
ABSTRACT

Title of Thesis: OUTDOOR LOCALIZATION AND
PATH PLANNING FOR REPOSITIONING A
SELF-DRIVING ELECTRIC SCOOTER

Srijal Shekhar Poojari
Master of Science, 2023

Thesis Directed by: Professor Derek Paley
Department of Aerospace Engineering
Institute for Systems Research

The long-term goal of this research is to develop self-driving e-scooter technology to in-

crease sustainability, accessibility, and equity in urban mobility. Toward this goal, in this work we

design and implement a self-driving e-scooter with the ability to safely travel along a pre-planned

route using automated, onboard control without a rider. We also construct an autonomous driving

framework by synthesizing open-source robotics software libraries with custom-designed mod-

ules specific to an e-scooter, including path planning and state estimation. The hardware and

software development steps along with design choices and pitfalls are documented. Results of

real-world autonomous navigation of our retrofitted e-scooter, along with the effectiveness of our

localization methods are presented.

OUTDOOR LOCALIZATION AND
PATH PLANNING FOR AUTONOMOUSLY

REPOSITIONING A SELF-DRIVING
ELECTRIC SCOOTER

by

Srijal Shekhar Poojari

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2023

Advisory Committee:
Professor Derek Paley, Chair/Advisor
Assistant Professor Michael Otte
Associate Professor Pratap Tokekar

© Copyright by
Srijal Shekhar Poojari

2023

Acknowledgments

I would like to take this opportunity to express my sincere gratitude to Prof. Derek Paley,

my advisor and mentor. I thank him to trust me while taking me onboard, allowing me the

independence to choose my work, and patiently waiting through unproductive weeks. I deeply

respect and admire the way he effortlessly navigates his busy schedule, always able to squeeze in

a meeting when needed. Perhaps his most remarkable ability, unlike any professor I’ve known,

is to manage his email inbox so well that I’ve never had to wait until the next day for a response.

Even my first email, before he had ever known me, I had a response in 4 minutes! This might

seem trivial for some, but I greatly value the time and respect given to my queries. Thank you!

My gratitude also goes to my fellow team members at ReZoom, past and present. Starting

with Raj Shinde, Pruthvi Sanghavi and Naman Gupta who I only briefly met as I joined the team;

their work on developing the early prototype scooter was foundational. We still use some of the

hardware design choices made by them. I then had the joy of working with Siddharth Telang,

sharing ideas and pushing through the initial stages of getting onboard the project. Siddharth

certainly helped me spend more time on the project than I would have on my own. I also en-

joyed working alongside Vivek Sood, who helped develop remote monitoring capabilities for the

scooter (these are not a part of this thesis) and also helped build our relation with Flo Mobility.

Additionally, I would like to thank Andrew Giorgi and Jeremy Kuznetsov for their wonder-

ful work in developing the scooter hardware. The work in subsection 3.2.1 and subsection 3.2.2

ii

are almost entirely their work. Jeremy is a total wizard with mechanical design and CAD. The

newer 3D printed attachments and motor mount on revision 3 of the scooter are entirely his ef-

forts. Andrew also helped me develop the electrical subsystem of the scooters.

Continuing with the ReZoom team, I thank Sharmitha Ganesan for her work in performing

image segmentation to detect traversable/non-traversable terrain for the scooter, though her work

has not been included in this thesis. I would then like to thank Vibhu Agrawal for his work

in using historical scooter ride datasets to generate waypoints for navigation. This work has

not yet been incorporated into our ROS stack, but looks very promising! I also thank Jaxon

Lee and Matthew Fedora for their work enabling the scooter to be ridden by a user together

with the electrical modifications to enable autonomy that we have done. Their work is set to be

implemented in the upcoming scooter prototype, and not included in this thesis.

Next, I would like to thank Adarsh Sathyamoorthy and Kasun W. from the GAMMA Lab

at UMD for their support. The discussions I’ve had with them about their research on the Husky

has certainly helped me develop improved capabilities for the scooter.

A huge thank you to Ivan Penskiy for helping us procure (a lot of) components and parts for

the scooter. Ivan gracefully manages multiple labs at the Maryland Robotics Center, including

the Robotics and Autonomy Lab where ReZoom resides. I thank him for his help and support,

and apologize for the mess that we create at our desks.

I thank the Maryland Transportation Institute and the Maryland Robotics Center for gener-

ously supporting me through this research. I would also like to thank the Graduate School for the

Outstanding Graduate Assistant Award which has also helped support me.

And finally, but most importantly, I thank my parents and my sister for nourishing, guiding

and supporting me throughout my life. I would not be here without them.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Figures vi

List of Abbreviations viii

Chapter 1: Introduction 1
1.1 Motivation . 1
1.2 Previous and Ongoing Work . 3
1.3 Technical Approach . 4
1.4 Contributions . 6
1.5 Outline . 7

Chapter 2: Background 8
2.1 Robot Operating System (ROS) . 8
2.2 Coordinate Frames . 9

2.2.1 Types of North: True North . 10
2.2.2 Types of North: Magnetic North . 10
2.2.3 Types of North: Grid North . 10

2.3 Scooter Kinematic Model . 13
2.3.1 Holonomic and Non-holonomic Robots 13
2.3.2 The Bicycle Kinematic Model . 14
2.3.3 Expected Movements to Motor Commands 15

Chapter 3: Experimental Testbed 16
3.1 Our Scooter Fleet . 16

3.1.1 Ben Parker . 17
3.1.2 Richard Parker . 18
3.1.3 Peter Parker . 19

3.2 Mechanical Design . 21
3.2.1 Steering Mechanism . 21
3.2.2 Stabilizing Mechanism . 22
3.2.3 Component Mounting and Placement 24

3.3 Electrical Design . 27
3.3.1 Connection Diagram . 27

iv

3.3.2 Ground Loops . 27
3.3.3 Decoupling Capacitors . 28
3.3.4 Component Current Draw . 30
3.3.5 Analog/Digital Pathways . 31

Chapter 4: The ReZoom Autonomy Stack 32
4.1 Localization . 32

4.1.1 The Localization Problem . 32
4.1.2 The Extended Kalman Filter . 33
4.1.3 The Robot Localization package . 34
4.1.4 Localization Data Flow Overview . 40
4.1.5 Problems with Visual Odometry . 40
4.1.6 Initialization . 43

4.2 Planning and Navigation . 48
4.2.1 Move Base . 48
4.2.2 Preparing Waypoints . 51
4.2.3 Publishing Waypoints . 52
4.2.4 An Overview of the Autonomous Navigation Process 53

Chapter 5: Autonomy Experimental Results 55
5.1 Evaluating Localization Performance . 55

5.1.1 Methodology to Evaluate Localization 55
5.1.2 Localization Performance Results . 56

5.2 Local Planning Results . 61
5.3 Autonomous Waypoint Navigation . 62

5.3.1 Methodology for Autonomous Waypoint Navigation 62
5.3.2 Results of Autonomous Waypoint Navigation 63

Chapter 6: Conclusion 68
6.1 Summary of Contributions . 68
6.2 Future Work . 69

Bibliography 70

v

List of Figures

1.1 Scooters cluttering a sidewalk . 2
1.2 Self-stabilizing e-scooter by researchers at Stuttgart 3
1.3 Self-driving scooter by Go X . 4
1.4 Teleoperated scooter by JUMPWatts . 5
1.5 ReZoom’s autonomous scooter testbed . 6

2.1 UTM Grid in the United States . 11
2.2 Types of North Compared . 12
2.3 Typical UTM to map frame transformation . 12
2.4 The Bicycle Kinematic Model . 14

3.1 All three ReZoom scooters . 17
3.2 Ben Parker, our first scooter testbed . 18
3.3 Richard Parker, our second scooter testbed . 19
3.4 Peter Parker, our second scooter testbed . 20
3.5 The old motor steering mechanism on Richard Parker 21
3.6 The new motor steering mechanism on Richard Parker 22
3.7 The rear wheels on Richard lift off the ground over certain uneven surfaces 23
3.8 Peter’s new support wheels have suspension to allow for tilt and improved ride

quality . 23
3.9 A diagram showing an overview of the scooter’s component placement 25
3.10 A picture comparing the camera placement on Ben and Richard. 26
3.11 A picture showing the placement of GPS antenna 27
3.12 Scooter Electrical Connection Diagram . 28
3.13 The problem with Ground Loop . 29
3.14 Scooter’s underbelly showing the ground to chassis connections 29
3.15 Decoupling capacitors added to the motor encoder pins 30

4.1 All coordinate frames for the scooter shown in a TF tree - Part A 38
4.2 All coordinate frames for the scooter shown in a TF tree - Part B 39
4.3 Overview of the scooter’s localization data flow 41
4.4 Visual tracking fails in low feature situations . 42
4.5 ORB SLAM2 incorrect tracking with the robot’s shadow in view 43
4.6 A picture showing our initialization test setup 45
4.7 Flow diagram for the initialization node using April Tags 47
4.8 An overview of move base . 49
4.9 Screenshots showing the manual generation of waypoints from Google Maps . . 52

vi

4.10 A flow diagram of the outdoor waypoint navigation node 53
4.11 Overview of the scooter’s autonomy data flow 54

5.1 Selecting Ground Truth Points . 56
5.2 Starting the scooter facing an AprilTag . 57
5.3 Pushing the scooter manually along a known path to evaluate EKF performance

[CSI to Iribe] . 58
5.4 Pushing the scooter manually along a known path to evaluate EKF performance

[IDF to CSI] . 59
5.5 Pushing the scooter manually along a known path to evaluate EKF performance

[ERB to Regents Dr.] . 59
5.6 Pushing the scooter manually along a known path to evaluate EKF performance

[Looneys Loop] . 60
5.7 A zoomed in view of the end of the long EKF test 60
5.8 Plot showing error in EKF vs distance travelled 61
5.9 And example of TEB local planner’s planned path 62
5.10 Plot showing results of the scooter’s autonomous mission [CSI to Iribe 1] 64
5.11 Plot showing results of the scooter’s autonomous mission [CSI to Iribe 2] 65
5.12 Plot showing results of the scooter’s autonomous mission [ERB to Regents Dr.] . 66
5.13 Plot showing distance to waypoint vs distance travelled for three autonomous

missions . 66
5.14 The scooter drives into grass and gets stuck . 67

vii

List of Abbreviations

ReZoom Research in Electric Scooter Urban Mobility (RESUME)
ROS Robot Operating System
IMU Inertial Measurement Unit
GPS Global Positioning System
REP ROS Enhancement Proposals
TN True North
MN Magnetic North
GN Grid North
UTM Universal Transverse Mercator
MGRS Military Grid Reference System
LL Latitude and Longitude coordinate pair
RPM Revolutions Per Minute
ICR Instantaneous Center of Rotation
TEB Time Elastic Band (local planner)
OEM Original Equipment Manufacturer
USB Universal Serial Bus
CPR Counts Per Revolution
ADC Analog to Digital Converter
UART Universal Asynchronous Receiver Transmitter
SPI Serial Peripheral Interface
I2C Inter-IC (Integrated Circuit) Communication
CAN Controller Area Network
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
VO Visual Odometry
VIO Visual Inertial Odometry
Hz Hertz
ENU East North Up
NED North East Down
URDF Unified Robotics Description Format
TF Transform
SLAM Simultaneous Localization and Mapping
ORB SLAM Oriented FAST and Rotated BRIEF (ORB) SLAM, a type of SLAM algorithm
RTABMap Real Time Appearance Based Mapping

viii

ix

Chapter 1: Introduction

1.1 Motivation

Shared micromobility systems like e-scooters are envisioned to be a vital part of a new

urban mobility model that promises improvements in sustainability, accessibility, and equity over

current modalities like cars and buses for short travel distances. The United States Environmental

Protection Agency estimates that eliminating half of US car trips less than one mile would save

$575M/year in fuel costs and $900M/year overall, including savings on maintenance and tire

replacement, as well reduce about 2 million metric tons of CO2 emissions per year [1]. These

short trips are significant.

Despite their promise of sustainable, accessible, and equitable transportation, shared elec-

tric scooters clutter city sidewalks and landscapes. This public nuisance causes city planners to

limit the number of shared operators and the size of their scooter fleets, which in turn reduces

revenue and diminishes the potential benefits of dockless scooters. Very recently, the city of Paris

banned all rental electric scooters from the city, with the mayor describing them as a “nuisance”

[2]. Further, to rent a share scooter, a user must find one nearby and walk to it; often, it has in-

sufficient charge. Rentals must also end in suitable parking spots that may not be near the user’s

desired destination.

A self-driving scooter can be summoned like a car ride-share vehicle and park itself. Au-

1

Figure 1.1: Improperly parked Veo rental scooters clutter a sidewalk.

tomated e-scooters can also be deployed in so-called transit deserts with poor or limited public

transportation options, also known as Economic Opportunity Zones, where residents may lack

access to a personal vehicle or convenient transit, making even short essential trips a challenge.

Electric scooters therefore have the potential to reduce racial, generational, and geographical

transportation disparities.

There are large daily operating expenses with the rebalancing of conventional scooters

using cars and vans. Not only is rebalancing very expensive, but it ends up undoing a lot of the

environmental benefit of shared electric scooters in terms of both traffic and pollution. Instead,

with an autonomous electric scooter, the scooter can reposition itself, albeit over short distances.

Additionally, a rider using a self-driving e-scooter fleet is less likely to find a scooter without

sufficient battery charge. Self-driving scooters can also reposition for batch pickups, saving on

emissions and logistics costs.

From a technology standpoint, most self-driving vehicles are either large and operate over

larger distances (think self-driving cars and trucks) or are small and operate indoors. Self-driving

electric scooters present a novel challenge because of their small form-factor, small battery ca-

2

Figure 1.2: Researchers at the University of Stuttgart have presented their scooter self-stabilizing
using a reaction wheel[4].

pacity and low unit costs. An autonomous e-scooter is required to travel along roads, follow

traffic signs, and avoid pedestrians, just as an autonomous car would. There is a gap in existing

knowledge about how to meet these needs when constrained by size, weight, and power.

1.2 Previous and Ongoing Work

Previous research toward an autonomous electric scooter include the work done by Wen-

zelburger et al. (2020)[3] and Soloperto et al. (2021)[4] at the University of Stuttgart. Their re-

search presents a method to self-stabilize the scooter using a reaction wheel1 as shown in Figure

1.2. They have also presented methods for planning and navigation of their scooter in simulation.

But the scooter in their presented video is teleoperated, and autonomous driving is still under

development.

Go X, a company in San Francisco, seem to have deployed their self-driving electric scooter

1The Stuttgart electric scooter can be seen on YouTube: https://www.youtube.com/watch?v=nD8vZYZFTTU

3

https://www.youtube.com/watch?v=nD8vZYZFTTU

Figure 1.3: Go X has deployed its self-driving electric scooter fleet in Georgia in 2020.

fleet in 2020-21 as shown on YouTube2 and several news outlets[5–7]. Post 2021, there are no

recent news or updates on their website or elsewhere on the internet. As seen in Figure 1.3, the

Go X Apollo scooters appear to have used retractable support wheels, a friction drive mechanism

at the front wheel and a camera mounted on at the top of the handlebars. The level of autonomy

achieved by these scooters is not known.

Another company based in Los Angeles, JUMPWatts, develops remote management tech-

nology for light electric vehicles, including electric scooters. An example of their scooter is

shown in Figure 1.4. Their focus is on teleoperation for remotely getting scooters back to a

parking lot or charging station. These scooters are not autonomous.

1.3 Technical Approach

Our approach is to customize commercial off-the-shelf electric scooters with the hardware

and sensors required to achieve micro-scale re-position up to several hundred meters. This project

2The Go X Apollo can be seen on YouTube at: https://www.youtube.com/watch?v=JZDzZzPYXls

4

https://www.youtube.com/watch?v=JZDzZzPYXls

Figure 1.4: A teleoperated scooter by JUMPWatts for remote fleet management. Also seen is the
dockable red charging port in the front.

was originally funded as a seed grant from the Maryland Transportation Institute entitled “Re-

search in Electric Scooter Urban Mobility (RESUME)”, which we have renamed ReZoom. Our

ongoing efforts have led to three iterations, an example of which can be seen in Figure 1.5.

The ReZoom electronic stack includes a single board computer that performs all onboard

computing and runs the Robot Operating System (ROS) on Ubuntu Linux. Additionally, we have

a stereo camera for depth sensing, Inertial Measurement Units (IMUs) and GPS modules for

localization, a motor driver and accompanying power circuitry for navigation.

Creating a self-driving electric scooter poses novel challenges in autonomous vehicle re-

search. By comparison, self-driving cars are equipped with sensors and computation capabilities

that are too large and expensive for e-scooters. Therefore, our approach towards these challenges

is to leverage advances in mobile robotics, while keeping in mind the physical, technical, and

financial constraints of a shared e-scooter system including the unit cost. Our efforts focus on

developing hardware and software specific to this system to help achieve the goal of building a

5

Figure 1.5: The version 2 prototype of our autonomous scooter testbed named Richard Parker.

sustainable, accessible, and equitable micromobility platform for shared rental operators.

We seek to develop a hardware and software stack capable of achieving autonomous micro-

scale re-positioning of the scooter; planning a path through roads, trails, and sidewalks; navigat-

ing while avoiding cars and pedestrians; and being sufficiently low-cost to be deployed on a large

scale. Historical rental scooter ride data will allow the scooter to take advantage of previous rides

performed by humans and learn the optimal paths to navigate through the urban landscape. In ad-

dition, we will develop onboard perception and state estimation algorithms to enable the scooter

to perceive its environment and navigate relative to its goal, up to hundreds of meters away.

1.4 Contributions

The primary contributions of this thesis are as follows:

1. We first lay the hardware setup and procedure to develop an autonomous scooter from a

commercial off-the-shelf scooter. The scooters are modified both mechanically and electri-

6

cally to allow autonomous control by an onboard single board computer. Support wheels

are added to stabilize the scooter without a rider.

2. Next, we develop the software and integration specific to the hardware for achieving out-

door autonomous waypoint navigation. This includes the localization module, which forms

the backbone for the path planning module. Algorithms for initializing the scooter’s pose

and navigating the scooter through waypoints have also been developed. We individually

test these modules and then bring them together for several autonomous missions.

3. In relation to the above two, the findings from this thesis provide a foundation for further

development toward autonomous scooters and other, similarly constrained, ground robots.

1.5 Outline

The rest of this thesis is laid out as follows:

• Chapter 2 provides the reader a Background of some necessary prerequisite concepts.

• Chapter 3 describes the build of our Experimental Testbed; including the mechanical de-

sign, electrical design, and component placement.

• Chapter 4 describes the software aspects developed for Autonomy; including the hardware

interface nodes, development of localization, planning and navigation.

• Chapter 5 provides Experimental Results for a few planned outdoor and indoor missions

which demonstrate the capabilities developed.

• Chapter 6 summarizes and concludes the work done as part of this thesis.

7

Chapter 2: Background

This chapter provides the reader with background information that support the rest of this

thesis.

2.1 Robot Operating System (ROS)

From the ROS Wiki[8]: ROS is an open-source, meta-operating system for your robot. It

provides the services you would expect from an operating system, including hardware abstrac-

tion, low-level device control, implementation of commonly-used functionality, message-passing

between processes, and package management. It also provides tools and libraries for obtaining,

building, writing, and running code across multiple computers.

ROS acts as a middleware, providing a common set of rules and communication protocol

between different pieces of robotic software. The primary goal of ROS is to support code reuse

in robotics research and development. Because of this common set of rules, ROS packages are

modular, and can be easily distributed. This makes prototyping quick, and allows you to reuse

software from its large community.

If you have not used ROS before, or have not used it in a while, I highly recommended

going through the beginner tutorials1. The sections ahead assume basic familiarity with ROS and

1ROS Beginner Tutorials: http://wiki.ros.org/ROS/Tutorials

8

http://wiki.ros.org/ROS/Tutorials

its terminology.

2.2 Coordinate Frames

Coordinate Frames are probably the single most important thing to keep in mind as you

navigate your way through the rest of the autonomy software.

If you check the ROS message template for most of the common ROS message types, for

example sensor msgs/Imu 2 or geometry msgs/TransformStamped 3, they have std msgs/Header

as one of their fields. std msgs/Header 4 has the field frame id, which is the coordinate frame the

data is associated with. Almost all messages in ROS—sensor measurements, robot goals, maps,

etc.—have a coordinate frame associated to them as part of the std msgs/Header field. Its a good

practice to check message templates of the topics you are working with.

ROS has its own specific naming conventions for a few common coordinate frames which

are in general applicable and present in most ROS based mobile robotic platforms. The ROS En-

hancement Proposals (REPs) 103[9] and 105[10] specify units, naming convections and semantic

meaning for common coordinate frames for ROS. It is highly recommended in giving these a read

if you are unfamiliar.

Another thing to be aware of is the existence of True North, Grid North and Magnetic North

directions.
2http://docs.ros.org/en/noetic/api/sensor msgs/html/msg/Imu.html
3http://docs.ros.org/en/noetic/api/geometry msgs/html/msg/TransformStamped.html
4http://docs.ros.org/en/noetic/api/std msgs/html/msg/Header.html

9

http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Imu.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/TransformStamped.html
http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Header.html

2.2.1 Types of North: True North

True North (TN), also called geodetic north or geographic north and denoted by a star, is

the direction along the line of longitude that points to the north pole. As a GPS sensor reports

latitude and longitude coordinates, its data can be said to be in True North and True East frame of

reference. Note that this is not a “Cartesian” frame, as latitude and longitude lines are like rings

on a globe.

2.2.2 Types of North: Magnetic North

Now the earth’s magnetic field, generated by the fluid motion inside the planet’s core, is

not constant. So the direction that a magnetic compass points to, and similarly a magnetometer

in a robot’s IMU, is not toward True North, but aligned with the earth’s magnetic field. The

angle between True North and Magnetic North (MN), commonly referred to as the magnetic

declination, varies with time (as the earth’s core flows around) and your location on the earth’s

surface. For College Park, MD, USA, this angle is about 10.8 degrees—not insignificant!

The National Oceanic and Atmospheric Administration provides a helpful calculator to find

the magnetic declination at any location5.

2.2.3 Types of North: Grid North

As most robots operate in a relatively small area on the surface of the earth, it is convenient

to have a planar, cartesian coordinate system that still gives you a unique (x, y) coordinate for each

point in the plane for each latitude/longitude on earth. The Universal Transverse Mercator (UTM)

5NOAA’s Magnetic Declination Calculator: https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml

10

https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml

Figure 2.1: The Universal Transverse Mercator grid that covers the conterminous 48 United
States comprises 10 zones. Source [11]

system is a map projection system that does exactly this. UTM divides the earth into 60 planar

UTM zones, and projects each latitude/longitude to the plane. If you get a latitude,longitude

reading from your GPS sensor, it is possible to convert it into a unique UTM zone and (x,y)

coordinate in that UTM plane.

Figure 2.1 shows the UTM zones covering United States. At College Park, MD, USA, we

operate in UTM Zone 18N, not to be confused with the Military Grid Reference System (MGRS)

Zone 18S for College Park. This UTM Zone, like all others, has a globally fixed origin (at a fixed

latitude and longitude).

Grid North (GN) is the direction of north for this planar UTM grid system. There is a small

angle between TN and GN (I have observed about 1.2 degrees), which is just the inherent effect

of projecting the earth’s spherical surface on to a plane.

Figure 2.2 illustrates the angles between GN, TN and MN at College Park. Figure 2.3

11

Figure 2.2: Angles between TN, GN and MN in College Park, MD, USA (not to scale).

Figure 2.3: A typical utm to map frame transformation in ROS.

12

shows these angles affecting the transformation between the utm frame and map frame in our

setup. Section 4.2 in Chapter 4 will explore coordinate frames specific to the robot and their

significance in further detail.

2.3 Scooter Kinematic Model

After a robot plans its path from a start location to a goal, we want the robot to move and

follow the path. The required movements would be a series of commands sent to the robot as

the robot moves, something like: move forward at 2 meters/sec; stop; turn left 20 degrees; move

forward at 1 meters/sec. Now for each of these commands, how many revolutions per minute

(RPM) should my motors spin at? This question is dependent on the geometry of the robot,

specified by a robot’s kinematic model.

2.3.1 Holonomic and Non-holonomic Robots

A robot is non-holonomic if its controllable degrees of freedom are less than the total

degrees of freedom, and holonomic otherwise. For example, a robot with mecanum wheels[12]

which allow for omni-directional motion would be holonomic. A car in a 2D plane has three

degrees of freedom (x, y position and its orientation), but only has two controllable degrees of

freedom (acceleration and steering), and is therefore non-holonomic.

Being non-holonomic restricts the paths that a robot can take to reach a given goal config-

uration. For example, to parallel park a car, we have to perform a series of forward and backward

motions, and cannot simply slide sideways as a holonomic robot would.

13

Figure 2.4: The Bicycle Kinematic Model. Source [15]

2.3.2 The Bicycle Kinematic Model

Most common robots used in academic settings like the TurtleBot have a differential drive[13].

This enables the robot to spin wheels on both sides of its body in the opposite direction and turn

on-the-spot without translating. Our scooter, on the other hand, is more car-like, and cannot really

turn without translating.

The Bicycle Kinematic Model is a popular and consistent[14] method used to simplify car-

like vehicle dynamics. As seen in Figure 2.4, due to the two wheel, front steer design, it is a great

representation of a scooter’s dynamics.

Important variables from the real scooter used to configure our dynamical model are:

1. The wheelbase, L.

2. Minimum turning radius, which is the turning radius R when steering angle δ is at the

14

maximum deviation from the center.

The wheelbase can be calculated simply by measuring the wheel to wheel distance. For the

minimum turning radius, I set the scooter’s steering to the maximum angle and make it turn in

circles (Either by teleoperating the scooter or by directly writing commands to the ODrive using

odrivetool). By measuring the diameter of these circles, we can get the minimum turning radius.

2.3.3 Expected Movements to Motor Commands

For a given command from the path planning module, with forward or backward drive ve-

locity v, the drive motor RPM is simply: RPM = v/(2πr), where r is the drive wheel radius.

And, for a given command to turn the steering wheel, the steer motor position would be the prod-

uct of the expected turn angle and the gear ratio between the pulley-belt mechanism connecting

the handlebar with the steer motor. The ODrive is configured in position control mode for the

steer motor, and accepts desired position angle in radians.

These calculations to convert commands from the path planning package to values to send

to the ODrive are performed in a separate ROS node, which we call the kinematics node. The

output of the kinematics node is then sent to the odrive node, which actually performs the task of

talking to the ODrive to set the motors in motion. We will touch upon this in Chapter 4.

15

Chapter 3: Experimental Testbed

Developing the experimental testbed involves taking an OEM scooter and modifying/retrofitting

it with components to enable autonomy. This process is described in this chapter, along with con-

siderations for component placement, mechanical design and electrical design.

3.1 Our Scooter Fleet

As of writing, ReZoom’s scooter fleet consists of three scooters as shown in Figure 3.1. The

scooters were developed incrementally, starting with Ben Parker, to the upcoming Peter Parker.

Each scooter builds over the previous version in terms of mechanical design, component choice

and autonomy capabilities. The key differences are summarized in Table 3.1

V1: Ben Parker V2: Richard Parker V3: Peter Parker

Stabilizing Mecha-
nism

Naturally stabilized Rigid support wheels Flexible supports with
suspension

Camera Placement Handlebar Fixed to base Fixed to base

Camera(s) Used Intel RealSense T265
and D435i

Stereolabs ZED2i Stereolabs ZED 2i

Compute Jetson Nano Jetson Nano/Orin Jetson Orin

User Rideable No, small and unstable No, deck not clear Yes!

Table 3.1: The key differences between each ReZoom scooter.

16

Figure 3.1: All three ReZoom scooters; (L–R) Ben Parker, Richard Parker and Peter Parker.

3.1.1 Ben Parker

The first ReZoom scooter, based on the Hoover-1 Switch scooter, is the smallest and most

adorable of the three (Figure 3.2).

Ben’s chassis is a 2-in-1 design, combining a skateboard and an electric scooter. The rear

wheels on the back would naturally stabilize the scooter—but not very well.

Some of ReZoom’s early configuration, localization and planning tests were confined in-

doors, and Ben proved to be an excellent testbed. However, because of his smaller wheels and

high center of gravity due to the added cameras and no rider, Ben would be highly unstable in

autonomous tests outdoors and would topple over at the slightest of bumps.

Specifications:

17

Figure 3.2: Ben Parker, our first prototype autonomous e-scooter.

• Compute: Nvidia Jetson Nano

• Motors: ODrive D6473 150KV Brushless for Steer and stock drive motor.

• Motor Driver: ODrive v3.6 24V

• Vision: Intel Realsense D435i and T265 cameras

• Power: 6S LiPo packs placed on the deck

3.1.2 Richard Parker

Richard Parker, as seen in Figure 3.3, is a modified Mi M365 Scooter which is a popular

scooter in the electric scooter community.

Most of the work developed in this thesis is tested on Richard. Unlike Ben, Richard is not

naturally stabilized, and is fitted with support wheels instead.

Specifications:

18

Figure 3.3: Richard Parker, our second prototype autonomous e-scooter. Most of the work in this
thesis has been developed on Richard.

• Compute: Nvidia Jetson Orin, and previously the Nano

• Motors: ODrive D6473 150KV Brushless for Steer and stock drive motor.

• Motor Driver: ODrive v3.6 56V

• Vision: ZED 2i with Polarizer and 2.1mm Focal Length

• Sensing: 2x PhigetSpatial Precision IMUs and Emlid Reach M+ GPS modules

• Power: Stock 10S, 7.2Ah Li-ion battery pack

3.1.3 Peter Parker

Peter Parker is the latest scooter being added to our fleet. Peter is based on the Hiboy S2

scooter platform, and the chassis is very similar to the Mi M365 model.

19

Figure 3.4: Peter Parker, our third and latest prototype autonomous e-scooter. Peter is still under
development and not yet operational.

Peter is equipped with a better motor mount (which Richard later adopted), better support

wheels, and improved placement for electronics which allows the deck to be clear for a user to

ride the scooter.

• Compute: Nvidia Jetson Orin

• Motors: ODrive D6473 150KV Brushless for Steer and stock drive motor.

• Motor Driver: ODrive v3.6 56V

• Vision: ZED 2i with Polarizer and 2.1mm Focal Length

• Sensing: 2x PhidgetSpatial Precision IMUs and Emlid Reach M+ GPS modules

• Power: Stock 10S, 7.2Ah Li-ion battery pack

20

Figure 3.5: The old motor steering mechanism on Richard Parker

3.2 Mechanical Design

Two major aspects of the mechanical design include—gear and motor mount to move the

handlebar and steer the scooter (A task which is normally done by a human rider); and some

form of stabilization to keep the scooter upright. Other tasks include placement of sensors and

supplementary components.

3.2.1 Steering Mechanism

We use 3D printed structures along with belt and pulley mechanism for the steering mech-

anism. This allows us to turn the handlebars at the desired angle. Encoders placed on the motor

shaft precisely detect the angle at which the steering is turned.

The older motor steering mechanism was held on to the handlebar by a C-shaped clasp as

shown in Figure 3.5. This design would cause the mount to sag and twist around the handlebar,

and often required manual correction. A plastic bumper was attached at the bottom of the mount

to protect the stereo camera from accidental bumps.

21

Figure 3.6: The new motor steering mechanism on Richard Parker is a big improvement over the
previous, fixing any sagging or turning issues.

After months of testing this motor mount on Ben and Richard, we improved upon the design

and fixed the mount sagging and twisting around the handlebar. The newer motor mount, shown

in Figure 3.6, is much sturdy and allows easy removal of the drive pulley.

This mount has been designed for Peter Parker, but has also been adopted by Richard

Parker.

3.2.2 Stabilizing Mechanism

The design of the support wheels on Richard Parker is simple, with stiff aluminum bars and

castors. It offers good stability, even over large bumps and pits, but the lack of suspension made

the scooter’s rear wheel lift off the ground in certain situations (As shown in Figure 3.7). Also,

ignoring the components placed on the deck, the scooter is unpleasant to ride on because of the

stiff support wheel mounting.

Peter Parker has improved support wheels with a springy suspension (Figure 3.8) that allow

a user to ride the scooter comfortably, while offering good support for autonomous movements.

22

Figure 3.7: The rear wheels on Richard lift off the ground over certain uneven surfaces because
of the stiff support wheels on either side.

Figure 3.8: Peter’s new support wheels have suspension to allow for tilt and improved ride quality.

23

In the future we could consider alternative designs for a support mechanism, for example,

support wheels that could be kicked up/down when needed, similar to the Go X Apollo (as seen

in Fig. 1.3).

Another possible method to stabilize the scooter without the use of support wheels would

be to use a reaction wheel as done by researchers at Stuttgart (Fig. 1.2). I explored this method in

simulation (using Gazebo), but there are a few potential drawbacks to consider for our intended

use in the future. First, spinning the reaction wheel would tap into the scooter battery reserve

and reduce range, requiring it to charge more often. I expect this reduction in battery life to be

significant, but it needs further examination. Secondly, support wheels are both mechanically and

financially easier to mount and implement. Regardless of these, a reaction wheel might still be a

good alternative to consider in future ReZoom scooters.

3.2.3 Component Mounting and Placement

3.2.3.1 Overview of the Scooter’s Components

A general overview of a ReZoom scooter’s components and their placement is as shown in

Figure 3.9. Richard Parker had some of his components on the deck which does not allow a user

to ride the scooter. The upcoming Peter Parker has been designed with user ridability in mind,

and the deck is kept clear.

3.2.3.2 Camera Placement

Placement of the stereo camera on the scooter was an important design choice. On Ben

Parker, which used the Intel Realsense depth and tracking cameras, they were placed on top of

24

Figure 3.9: A picture of Peter Parker showing the general layout and build of a ReZoom scooter.

the handlebar as shown in Figure 3.10. With this configuration, the camera turns as the handlebar

turns. This was detrimental to localization performance, as we noticed that with quick movements

of the handlebar, (1) the camera would lose tracking; (2) the coordinate transform of the camera

w.r.t. the robot’s base, necessary to process the image correctly would not update quickly enough.

We then decided to have the camera fixed to the base of the scooter, and also moved to

the ZED2i camera platform because of problems1 and an end-of-life notice from Intel for the

T265[16].

3.2.3.3 Placement of IMUs

Placement of IMUs are not as critical as ROS makes it easy to handle the necessary trans-

formations from any sensor axes. The ZED2i has an internal IMU, and the Phidgets have been

placed low and close to the center of the robot to keep the lever arms short[17, 18]. We also en-
1This post summarizes the reasons why we stopped using the Realsense T265:

https://msadowski.github.io/Realsense-T265-First-Impressions/

25

https://msadowski.github.io/Realsense-T265-First-Impressions/

Figure 3.10: A picture comparing the camera placement on Ben Parker vs Richard Parker. Ben’s
camera turns with the handlebar, while Richard’s does not.

sure that the IMU axes are aligned with the robot’s base link axes to keeping the transformations

simple and easier debugging.

3.2.3.4 Placement of GPS Antenna

The GPS antenna needs to have a clear view of the sky 30 degrees above the horizon2.

Also, to avoid multipath[19], we add a ground plane under the antenna as seen in Figure 3.11.

The manufacturer recommends the ground plane to be no less than 70X70 mm.

Previously, I have also used the Adafruit Ultimate GPS MT3339 modules instead of the

Reach M+, but the performance was found to be inferior. The MT3339 modules would sometimes

be as much as 60 meters inaccurate; though it has not been tested if the accuracy can be improved

with better mounting and a ground plane as used with the Reach M+.

2GPS antenna placement for the Emlid M+: https://docs.emlid.com/reach/before-you-start/antenna-placement/

26

https://docs.emlid.com/reach/before-you-start/antenna-placement/

Figure 3.11: A picture showing the placement of GPS antenna with the metal ground plane added
at the bottom to reduce multipath.

3.3 Electrical Design

3.3.1 Connection Diagram

The scooter’s electrical connection diagram is as shown in Figure 3.12.

The wiring has to be done keeping in mind the high current pathways, using appropriate

gauge wires, and keeping distances short where necessary. Also note that the ZED 2i stereo

camera is a high bandwidth device, and is thus connected directly to the Jetson’s USB port instead

of a USB Hub.

3.3.2 Ground Loops

We initially faced a problem where the ODrive would (seemingly) randomly disconnect

from the Jetson during operation. After troubleshooting, I realized that the problem was because

27

Figure 3.12: A block diagram showing our electrical connection diagram.

of the formation of a ground loop3. As shown in Figure 3.13, the high fluctuating current drawn

by the ODrive while driving the motors, combined with the parasitic inductance of wires, create

a voltage difference between the ODrive’s ground and the Jetson’s ground. This causes a current

to be injected in the Jetson’s USB port, causing it to disconnect the device.

Keeping the wires short reduces the parasitic inductance, but the best solution that worked

for us was to use the scooter’s chassis as a ground plane (Figure 3.14). This essentially provides

a large, low inductance pathway for ground currents, thus minimizing the effect.

3.3.3 Decoupling Capacitors

The scooter’s OEM drive motor includes an internal hall effect encoder with a Counts Per

Revolution (CPR) of 90. The optical encoder (part number CUI AMT102-V) added for the steer-

3Read more about ground loops on ODrive Docs: https://docs.odriverobotics.com/v/latest/ground-loops.html

28

https://docs.odriverobotics.com/v/latest/ground-loops.html

Figure 3.13: A block diagram showing the cause of ground loops when a high, fluctuating current
is drawn by the ODrive. Source: ODrive Docs3

Figure 3.14: The ground to chassis connections are shown (in purple boxes) in a picture of
Richard Parker’s underbelly. Note that the connections are made close to the ODrive (on the
left), and between the DC-DC converter and Jetson (on the right).

29

Figure 3.15: Noise decoupling capacitors were added to the hall effect encoder pins close to the
ODrive.

ing motor in comparison, has CPR of 8192. Hall effect encoders are therefore not nearly as good

as optical encoders, but they are easy and cheap to integrate as part of the motor. Another draw-

back of hall effect encoders are that they are highly susceptible to noise, and therefore shielded

cables must be used whenever possible. In our scooter, this noise caused errors in motor posi-

tion measurement4, and we had to include decoupling capacitors as shown in Figure 3.15. These

capacitors, ranging from 47pF to 47nF, must be added close to ODrive to remain effective.

3.3.4 Component Current Draw

A common error which leads to erratic component/sensor behavior is to not meet the current

draw requirements for each device. It is important to consider this while adding any new device

to a power source, especially when multiple devices are connected to the same USB port through

a USB Hub. In such a situation, all devices draw current through the same USB port, which has

4We faced ERROR ILLEGAL HALL STATE errors as decribed here:
https://discourse.odriverobotics.com/t/encoder-error-error-illegal-hall-state/1047

30

https://discourse.odriverobotics.com/t/encoder-error-error-illegal-hall-state/1047

a rating of 0.9A5. The individual devices themselves would have been designed with the USB

power specification in mind, not considering for other devices connected to the same port.

We can find a device’s current requirements in its datasheet; for example, the PhidgetSpatial

Precision IMUs we use have a maximum current draw rating of 21mA, while the Emlid M+ GPS

requires a maximum of 500mA. It would thus be safe to connect these into a USB Hub drawing

power from a single USB port on the Jetson.

3.3.5 Analog/Digital Pathways

Another design choice while placing components is how far or close they can/should be

placed to each other. For example, the scooter’s thumb throttle is a potentiometer with the various

throttle positions being effectively measured as an analog voltage varying between 0–3.3V. If the

Jetson wanted to read these throttle inputs6, we need to route this signal from the top of the

handlebar, all the way to the bottom rear of the scooter (where the Jetson is placed). These

0–3.3V analog signals would be highly susceptible to noise over that length of wire, and would

almost certainly lead to incorrect measurements. So instead, we would have to digitize the throttle

information close to the throttle, using an ADC module7 or even an Arduino, and then route the

digital signal (e.g. UART/SPI/I2C/CAN) to the Jetson.

To summarize, keep in mind the amount of current while deciding wire guages; the type of

signal and signal quality while choosing wire length; current supplying capacities of USB ports;

and the bandwidth required by USB devices.

5Some devices allow for a larger current draw, but its safe to assume 0.9A as the limit for USB 3.0 ports.
6Jetson devices do not have an in-built ADC, so they cannot read analog signals on their own. But the explanation

remains the same if we assumed to have an ADC module close to the Jetson.
7An example of an ADC module for the Jetson would be: https://www.adafruit.com/product/1083

31

https://www.adafruit.com/product/1083

Chapter 4: The ReZoom Autonomy Stack

This chapter discusses the localization, planning and navigation stack of the ReZoom

scooter.

4.1 Localization

4.1.1 The Localization Problem

As described by Leonard and Durrant-Whyte (1991)[20], the problem of building auton-

omy for a robot can be most simply broken down into answering the following three questions:

“Where am I?”, “Where am I going”, and “How should I get there?”. The answer to the first

question can be found through the robot’s various sensors, and is the localization problem we are

trying to solve.

Assuming the scooter moves on a plane, it’s location in an earth fixed frame is completely

described by two position coordinates and an orientation. In an ideal world, we can trivially

calculate and keep track of this location by using values reported by the scooter’s sensors such as

an IMU, wheel encoders and GPS. However, in the real world, sensors are not perfect, and there

is some uncertainty associated with any measurement we get. Further, some sensors are more or

less accurate than others, and this accuracy can even vary with external factors, including time.

32

Therefore, we need a statistical approach to calculate the most optimal1 estimate of our robot’s

position and orientation.

4.1.2 The Extended Kalman Filter

The Kalman Filter[21] is a commonly used state estimator which can perform this task by

combine sensor data from multiple sources. It can even estimate the system states indirectly,

for example, compute position using acceleration or velocity information only. The Kalman

filter, and the Extended Kalman Filter (EKF) are heavily documented in literature, and I suggest

the reader to refer [22, 23] for a theoretical background and derivation, or [24] for a practical

overview. The important thing to note is that the Kalman filter (not EKF) is a statistically optimal

(in minimum mean square error sense) observer for a linear system with Gaussian uncertainties

(disturbance and noise). It is the best we could possibly do for a linear system [22] under these

conditions.

However the Extended Kalman Filter is an extension of the Kalman Filter for nonlinear

systems, and is not an optimal filter. It is essentially a linearization of the nonlinear system

around each estimate, and is effective only if the estimation errors remain small. The filter can

and will diverge if the initial estimate and uncertainties are large (See [22], section 7.2. The

authors call the EKF an ad hoc filter).

Better nonlinear filtering methods exist, such as the Unscented Kalman Filter (UKF)[25]

and Monte Carlo Localization[26], but the EKF is arguably the most popular and easiest to get

started with.
1Optimal may refer to optimality in the sense of minimum mean squared error, minimum variance or some other

optimality criterion. It is important to ask: “optimal in what sense?”

33

4.1.3 The Robot Localization package

The robot localization ROS package is a collection of two state estimation nodes,

ekf localization node and ukf localization node. Additionally, it contains the

navsat transform node, which helps in integrating GPS data into the EKF or UKF nodes.

The package is well documented2, and the authors have also published their results as a confer-

ence paper [27].

The ekf localization node keeps track of 15 state variables for any robot:

[X, Y, Z, roll, pitch, yaw, Ẋ, Ẏ , Ż, ˙roll, ˙pitch, ˙yaw, Ẍ, Ÿ , Z̈]

The node allows fusion of any arbitrary number of sensors, and not all state variables need to be

measured by each sensor.

In our setup, we assume that the scooter operates in a planar environment, and there-

fore configure ekf localization node in 2D mode. In this case, measurements fused for

Z,roll,pitch,Ż, ˙roll, ˙pitch, and Z̈ are internally set to zero, even if they are included in sensor

measurements.

Another thing to note is that the robot localization package assumes an omni-directional

motion model for robot dynamics as it is intended to be a general purpose estimation package

for all robots. However, the scooter is clearly not omni-directional, and the scooter’s unique

kinematics are not considered anywhere in this package. This introduces some error into the

filter’s predict stage, which gets corrected in the update stage. Presently, this scheme works in

our setup, but in the future, it should be beneficial to modify the filter to account for the robot’s

2robot localization Wiki page: http://docs.ros.org/en/noetic/api/robot localization/html/index.html

34

http://docs.ros.org/en/noetic/api/robot_localization/html/index.html

dynamics3.

4.1.3.1 Local and Global EKF Nodes

Sensors like an IMU or wheel encoders measure accelerations and velocities, which are

then integrated by the ekf localization node to calculate relative position from start. As

the robot covers more and more distance from start, error in position gets accumulated, and can

increase without bound. Therefore, these sensors are not a good long term reference. GPS on

the other hand, gives us position estimates with a bounded error. The values remain more or less

the same regardless of how much the robot travels, i.e., the error for GPS is dependent on the

satellite to antenna signal quality, and not distance traveled. However, getting a reading from a

GPS sensor is slow (at a rate of about 1Hz for us), and is not guaranteed throughout the mission,

for example when urban structures overshadow the GPS antenna. IMUs and wheel encoders will

report measurements at a fixed rate as long as the robot is running.

When fusing sensors like the IMU or wheel encoders into our EKF, we ensure that the

output of the EKF remains smooth (at a fast rate) and continuous (no sudden jumps). But when

we include measurements from GPS, which can arrive at random time intervals, the EKF output

will also be subject to sudden jumps. These sudden jumps would be bad when, for example, the

robot tries to navigate around an obstacle.

To get the best of both worlds, following REP-105 [10], we use the map-odom-base

coordinate frame setup. To get each of the transformations, i.e. map-odom and odom-base,

we use two independent instances of the EKF, which are referred to as the global EKF and local

3See relevant discussion: https://answers.ros.org/question/221837/robot localization-ekf-internal-motion-
model/, and https://answers.ros.org/question/281513/kinematic-model-used-in-robot-localization-package/

35

https://answers.ros.org/question/221837/robot_localization-ekf-internal-motion-model/
https://answers.ros.org/question/221837/robot_localization-ekf-internal-motion-model/
https://answers.ros.org/question/281513/kinematic-model-used-in-robot-localization-package/

EKF, respectively. In our present setup, the only difference between the two is that the global

EKF includes measurements from a GPS sensor, whereas the local EKF does not. I explain this

further in the next section. [28, 29] are also helpful resources that go over this.

4.1.3.2 Coordinate Frames for the Scooter

Figure 4.1 illustrates all the coordinate frames for the scooter, and is called the TF tree. The

tf2 package4 in ROS keeps track of all coordinate frames, updating them and sharing transforms

between any two frames upon request. This is one of the core ROS packages and is preinstalled.

A brief description of some important frames are given below:

• utm: This is an earth fixed frame with the origin always at the local UTM zone origin, and

ENU oriented (x-axis points grid east, y-axis grid north, z-axis up). Note that Grid North

varies from True North (which always points to the north pole) by about 1.2 degrees, which

is a result of flattening the earth to generate UTM planes. navsat transform node will

automatically add/subtract this angle when generating the utm to map transformation.

• map: This frame is initialized by the scooter at a earth fixed latitude-longitude (LL), and

heading as defined by the AprilTag it sees during initialization (see subsection 4.1.6). At the

time of writing, orientation of map has x-axis pointing to the magnetic east, though we can

change it to any desired heading. Figure 2.3 illustrates a typical utm to map transformation.

Once initiated, map does not move w.r.t. utm throughout the mission unless we want to set

it at a new LL.

• odom: This frame is initialized by the scooter perfectly aligned (zero translation and rota-

4Read more about tf2 on its wiki page: http://wiki.ros.org/tf2

36

http://wiki.ros.org/tf2

tion) with the base footprint frame. The odom frame is earth semi-fixed, as it moves

(w.r.t. the map frame) to compensate for long term errors accumulated in the odom to

base footprint transformation, which is calculated by the local EKF. This movement

of odom is an effect of the global EKF correcting the robot’s position, base footprint

w.r.t. map. Global EKF calculates the map to base footprint transform, but since

base footprint already has odom as its parent, global EKF publishes the map to

odom transform and effectively moves odom around to correct the robot’s position, i.e.

base footprint. Local path-planning and obstacle avoidance is done in odom.

• base footprint: This frame is the top-most parent of the scooter’s URDF, and all

parts of the scooter begin here. base footprint is just a projection on the ground of

base link. As the scooter moves, the local EKF handles the transformation between

odom and base footprint, by combining only the continuous (IMUs, Wheel Odom-

etry) sensor information. All other frames after base footprint are spawned by the

URDF (robot model) file, and for most intents and purposes, we only need to worry about

the position of base footprint.

We will encounter references to the “world” frame in many ROS packages, though world

is not a particular frame in our TF tree. Simply stated, world is the top-most relevant frame for

any particular subtask in our autonomy stack, usually either map or odom. For example, for the

global EKF, map can be considered as the robot’s world frame, as this node does not really

care anything above map on the TF tree. Similarly for the local path planner, odom would be

the world frame as we only care about the given destination (which would be pre-converted to

odom before sent to the planner), and how we get there.

37

Fi
gu

re
4.

1:
[P

ar
tA

]
A

ll
co

or
di

na
te

fr
am

es
fo

r
th

e
sc

oo
te

r
sh

ow
n

in
a

T
F

tr
ee

ge
ne

ra
te

d
us

in
g

“r
o
s
r
u
n
t
f
v
i
e
w
f
r
a
m
e
s

”.
Im

ag
e

is
sp

lit
in

to
tw

o
pa

ge
s

du
e

to
si

ze
.

38

Fi
gu

re
4.

2:
[P

ar
tB

]
A

ll
co

or
di

na
te

fr
am

es
fo

r
th

e
sc

oo
te

r
sh

ow
n

in
a

T
F

tr
ee

ge
ne

ra
te

d
us

in
g

“r
o
s
r
u
n

t
f
v
i
e
w
f
r
a
m
e
s

”.
Im

ag
e

is
sp

lit
in

to
tw

o
pa

ge
s

du
e

to
si

ze
.

39

4.1.3.3 Navsat Transform Node

A GPS sensor reports latitude and longitude coordinates. To fuse this into our EKF, we

need to convert it to (X, Y) coordinates that are consistent with the filter’s states, and robot’s

world reference frame. The navsat transform node does this conversion.

4.1.4 Localization Data Flow Overview

Figure 4.3 presents the EKF data flow for our setup. It highlights the measurements used

from each sensor by the EKF, the transformations published and the relevant coordinate frames.

4.1.5 Problems with Visual Odometry

We have a camera onboard, so why do we not use Visual Odometry (VO) as part of our

localization? This is because of two main issues, (1) Poor tracking when the environment is not

feature-rich, and (2) self-shadowing. Methods exist in literature to mitigate both of these issues,

at least in some part, but they were not explored in this work.

4.1.5.1 Poor Tracking with Low Features

The ZED 2i comes with its own Software Development Kit (SDK) with support for camera

pose tracking. Using the ZED ROS Wrapper, we get the results of this pose tracking on ROS

topics /zed node/odom and /zed node/pose. The first one is a pure visual odometry

result whereas the latter includes saved spatial information from past runs5. In my tests, I have

found these to work well in feature-rich environments but the performance is very poor in low

5https://www.stereolabs.com/docs/ros/positional-tracking/

40

https://www.stereolabs.com/docs/ros/positional-tracking/

Figure 4.3: An overview of the EKF data flow for localization and relevant coordinate frames.

41

Figure 4.4: The scooter is made to follow an 8x8m square in Kim Plaza, a low feature environ-
ment. The figure on the right shows the output of our local EKF (Wheels and IMU) in red, and
the ZED’s odom and pose outputs in blue and yellow/green. The local EKF output follows the
square well, but the ZED’s tracking suffers.

feature environments. Figure 4.4 shows an example of this. Further, the covariance reported by

the camera in these low feature environments did not reflect its inaccuracy, and therefore degrades

the performance of our EKF. I have observed better results without it included.

4.1.5.2 Self-shadowing

Self-shadowing is the situation when the robot’s shadow falls into the camera field of view,

and the robot sees its own shadow is a static feature on the ground. This degrades performance of

visual odometry as the robot uses its own shadow as reference and thinks that it moved less than

it actually did. This was seen during a test of ORB SLAM2 on the scooter as shown in Figure

4.5. Other than this issue, ORB SLAM2 provides excellent results. ORB SLAM2 also includes

a Visual Inertial Odometry (VIO) node which includes information from IMUs in pose tracking,

and might provide better results in this situation. Due to runtime errors, I was unable to get the

VIO node running on our setup and could only test the VO node. An improved method, ORB

42

Figure 4.5: Robot pose estimated by ORB SLAM2 (blue) suffers and falls behind the local EKF
estimate (yellow) as the robot (and my) shadow is seen in the image stream.

SLAM3 is also available, but I could not build and run it on the Jetson.

To avoid self-shadowing, a possible method could be to blur out a polygon containing the

robot’s shadow from the image feed. This polygon could be a function of time of day and the

scooter’s heading. Perhaps, based on these parameters, we could modify tracking covariance or

entirely exclude visual tracking from our EKF. There are also other methods in literature[30] to

avoid self-shadowing. These methods have not been implemented in this work.

4.1.6 Initialization

Since the EKF is not guaranteed to converge, we have to ensure that it is initialized as close

as possible to the scooter’s true state. An approximate initial position can be known from GPS

sensor readings before starting up the EKF, but this is not reliable as the scooter often starts up in

a scooter parking area that are along the edges of buildings. These buildings affect the quality of

GPS measurements.

Further, an even bigger challenge is knowing the absolute initial orientation w.r.t. the earth,

43

because magnetometers(compass) are notoriously unreliable.

4.1.6.1 Problem with Magnetometers

Magnetometers work by detecting the relatively weak magnetic field of the earth, but are

easy affected by hard-iron (magnetic field produced by motors or high current wires) and soft-iron

(metals such as the chassis of the scooter can distort magnetic fields) errors [31]. It is possible to

calibrate against soft-iron errors, but not as much against hard-iron errors which change dynam-

ically. I have tried calibrating the magnetometers on the ZED and Phidget IMUs by following

recommended steps6,7 and physically rotating the scooter along all axes in 3D, but I still had up

to 30 degrees error in orientation.

Our scooter does have three separate magnetometers on board (1 inside the ZED, 2 from the

IMUs), so a method to obtain good absolute orientation should be possible with some methods

suggested in literature [32–34]. But we do not explore these in this thesis, and instead, resort to

other methods to get initial absolute position and orientation.

4.1.6.2 April Tags as World Reference Anchors

Once the scooter starts up, the idea is to have it recognize a unique feature in the environ-

ment which would help it localize itself. These unique features, which we call world reference

anchors, are fixed at specific global locations. For ease of implementation, we use AprilTags [35,

36] as anchors in this thesis, but this can be extended in the future to any similar visual feature

matching system.

6ZED2i Magnetometer Calibration Steps: https://www.stereolabs.com/docs/sensors/magnetometer/
7Phidget Spatial Magnetometer Calibration: https://www.phidgets.com/docs/Magnetometer Primer

44

https://www.stereolabs.com/docs/sensors/magnetometer/
https://www.phidgets.com/docs/Magnetometer_Primer

Figure 4.6: A picture showing our initialization test setup. Representative coordinate frames are
drawn for map (at the bottom right) and base link (on the scooter). The camera–tag pose
(yellow) is observed and the base–camera and map–tag pose are known. We then compute the
map–base transformation (orange) which is the initial position of the scooter in this setup.

AprilTags are a visual fiducial system, and can be detected in real-time with low compute

requirements. Further, there is a ROS package available, called apriltag ros8, which takes

in camera images and outputs the detected tags along with their pose9 w.r.t. the camera. We use

this as our reference to initialize the scooter’s pose.

4.1.6.3 Initialization using AprilTags

Figure 4.6 shows the basic initialization problem and our test setup. The test setup consists

of a grid marked with blue Xs on the floor with known position of the AprilTag. The map frame

is assumed to be at one of these points, say at the bottom right corner, as shown in the figure.

The goal is to compute the position of the scooter (orange) using known information (position

of the tag and base–camera transformation, purple) and observed information (camera–tag pose,

8apriltag ros wiki page: https://github.com/AprilRobotics/apriltag ros
9The term pose refers to a combination of position and orientation

45

https://github.com/AprilRobotics/apriltag_ros

yellow). With xT y representing a transformation from frame x to frame y, this can be easily done

using properties of a rigid transformation matrix[37]:

[mapT base] = [mapT tag][tagT cam][camT base] (4.1)

and so,

[mapT base] = [mapT tag][camT tag]−1[baseT cam]−1 (4.2)

where each transformation on the right hand side is either known or observed.

We then extend this idea outdoors, where when a tag is placed at a fixed location, two

things are associated with it. (1) The latitude, longitude and heading of the tag is known, we call

this tag llh, and (2) The latitude, longitude and heading of the desired map frame location is

set, we call this map llh. The second part is useful because setting map at a fixed location on

the earth is helpful to use it as a reference when restoring any other previously stored databases.

For example, we might have a pre-recorded map that we want to restore and use, or we might

want to create plots of multiple robot missions. It also allows navsat transform node to

convert GPS measurements precisely. Having map at a predictable, known location allows us to

confidently use it as a reference for the mission.

With tag llh and map llh known, initialization follows the steps shown in Figure 4.7.

The three steps are:

1. We receive the ID and pose of the tag w.r.t. the camera from apriltag ros, therefore

[camT tag] is known.

2. From the detected tag ID, we check param file april tags.yaml to retrieve tag llh

46

Figure 4.7: A flow diagram showing the steps taken to initialize coordinate frames correctly using
an April Tag as world reference.

47

and map llh. map llh information is sent to navsat transform node using its

set datum10 ROS service. navsat transform node will then create and publish

the utm to map transform.

3. Finally we:

(a) Use tag llh to get [utmT tag].

(b) Get [utmTmap] which is published by navsat transform node.

(c) [baseT tag] = [baseT cam][camT tag]

(d) [mapT base] = [utmTmap]−1[utmT tag][baseT tag]−1

(e) We now have the pose of the robot in map, and this will be set as the initial pose for

the global EKF using the set pose11 ROS service.

This procedure is performed in the init from tag node in our autonomy stack. The

scooter and state estimation nodes are now initialized correctly, and can proceed with the mission.

4.2 Planning and Navigation

4.2.1 Move Base

move base12 is a major component of the ROS navigation stack, and provides an interface

for accepting goals, path planning, and sending movement commands to the robot. An overview

of move base is shown in Figure 4.8.

10http://docs.ros.org/en/noetic/api/robot localization/html/integrating gps.html
11http://docs.ros.org/en/noetic/api/robot localization/html/state estimation nodes.html#services
12http://wiki.ros.org/move base

48

http://docs.ros.org/en/noetic/api/robot_localization/html/integrating_gps.html
http://docs.ros.org/en/noetic/api/robot_localization/html/state_estimation_nodes.html#services
http://wiki.ros.org/move_base

Figure 4.8: A high level view of move base and its interaction with other components. Source:
move base wiki12

The general idea is to use two levels of path planners—local and global. The global planner

accepts a goal, and will then create a rough plan from the start to the goal (which could be quite

far), without considering the obstacles which show up as the robot is moving through. For the

planners, obstacles and free space are just marked areas in a 2D costmap13. We may not know

beforehand all obstacles which can show up during the mission (e.g. pedestrians), but may have

a general idea about the region (e.g. buildings, roads). The global planner passes this global plan

to the local planner, which then creates a local plan, considering real-time information from the

robot’s sensors to carefully plan around objects in the immediate vicinity of the robot. The local

planner generates movement commands (in the topic cmd vel) that are then sent to the robot’s

kinematics node14, which converts them to required motor movements.

4.2.1.1 Passing Goals to Move Base

Our desired goal is a latitude-longitude (LL) coordinate on earth, but we cannot send this to

move base directly. This is because the global planner is only concerned with taking a costmap

13http://wiki.ros.org/costmap 2d
14We talked about the kinematics node in Chapter 2. This is a node specific to our robot and implementation.

49

http://wiki.ros.org/costmap_2d

(the global costmap) and finding the best path toward the goal in this costmap. Therefore the goal

must be in the global costmap’s frame of reference.

Recall from subsubsection 4.1.3.1 that the map to base transformation may include abrupt

jumps due to the inclusion of GPS. So if we create the global costmap in map, the goal could

move around (and does indeed move quite a bit) w.r.t. the scooter, as the scooter is moving toward

the goal, and the global EKF tries to correct the scooter’s position on earth. With this setup, as

the goal moves around, the local planner constantly tries to create a new plan, and performance

is slow and sluggish.

If we instead, create the global costmap in odom, the goal remains fixed w.r.t the scooter

as the local EKF does not experience any jumps. Planning is smooth and stable. The downside to

this method is that, once the goal is assigned, and the scooter is moving toward it, any corrections

to the scooter’s pose in map done by the global EKF would not affect the scooter. This means

that for longer goals, the goal that the scooter achieves would involve significant error (depending

on error in the local EKF) as compared to the desired LL.

To minimize this error while keeping global costmap in odom, we pre-plan our route to

the desired end LL into small, incremental LL waypoints. Each waypoint is only about 5 to 10

meters away, ensuring that we include the latest corrections done by global EKF every time a

new waypoint is assigned as a goal to the global planner.

An alternative explanation to the ideas in this subsubsection are provided here15.

15https://answers.ros.org/question/265534/using-teb local planner-with-robot localization/

50

https://answers.ros.org/question/265534/using-teb_local_planner-with-robot_localization/

4.2.1.2 Global Planner for the Scooter

For our setup at the time of writing, we do not use any pre-recorded map or database of

the environments we run the scooter in. So the global costmap is really just an empty map

with everything marked as free space. This makes the global planner effectively useless, as it

just plans a straight line path to any given goal. Still, to maintain move base’s data flow, we

configure move base to use navfn16 as the global planner, which uses Dijkstra’s algorithm as

the navigation function.

4.2.1.3 Local Planner for the Scooter

The local planner plans the fine movements for the scooter, and should consider its kine-

matic constraints. We do not want the local planner to plan paths that are impossible for the

scooter to achieve, for example, to move sideways or turn on the spot. To achieve this, we use the

Time Elastic Band (TEB) local planner17 [38]. TEB allows us to configure the robot’s kinematic

limits, including parameters like wheelbase, minimum turning radius, and the robot’s footprint.

We also set the paramter cmd angle instead rotvel to true, which tells the planner to

directly output the required steering angle, instead of the default move base configuration that

outputs angular velocities.

4.2.2 Preparing Waypoints

At this time, waypoints for any route are manually generated using Google Maps. Right

clicking at any point in Google Maps allows us to copy its coordinates. We do this for several
16http://wiki.ros.org/navfn
17http://wiki.ros.org/teb local planner

51

http://wiki.ros.org/navfn
http://wiki.ros.org/teb_local_planner

Figure 4.9: Screenshots showing the manual generation of waypoints from Google Maps into a
text file which is later read by the autonomy stack. I also save the waypoints as labels (blue pins)
for reference.

points along the desired route and store it in a text file as seen in Figure 4.9.

4.2.3 Publishing Waypoints

Waypoints are published using the gps waypoint node from the

outdoor waypoint nav package18, which reads the previously prepared list of waypoints,

converts each into the odom frame, and sends it to move base. The node also monitors the

distance between the scooter and the goal, and sends the next waypoint as soon as the scooter is

within 2 meters of the goal. This is done because move base performs corrective maneuvers to

reach within a given goal’s tolerance, and takes a few seconds to verify that the goal is reached19.

We do not want these pauses for each waypoint, and switching to the next waypoint avoids this

behavior. A flow diagram shown in Figure 4.10 illustrates this method.

18We use a modified version of Nick Charron’s package available here:
https://github.com/nickcharron/waypoint nav/tree/master/outdoor waypoint nav

19This behaviour can be seen in one of our test videos here: https://www.youtube.com/watch?v=0MFSLxyukCQ

52

https://github.com/nickcharron/waypoint_nav/tree/master/outdoor_waypoint_nav
https://www.youtube.com/watch?v=0MFSLxyukCQ

Figure 4.10: A flow diagram of the outdoor waypoint navigation node, reading and publishing
the generated list of waypoints.

4.2.4 An Overview of the Autonomous Navigation Process

An overall view of the navigation stack is shown in Figure 4.11. Limited by time, I have not

tuned all modules in this process to the best that they could be, and I believe we could do better

with more time invested into careful configuration and isolated testing. The modules themselves

with certainly be improved and changed as ReZoom evolves.

53

Figure 4.11: An overview of the overall autonomy data flow for the scooter’s localization and nav-
igation, along with relevant coordinate frames. Grayed out nodes for ORB SLAM and RTABMap
are not presently in use.

54

Chapter 5: Autonomy Experimental Results

This chapter presents localization results, local planning results and finally combines them

to demonstrate autonomous waypoint navigation.

5.1 Evaluating Localization Performance

Before moving on to autonomously navigating the scooter, we must verify that the lo-

calization performance is satisfactory. Any errors in localization directly affect the self-driving

performance, as navigation heavily relies on the coordinate transformations generated by the

localization module.

5.1.1 Methodology to Evaluate Localization

Testing the local EKF is fairly straightforward, and can be performed even indoors with

sufficient space. We draw a known figure, such as an 8x8 meter square, and have the scooter go

around the square and check the error upon loop closure (Similar to Figure 4.4). Multiple loops

can be performed to test robustness.

But for the global EKF, it is important to know if the scooter is correctly geo-localized. To

check this, we have created a plotting script using matplotlib in Python3 to overlay results

of the scooter’s EKF performance over a screenshot of Google Maps. The script also allows us

55

Figure 5.1: Selecting ground truth points which are easily identifiable on Google Maps, allowing
us to get their LL.

to plot ground truth points, and plot the error between the EKF output and ground truth. Ground

truth points are visually identifiable features on Google Maps, such as manhole covers shown in

Figure 5.1, which allows us to get their LL coordinates.

We then record a rosbag1 collecting the output of the global EKF while pushing the

scooter over a pre-determined path, manually. While collecting the rosbag, we hold the scooter

over these ground truth points for a few seconds. This gives a time reference when plotting

error—the scooter is at a ground truth point when its velocity is zero.

5.1.2 Localization Performance Results

The following four Figures 5.3 through 5.6 show the results of this test on the University

of Maryland Campus. As shown in Figure 5.2, the scooter starts at a location facing a known

1http://wiki.ros.org/rosbag

56

http://wiki.ros.org/rosbag

Figure 5.2: The scooter is started facing an AprilTag placed at a location which is identifiable on
Google Maps, and therefore at a known global pose.

AprilTag for each of these tests. This helps the scooter initialize its initial pose. The scooter is

then pushed along, and the plots include output of the global EKF (yellow) and its covariance

(black), along with raw GPS sensor inputs (green), ground truth points (blue +’s), and measured

distance error at each ground truth point (marked in red).

These results are after many hours of testing different sensor input combinations and tun-

ing internal EKF covariances. After multiple tests over the course of months, we have ob-

served that the global EKF relies heavily on good GPS measurements, regardless of tuning the

57

Figure 5.3: [CSI to Iribe] The plot shows results of pushing the scooter manually along a known
path to evaluate EKF performance - Path length 375 meters. Black ellipses represent the covari-
ance ellipse of the global EKF at the ground truth point, and the text in red is the distance error.

58

Figure 5.4: [IDF to CSI] The plot shows results of pushing the scooter manually along a known
path to evaluate EKF performance - Path length 620 meters. Black ellipses represent the covari-
ance ellipse of the global EKF at the ground truth point, and the text in red is the distance error.

Figure 5.5: [ERB to Regents Dr.] The plot shows results of pushing the scooter manually along a
known path to evaluate EKF performance - Path length 440 meters. Black ellipses represent the
covariance ellipse of the global EKF at the ground truth point, and the text in red is the distance
error.

59

Figure 5.6: [Looneys Loop] The plot shows results of pushing the scooter manually along a
known path to evaluate EKF performance - Path length 1150 meters. Black ellipses represent
the covariance ellipse of the global EKF at the ground truth point, and the text in magenta is the
distance error.

Figure 5.7: A zoomed in view of Figure 5.3 is shown. The close proximity to a large building
introduces error in GPS measurements, causing the global EKF to be off by about 4 meters at the
end.

process noise covariance and initial estimate covariance. If GPS reports

incorrect values, global EKF slowly converges to these erroneous values. This can also observed

when the scooter is closer to a large building which seemingly causes an error in GPS readings

(Zoomed view shown in Figure 5.7).

The results of all four tests are then plotted in Figure 5.8. The combined tests show a

mean of 0.9683 meters and a standard deviation of 0.6707 meters for distance error. It has been

60

Figure 5.8: Distance error from ground truth vs distance travelled by the scooter in meters. Linear
regression is performed for each run to show the trend in distance error.

observed that the error remains bounded unless a significant error in GPS fixes are reported.

These results are still fairly good considering that no visual odometry or perception algo-

rithm is included, and the EKF relies only on wheel encoders, IMUs and GPS.

5.2 Local Planning Results

As discussed in 4.2.1.2, the global planner for our setup is simple, and plans a straight line

path to the goal in most cases. However, the local planner (TEB) must account for the robot’s

kinematics and it’s therefore interesting to see the kind of path it plans. Videos demonstrating the

results of local planning and obstacle avoidance can be seen here2,3.

The TEB local planner is able to plan smooth trajectories, and generates commands re-

2Local Planning Results: https://youtu.be/O717ezibP8A
3Local Planner Avoiding Obstacles: https://youtu.be/razoHR4mLqM

61

https://youtu.be/O717ezibP8A
https://youtu.be/razoHR4mLqM

Figure 5.9: An example of TEB local planner’s planned path (in blue), and the scooter following
it (red curve shows local EKF output). See full video.

quired for the drive wheel velocity and steering angle. It also gracefully avoids any obstacles

along the path, although the limits for avoiding dynamic obstacles has not been evaluated.

5.3 Autonomous Waypoint Navigation

5.3.1 Methodology for Autonomous Waypoint Navigation

After localization, we now enable move base and send it pre-collected waypoints using

the outdoor waypoint nav package. In this case, it is difficult to get ground truth for the

path that the scooter takes. We can only qualitatively evaluate how well the scooter follows a

route by plotting the shortest distance from each waypoint to the gobal EKF curve. But since the

waypoint publisher switches to the next waypoint as soon as the scooter is close to the current

waypoint, we cannot expect this distance to be zero.

62

https://youtu.be/O717ezibP8A

Three successful missions were performed—two along the CSI to Iribe route and one along

the ERB to Regents Dr. route. A video of the first mission is shown.

5.3.2 Results of Autonomous Waypoint Navigation

For the first mission, the scooter starts off at the same location as shown in Figure 5.2, and

then given waypoints along the path as shown in Figure 5.3. The result of this autonomous mis-

sion can be seen here4. Figures 5.10, 5.11 and 5.12 show plots for all three successful missions.

However, obstacle avoidance is performed solely using depth information from the ZED2i

with a height threshold. So the scooter cannot distinguish between surfaces of similar height, and

would happily drive into grass if it were cut short as seen in Figure 5.14. This form of “blind”

localization is not capable of driving the scooter reliably along sidewalks or narrow trails, and

more sophisticated methods need to be investigated.

The AprilTag placed at the destination parking lot is intended to be used for (near) future

development of precise parking maneuvers using the tag as reference.

4Result of the scooter’s autonomous mission from CSI to Iribe: https://youtu.be/WBt8li1MTVY

63

https://youtu.be/WBt8li1MTVY

Figure 5.10: [CSI to Iribe 1] The plot shows results of the scooter moving autonomously for
the given waypoints - Path length 375 meters. The text in red is the shortest distance to each
waypoint, and the black ellipses represent the covariance ellipse of the global EKF at that point.

64

Figure 5.11: [CSI to Iribe 2] The plot shows results of the scooter moving autonomously for
the given waypoints - Path length 375 meters. The text in red is the shortest distance to each
waypoint, and the black ellipses represent the covariance ellipse of the global EKF at that point.

65

Figure 5.12: [ERB to Regents Dr.] The plot shows results of the scooter moving autonomously
for the given waypoints - Path length 375 meters. The text in red is the shortest distance to each
waypoint, and the black ellipses represent the covariance ellipse of the global EKF at that point.

Figure 5.13: Shortest distance from waypoint vs distance travelled by the scooter in meters for
all three autonomous missions. Mean distance 0.6353, standard deviation 0.6093 meters. Linear
regression is performed for each run to show the trend in distance error.

66

Figure 5.14: The scooter drives into grass and get stuck during an autonomous mission.

67

Chapter 6: Conclusion

6.1 Summary of Contributions

This thesis presents the development process and design decisions taken to develop an

autonomous electric scooter, starting from OEM scooter hardware. Three such scooters were de-

veloped, each building upon its ancestor. Alongside hardware, the software development and in-

tegration also followed an incremental and modular approach, with each functionality separately

tested and debugged. The localization and navigation framework for the scooter is presented,

along with results demonstrating its success. However, without the use of visual guidance, lo-

calization outputs poor estimates when GPS is erroneous. The effect of this is seen during au-

tonomous navigation, and the scooter requires a sufficiently wide path for travel. Further, it

cannot distinguish surfaces like sidewalk and grass when they are nearly the same height. Using

ROS helped in building a modular software framework, and nodes such as init from tag

could certainly be used in other autonomous robots. Moreover, this thesis is intended as a devel-

opment guide for a future developer at ReZoom or similar research.

68

6.2 Future Work

On the way to achieving complete autonomy, there are a lot of challenges left to investigate.

Some of the most relevant topics for immediate research are:

• Modifications to the init from tag node should allow for the scooter to precisely park

itself at a parking lot. This will complete the final piece of the autonomous mission struc-

ture: initialize–travel–park.

• Presently, waypoints are manually generated, but our work on generation of waypoints us-

ing historical data[39] would allow us to generate them automatically. Though the Python

code has been developed, a ROS wrapper needs to be implemented to allow integration into

our autonomy stack.

• Some form of image segmentation needs to be included to strictly avoid terrain such as

grass. This could also help the scooter stay better localized, for example, by helping it stay

at the center of the sidewalk.

69

Bibliography

[1] O. EPA, What if we kept our cars parked for trips less than one mile? en, Collections
and Lists, 2016. [Online]. Available: https://www.epa.gov/greenvehicles/
what-if-we-kept-our-cars-parked-trips-less-one-mile.

[2] T. Nouvian, “In paris referendum, 89% of voters back a ban on electric scooters,” en-
US, The New York Times, 2023, ISSN: 0362-4331. [Online]. Available: https://www.
nytimes.com/2023/04/03/world/europe/paris-electric-scooters-
ban.html.

[3] P. Wenzelburger and F. Allgower, “A first step towards an autonomously driving e-scooter,”
en, p. 4.

[4] R. Soloperto, P. Wenzelburger, D. Meister, D. Scheuble, V. S. M. Breidohr, and F. Allgöwer,
“A control framework for autonomous e-scooters,” en, in IFAC-PapersOnLine, ser. 16th
IFAC Symposium on Control in Transportation Systems CTS 2021, vol. 54, 2021, 252–258.
DOI: 10.1016/j.ifacol.2021.06.030. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2405896321004675.

[5] en, 2020. [Online]. Available: https://sfist.com/2020/01/08/city-aims-
to-shut-down-rogue-scooter-company/.

[6] K. Hyatt, Go x is unleashing 100 self-driving scooters on a large georgia business park,
en, 2020. [Online]. Available: https://www.cnet.com/roadshow/news/go-
x-peachtree-corners-self-driving-scooter-test-fleet/.

[7] E. Gorgan, Go x, tortoise launch world’s only fleet of self-driving scooters, en, 2020. [On-
line]. Available: https://www.autoevolution.com/news/go-x-tortoise-
launch-worlds-only-fleet-of-self-driving-scooters-143924.
html.

[8] Introduction to ros. [Online]. Available: http://wiki.ros.org/ROS/Introduction.

[9] Standard units of measure and coordinate conventions. [Online]. Available: https://
www.ros.org/reps/rep-0103.html.

[10] Coordinate frames for mobile platforms. [Online]. Available: https://ros.org/
reps/rep-0105.html.

[11] What do the different north arrows on a usgs topographic map mean? — u.s. geologi-
cal survey. [Online]. Available: https://www.usgs.gov/faqs/what- do-
different-north-arrows-usgs-topographic-map-mean.

70

https://www.epa.gov/greenvehicles/what-if-we-kept-our-cars-parked-trips-less-one-mile
https://www.epa.gov/greenvehicles/what-if-we-kept-our-cars-parked-trips-less-one-mile
https://www.nytimes.com/2023/04/03/world/europe/paris-electric-scooters-ban.html
https://www.nytimes.com/2023/04/03/world/europe/paris-electric-scooters-ban.html
https://www.nytimes.com/2023/04/03/world/europe/paris-electric-scooters-ban.html
https://doi.org/10.1016/j.ifacol.2021.06.030
https://www.sciencedirect.com/science/article/pii/S2405896321004675
https://www.sciencedirect.com/science/article/pii/S2405896321004675
https://sfist.com/2020/01/08/city-aims-to-shut-down-rogue-scooter-company/
https://sfist.com/2020/01/08/city-aims-to-shut-down-rogue-scooter-company/
https://www.cnet.com/roadshow/news/go-x-peachtree-corners-self-driving-scooter-test-fleet/
https://www.cnet.com/roadshow/news/go-x-peachtree-corners-self-driving-scooter-test-fleet/
https://www.autoevolution.com/news/go-x-tortoise-launch-worlds-only-fleet-of-self-driving-scooters-143924.html
https://www.autoevolution.com/news/go-x-tortoise-launch-worlds-only-fleet-of-self-driving-scooters-143924.html
https://www.autoevolution.com/news/go-x-tortoise-launch-worlds-only-fleet-of-self-driving-scooters-143924.html
http://wiki.ros.org/ROS/Introduction
https://www.ros.org/reps/rep-0103.html
https://www.ros.org/reps/rep-0103.html
https://ros.org/reps/rep-0105.html
https://ros.org/reps/rep-0105.html
https://www.usgs.gov/faqs/what-do-different-north-arrows-usgs-topographic-map-mean
https://www.usgs.gov/faqs/what-do-different-north-arrows-usgs-topographic-map-mean

[12] en. [Online]. Available: https://docs.revrobotics.com/duo- build/
mecanum- drivetrain- kit- mecanum- drivetrain/mecanum- wheel-
setup-and-behavior.

[13] [Online]. Available: https://groups.csail.mit.edu/drl/courses/cs54-
2001s/diffdrive.html.

[14] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The kinematic bicycle
model: A consistent model for planning feasible trajectories for autonomous vehicles?” In
2017 IEEE Intelligent Vehicles Symposium (IV), 2017, 812–818. DOI: 10.1109/IVS.
2017.7995816.

[15] The kinematic bicycle model. [Online]. Available: https://thomasfermi.github.
io/Algorithms-for-Automated-Driving/Control/BicycleModel.
html.

[16] S. Crowe, Intel issues end-of-life notice for realsense lidar, en-US, 2021. [Online]. Avail-
able: https://www.therobotreport.com/intel- issues- end- of-
life-notice-realsense-lidar/.

[17] J. Seo, H. Lee, G.-I. Jee, and C. Park, “Lever arm compensation for gps/ins/odometer in-
tegrated system,” International Journal of Control, Automation and Systems, vol. 4, 2006.

[18] Y. H. Cho, W. J. Park, and C. G. Park, “Novel methods of mitigating lever arm effect in
redundant imu,” IEEE Sensors Journal, vol. 21, no. 7, 9465–9474, 2021, ISSN: 1558-1748.
DOI: 10.1109/JSEN.2021.3054945.

[19] T. Kos, I. Markezic, and J. Pokrajcic, “Effects of multipath reception on gps positioning
performance,” in Proceedings ELMAR-2010, 2010, 399–402.

[20] J. Leonard and H. Durrant-Whyte, “Mobile robot localization by tracking geometric bea-
cons,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, 376–382, 1991, ISSN:
2374-958X. DOI: 10.1109/70.88147.

[21] R. E. Kalman, “A new approach to linear filtering and prediction problems,” en, Journal
of Basic Engineering, vol. 82, no. 1, 35–45, 1960, ISSN: 0021-9223. DOI: 10.1115/1.
3662552.

[22] E. Hendricks, O. Jannerup, and P. H. Sørensen, “Optimal observers: Kalman filters,” en,
in Linear Systems Control: Deterministic and Stochastic Methods, E. Hendricks, O. Jan-
nerup, and P. H. Sørensen, Eds. Berlin, Heidelberg: Springer, 2008, 431–491, ISBN: 978-
3-540-78486-9. DOI: 10.1007/978- 3- 540- 78486- 9_7. [Online]. Available:
https://doi.org/10.1007/978-3-540-78486-9_7.

[23] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Fil-
tering, en. Wiley, 1992, Google-Books-ID: 6f5SAAAAMAAJ, ISBN: 978-0-471-52573-8.

[24] Mathworks, Understanding kalman filters, en. [Online]. Available: https://www.
mathworks.com/videos/series/understanding-kalman-filters.
html.

71

https://docs.revrobotics.com/duo-build/mecanum-drivetrain-kit-mecanum-drivetrain/mecanum-wheel-setup-and-behavior
https://docs.revrobotics.com/duo-build/mecanum-drivetrain-kit-mecanum-drivetrain/mecanum-wheel-setup-and-behavior
https://docs.revrobotics.com/duo-build/mecanum-drivetrain-kit-mecanum-drivetrain/mecanum-wheel-setup-and-behavior
https://groups.csail.mit.edu/drl/courses/cs54-2001s/diffdrive.html
https://groups.csail.mit.edu/drl/courses/cs54-2001s/diffdrive.html
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://thomasfermi.github.io/Algorithms-for-Automated-Driving/Control/BicycleModel.html
https://thomasfermi.github.io/Algorithms-for-Automated-Driving/Control/BicycleModel.html
https://thomasfermi.github.io/Algorithms-for-Automated-Driving/Control/BicycleModel.html
https://www.therobotreport.com/intel-issues-end-of-life-notice-realsense-lidar/
https://www.therobotreport.com/intel-issues-end-of-life-notice-realsense-lidar/
https://doi.org/10.1109/JSEN.2021.3054945
https://doi.org/10.1109/70.88147
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1007/978-3-540-78486-9_7
https://doi.org/10.1007/978-3-540-78486-9_7
https://www.mathworks.com/videos/series/understanding-kalman-filters.html
https://www.mathworks.com/videos/series/understanding-kalman-filters.html
https://www.mathworks.com/videos/series/understanding-kalman-filters.html

[25] E. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estimation,” in
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications,
and Control Symposium (Cat. No.00EX373), 2000, 153–158. DOI: 10.1109/ASSPCC.
2000.882463.

[26] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,”
in Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat.
No.99CH36288C), vol. 2, 1999, 1322–1328 vol.2. DOI: 10.1109/ROBOT.1999.
772544.

[27] T. Moore and D. Stouch, “A generalized extended kalman filter implementation for the
robot operating system,” en, in Intelligent Autonomous Systems 13, E. Menegatti, N. Michael,
K. Berns, and H. Yamaguchi, Eds., ser. Advances in Intelligent Systems and Comput-
ing, vol. 302, Cham: Springer International Publishing, 2016, 335–348, ISBN: 978-3-319-
08337-7. DOI: 10.1007/978-3-319-08338-4_25. [Online]. Available: https:
//link.springer.com/10.1007/978-3-319-08338-4_25.

[28] methylDragon, Sensor fusion in ros, 2023. [Online]. Available: https://github.
com/methylDragon/ros-sensor-fusion-tutorial.

[29] Lorenz, The ros robot localization package, 2019. [Online]. Available: https://kapernikov.
com/the-ros-robot_localization-package/.

[30] N. Seegmiller and D. Wettergreen, “Optical flow odometry with robustness to self-shadowing,”
in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,
2011, pp. 613–618.

[31] Mathworks, Magnetometer calibration - matlab simulink. [Online]. Available: https://
www.mathworks.com/help/fusion/ug/magnetometer-calibration.
html.

[32] W. Koo, S. Sung, and Y. J. Lee, “Error calibration of magnetometer using nonlinear inte-
grated filter model with inertial sensors,” IEEE Transactions on Magnetics, vol. 45, no. 6,
2740–2743, 2009, ISSN: 1941-0069. DOI: 10.1109/TMAG.2009.2020542.

[33] D Gebre-Egziabher, G. H. Elkaim, J. D. Powell, and B. W. Parkinson, “A non-linear, two-
step estimation algorithm for calibrating solid-state strapdown magnetometers,” en,

[34] A. R. Spielvogel and L. L. Whitcomb, “A stable adaptive observer for hard-iron and soft-
iron bias calibration and compensation for two-axis magnetometers: Theory and exper-
imental evaluation,” IEEE Robotics and Automation Letters, vol. 5, no. 2, 1295–1302,
2020, ISSN: 2377-3766. DOI: 10.1109/LRA.2020.2967308.

[35] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011 IEEE Inter-
national Conference on Robotics and Automation, 2011, 3400–3407. DOI: 10.1109/
ICRA.2011.5979561.

[36] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detection,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016, 4193–4198.
DOI: 10.1109/IROS.2016.7759617.

[37] [Online]. Available: http://motion.cs.illinois.edu/RoboticSystems/
CoordinateTransformations.html.

72

https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1109/ROBOT.1999.772544
https://doi.org/10.1109/ROBOT.1999.772544
https://doi.org/10.1007/978-3-319-08338-4_25
https://link.springer.com/10.1007/978-3-319-08338-4_25
https://link.springer.com/10.1007/978-3-319-08338-4_25
https://github.com/methylDragon/ros-sensor-fusion-tutorial
https://github.com/methylDragon/ros-sensor-fusion-tutorial
https://kapernikov.com/the-ros-robot_localization-package/
https://kapernikov.com/the-ros-robot_localization-package/
https://www.mathworks.com/help/fusion/ug/magnetometer-calibration.html
https://www.mathworks.com/help/fusion/ug/magnetometer-calibration.html
https://www.mathworks.com/help/fusion/ug/magnetometer-calibration.html
https://doi.org/10.1109/TMAG.2009.2020542
https://doi.org/10.1109/LRA.2020.2967308
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1109/IROS.2016.7759617
http://motion.cs.illinois.edu/RoboticSystems/CoordinateTransformations.html
http://motion.cs.illinois.edu/RoboticSystems/CoordinateTransformations.html

[38] C. Rösmann, F. Hoffmann, and T. Bertram, “Kinodynamic trajectory optimization and con-
trol for car-like robots,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017, 5681–5686. DOI: 10.1109/IROS.2017.8206458.

[39] V. Agrawal, S. Poojari, and D. Paley, “Graph-based global path planning for an autonomous
electric scooter using historical ride data,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2023, [Submitted].

73

https://doi.org/10.1109/IROS.2017.8206458

	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Previous and Ongoing Work
	Technical Approach
	Contributions
	Outline

	Background
	Robot Operating System (ROS)
	Coordinate Frames
	Types of North: True North
	Types of North: Magnetic North
	Types of North: Grid North

	Scooter Kinematic Model
	Holonomic and Non-holonomic Robots
	The Bicycle Kinematic Model
	Expected Movements to Motor Commands

	Experimental Testbed
	Our Scooter Fleet
	Ben Parker
	Richard Parker
	Peter Parker

	Mechanical Design
	Steering Mechanism
	Stabilizing Mechanism
	Component Mounting and Placement

	Electrical Design
	Connection Diagram
	Ground Loops
	Decoupling Capacitors
	Component Current Draw
	Analog/Digital Pathways

	The ReZoom Autonomy Stack
	Localization
	The Localization Problem
	The Extended Kalman Filter
	The Robot Localization package
	Localization Data Flow Overview
	Problems with Visual Odometry
	Initialization

	Planning and Navigation
	Move Base
	Preparing Waypoints
	Publishing Waypoints
	An Overview of the Autonomous Navigation Process

	Autonomy Experimental Results
	Evaluating Localization Performance
	Methodology to Evaluate Localization
	Localization Performance Results

	Local Planning Results
	Autonomous Waypoint Navigation
	Methodology for Autonomous Waypoint Navigation
	Results of Autonomous Waypoint Navigation

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography

