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Abstract—Intermittent actuation for autonomous systems in-
spired by biological locomotion can leveraged for swarming
platforms tasked with underwater localization and tracking. This
paper presents the design of a control strategy for a neutrally
buoyant vehicle tracking a moving target using intermittent
actuation. Tracking a time-varying reference with intermittent
actuation is presented using state-feedback control for the de-
coupled 1-DOF cases of vertical motion and rotational motion
about the vertical axis. Experimental results from tests on the
miniature autonomous blimp platform demonstrate the control
strategy on a neutrally buoyant vehicle.

Index Terms—Intermittent actuation, autonomous tracking,
nonlinear dynamics

I. INTRODUCTION

Intermittent motion is frequently observed in biological
locomotion. In many species, locomotion patterns alternate
between active and passive periods [1], [2]. This allows
for animals to conserve energy while traversing their
environments while also benefiting the animal’s sensory
biology for improved perception and decision making [2]–[4]
Such benefits also include cohesion of collective animal
motion [2], which can be leveraged for bioinspired collective
motion of multi-agent systems [4]–[7] reducing both
communication and control energy costs [8]. Multi-agent
autonomous platforms for underwater localization and
tracking can provide significant advantages over single agent
or non-autonomous methods such as greater spatiotemporal
coverage, increased data collection, and the capability for
cooperative sampling strategies [5]. The underactuated
autonomous Lagrangian drifter platform, Driftcam, in [9],
[10], for multi-agent in situ observation of marine life, utilizes
buoyancy-driven depth control to remain minimally invasive
to the ecosystem. The neutrally buoyant underwater vehicle
in [9] uses a continuous control effort. Expanding on that
work, [11] proposes a discrete-time tracking control strategy
for the same drifter platform.

The platform used for this work is a lighter-than-air minia-
ture autonomous blimp (MAB) [12], [13], shown in Fig. 1,
which is a low-cost, neutrally buoyant platform for testing
algorithms on single- or multi-agent systems [14]. The full
6-DOF dynamic model for the MAB, discussed in Section II,
is derived from the same kinematics as the dynamics model
for the Driftcam [10], [12], [15]. Additionally, the blimp has
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low-power thrust relative to its size that make it necessary to
consider the aerodynamics in the model, which is more similar
to modeling underwater vehicles than it is to modeling higher-
thrust aerial systems such as quad-copters [12].

This work builds on the idea of discrete-time tracking
control for a neutrally buoyant robotic platform, presenting
simulated and experimental results for a single vehicle imple-
menting an intermittent actuation algorithm for target tracking.
The specific contributions of this paper are a control strategy
for tracking a time-varying target reference using intermittent
actuation with a linear tracking state for vertical motion and
with a nonlinear tracking state for rotational motion. Simulated
and experimental results demonstrate implementation of inter-
mittent actuation on a miniature autonomous blimp platform.

The outline of the paper is as follows. Section II describes
the dynamics of the miniature autonomous blimp vehicle.
Section III presents and analyzes a theoretical control method
for tracking a time-varying reference with intermittent ac-
tuation. Section IV presents experimental results. Section V
summarizes the paper and ongoing work.

II. SYSTEM BACKGROUND

A. Platform description

The miniature autonomous blimp (MAB), shown in Fig. 1,
is a lighter-than-air aerial platform comprised of a 36 inch-
diameter mylar envelope with an attached gondola for the
motor-propeller system and onboard electronics. The MAB
is equipped with a camera, an IMU, and a range sensor
measuring the vertical time-of-flight. An onboard processor
streams sensor data to the ground station over Wi-Fi. Feedback
control is computed at the ground station and transmitted to
the blimp’s microcontroller to actuate the motors [13], [16]–
[18]. The existing control architecture for the MAB includes
a low-level PID for stabilized automatic flight.

B. Blimp dynamics and control

This section describes an idealized model of the dynamics
for a blimp. The idealized 6-DOF model for the rigid-body
blimp can be described with Mν̇ +D(ν)ν +g(η)+g0 = τ ,
where ν = [u, v, w, p, q, r]T is a vector of velocities, η =
[x, y, z, ϕ, θ, ψ]T is a vector of positions and Euler angles,
and τ = [X, Y, Z, K, M, N ]T is the vector of forces and
moments [12], [16]–[18]. The matrices M and D(ν) are the
rigid-body inertia and damping, respectively. The vectors g(η)
and g0 represent the generalized gravity and buoyancy forces



Fig. 1: The miniature autonomous blimp vehicle (GT-MAB)
as described in [13]. Left: an inflated helium envelope with
the gondola attached to the bottom. Right: a close-up of the
gondola housing the onboard processing and sensors.

on the system. The constant parameters drag D, mass m, and
moment of inertia IG are from [16] and are used to compute
the inertia and damping matrices.

We define two reference frames to describe the motion of
the MAB in 6 degrees of freedom (DOF): An inertial frame I
defined with origin O(xi, yi, zi)I , and a body-fixed frame B
with origin at the center of gravity of the vehicle (x, y, x)B .
The body frame axes are defined with the positive directions
as x forward, y left, and z up (FLU).

The blimp flight controller contains a set of nested PID
control loops [13] designed to stabilize oscillations and achieve
continuous velocity and waypoint tracking [18]. An open
source API for the GT-MAB blimp provides methods for
retrieving the onboard state and sensor information and for
updating the controller inputs. Access to the onboard controller
is available through two methods. The first method accepts
desired local frame rotation states [ϕd, θd, ψd]B and uses
nested PIDs to compute the necessary control forces while
the second method accepts a vector of desired control forces
directly. The input forces are then used to compute commands
for the appropriate motors. This work focuses on the decoupled
1-DOF cases of vertical motion, z ∈ R, and rotational motion
about the z-axis, θ ∈ R.

III. CONTROL FOR INTERMITTENT REFERENCE TRACKING

This section presents an intermittent actuation control strat-
egy with one degree of freedom for tracking a target reference
signal for (1) vertical motion, z ∈ R with second-order
dynamics

mz̈ = −Dż + u(t) (1)

and (2) rotation about the vertical axis, θ ∈ R with second-
order dynamics

Ig θ̈ = −Dθ̇ + u(t). (2)

The intermittent actuation algorithm has a short burst phase
with active control followed by a longer, passive coast phase.
The burst phase control, derived in the following subsections,
is designed to converge to the target reference in a mini-
mum number of burst-coast cycles. Proximity to the target
is evaluated at the end of the coast phase. If the proximity is
not within a specified threshold, then the algorithm continues

through the next burst-coast cycle and reevaluates. If the
proximity is within the specified threshold at the end of the
coast phase, then the target is marked as reached and the
target is updated for the next burst-coast cycle. After setting
a new target, the proximity is checked so that if the target
is within the proximity threshold the burst phase is skipped
and only the coast phase is executed for that cycle. For a
moving target, assume that the target velocity doesn’t exceed
the maximum velocity of the blimp. For the constant target
case, the algorithm does not include the coast-only cycle, and
instead the full burst-coast cycle is used for each time step.

The following subsections present the derivation of the
intermittent control strategy for the general case of tracking
a moving target for the vertical and rotational motion. Then
the specific case of tracking a constant target is presented for
vertical and rotational motion, along with simulation results.

A. Vertical reference tracking with intermittent actuation

Let z = (z1, z2) = (z, ż). The state dynamics for the 2nd-
order linear system in (1) are

ż1 = z2 (3)

ż2 = −D
m
z2 +

1

m
u, (4)

where u is a control input. Let r = r(t) denote a con-
tinuously differentiable time-varying reference signal with
bounded derivatives tracked by vertical position, and let e =
(e1, e2) = (z − r, ż − ṙ) denote the tracking error.

The continuous-time error dynamics are

ė1 = e2 (5)

ė2 = −D
m
z2 +

1

m
u− r̈ (6)

and the state-space form is

ė = f(e, u) =

[
e2

−D
mz2 +

1
mu− r̈

]
. (7)

The open-loop error system

f(e∗, 0) =

[
e2

−D
mz2 − r̈

]
=

[
z2 − ṙ

−D
mz2 − r̈

]
(8)

is not easily linearized at an equilibrium point for stability
analysis. However, ṙ and r̈ are bounded so we instead consider
the linear open-loop state dynamics ż = A0z, where

A0 =

[
0 1
0 −D

m

]
. (9)

The eigenvalues are λ1(A0) = 0 and λ2(A0) = −D/m,
therefore the open-loop state dynamics are marginally stable.
It follows that the open-loop error system is marginally stable
and bounded.

Choosing u = u(v) to feedback linearize (7) yields

u(v) = m

[
D

m
z2 + r̈ + v(t)

]
, (10)

where v(t) = −Ke(t) is a constant linear feedback control
and K = [K1 K2] are positive control gains.



Substituting (10) into (6) yields the following linearized
state-space form for the continuous closed loop error system:

ė = Ae+Bv = Ãe, (11)

where Ã = A−BK and

A =

[
0 1
0 0

]
and B =

[
0
1

]
. (12)

Thus,

Ã =

[
0 1

−K1 −K2

]
. (13)

where the positive control gains K1 and K2 are chosen to
make Ã Hurwitz. Since the trace of Ã is negative and the
determinant is positive, its eigenvalues λ1,2(Ã) lie in the left
half of the complex plane.

This system is controllable because C = [B, AB] is full
rank: i.e.,

C =

[
0 1
1 0

]
. (14)

The solution to the linearized error system (11) at time t is

e(t) = eAte(t0) +

∫ t

t0

eAτBv(t− τ)dτ, (15)

where the matrix exponential is

eAt = I +At+
A2t2

2!
+ . . . (16)

Since A2 = 0, we have

eAt = I +At =

[
1 t
0 1

]
(17)

Suppose the input u = u(t) in (6) undergoes a duty cycle
from t = tk to t = tk+1 = tk+β+T , k = 1, 2, . . ., where the
input is constant for an interval of length β (the burst phase)
followed by an interval of length T with zero input (the coast
phase), i.e.,

u(t) =

{
uk tk ≤ t ≤ tk + β
0 tk + β < t < tk + β + T

(18)

where uk is given by (10) such that uk = u(vk) where vk =
−Ke(t).

The closed loop error system during the burst phase is given
in (11). The solution to the system at the end of the burst phase
of cycle k is

e(tk + β) = eÃβe(tk) (19)

and the solution at the end of the coast phase is

e(tk + β + T ) = eATe(tk + β) = eAT eÃβe(tk). (20)

Since the trace of Ã, see (13), is negative and the determinant
is positive, its eigenvalues (λ1(Ã), λ2(Ã)) lie in the left half
of the complex plane. Let ṽ1 and ṽ2 denote the corresponding
eigenvectors. We have

eÃβ = V eΛβV −1. (21)

If the eigenvalues of Ã are real, we have V = [ṽ1 ṽ2] and
Λ = diag{λ1, λ2}, which implies

eΛβ =

[
eλ1β 0
0 eλ2β

]
. (22)

If the eigenvalues of Ã are complex, let λ1,2 = α± iγ where
α = Re{λ(Ã)} and γ = Im{λ(Ã)}. We have

V =

[
Re{ṽ1} Im{ṽ1}
Re{ṽ2} Im{ṽ2}

]
and Λ =

[
α −γ
α γ

]
(23)

which implies

eΛβ = eαβ
[
cos(γβ) − sin(γβ)
sin(γβ) cos(γβ)

]
(24)

Note, the eigenvalues of eÃβ (respectfully, eAT ) are eλ1(Ã)β

and eλ2(Ã)β (respectfully, eλ1(A)T and eλ2(A)T ). A sufficient
(but not necessary) condition for the composition of these two
maps to exponentially stabilize the origin, is for all of the
eigenvalues to be contained in the unit circle of the complex
plane. Furthermore, |eλt| < 1 if and only if Re{λ} < 0 and
Re{λ} = 0 implies |eλt| = 1. Therefore, since λ1(A) =
λ2(A) = 0, and both eigenvalues of Ã have negative real
part, then the origin of the closed-loop system is exponentially
stable.

Consider the case where r = r(t) is a constant reference
signal, ṙ = r̈ = 0. The 2nd-order tracking error dynamics (6)
simplify to

ė2 = −D
m
e2 +

1

m
u. (25)

The linear state-space form is

ė = A0e+B0u, (26)

where A0 is given in (9) and B0 = [0; 1/m]. This system is
controllable because C0 =

[
B0 A0B0

]
is full rank: i.e.,

C0 =

[
0 1

m
1
m − D

m2

]
. (27)

The solution to this system at time t is

e(t) = eA0te(t0) +

∫ t

t0

eA0τB0u(t− τ)dτ. (28)

We have A0 = A1 +A2, where

A1 =

[
0 0
0 −D

m

]
and A2 =

[
0 1
0 0

]
(29)

Note A1A2 = 0, which implies A1 and A2 commute and
eA0t = e(A1+A2)t = eA1teA2t.

Since A1 is diagonal, it has eigenvalues 0 and −D
m and,

therefore,

eA1t =

[
1 0

0 e−
D
m t

]
. (30)

Since A2
2 = 0, we have

eA2t = I +A2t =

[
1 t
0 1

]
, (31)



which implies

eA0t =

[
1 0

0 e−
D
m t

] [
1 t
0 1

]
=

[
1 t

0 e−
D
m t

]
(32)

Suppose the input u = u(t) undergoes a duty cycle as
defined in (18) where the burst phase input is a constant, linear
feedback control of the form uk = −Ke(t) with positive
control gains K = [K1 K2]. The closed-loop system during
the burst phase is

ė = (A0 −B0K)e = Ã0e (33)

where

Ã0 =

[
0 1

−K1

m −D+K2

m

]
. (34)

The solution to the system at the end of the burst phase of
cycle k is

e(tk + β) = eÃ0βe(tk) (35)

and, at the end of the coast phase,

e(tk + β + T ) = eA0Te(tk + β) = eA0T eÃ0βe(tk). (36)

Since the trace of Ã0 is negative and the determinant is
positive, its eigenvalues (λ1(Ã0), λ2(Ã0)) lie in the left half
of the complex plane. Furthermore, |eλt| < 1 if and only if
Re{λ} < 0 and Re{λ} = 0 implies |eλt| = 1. Therefore,
since λ1(A0) = 0, λ2(A0) = −D

m , and both eigenvalues of
Ã0 have negative real part, then the origin of the closed-loop
system for tracking a constant reference signal is exponentially
stable.

Fig 2 shows simulation results for the ideal vertical motion
constant target case using intermittent actuation in comparison
to continuous actuation. Fig 3 shows simulation results for the
vertical motion constant target case where the control input is
limited to the actual vertical thrust capability of the blimp.

B. Rotational reference tracking with intermittent actuation

Now consider tracking the angle of rotation about the
vertical axis, where the state θ is mapped to the unit circle
as eiθ and thus has nonlinear dynamics. First, we will present
an analysis for an arbitrary nonlinear system x ∈ R with
intermittent burst-coast actuation, followed by the specific case
for tracking the rotation θ.

Consider a nonlinear system ẋ = f(x, u(t)), x ∈ R,
with equilibrium point f(x∗, 0) = 0. Let u = u(t) be an
intermittent control input on a duty cycle from t = tk to
t = tk+1 = tk + β + T, k = 1, 2, . . ., where the input is a
function of x for the burst phase (interval of length β) followed
by zero input for the coast phase (interval of length T ), i.e.,

u(t) =

{
u(x) tk ≤ t ≤ tk + β
0 tk + β < t < tk + β + T

(37)

Let z = x − x∗ so that the linearized open-loop system
is ż = Az, where A = ∂f

∂z

∣∣∣
x=x∗

. Let g(x) = f(x, u(t))

be the closed-loop system, with g(x∗) = f(x∗, 0) = 0 and
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Fig. 2: Simulation results for tracking a constant vertical
reference under ideal conditions with continuous actuation
(thin, solid lines) and intermittent actuation (bold lines). The
bold lines are solid for the active control burst phase and
dashed for the passive coast phase.

linearization ż = Ãz, where Ã = ∂g
∂z

∣∣∣
x=x∗

. The combined
linearized intermittent burst-coast system is

ż =

{
Ãz tk ≤ t ≤ tk + β
Az tk + β < t < tk + β + T

(38)

We have
z(tk + β) = eÃβz(tk) (39)

and

z(tk+1) = z(tk + β + T ) = eAT z(tk + β) (40)

= eAT eÃβz(tk) (41)

This is a composition of two linear maps. A sufficient condi-
tion for stability of the composed map is if |λ(eAT )| ≤ 1 and
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Fig. 3: Simulation results for tracking a constant vertical ref-
erence subject to thrust constraints with continuous actuation
(thin, solid lines) and intermittent actuation (bold lines). The
bold lines are solid for the active control burst phase and
dashed for the passive coast phase.

|λ(eÃβ)| ≤ 1 we have |λ(eAT )| = eλ(A)T and |λ(eÃβ)| =
eλ(Ã)β .

Let λ(A) = α± iγ and λ(Ã) = α̃± iγ̃, which gives

|eλ(A)T | = |e(α±iγ)T | = |eαT ||e±iγT | ≡ eαT . (42)

Similarly, |eλ(Ã)β | ≡ eα̃β . Therefore, if α = Re(λ(A)) ≤ 0
and α̃ = Re(λ(α̃)) ≤ 0, then the composed map is stable.

Consider the case where Re(λ(A)) ≰ 0, i.e., the open-loop
system is unstable. Note that eAT eÃβ = eAT+Ãβ if and only
if A and Ã commute.

Eigenvectors V = [v1, . . . , vn] of A are also eigenvectors
of eAt. If A has a full set of eigenvectors, and Λ is a diagonal
matrix of eigenvalues λi(A), i = 1, . . . , n, then

eAt = V eΛtV −1, (43)

where eΛt is a diagonal matrix of the eigenvalues of eAt. It
follows that

λi(e
At) = eλi(A)t. (44)

In the case where v is also an eigenvector of Ã, we have

λ(eAT eÃβ) = eλ(A)T eλ(Ã)β (45)

= eλ(A)T+λ(Ã)β , (46)

where the sufficient condition for stability is Re(λ(A)T +
λ(Ã)β) ≤ 0.

In the case where A and Ã do not have the same eigenvec-
tors, the spectral radius satisfies

ρ(eAT eÃβ) ≤ ρ(eAT )ρ(eÃβ), (47)

where

ρ(eAT ) = |λmax(e
AT )| (48)

≤ |eλmax(A)T | (49)

≤ eαmax(A)T (50)

where αmax > 0 is the largest unstable open-loop eigenvalue.
Similarly,

ρ(eÃβ) = |λmax(e
Ãβ)| (51)

≤ |eλmax(Ã)β | (52)

≤ eα̃max(Ã)β (53)

where α̃max < 0 is the smallest stable closed-loop eigenvalue.
Substituting (50) and (53) into (47) yields the sufficient

condition

ρ(eAT eÃβ) ≤ eαmax(A)T+α̃max(Ã)β ≤ 1. (54)

Therefore, if αmax(A)T+α̃max(Ã)β ≤ 0 the composed map is
stable. This sufficient condition for stability of the composed
map also applies to the linear system discussed in Section
III-A, where αmax(A) = 0 and α̃max(Ã) < 0 implies stability.

Now consider the specific case for tracking rotation about
the vertical axis. Let θ = (eiθ, θ̇). The state dynamics for
the 2nd-order system in (2) are mapped to the nonlinear state
space form

θ̇ = f(θ, u(t)), (55)

where

f(θ, u(t)) =

[
θ1θ2

−D
Ig
θ2 +

1
Ig
u(t)

]
. (56)

where u is a control input.
Let r = r(t) denote a continuously differentiable time-

varying reference signal with bounded derivatives, ṙ = ṙ(t)
and r̈ ≡ 0, tracked by rotation about the vertical axis, and let
ε = (ε1, ε2) = (ei(θ−r), θ̇ − ṙ) denote the rotational tracking
error, where ε1 is constrained to the unit circle.

The nonlinear state space form is

ε̇ = f(ε, u(t)), (57)



where

f(ε, u(t)) =

[
ε1ε2

−D
Ig
ε2 +

1
Ig
u(t)

]
. (58)

The open-loop system is linearized about the equilibrium point
ε∗ = (1, 0) to get the matrix A = ∂f

∂ε

∣∣
ε∗ , where the Jacobian

is
∂f

∂ε
=

[
ε2 ε1
0 −D

Ig

]
(59)

and the open-loop matrix is

A =

[
0 1
0 −D

Ig

]
. (60)

Let uk = −Kε(tk), which implies the closed-loop system
ε̇ = g(ε) is

g(ε, u(t)) =

[
ε1ε2

−D
Ig
ε2 − 1

Ig
(K1ε1 +K2ε2)

]
(61)

The closed-loop system is linearized about ε∗ to get the matrix
Ã = ∂g

∂ε

∣∣∣
ε∗

, where the Jacobian is

∂g

∂ε
=

[
ε2 ε1

−K1

Ig
−D+K2

Ig

]
, (62)

and the closed-loop matrix is

Ã =

[
0 1

−K1

Ig
−D+K2

Ig

]
. (63)

Since the trace of Ã is negative and the determinant is
positive, its eigenvalues (λ1(Ã), λ2(Ã)) lie in the left half of
the complex plane. Therefore the closed loop continuous-time
error system stabilizes ε∗.

Suppose u = u(t) in (57) is an intermittent control input
on a duty cycle from t = tk to t = tk+1 = tk + β + T, k =
1, 2, . . ., where the input is a function of ε for the burst phase
(interval of length β) followed by zero input for the coast
phase (interval of length T ), i.e.,

u(t) =

{
u(ε) tk ≤ t ≤ tk + β
0 tk + β < t < tk + β + T

(64)

The combined linearized intermittent burst-coast system is

ε̇ =

{
Ãε tk ≤ t ≤ tk + β
Aε tk + β < t < tk + β + T

(65)

The solution to this system at time tk+1 is the composition of
two linear maps.

We have solutions to this system at time tk + β

ε(tk + β) = eÃβε(tk) (66)

and tk+1

ε(tk+1) = ε(tk + β + T ) = eATε(tk + β) (67)

= eAT eÃβε(tk) (68)

The sufficient condition for stability follows from (42). Since
α = Re(λ1,2(A)) ≤ 0 and α̃ = Re(λ(Ã)) < 0, the composed
map is stable.
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Fig. 4: Simulation results for tracking a constant angle refer-
ence under ideal conditions with continuous actuation (thin,
solid lines) and intermittent actuation (bold lines). The bold
lines are solid for the active control burst phase and dashed
for the passive coast phase.

Fig. 4 shows simulation results for the ideal rotational
motion constant target case using intermittent actuation in
comparison to continuous actuation. Fig. 5 shows simulation
results for the rotational motion constant target case where the
control input is limited to the actual torque capability of the
blimp.

The ideal rotational case without torque constraints gets
within 0.1 radians of the target angle in only 5 burst-coast
cycles, but with the torque limited to the physical blimp
constraint it only gets within 0.2 radians in 5 cycles. The
rotational case needs over 20 burst-coast cycles to converge
within 0.1 radians without changing the relative lengths of
the burst and coast phases. It is part of ongoing work to more
accurately characterize the rotational drag model used for these
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Fig. 5: Simulation results for tracking a constant angle ref-
erence subject to thrust constraints with continuous actuation
(thin, solid lines) and intermittent actuation (bold lines). The
bold lines are solid for the active control burst phase and
dashed for the passive coast phase.

dynamics and to determine appropriate interval lengths of
the rotational burst-coast cycle to ensure exponential stability.
However, the vertical motion cases are able to converge to
the target position in simulation with both ideal thrust and
with the thrust limited to the physical blimp constraints. The
next section presents experimental results for vertical motion
intermittent actuation.

IV. EXPERIMENTAL RESULTS

For each MAB experiment the blimp envelope is inflated
with helium and the gondola is ballasted for the blimp to
be neutrally buoyant. The experiments use a constant vertical
reference of 0.8 meters and compare the performance of

the blimp using continuous control and intermittent actuation
control.

Fig. 6 contains results for the vertical motion experiments.
Figs. 6a and 6b show position and error results, respectively,
for tracking a constant reference altitude with continuous
actuation using the existing control described in Section II
and with intermittent actuation using the control law derived
in Section III-A. The discrepancy between the continuous
actuation experimental and simulation results indicates that
the MAB was balanced positively buoyant instead of neutrally
buoyant. For the intermittent actuation test, the MAB was re-
balanced to be slightly negatively buoyant.
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Fig. 6: Experimental results of tracking constant vertical posi-
tion with the miniature autonomous blimp. The lines are solid
for the active control ’burst’ phase, and dashed for the passive
’coast’ phase. The corresponding position tracking error has
standard deviation σ = 0.2000m and σ = 0.1451m, for
continuous actuation and intermittent actuation, respectively.

The overall error variance is larger for the continuous
actuation test because it started from a higher initial altitude.



However, looking at the tracking error after a proximity
threshold of 0.2 meters is reached, the standard deviation is
σ = 0.0668m for continuous actuation, and σ = 0.1331m for
intermittent actuation. While continuous actuation is able to
hold position more precisely, Fig. 7 compares the amount of
vertical thrust used for continuous and intermittent actuation.
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Fig. 7: Control input force for tracking a constant vertical
reference with continuous actuation and intermittent burst-
coast actuation.

V. CONCLUSION

This work presents an intermittent control strategy for track-
ing a time-varying target reference with theoretically proven
stability. The error-based tracking method with state-feedback
control is demonstrated in simulation for decoupled 1-DOF
vertical and rotational motion tracking a constant target.
Experimental results for vertical motion tracking a constant
target reference compares performance between continuous
and intermittent actuation using the MAB. Ongoing work
aims to improve the dynamical model by refining the physical
parameters and optimizing the burst and coast interval lengths
for each 1-DOF motion case, as well as expansion of the
model to coupled 2-DOF planar motion. Future work seeks
to further develop the intermittent control strategy to include
state estimation and onboard measurements for estimation of
the target trajectory. The model could also be expanded to a
multi-agent approach for cooperative target localization and
tracking.
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ADDITIONAL FIGURES

This appendix includes additional figures from experiments
and simulation.

Fig. 8 shows experimental results for tracking a constant
vertical reference with continuous actuation for a) test C1 30
seconds and b) test C2 35 seconds. Error standard deviation
for c) test C1 σ = 0.1444m and d) test C2 σ = 0.0905m.
Control input force fz for e) test C1 and f) test C2.

Fig. 9 shows experimental results for tracking a constant
vertical reference with intermittent burst-coast actuation for a)
test I2, b) test I3, and c) test I8, where the solid line represents
the burst phase and the dashed line represents the coast phase.
The tracking error has standard deviation of d) test I2 σ =
0.1670m, e) test I3 σ = 0.1879m, and f) test I8 σ = 0.1739m.
Control input force fz for g) test I2, h) test I3, and i) test I8.

Fig. 10 shows experimental results for tracking a constant
vertical reference with a) continuous actuation for test C3 and
b) intermittent burst-coast actuation for test I9, where the solid
line represents the burst phase and the dashed line represents
the coast phase. The tracking error has standard deviation of
c) test C3 σ = 0.2000m and d) test I9 σ = 0.1451m. Control
input force fz for e) test C3, f) test I9.
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Fig. 8: Additional continuous tests
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Fig. 9: Additional intermittent tests
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Fig. 10: Individual results compared in section IV


