and is the

mass of the link times the acceleration due to gravity. The static and dynamic friction

forces are

LBC = `BCL# , (2.17)

L3H= = `3H=L# (2.18)

Figure 2.4 is a flowchart representing the logic behind the stick-slip friction. A net

force �8 is calculated based on the internal forces (�8=C) and the frictional forces acting on

the link and based on the instantaneous velocity of and internal forces acting on the link.
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Figure 2.4: Overview of the friction force model

This frictional force is considered as an external force �4GC to the system. Hence,

we can directly add these forces to the PDER state space model.
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Chapter 3: Traveling wave locomotion with feedback control

This chapter builds on the state-space model developed in the previous section.

During locomotion, the soft segmented robot transitions through different shapes or states.

These states are driven by a sequence of actuator actions. The traveling wave motion is

a popular mechanism to actuate segmented robots and is explored in this chapter. The

material in this chapter was previously published as part of [2].

3.1 Traveling wave motion

Travelling-wave motion based on the serpenoid curve has been proposed to describe

the shape of a snake or snake-like segmented robot in motion [18,19], such that the angle

between neighboring segments varies sinusoidally in time and in space (along the length

of the body). The equation for the desired turning angle at node 8 includes amplitude U

and turning bias W parameters, along with a phase variable k8 associated with the node:

q8,34B (C) = U sin
(
k8 (C)

)
+ W. (3.1)

Traveling-wave motion occurs when the phase angles increase linearly with time with

frequency l, while keeping the phase difference between neighboring nodes a constant
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 = /n

 = 3 /2n

 = 2 /n

Figure 3.1: Illustrations of serpenoid curves described by (3.1) with # = 100 nodes [2].
Each row uses a different value of the phase offset X, with amplitude U increasing from
left to right.

value X, i.e.,

¤k8 = l, (3.2)

k8 = k8−1 + X, (3.3)

at every internal node 8 = 2, ..., # − 1.

Examples of serpenoid curves for a range of values of X and U are illustrated in Fig.

3.1. For a given value of X, there is a maximum amplitude U<0G above which the curve

will self-intersect.

To achieve a traveling-wave serpenoid motion given the phases k8, the desired

curvature and rate of change of curvature at each node are

^8,34B = 2 tan
(
U sink8 + W

2

)
,

¤̂8,34B = U ¤k8 cosk8 sec2
(
U sink8 + W

2

)
. (3.4)

20



We consider several types of system architectures for determining the value of

^8,34B (C). With a centralized approach, a pattern generator provides phase information

to each node. Distributed approaches can achieve similar performance with fewer re-

quirements on information transfer between nodes. We present a distributed controller

wherein each node only needs to measure the curvature of its direct neighbor in order to

estimate its proper phase over time. With that method, either the first node acts as the

central pattern generator, or the first node is virtually connected to the last node to form a

circulant topology to be fully decentralized.

3.2 Feedback control of bending and stretching

A feedback controller ensures that the actual curvature ^8 tracks the desired curvature

^8,34B over time, given that the nodes have coordinated their phases based on a controller

from Section 3.1. Assume that each node is able to measure its local curvature, rate

of change of curvature, and intrinsic curvature, and optionally that nodes can share this

information with one or more neighbors.

This section introduces a Proportional-Integral-Derivative (PID) control law that

uses a measurement of the actual curvature ^8 at each node, as opposed to the controller

of the previous section which measured only the intrinsic curvatures ¯̂8. PID controllers

are widely used and simple to implement due to the fact that they do not require a model

of the system being controlled. The expression for the PID control input at each node is

D8 = ¤̂8,34B (C) +  ?48 (C) +  3 ¤48 (C) +  8
∫ C

0
48 (g)3g, (3.5)
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where 48 = ^8,34B − ^8 is the error in actual curvature at node 8. For numerical simulations,

we choose  ? = 10,  3 = 1, and  8 = 5.

The individual gains can be tuned to achieve desired performance. Proportional

gain  ? increases the speed of controller, but can lead to instability if taken too high.

Derivative gain  3 serves to add damping to the system, which can remove unwanted

oscillations at the cost of slowing down the dynamic response. The integral term with

gain  8 serves to remove steady state errors.

To compare performance of the actual curvature feedback and intrinsic curvature

tracking controllers, simulations were run using a range of values of amplitude U and

frequencyl, using X = 2c/(# −2), which gives a single full wave along the body. Param-

eter values for the simulations are summarized in Table 1. For the physical dimensions of

the robot and corresponding fluid force coefficients, we use values from the rigid eel-like

robot described in [4]. The elastic modulus � = 1.875 MPa is chosen to match that

of Smoothsil 950 silicone rubber (Smooth-On, Inc.), which is commonly used to make

bellows-style fluidic actuators [25]. We use # = 10 nodes in the PDER model, with eight

intrinsic curvature rate inputs each associated with a single interior node.

Figure 4.1 illustrates the performance of the two controllers, in terms of average

speed, deviation from desired curvature, and energy loss due to fluid drag forces. In gen-

eral, for both controllers the speed increases with increasing frequency, and, for a given

frequency, speed is maximized at a certain optimal amplitude with decreased speeds at

higher and lower amplitudes. Frictional losses due to fluid drag forces increase mono-

tonically with both amplitude and frequency. Figure 3.2 shows snapshots of the shape of

the simulated robot over a single gait cycle, using two different amplitudes at the same
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Figure 3.2: Snapshots of the simulated robot over a single cycle using the actual curvature
feedback law, colored by time [2]. Top: U = c/6, bottom: U = c/3, both with l = 2c/3,
and X = c/4. Black lines trace the trajectories of the first and last nodes, and the red line
represents the motion of the center of mass.

frequency with actual curvature feedback control. Although the shapes traced out by the

nodes are quite different in the two cases, the average speeds are within 2% (12.8 and 12.9

cm/s, respectively), whereas frictional losses are more than doubled at higher amplitude

from 4.65 to 10.33 Watts.

3.2.1 Centralized control

The traveling wave phase constraints (3.2) can be achieved through a clock signal C,

such that

k8 (C) = lC + X8 + k0, (3.6)
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Figure 3.3: Comparison of centralized (left) and decentralized phase control (right) under
the actual curvature feedback law, colored by node [2]. In both cases U = c/6, l = 2c/3,
and X = c/4 with PID gains  ? = 10,  3 = 2,  8 = 1. The top plots show the difference
between actual curvature and desired curvature (as a function of phase) over time at
each node. Middle plots show actual curvature, with black lines representing the nominal
maximum value of 2 tan(U/2). Bottom plots show the input D at each node, with saturation
applied such that |D8 | ≤ 1.5Ul.

for some arbitrary initial phase k0. Note, the centralized approach corresponds to a hub

and spoke communication architecture, where a central pattern generator sends the timing

signal to each of the nodes. The next section describes a decentralized curvature-tracking

control strategies to achieve the traveling wave using feedback.
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3.2.2 Decentralized control

This section presents a decentralized controller for traveling wave motion where

each node measures the curvature of its neighbor to estimate the current phase rather

than relying on a central pattern generator. The estimated phase at each node is used to

calculate the desired curvature and control input using the PID controller (5.2) from the

previous section.

Suppose that each node can measure the curvature and rate of change of curvature

of itself and its neighbors. If we assume that the curvature to vary sinusoidally, we can

estimate the current phase at node 8 with

k̂8 = 2(q8, ¤q8/l), (3.7)

where turning angles and rates are calculated from the measured curvature and curvature

rate:

q8 = 2 tan−1(^8/2),

¤q8 =
4 ¤̂8
^2
8
+ 4

. (3.8)

We connect the nodes in a circulant topology, such that node 8 chooses its phase as

an offset of the phase of its neighbor with index 8 + 1, except for the last node # − 1 which

looks to node 2 to close the loop.
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k8 = k̂8+1 − X, 8 = 2, ..., # − 2,

k#−1 = k̂2. (3.9)

With this topology, information flows backward along the eel robot in the same direction

as the traveling wave motion. This architecture has the advantage of not requiring an

additional states in the system to represent the phase. Stability may be further improved

through additional measurement filtering, which is the subject of ongoing work.

Figure 3.3 demonstrates that the performance of the decentralized phase control

nearly matches that of the centralized phase. For both simulations, the robot starts at rest

at C = 0 with curvatures equal to the desired curvature under the centralized phase control,

with gait parameters U = c/6, l = 2c/3, and X = c/4 and PID gains  ? = 10,  3 = 2,

 8 = 1. Observe that for both cases, transient errors die out within one second, though

errors in the decentralized case remain slightly higher in steady state. Larger oscillations

exist in the decentralized case, with control becoming saturated initially at the prescribed

maximum value of |D8 | ≤ 1.5Ul.
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Chapter 4: Undulatory locomotion in water

Locomotion underwater is inspired by aquatic snakes and eels, which exhibit an

undulatory motion along their body. This wave-like motion is modeled based on the

travelling wave equations described in Chapter 3. This results in the nodes oscillating

at a given frequency and amplitude with successive phase difference between the nodes.

Interactions with the fluid environment to produce locomotion. A simple open-loop

simulation is enough to understand and quantify this movement. Figure 4.1 is a plot that

traces the motion of the head, tail and body node of a soft, segmented robot in the inertial

frame as the robot moves in the medium. Note that the robot moves from left to right in

the figure.

Figure 4.1: Trajectory of the nodes and the COM of the snake robot as it travels through
the medium
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4.1 Equations of motion

We combine the PDER state space model and the fluid force model from section 2

to arrive at the equations of motion that govern the dynamics of the snake-like robot.

¤q = v

¤v = −"−1
(
m�C

mq
+ L 5 ;

)
¤̄+ = �^u^

¤̄l = �;u; , (4.1)

where the fluid forces, L 5 ; , are given by

L 5 ;

1 =
1
2
(L1

� + L1
�),

L 5 ;D83

8
=

1
2
(L8−1

� + L
8−1
� + L

8
� + L

8
�), 8 = 2, ..., # − 1,

L 5 ;D83

#
=

1
2
(L#−1

� + L#−1
� ). (4.2)

The controller in Section 4.3 is applied to the above state spacemodel. It is important

to note that rate of change of curvature is the input to the system.

4.2 Open-loop dynamics

This section describes the open-loop dynamics of the system 4.1–4.2. The objective

of the analysis is to understand the behavior of the system and the quantify the influence
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of parameters of interest.

In the simulation environment, various parameters have a direct effect on the per-

formance of the system. These parameters and their values are listed in table 4.1. While

simulating the system in the open-loop setting, the physical parameters of the system

including the number of nodes, the number of inputs, the edge dimensions, and edge mass

are fixed.

Name Parameter Value Units
Number of nodes # 10

Number of bending inputs #D 8
Time step ℎ 0.01 [s]
Edge length ;̄ 0.18 [m]
Edge mass < 0.8 [kg]
Rod height 0 0.055 [m]
Rod width 1 0.05 [m]

Elastic modulus � 1.875 × 106 [Pa]
Damping coefficient 3 0

Water density d 1000 [ kgm3 ]
Drag coefficient � 5 0.3
Drag coefficient �� 1.75

Added mass coefficient �� 1.5
Inter-node phase difference X c/4 [rad]

Table 4.1: Simulation parameter values. No units are provided for non-dimensional
quantities.
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The notable performance metrics of the open-loop simulation are the average speed,

average curvature error and average power loss due to fluid friction. The simulation

has three key factors: open-loop travelling wave amplitude, open-loop travelling wave

frequency and the bending stiffness of the soft robot. Figure 4.2 is the input-output

diagram for the same.

Figure 4.2: Open-loop simulation input output diagram

We now look at how each performance metric is affected by the individual factors

and attempt to identify the region of optimal performance.
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Figure 4.3: Open-loop average speed inm/s at a constant bending stiffness of 1.87×104%0

The open-loop controller is based on the travelling wave. The frequency and the

amplitude of the travelling wave affect the performance of the robot. It is observed that

the swimming speed is directly proportional to the amplitude and frequency. As long as

we stay within the physical boundaries of the robot, a higher speed can be achieved at

high values of frequency and/or amplitude. However, this gain in speed is coupled with

significant drawbacks.

To understand these drawbacks, we look at curvature error and power loss due to

friction. The average curvature error is defined as the accumulation of the difference

between the actual and desired curvature at each time step. The power lost in interacting

with the fluid environment is defined as the power lost to friction. From Figure 4.4, we
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Figure 4.4: Open-loop error at a constant bending stiffness of 1.87 × 104%0

can see that at high frequency and/or amplitude, the average curvature error is high. This

is undesirable because it leads to error in the direction of locomotion.

The average power loss due to friction is a key metric. miniature soft robots are

severe energy constrained mostly due to the size of the robot. Hence, it is crucial that

the robots spend the limited energy efficiently. At higher frequency and amplitude of the

travelling wave, the average power lost to friction is observed to be higher figure 4.5.
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Figure 4.5: Open-loop energy loss due to fluid friction at a constant bending stiffness of
1.87 × 104%0

Therefore, a trade-off between the speed of swimming and the energy efficiency is

the recommended plan of action. Based on the application and specifications of the robot,

the open loop parameter study can be used identify the optimal values of frequency and

amplitude of the travelling wave.

The bending stiffness of the soft-material is the next parameter analysed. The nature

and the structure of the soft material influences the bending stiffness. Consequently, by

design, we can make the stiffness a function of the direction of bending. For simplicity, it

is assumed that the bio-inspired robot has the same bending stiffness in either direction of

bending.

With increasing stiffness, the the soft-robot is observed to swim faster. We also
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Figure 4.6: Open-loop average speed (m/s) at varying stiffness values

observe that at higher stiffness, the energy loss due to friction is reduced.

Developing a soft-robot with very high stiffness values overshadows the advantages

of the "softness" of the robot. Hence, we are presented with a scenario where the softness

of the robot results in lower swimming speeds and swimming efficiency. Since flexibility

is of key importance in a soft-robot, a closed-loop controller that optimizes the swimming

speed and swimming efficiency at low bending stiffness is needed.

4.3 Closed-loop dynamics and control

Though an open-loop controller proved to be sufficient to perform locomotion,

major drawbacks in curvature error and energy efficiency indicate a need for a closed

loop controller. Generally, in miniature soft-robots, the speed of locomotion is not the

primary metric of interest. The operational longevity of the robot is primarily dictated by

its locomotion efficiency.

The feedback controller is based of the actual curvature feedback controller presented
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in section 3.2. The controller uses the measurements of actual curvature at each node and

a decentralized algorithm to estimate the phase at each node.

The expression for the PID control input at each node is

D8 = ¤̂8,34B (C) +  ?48 (C) +  3 ¤48 (C) +  8
∫ C

0
48 (g)3g, (4.3)

where 48 = ^8,34B − ^8 is the error in actual curvature at node 8.

4.4 Performance analysis

This section compares the open-loop and closed-loop performance. Firstly, we

look at average speed of locomotion. From Figure 4.7, it is evident that the closed loop

algorithm improves the locomotion speed of the soft segmented robot at a fixed stiffness

level. The closed-loop controller ensures that the actual curvature of the soft-segmented

robot. The feedback controller adjusts the rate of change of intrinsic curvature which is,

in turn, the input to the system.
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Figure 4.7: Open-loop speed vs closed-loop speed at a constant bending stiffness of
1.87 × 104%0

In the previous section, we defined the curvature error as a key metric of interest.

We expect the closed-loop controller to reduce the curvature error. Figure 4.8 supports

the above statement. In specific regions of the amplitude-frequency map, we observe

considerable reduction in the curvature error.

Finally, we look at the energy lost due to friction. It is expected that the closed-loop

system expends more energy to overcome fluid friction.
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Figure 4.8: Open-loop curvature error vs closed-loop curvature error at a constant
bending stiffness of 1.87 × 104%0
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Figure 4.9: Open-loop vs closed-loop energy loss due to friction at a constant bending
stiffness of 1.87 × 104%0
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Chapter 5: Traveling-wave locomotion on land

This chapter explores terrestrial locomotion of soft segmented robots. To move on

land, the robot needs to interact with the surface and nature of this interaction is defined

by the surface friction. Broadly, there are two types of friction. Static friction is friction

between two surfaces in contact that are not moving relative to each other. An object

needs to over come this resistance in order to move. Kinetic friction on the other hand,

occurs between two surfaces that are moving relative to each other. This dynamic friction

results in a resistive force acting in a direction opposing the direction of movement. In the

absence of friction, locomotion is impossible. Hence, by modeling frictional forces we

can create a model to simulate terrestrial locomotion. We use the stick-slip model from

Section 2.2.2 as the fundamental friction model in this chapter.

In nature, we see different terrestrial locomotion mechanisms. In the soft flexible

domain, variations of worm-like inching and snake-like slithering are frequently observed.

The focus of this chapter will be on worm-like slitheringmotion. The soft segmented robot

is capable of shortening and elongating the length of its segments and in turn produce

locomotion.

The structure of this chapter closely follows the previous chapter. First we understand

the equations of motion that govern the robot. Then we simulate the open-loop dynamics
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and compare them to the closed-loop performance of the robot.

5.1 Equations of motion

We combine the PDER state space model and the friction force model from section

2to arrive at the equations of motion that govern the dynamics of the soft segmented robot.

¤q = v

¤v = −"−1
(
m�C

mq
+ L 5 A

)
¤̄+ = �^u^

¤̄l = �;u; , (5.1)

In equation 5.1, the term L 5 A captures the frictional force produced during loco-

motion. The magnitude and direction of the force is based on the algorithm illustrated in

Figure 2.4.

5.2 Open-loop dynamics

Worm-like inching motion in soft segmented robots can be achieved by a traveling

wave propagating through the body. This wave can either be a compression wave or an

expansion wave. In nature, we observe that, inching worms demonstrate a compression

wave moving from the tail to the head. In this section, we simulate a similar compression

wave with the aim to produce locomotion.
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Figure 5.1: Open-loop simulation of inching motion. The plot of the COM shows the
inching motion of the worm. `B = 1.15 and `3 = 0.8

Figure 5.1 is a proof of concept. The soft segmented robot can successfully move by

inching by interacting with the surface. We further examine two key factors which affect

this locomotion: the static friction coefficient `B and the dynamic friction coefficient `3 .

We observe that, with increasing static friction, the worm travels further. On the

contrary, a lower dynamic friction coefficient results in better locomotion. Though Figure

5.2 shows a clear optimal performance region, it does not provide the complete picture.

As discussed before, energy is a key metric in miniature soft robots. We need to analyse

the energy that is needed to overcome friction and perform locomotion.

From Figure 5.3, it is clear that further locomotion comes at the cost of higher

energy expenditure.
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Figure 5.2: Open-loop simulation of inching motion for a range of `B and `3 values. The
plot represents the distance traveled in m

5.3 Closed loop dynamics and control

The feedback controller is based of the actual curvature feedback controller presented

in section 3.2. The controller uses the measurements of actual curvature at each node

and a decentralized algorithm to estimate the phase at each node. The expression for the

control input at each node is-

D8 = ¤̂8,34B (C) +  ?48 (C), (5.2)

where 48 = ^8,34B − ^8 is the error in actual curvature at node 8.
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Figure 5.3: Open-loop simulation of inching motion for a range of `B and `3 values. The
plot represents the energy (J) spent to overcome friction

5.4 Performance analysis

Next we compare the performance of the open-loop and closed-loop controllers.

The key metric of interest are locomotion distance and energy spent to overcome friction.

From Figure 5.4 we observe that the closed loop controller is clearly superior in

terms of distance travelled in unite time. The controller performs exceptionally well even

for large `3 values. To fully understand the cost of this improvement, we now contrast the

energy spent to overcome friction in each case.

From figure 5.4 we observe that this rise in locomotion performance comes at the

cost of higher energy dissipation. This is an expected result and a necessary evil to improve

locomotion performance.
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Figure 5.4: Open-loop vs closed-loop simulation of inching motion for a range of `B and
`3 values comparing the distance traveled and energy spent to overcome friction.
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Chapter 6: Conclusion

Over the last few decades, engineering design has actively drawn inspiration from

biological life. With advancements in non-traditional manufacturing technologies, real-

izing complex geometries has never been easier. This thesis investigates the performance

of one such bio-inspired engineering solution. Compared to their rigid counterparts, soft

segmented robots have decreased weight, size, and mechanical complexity. However,

these flexible systems are highly non-linear and hence can be difficult to model. This

combination of design flexibility and structural complexity makes the design and control

of soft segmented robots a rich problem to be solved.

6.1 Summary of contributions

The primary contribution of this work is the mathematical model for feedback

control of traveling-wave locomotion in underwater and terrestrial domains. The Planar

Discrete Elastic Rod (PDER) framework results in an attractive and numerically efficient

model that includes external forces and user inputs. A computationally tractable fluid force

model is used to capture the influence of external environment. The proposed framework

models both the added mass and inertial fluid forces acting on each soft segment in a fluid.

(The work on underwater locomotion of soft segmented robot was previously published
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as part of [2].)

The work on terrestrial locomotion incorporates a stick-slip friction model. Similar

to the underwater case, the PDER framework is used to describe the dynamics of the

system, now including frictional force from the stick-slip model. By modeling both static

and dynamic friction, a computationally viable and physically accurate mathematical

description of surface friction is proposed.

This work proposes a feedback-control algorithm based on a travelling wave to

control the states of the soft segmented robot. An open-loop parameter study serves as the

baseline against which the closed-loop performance is compared. The control strategy is

decentralized, i.e, each segment can only interact with its neighboring nodes. Hence, the

control law is computationally efficient, and impose fewer sensing and communication

requirements that a centralized model.

The performance of the soft-segmented robot is dependent on various physical and

control variables. An extensive parameter study is done to quantify the dependence of

the performance metrics on these factors. This parameter study is intended to be used as

a look-up table for future design changes or new developments in similar soft segmented

robots.
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6.2 Ongoing and future work

In future work we would suggest expanding the the underwater dynamics to include

both stretching and bendingmodes. Superposition of both themodes can lead to interesting

results and is an area worth exploring. Regarding the traveling wave, other wave schemes

with possible phase offsets are observed to produce a turning motion. There is benefit in

exploring novel wave schemes and feedback control methods. The controller developed in

this thesis is a low level controller capable of tracking the required curvature. The closed-

loop dynamics of the soft segmented robot can be used to develop a motion planning

algorithm to help navigate the robot through a complex path.
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