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Abstract—This work presents a conceptual framework, called
FloatCast, for the control of a small fleet of buoyancy-controlled
ocean profiling floats. The control objective is to maximize
sampling coverage in a given region of interest. The framework
optimizes park depth and park duration commands for each
float in the fleet. FloatCast uses an Echo State Network to make
a sea level anomaly forecast, which is converted into a surface
flow forecast. This flow forecast informs a Lagrangian particle
model of drifting vehicle dynamics. The state-space model of
the float dynamics uses candidate sets of commands to predict
float trajectories, which are evaluated using a mapping error
scoring metric. Stochastic analysis illustrates a risk-reward trade-
off between uncertainty and potential coverage for candidate float
commands. This paper introduces each of these components of
FloatCast and presents initial simulation results using float data
from a deployment in the Gulf Stream from July 2024.

Index Terms—Echo State Network, flow forecasting, La-
grangian particle model, float trajectory forecasting, adaptive
sampling, mapping error, fleet optimization.

I. INTRODUCTION

Autonomous ocean sampling vehicles improve the capabil-
ities of researchers to take targeted measurements that can
enrich our understanding of ocean behavior. For example,
buoyancy-controlled floats like those used in the Argo project
[1] provide a relatively cheap option for this purpose. These
floats commonly use fixed sampling patterns that lead to
random dispersion of the fleet. An alternate approach is to
dynamically change the sampling pattern to meet control
objectives. To that end, float depth can be manipulated strate-
gically to produce movement in the desired direction. Float
deployment management software like FlowPilot [2] enables
floats to take advantage of favorable currents to affect desired
horizontal movement. Such software automates control of a
fleet of floats that can collectively measure regional circulation
or other processes that occur over days or weeks. These
tools therefore have applications in the monitoring of ocean
acoustics, marine heatwaves [3], climate change, and in the
study of marine plastics [4].

This work describes a conceptual framework to increase
the ability of a small fleet of buoyancy-controlled floats to
take targeted measurements via data-driven forecasting. In
principle, this is done by strategically selecting float dive
commands. However, controlling the lateral movement of
floats is challenging because it is situated at the intersection
two complex research topics: (1) adaptive ocean sampling
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and (2) application of numerical prediction models. This
work addresses both of these components with a focus on
lightweight forecasting. The technical approach to reach the
control objective is to combine machine learning for ocean
forecasting with a motion prediction model in order to select
optimal fleet commands; the custom software that seeks to
solve this problem is called FloatCast. The architecture of
FloatCast is outlined in Fig. 1.

Profiling floats are used most intensively in the Argo project,
an international array of floats that covers the entire global
ocean [1]. This program chose a fixed sampling pattern, which
meets their sampling need to randomly sample the ocean to
obtain statistically meaningful observations of changes over
decades. Recent studies have investigated the best locations
to deploy floats to maintain spatial coverage [5], [6], [7].
A probabilistic approach for understanding expected post-
deployment float trajectories has been developed [5]. This
methodology informs deployment decisions in areas with
incomplete satellite coverage [5]. Similarly, different sampling
patterns have been evaluated in a specific region from the
simulation of a large number of virtual floats [6]. Lastly,
an optimal spatial spread of advanced Argo floats has been
proposed [7]. Strategic float deployment and replenishment is
emphasized in [7]. For the project goals, Argo has no need
for real-time control of floats.

Various techniques have been applied to predict marine
vehicle trajectories. A Lagrangian particle model based on
typical Argo profiling patterns was used in the probability-
based methodologies in [5]. Some fundamental principles of
Lagrangian particle models are reviewed in [8]. A transition
matrix prediction method similar to the Perron-Frobenius
operator1 has been used to predict the global distribution of
Argo floats [10]. Various machine learning techniques have
been applied to make trajectory predictions for surface floats
based on historical data [11]. Our work uses a Lagrangian
particle model in order to be computationally lightweight.

The problem of directing the lateral movement of buoyancy-
controlled floats has been addressed [12], [2]. Early work
on this float control problem is presented in [12]. Here, a
motion planning approach is taken where control decisions are
based on the probability of success [12]. Our work focuses
on persistence rather than waypoint navigation as in [12].
FlowPilot is foundational to this work, and is introduced in

1For more information on the Perron-Frobenius operator, see [9].



Fig. 1. FloatCast workflow block diagram. There are two main components: the surface flow forecast and the float trajectory predictions. The float trajectory
predictor is fed ocean surface flow information from the trained Echo State Network (see Fig. 2) as well as candidate float commands from the input generator.
Predicted float trajectories are then evaluated according to the mapping error scoring metric. The commands generating the best set of trajectories are sent to
the active floats in the water. Float location data is then fed back into the system.

[2]. FlowPilot is being used in real-world deployments to
accomplish float control objectives similar to the ones we
discuss here. This is performed using multiple float trajectory
prediction models to select optimal commands [2]. In the
future, some FloatCast capabilities could be absorbed into
FlowPilot.

In concert with our float model, we use an Echo State Net-
work (ESN) to predict ocean surface velocity. ESNs are a data-
driven prediction method, and have a variety of uses—some of
which are highlighted in the review article by Sun et al. [13]. In
one application, an ESN has been used to forecast sea-surface
temperature in order to make predictions about El Niño South-
ern Oscillation [14]. An ESN was also used in the pipeline for
predicting the travel of a network of electric scooters in cities
[15]. These two examples highlight the versatility of ESNs.
Taking a different approach, a system based on a deep neural
network has been developed for forecasting the upper ocean
[16]. This work forecasts additional ocean features and depths
which are out of scope for our current interests.

FloatCast is a modular software that addresses the mul-
tifaceted challenge of adaptive ocean sampling with under-
actuated vehicles. This paper details major components of
this software. In particular, the contributions of this paper
are (1) an ocean surface velocity forecasting system that uses
a custom-trained Echo State Network; (2) a float trajectory
forecasting tool based on a Lagrangian particle model of the
vehicle dynamics; and (3) a method for generating risk-reward
assessments for candidate fleet commands based on mapping
error. These components work together to accomplish the
objective of controlling underactuated vehicles in a volatile
environment. This work uses sea level anomaly and abso-
lute geostrophic velocity data from E.U. Copernicus Marine
Service Information [17], [18]. The University of Washington
Applied Physics Laboratory managed the float deployment in
the Gulf Stream in the central North Atlantic in July 2024.

This paper is organized as follows. Section II provides
background information related to key components of the
FloatCast workflow. Section III details the float trajectory
prediction methodology. Section IV illustrates how the the
float trajectory predictions are used to optimize float command

selection for a case study in July 2024. Section V summarizes
the paper and details directions of ongoing and future work.

II. BACKGROUND

This section provides background information for major
components of FloatCast: the Echo State Network (ESN), float
trajectory predictor, and mapping error scoring metric.

A. Echo State Networks
The first step in the float control workflow (see Fig. 1) is

the prediction of the ocean surface flow field. In our imple-
mentation, we use an Echo State Network (ESN) to forecast
Sea Level Anomaly (SLA) based on daily-updated historical
data. An ESN is a recurrent neural network used to predict
data in a time series [19]. There are several advantages to
using an ESN for ocean forecasting. First, ESN parameters do
not have to be finely tuned to achieve good performance [19],
which increases the versatility of this system for forecasting in
various ocean locations. ESN parameters are obtained here by
following the tuning guidelines proposed in [19]. Secondly,
we take advantage of the computationally efficient training
of ESNs to train multiple at once, and then use the forecast
from the best one (see Section III-A). This retraining can be
done each time the daily ocean data is updated. ESN structure,
training, and usage is discussed below based on the work of
[19]. Fig. 2 summarizes this description.

The heart of an ESN are the Win, W, and Wout matrices.
These are the input, reservoir, and output weights matrices,
respectively [19]. Following the same order, the dimensionality
of these matrices is Nx × (1 + Nu), Nx × Nx, and Ny ×
(1 + Nu + Nx); Nu is the size of an input, Nx is the size
of the reservoir, and Ny is the size of an output [19]. For
our purposes, Nu and Ny are equivalent, and are equal to
the number of SLA data points forecasted. Before training,
the Win and W matrices are randomly initialized generally
following the guidelines proposed in [19]. The Wout matrix
is trained following the process outlined below. The reader is
referred to [19] for more detailed information.

In the first phase of training, daily SLA data is iteratively
fed in [19]

xi = (1− ϱ)xi−1 + ϱf(Wxi−1 +Win[1;ui]) (1)



Fig. 2. Method for training the Echo State Network (ESN). The trained ESN is used in the FloatCast workflow to make the Sea Level Anomaly (SLA)
forecast, which is converted to a surface flow field (see Fig. 1). The Win and W matrices are randomly initialized prior to training; ϱ and β are scalars; f
is the tanh function. In phase I, the design matrix X = {[1;ui ;xi]} is constructed iteratively using input SLA data ui and computed reservoir states xi,
for i = 1, ..., n. In phase II, Tikhonov regularization is used to solve for Wout using the design matrix and ground truth SLA data, Y = {y1,y2, ...yn}.
To make predictions with the trained ESN, the equations in the dashed box are used in conjunction with each other. Note that the vector subscript i indicates
the time step ti. This graphic is based on information and illustrations in [15], [19], [20].

Here, ui and xi are the vectorized SLA data and the reservoir
state vector at time step i, respectively. The leaking rate ϱ is
a scalar and f is the element-wise tanh function. Information
from each use of (1) is stored in the design matrix, X =
{[1;ui ;xi]} for i = 1, ..., n. In the first use of (1), x0 is the
zero vector. Note that the bracket notation used here indicates
a column vector.

The second phase of training directly solves for Wout. Since
the states in X have been organized column-wise according
to time step, then (2) must be true for the ideal Wout matrix,
i.e., [19]

Y = WoutX (2)

Here, Y = {y1,y2, ...yn} denotes ground truth output SLA
data. In other words, it should ideally be the case that ui+1 =
yi, for i = 1, ..., n. Using the design matrix X and ground
truth SLA data Y, the Wout matrix can be obtained from (2).
This is done via Tikhonov regularization as follows:

Wout = YX⊤(XX⊤ + βI)−1 (3)

where β is a scalar and I is an identity matrix [19].
With Win, W, and Wout now defined, ESN predictions are

made by chaining together the output of (1) with the vector
form of (2), which yields [19]

yi = Wout[1;ui ;xi] (4)

The process begins by seeding (1) with the newest piece of
SLA data ui, and the last state from the training stage xi−1 to
calculate the new state xi. The output of (1) is then fed into
(4), where the resulting yi becomes the SLA forecast for the
next day. Consequently, this forecast yi is then used as input
ui+1 in (1) for the next time step forecasted. The training and
usage of the ESN are illustrated in Fig. 2.

B. Autonomous Profiling Floats for Ocean Sampling

We seek to improve the collective sampling performance of
small fleets of Alto and EM-APEX floats. These floats have no
direct horizontal actuation; they change their vertical velocity
by adjusting their buoyancy. Ideally, floats will follow the dive

Fig. 3. Typical float profile pattern. All timing variables here are relative to
the start of the current cycle. The float remains on the surface at depth P
until time ϵ to receive new commands. The float then dives to the parking
depth Q between time ϵ and α. The float remains at depth Q until time β.
The float does its deep dive to depth R between time β and γ. Finally, the
float ascends to the surface from depth R while taking a full profile between
time γ and δ. Note that the similar timing notation in Section III-B is for
absolute time. See [1], [5] for similar visualizations.

routine sketched in Fig. 3, which is similar to the Argo project
[1]. On their ascent to the surface, floats measure quantities
such as temperature, salinity, and pressure. FloatCast seeks
to maximize collective sampling performance by strategically
selecting new dive commands for each time a float surfaces.

Referring back to Fig. 3, a float will wait on the surface until
it receives new dive commands from FloatCast: park depth and
park duration. Following these commands, a float begins its
initial dive down to the parking depth Q. It remains at depth
Q between times α and β. Typical park durations (β − α)
considered are no longer than 5 days. The float then begins
its deep dive to depth R, nominally 2000 m. Upon reaching
depth R, the float begins its ascent and takes a full profile
sample along the way. This routine repeats as long as the float
is active.

This research specifically seeks to determine optimal park
depth and park duration commands to relay to floats in the
communication window. The mission objective is to collec-



tively maximize sampling coverage for a given region. The
performance of candidate float commands is assessed via the
mapping error scoring metric.

C. Mapping Error Scoring Metric

To maximize float coverage in a given region, we use a
mapping error scoring metric based on the time and location
of float samples. This metric encourages floats to spread out in
the region of interest by limiting the reward from samples that
are closely clustered in time or space. This metric is similar
to a scoring methodology that has been used for underwater
gliders [21], [22]. Mapping error describes user confidence in
a predicted scalar field of some quantity of interest based on
measurements [21], [22], [23]. We use this confidence metric
in isolation—without the scalar field estimate—for analyzing
performance, as was done in [21], [22]. A brief explanation
of this mapping error scoring metric is given below based on
[21], [22], [23].

Mapping error is fundamentally an analysis of the covari-
ance between measurements and a grid of reference points.
The reference point grid defines the locations where the scalar
field predictions and associated confidence can be calculated
based on accumulated measurements. This reference point grid
subsequently defines the region of interest that the floats seek
to cover. To quantify the covariance between two data points,
the following function is used [22].

C(R, t,R′, t′) ≜ σ0e
−Γ(R,R′)

σ − |t−t′|
τ (5)

Here, R and t represent spatial coordinates and time of a data
point, respectively. The covariance of the scalar measurement
field about its mean is σ0. The distance function is denoted
by Γ. Moreover, σ and τ are the regional spatial and temporal
decorrelation scales, respectively. When a pair of data points
(R, T ) and (R′, t′) are close to each other in space and time,
the resulting covariance is high. Conversely, the covariance is
low when this pair of data points are far apart in space and
time.

Using (5), the covariance between all measurements is quan-
tified via the measurement covariance matrix. The element in
the kth row, jth column of the measurement covariance matrix
C̃ is [22]

[C̃]kj ≜
(
σ̃0δkj + C(Rk, tk, Rj , tj)

)
(6)

The C̃ matrix is B ×B dimensional, where B is the number
of measurements. The measurement noise variance constant
is denoted by σ̃0. Note that δkj equals 1 if k = j, and 0
otherwise.

Using the inverse of the measurement covariance matrix, the
variance of the error for the scalar field estimate is defined by
[21], [22], [23]

Ĉ(R, t,R′, t′) := C(R, t,R′, t′)−
P∑

k=1

P∑
j=1

C(R, t,Rk, tk)[C̃
−1]kjC(Rj , tj , R

′, t′) (7)

This quantity defines confidence in the estimates of the scalar
field that would be produced by these measurements [23].
Lower values for (7) indicate lower error and better perfor-
mance. Note that Ĉ ∈ [0, 1], as given in [22].

Equation (7) is foundational to the process used to analyze
relative optimality of commands. In particular, the following
equation is used to score candidate trajectories [21], [22]:

ψ(t) := − log10

(
1

σ0|B|

∫
B
Ĉ(R, t,R, t)dR

)
(8)

where B is the region of interest. Equation (8) collectively as-
sesses the error from (7). The desired outcome is to minimize
the area integral of the error variance. The negative logarithm
inverts the integral such that ψ(t) is maximized when the error
is minimized. We therefore seek to maximize ψ(t) with our
choice of float commands.

III. FLOAT TRAJECTORY PREDICTION

This section describes three components of our float trajec-
tory prediction procedure. First, the Echo State Network (ESN)
usage is discussed from a practical standpoint. Second, the
float state-space model and trajectory prediction methodology
are described. Lastly, the method to select candidate float
commands is discussed. Recall that Fig. 1 illustrates where
these three components are situated in the FloatCast workflow.

A. Daily ESN Predictions of Ocean Surface Flow

To generate daily predictions of ocean surface flow, an
ESN is trained on Sea Level Anomaly (SLA) data from E.U.
Copernicus Marine Service Information [17], [18]. The SLA
forecasts from the ESN are converted to surface flow fore-
casts using a numerical method [24]. The temporal resolution
of the training data is one day. The spatial resolution is
0.125◦ × 0.125◦, but we downsample this to 0.25◦ × 0.25◦.
Doing so significantly reduces the memory required to train
and use the ESN. For a similar reason, we train the ESN
on SLA rather than geostrophic surface flow directly because
it takes less memory to forecast SLA scalars than surface
flow vectors. These design choices conserve computation time
which can be put to use elsewhere in the FloatCast pipeline.

Larger ESNs (W matrices, see equation (1)) generally
perform better than smaller ones [19]. Thus, it is reasonable
to assume that the best way to improve our flow forecasts is to
maximize ESN size. However, doing so increases the required
memory quadratically with matrix size. Moreover, predicting
float trajectories from ocean flow is challenging enough that
devoting the maximum amount of computational resources
to flow prediction may be counterproductive. We propose an
alternative strategy to improve overall system performance.
Namely, several ESNs are trained and the one that produces
the best hindcast is selected for use. This is determined based
on the Mean Square Error (MSE), which is discussed below.
This approach is feasible because of the inherent randomness
of ESN generation from a given set of parameters. Training
multiple ESNs in this way increases the memory requirement
linearly rather than quadratically. Having taken measures to



Fig. 4. Sea level anomaly hindcast error over time for the Echo State Network
flow prediction from 17 July 2024 to 24 July 2024. Dates are indexed to
midnight.

guard against computational burden, new ESNs can be trained
each day as updates are made available to the near real time
data [17].

To evaluate the performance of an ESN hindcast, the MSE
is computed for a central subset of the prediction SLA data
according to

MSE =
1

N

N∑
i=1

(Yi,j − Y ′
i,j)

2 (9)

where N is the number of data points inside the central box.
The ith data point on hindcast day j is denoted as Yi,j . The
corresponding reference data point is denoted as Y ′

i,j . In this
work, the region of interest is given by the area enclosed by
34◦N to 43◦N, and −68◦E, to −59◦N. This region is marked
off into a 3 × 3 grid. To prioritize prediction accuracy in
the most important region, the MSE is computed only inside
the middle box of the grid, defined from 37◦N to 40◦N, and
−65◦E, to −62◦N. Consequently, the Yj and Y′

j vectors only
contain SLA data inside this middle box. The mean square
error over time for the surface flow hindcast used in Section
IV-A is given in Fig. 4. Note that the performance metric used
to rank ESN performance is the total MSE over the prediction
window. Next, we discuss the float trajectory prediction model
and how it makes use of the ESN flow forecasts.

B. Float Trajectory Predictions Using State-Space System

As alluded to above, we use a Lagrangian particle model
for the prediction of float trajectories. Similar to one of the
FlowPilot methods [2], this model uses an exponential decay
of surface flow velocity with depth. The state-space model for
the lateral movement of float j in its kth dive is given by

ẋj,k(t) = uc(a exp[−zj,k(t)/ζ] + b) (10)
ẏj,k(t) = vc(a exp[−zj,k(t)/ζ] + b) (11)

where ẋj,k(t) is the zonal velocity of float j in its kth
dive at time t. The analogous meridional velocity is ẏj,k(t).
The depth of float j in cycle k at time t is written as
zj,k(t). Moreover, xj,k(t), yj,k(t), and zj,k(t) are all scalars.
Consequently, xj,k(t) and yj,k(t) are referenced to the origin
point of the first dive of float j, and can be used to obtain
updated coordinates. For the Gulf Stream deployment, we use
a = 0.11, b = 0.04, and ζ = 500 m−1 in (10) and (11). These
constants were chosen based on prior float deployments. The c

parameter was chosen by trial and error such that a float on the
surface moves at 75% of the altimetric surface velocity. Thus,
c = 0.75/(a+b) = 5. Moreover, u ≜ u(xj,k(t), yj,k(t), t) and
v ≜ v(xj,k(t), yj,k(t), t) are measured zonal and meridional
surface flows, respectively, at the coordinate point nearest to
the current float location, (xj,k(t), yj,k(t)), at time t. Note that
u and v are measured in m/s. FloatCast is designed so that
either measured or ESN forecast flow data can be used to set
the values of u and v.

Recall the typical float cycle sequence sketched in Fig. 3.
The vertical velocity of float j in its kth dive at time t is given
by żj,k(t) defined as

żj,k(t) =


0 if tj,k−1 ≤ t < ϵj,k, or αj,k ≤ t < βj,k

wj,k if ϵj,k ≤ t < αj,k, or βj,k ≤ t < γj,k

−wj,k if γj,k ≤ t ≤ δj,k
(12)

The constant dive speed for the current float dive is given
by wj,k. In our model, all floats use the same vertical ve-
locity when evaluating different park depth and park duration
commands. The ϵj,k, αj,k, βj,k, γj,k and δj,k quantities all
describe absolute times of interest for float j in its kth
cycle. Float j begins its descent for dive k at time ϵj,k.
Similarly, it begins the park phase at time αj,k. The deep
dive then begins at βj,k. The ascent to the surface begins
at γj,k. Finally, the float surfaces at δj,k = tj,k. Note that
tj,k−1 ≤ ϵj,k ≤ αj,k ≤ βj,k ≤ γj,k ≤ δj,k. The float cycle
sketch in Fig. 3 uses relative times instead of the absolute
times used here.

To understand the prediction error of this model over
time, we compare float trajectory hindcasts with ground truth
historical float trajectory data. This analysis is based on the
following error definitions:

x̃i
j ≜ {x̂j,k − xj,k | tj,k − tj,0 < i} (13)

ỹi
j ≜ {ŷj,k − yj,k | tj,k − tj,0 < i} (14)

X̃i ≜ {x̃i
j | j = 1, ..., N} (15)

Ỹ i ≜ {ỹi
j | j = 1, ..., N} (16)

Here, xj,k and yj,k denote the actual eastings and northings
with respect to the origin point of the first dive for float j
at the end of cycle k. The analogous predicted eastings and
northings are written as x̂j,k and ŷj,k, respectively. These
easting and northing predictions use commands determined
heuristically from measured float depth data. Consequently, x̃i

j

and ỹi
j represent the set of all easting and northing prediction

errors for float j that occurred within i days of tj,0. Thus,
the superset of easting and northing errors for all floats that
occurred within i days of tj,0 are written as X̃i and Ỹ i.

Using historical data from 10 floats in the Gulf Stream in
the North Atlantic from July 2024 as ground truth, we make
trajectory hindcasts from each surfacing point. These hindcasts
extend in time until the last measured surfacing of the given
float. This effectively transforms our 10-float data set into a
much larger data set of virtual floats. The commands used for



Fig. 5. Float trajectory prediction variability over the course of 7 days.
Prediction errors here are grouped based on the total elapsed time of the
prediction. The float trajectory hindcast predictions that used the predicted
flow data had a higher variability growth rate compared to the predictions
that used the measured flow field.

each prediction are based on measured depth values specific
to each dive cycle.

We then analyze the error of the predicted eastings and nor-
things for each virtual float (see Fig. 5) by grouping prediction
error based on the elapsed number of days, as in (15)–(16).
The mean prediction error for the virtual float experiment is
roughly zero for the first few days because predictions deviate
relatively equally in the north/south and east/west directions.
To understand the variability of predictions, we analyze the
standard deviation of the error of each cycle prediction. The
standard deviation of the error with respect to elapsed time is
plotted in Fig. 5. As this plot shows, the expected variability in
our predictions grows at a rate of 9.2 km/day and 12 km/day
when using the measured flow data and our ESN prediction,
respectively. The ESN forecast used here was for a 14-day
window.

Multiple factors contribute to the error in Fig. 5. Generally
speaking, our model makes the sweeping assumption that
floats precisely experience forces causing them to move in
the same direction of the measured or predicted surface
flow. It is unlikely that this surface flow accurately replicates
this phenomena, especially considering resolution restrictions.
Moreover, this model assumes that subsurface currents uni-
formly follow the direction of the surface flow, which is not
realistic. However, these types of assumptions are necessary
for the lightweight forecasting method used here.

As discussed below, it is critical for the optimization com-
ponent of FloatCast that solutions to (10)–(12) are computed
quickly. We therefore use the piecewise analytic solutions of
this system of equations to make float trajectory predictions.

To further ensure that the float command optimization is
efficient, candidate float commands are selected judiciously;
see Section III-C.

C. Strategic Selection of Candidate Float Commands

A key component of FloatCast is that it should operate in
real-time, which becomes challenging when running Monte
Carlo trials (see Section IV-B). The choice of command
sets—park depth and park duration—to evaluate is critical
because Monte Carlo trials magnify time loss from redundant
calculations. In order to improve computational efficiency, we
seek to maximize the variety of predicted outcomes for the
number of float commands tested.

To maximize prediction variety, we select commands based
on a new metric, introduced below. Consider the uniform flow
field, (u, v) = (1, 0), ∀ xj,k(t), yj,k(t), and t. Recall that
u and v are functions of float position and time, and are
measured in m/s. For this specific flow field, the total distance
traveled for an arbitrary float is equal the distance traveled in
the horizontal direction (easting). Moreover, since the flow
field is uniform, the float trajectory for an arbitrary set of
commands can be calculated outright. We integrate (10) to
solve for the position of the float 100 days into the future,
given that it followed fixed dive commands. The total distance
traveled by float j is given by

A =
K∑

k=1

∣∣∣xj,k(tj,k−1, tj,k)
∣∣∣+ ∣∣∣xj,K+1(tj,K , tj,K +Tj)

∣∣∣ (17)

where xj,k(·, ·) is the solution to (10) between the two
specified time arguments. Recall that tj,k is the time that float
j ends cycle k. The total number of complete cycles in the
fixed interval of time for a given set of commands is K. The
duration of time between the last complete cycle of float j and
the end of the time interval is denoted by Tj .

The total distance traveled for a number of park depth and
park duration commands are calculated using (17). The results
are normalized by the maximum distance traveled, and plotted
in Fig. 6. As this plot shows, it is potentially wasteful to test
short dive durations at several park depths because they result
in similar normalized distance traveled values. Thus, rather
than testing all permutations of a set of park depth and park
duration commands, we elect to test the commands sketched
on Fig. 6 with black dots. To maximize variety, no commands
are chosen from the same color ribbon in the plot. We believe
this maximizes computational resources by eliminating similar
trajectories from the calculations. Moreover, the multiple park
durations considered ensure that there can be a timing offset
between nearby floats, which factors into the mapping error
calculations.

IV. FLOAT TRAJECTORY OPTIMIZATION

This section presents hindcast results from a case study of
three floats deployed in the Gulf Stream in the North Atlantic
near the New England Seamount region during July 2024.
First, results are presented from a deterministic FloatCast



Fig. 6. Contour plot characterizing the normalized distance traveled by a float
in a uniform flow field for assorted command combinations. The total distance
traveled for a float using each command set was calculated over 100 days
using a fixed dive velocity, wj = 0.12 m/s. The surface time between dives
is fixed at 30 min, and the deep dive depth is uniformly 2000 m for all
command combinations. Distances are normalized in the plot. To maximize
the expected variety of prediction outcomes according to this plot, we select
the command combinations approximately marked by the black dots. The
black and white lines are sketched to illustrate the pattern used to select
commands.

optimization. Then, a risk-reward assessment for candidate
command sets is given using results from a stochastic analysis.

A. FloatCast Demonstration for Deterministic Predictions

Three floats in the North Atlantic are selected for this case
study of a deterministic FloatCast optimization. The sampling
objective is to maximize coverage in the box defined from
37◦N to 40◦N, and −65◦E, to −62◦N. Both measured and
predicted surface flows for this region are used (separately) to
inform float trajectory predictions. These predictions are made
for a 7-day window beginning on 17 July 2024. Trajectory
predictions are scored using the mapping error scoring metric
parameterized as follows. The reference point grid is uniformly
distributed within the box specified above using a 6 × 6
resolution such that each reference point covers a 0.5◦ × 0.5◦

area. The spatial and temporal decorrelation scales used are
25 km and 1.25 days, respectively. Moreover, we set the
covariance of the scalar measurement field about its mean
(σ0) to 1, and measurement noise variance (σ̃0) to 0.1.
Measurements older than 3 temporal decorrelation scales are
excluded from the mapping error calculation as they have
minimal impact. The performance score for generated float
trajectory predictions is computed as the sum of the mapping
performance ψ(t) from midnight of each day from 17–21 July
2024. This timing prioritizes scoring when prediction accuracy
is at its highest. Note that the surface flow hindcast error for
the predicted flow is given by Fig. 4.

Fig. 7 shows various trajectories for the three floats consid-
ered in this analysis. The blue, green, and red trajectories in

Fig. 7. Example float trajectory data. The gray points are experimentally mea-
sured float surfacing locations. The blue, green, and red trajectory forecasts
each use the measured flow data to inform the state-space model predictions.
The blue trajectory uses commands based on experimentally measured float
depths. The green and red trajectories use float command sets optimized in
the measured and predicted flows, respectively. The selected command from
the optimization in the measured and predicted flows are the same for floats
10004 and 11387. The border of the region of interest is drawn with a black
line (40◦N, and −65◦E).

Fig. 7 come from predictions made in the measured (known)
flow field [18]. The float commands used to make each color
trajectory were determined in different ways. The blue trajec-
tories use commands that are meant to mimic the actual behav-
ior of floats in the deployment. These blue trajectories illustrate
our predictive capabilities under the best circumstances: when
the flow field is known and float commands are inferred.
The green and red trajectories use commands resulting from
the FloatCast optimization in measured and predicted flows,
respectively. The selected commands for the green and red
optimization data are identical, except for float number 11414.
The 9 command sets used for these optimizations (green, red)
are sketched on Fig. 6 with black dots. For the green and red
trajectories in Fig. 7, each float followed its selected command
repeatedly throughout the 7-day prediction window. Moreover,
the vertical dive velocity of each float was fixed 0.12 m/s, the
surface time between dives was fixed at 30 min, and the deep
dive depth was uniformly 2000 m.

The performance score for the predicted trajectories based
on experimental data (blue) was better than the suggested
commands (green, red). There are several possible explana-
tions. Within the context of the simulation framework, the
main cause is likely due to assumptions related to uniform
float behavior that were not true for the deployment data. For
example, the estimated vertical velocity for each float varied
relative to the fixed 0.12 m/s velocity used in the simulation.
While floats 10004 and 11414 had estimated vertical velocities
close to this value, float 11387 had an estimated vertical



velocity of almost twice this value2. This is crucial because
as shown in Fig. 7, float 11387 stays inside the box for the
duration of the analysis and is likely the highest points-scorer.
The faster vertical velocity allowed this float to make sub
6-hour dives, which is faster than the shortest dive duration
considered in the optimization. Another contributing factor is
variability in experimental deep dive depths. Crucially, float
11414 consistently used a deep dive depth near 1200 m. As
a result, this float also consistently completed dives in under
6 hr. For these reasons, it is important that our optimization
results presented in Fig. 7 are framed as suggested rather
than experimentally validated optimal values. In practice, it
is impossible to know whether using one set of commands
would outperform another on the actual hardware.

While the optimized values did not outperform the hindcast
in simulation, there is still insight to be gained by analyzing
the suggested values. In particular, the selected command set
was almost the same between the optimization performed in
the measured and predicted data, inspiring confidence that this
flow forecasting method is viable. In practice, a user selecting
the next batch of float commands would have to base their
decision on the trajectories predicted in the flows forecasted
by the Echo State Network alone.

Some other practical considerations are worth noting. The
last set of actual flow data used is centered on midnight, 17
July 2024. The first ESN prediction is centered on midnight,
18 July 2024. Moreover, the float trajectory predictions begin
on 17 July 2024 shortly after midnight. In practice, it is likely
that there would be a larger buffer between when the actual
flow data ends and when the float trajectory predictions begin.
In addition, it is likely that float commands will need to be
computed one cycle ahead using an estimate for the next
surfacing location. These are topics of ongoing work.

B. Risk-Reward Assessments of Fleet Commands

In Section IV-A, all float trajectories considered were deter-
ministic. However, given the variable nature of ocean currents
and other sources of error, our study benefits from a stochastic
analysis. To address this, we run several Monte Carlo trials
for the float trajectory predictions for each set of commands.
In each Monte Carlo trial, the predicted end point of each
dive is perturbed by a random amount based on a Gaussian
normal distribution. The mapping error scoring metric is
computed for each Monte Carlo trial, giving a distribution
characterizing the performance of each command set. This
allows users to compare performance distributions and select
between commands with varying risk-reward levels between
uncertainty and expected performance.

As a basis for comparison, we perform the following
simulation. Using measured flow data and the same three
floats from Section IV-A, predictions are made over a 7-day
window using the 9 different commands specified in Fig. 6.

2There is inherent imprecision in the heuristic used to estimate float vertical
velocity from deployment depth data. Floats 11387 and 11414 followed
sawtooth-like dive patterns (park duration was minimal) which likely disrupted
the heuristic.

For each command set, 100 Monte Carlo trials are performed
following the format described above. The end point of each
predicted dive is randomly perturbed in its horizontal position
using a normal distribution with mean 0 km/day and standard
deviation 10 km/day. This standard deviation was chosen to
reflect the expected prediction error variability growth rate
for float trajectory predictions in a measured flow field, as
illustrated in Fig. 5.

To establish a reference, the mapping error is then computed
for each trial using the same parameters outlined in Section
IV-A. Note that the mapping error is calculated for the whole
group of floats under a given set of commands. This is
computationally intensive, as there are 100(93) = 72, 900
sets of mapping error calculations to be performed. The
performance score of each trial is obtained by summing the
mapping error over the first 4 days of the prediction. The
distribution of average performance scores from the exhaustive
search is plotted with a gray line in Fig. 8.

Computing the mapping error scoring metric for many
Monte Carlo trials is computationally intensive. At the expense
of accuracy, one could speed up this calculation by reducing
the mapping error reference point resolution and shrinking the
time window for accepted measurements. However, more can
be done to address the computational efficiency of scoring
many Monte Carlo trials. In particular, we use a two-stage
optimization to limit the number of mapping error calculations
required to obtain a viable command set. At a high level, we do
a random sparse search of candidate command sets, and then
evaluate command sets similar to the best-performing ones
from the random search.

The two-stage optimization begins by randomly taking a
sparse subset of all possible command sets. The mapping
performance is then computed for all Monte Carlo trials for
each of these command sets. Relative performance is ranked
based on the average mapping performance of all Monte Carlo
trials for a given command set. The best-performing command
sets from this sparse search are used in the next stage of
the optimization. The second stage of the optimization is a
greedy search, which computes the mapping performance for
command sets that are similar to the best ones from the sparse
search. The relative performance is then ranked, and the best
command set is selected for use.

To determine which command sets are most similar to each
other for the greedy search, we use the normalized distance
traveled metric introduced in Section III-C. The command
numbering in Fig. 6 reflects a ranking for which commands
are expected to produce the most lateral movement, down to
the least. For example, command 1 is expected to generate the
most movement, and is therefore more similar to command 2
than it is to command 9. This manner of thinking is used to
generate new permutations of float commands that are similar
to the reference command sets from the sparse search.

For the initial sparse search (stage I), 100 command sets
were selected for further analysis. The 3 best-performing
command sets were then selected for further analysis for the
greedy search (stage II). Using the similarity metric described



Fig. 8. Results of the two-stage optimization referenced to the exhaustive
search for the simulation described in Section IV-B. This optimization is
for 3 floats and 9 candidate command sets, which makes for 93 = 729
possible combinations. Command sets are ranked and sorted above based on
average performance score from the 100 Monte Carlo trials for the given
set. The reference scores are from the full exhaustive search. The command
sets evaluated in the two-stage optimization are indicated with red and blue
markers. The performance score variability of the 100 Monte Carlo trials for
each command set is plotted as the mean performance score plus/minus one
standard deviation.

above, 81 command sets were selected for this next evalu-
ation. All told, the two-stage optimization method requires
100(100 + 81) = 18, 100 sets of mapping error calculations,
as opposed to 72, 900 for the full exhaustive search.

The results of the full exhaustive and two-stage optimization
methods are presented in Fig. 8. The data in this plot is
sorted based on the average performance score from all Monte
Carlo trials for each command set. The standard deviation
of the performance scores for each command set is also
shown with light gray shading. This indicates the overall
uncertainty associated with each command set. Overlaid on
this plot are points indicating which command sets were
selected in each stage of the two-stage optimization. As Fig. 8
shows, the methodology behind the greedy search resulted in
command sets being tested that performed well. Interestingly,
the command sets tested in the greedy search did not all
come from the top-performing group. In any case, the two-
stage search was able to correctly identify the best command
set using fewer mapping error calculations. This result is
promising because it shows that more complex optimizations
with more floats and/or commands could be feasible using
the two-stage optimization approach. The best performing
command set from the sparse search was ranked second, which
especially helped the greedy search find the top command set.
The performance uncertainty highlighted in Fig. 8 can be used
to establish the risk associated with a given command set. Fig.
8 shows that command sets with poor performance generally
have lower uncertainty, and that those with better performance
have higher uncertainty.

V. CONCLUSION

This paper presents a conceptual framework called Float-
Cast, which is an aid to the control of autonomous ocean

sampling floats. The purpose of FloatCast is to maximize
sampling coverage of a given region through intelligent selec-
tion of fleet commands. This tool forecasts float trajectories
using predictions of ocean surface flow and various dive
command combinations. The ocean surface flow prediction
is generated from an Echo State Network that is trained to
forecast sea level anomaly with a one-day temporal resolution.
Command combinations tested are chosen strategically to
maximize computational resources. The predicted trajectories
from command sets are analyzed according to the mapping
error scoring metric. This metric is used to encourage floats
to stay within a predefined region without getting too close
to neighboring floats—in space and/or time. Lastly, a stochas-
tic risk-reward analysis shows the expected uncertainty and
potential performance of candidate commands.

In ongoing and future work, this system shall be tested in the
field during a float deployment. This could give further insight
into the flow field and float trajectory prediction skill. Success-
ful implementation could mean that FloatCast is absorbed as
a module of FlowPilot [2]. Moreover, FloatCast could also be
adjusted to achieve different mission objectives. For example,
instead of remaining fixed, mapping error reference points
could be dynamically updated. On a finer level, the state-
space model of the float vehicle dynamics could interpolate
flow data in time to potentially improve accuracy. Currently,
the flow field constants for specific coordinates are fixed for a
full day. In the future, these constants can be adjusted based
on the time of day and the flow at those coordinates for the
next day as a first-order smoothing method. The performance
of this method can be tested against the current workflow.
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