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Abstract: This paper provides a decentralized control algorithm for multiple autonomous
vehicles to sample environmental quantities on closed paths. We present a multi-vehicle control
algorithm that samples a nonstationary spatiotemporal field using optimal interpolation to
evaluate the sampling performance. The control algorithm leverages a coordinate transformation
under which uniform sampling is optimal, because the unknown field is stationary in the
new coordinates. The algorithm regulates the spacing between vehicles in order to limit the
local maximum mapping error of the field reconstruction and preserves the steady-state vehicle
sampling speed, which is a nondimensional measure of vehicle speed scaled by the spatial and
temporal decorrelation lengths of the field at the vehicles location. The sampling performance
is illustrated using a numerical simulation in a hypothetical environmental field.
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1. INTRODUCTION

In environmental monitoring it is important to generate
accurate spatiotemporal maps of scalar fields such as tem-
perature (Inoue et al., 2005) or pollutant concentration
(Torres et al., 2008). In physical oceanography, for exam-
ple, it is often desired to sample along the boundary of
a domain in order to determine the mass, heat, or salt
budget (Rudnick and Davis, 1988). Although this task
may be difficult to accomplish with a limited number of
stationary sensors, using a mobile sensor network on a
closed path has proved to be an effective solution (Leonard
et al., 2010). Sampling performance is optimal (in the sense
of minimizing mapping error) if measurements are concen-
trated in proportion to the variability of the unknown field.

Several approaches to sampling spatiotemporal fields ex-
ist in the literature. In distributed parameter estima-
tion (Demetriou, 2010; Song et al., 2005; Ucinski and
Demetriou, 2004), the mapping task is to determine the
unknown parameters of a partial differential equation.
With this approach, and other methods such as those
based on optimal interpolation, a priori knowledge of the
field is typical. For example, each vehicle may possess
knowledge of the first and second-order statistics of the
field in order to execute a routing strategy that minimizes
mapping error (Davis et al., 2009; Sydney and Paley, 2011;
Leonard et al., 2007). Recent works (Martinez et al., 2007;
Laventall and Cortes, 2009; Zhang and Leonard, 2010) pro-
vide algorithms to increase mapping accuracy using mobile
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sensor platforms, though these algorithms are designed for
stationary fields.

In contrast to previous works (Sydney and Paley, 2011;
Paley, 2007), the focus of this paper is sampling a nonsta-
tionary spatiotemporal field, i.e., a spatiotemporal field
in which the space-time statistics change when shifted
in space or time. Many environmental quantities, such
as pollutant concentration, have variable spatial struc-
ture and should be modeled as a nonstationary field.
Some recent works on sampling nonstationary fields focus
on coverage control (Cortez et al., 2004; Leonard and
Olshevskyi, 2011), and use a heuristic measure of sam-
pling need to measure sampling performance. For example,
one algorithm (Leonard and Olshevskyi, 2011) samples a
time-invariant field by routing vehicles to fixed locations.
Other works (Sampson and Guttorp, 1992; Schmidt and
O’Hagan, 2003) estimate the covariance structure of a
nonstationary spatial field using fixed measurement loca-
tions. In one such work (Sampson and Guttorp, 1992), a
coordinate transformation is used to ensure the covariance
structure of the transformed field is stationary.

In this paper we provide an algorithm to sample nonsta-
tionary spatiotemporal fields using multiple mobile sensors
on a closed path. We use intuition gained from the optimal
mapping of a stationary field to develop the sampling
method. We design a coordinate transformation that ren-
ders the field locally stationary in the transformed coor-
dinates so that uniform coverage is optimal. We apply ex-
isting phase-control strategies (Paley and Peterson, 2009;
Sydney and Paley, 2011) to equalize the vehicle spacing in
the new coordinates. Since the mapping error is stationary
in the transformed coordinates, we are able to determine



the locations of local maximum error in the field. We show
that this control strategy corresponds to preserving the
steady-state sampling speed of the vehicles, which allows
us to design sampling trajectories using the same method-
ology used for stationary fields. The sampling speed is
a nondimensional measure of vehicle speed scaled by the
spatial and temporal decorrelation lengths of the field at
the vehicles location. In steady state, the vehicle speed
varies to maintain its sampling speed. We illustrate the
performance of the sampling strategy using a hypothetical
environmental field.

The primary contribution of this paper is a decentralized
multi-vehicle speed control to regulate inter-vehicle spac-
ing so that a nonlinear coordinate transformation ensures
the local mapping error is stationary. We also provide
the location of the maximum error in a nonstationary
field for a given set of trajectories generated in a station-
ary coordinate system. Although the multi-vehicle speed
control leverages existing tools for stabilization of vehicle
patterns on closed paths, its novelty lies in the use of a
coordinate transformation that make these tools suitable
for sampling in a nonstationary field. Indeed we expect
that the results from this paper may be useful for other
sampling designs, such as Voronoi-based methods (Gra-
ham and Cortes, 2009).

Section 2 summarizes relevant research on multi-vehicle
coordination and provides background information on
computing mapping error. Section 3 presents a control law
that drives multiple vehicles to an equally spaced moving
formation with constant sampling speed and derives the
location of the maximum mapping error in the spatiotem-
poral field. Section 4 summarizes the paper.

2. BACKGROUND

The goal of this paper is to design a multi-vehicle control
strategy to effectively sample a nonstationary field along a
closed path. Section 2.1 describes an existing decentralized
control originally designed for a system of coupled phase
oscillators that regulates the inter-vehicle spacing in a
moving formation. Section 2.2 describes how to optimally
interpolate measurements taken along the vehicle trajec-
tories to generate estimates of the spatiotemporal field
and the corresponding mapping error. These techniques
are used to design and evaluate the performance of the
sampling method presented in Section 3.

2.1 Splay Control for Coupled Phase Oscillators

Modeling the positions of the vehicle fleet on a closed path
as a set of coupled phase oscillators allows us to uniformly
cover the sample space, which we elect to do in a set of
coordinates other than the original space-time coordinates.
This section reviews the formulation of a splay control
(Sepulchre et al., 2007), which uniformly spaces a set of
phase oscillators around the unit circle. Let phase variable
θk ∈ S1 denote the non-dimensional position of vehicle
k on a closed path where k = 1, ..., N . The dynamics of
vehicle k are

θ̇k = uk(θ1, ..., θN ) = uk(θ), (1)

where we drop the subscript to indicate that the quantity
is an N × 1 matrix, e.g., θ = [θ1 · · · θN ]T .

We would like drive solutions of (1) to a splay formation
(Sepulchre et al., 2007), which is a configuration of equally
spaced phases. Choosing the control law (Sepulchre et al.,
2007)

uk = −Km

N

N∑
j=1

bN
2 c∑

m=1

1

m
sin(m(θk − θj)), (2)

where Km > 0 and bxc is the largest integer less than
x, stabilizes the vehicles to a splay formation (Sepulchre
et al., 2007, Theorem 7). Adding a constant drift vector
field, s0 ∈ R, to the right-hand side of (1), representing
motion around the path, does not change this result. Note
that (2) is a gradient of the potential

U ′(θ) ,

bN
2 c∑

m=1

KmUm(θ), Km > 0, (3)

where bxc is the largest integer less than x,

Um(θ) ,
N

2
|pmθ|2, and pmθ ,

1

mN

N∑
j=1

eimθj .

We use (2) to regulate the spacing between vehicles in a
nonstationary field in Section 3.

2.2 Evaluating Mapping Error using Optimal Interpolation

We use measurements of a spatiotemporal field to generate
an estimate of an unknown field and the corresponding
error map as follows. Let A(rk) represent a continuous

scalar field, where rk , [θk tk]T ∈ S1 × R+ describes
the space-time location of a point on a closed path. The
mapping error is determined using optimal interpolation
(Eliassen and Sawuer, 1954; Gandin, 1963), which treats

A(rk) as a discrete random field. Let r̃d = [θ̃d t̃d]
T be the

space-time location of measurement d = 1, ..., D and εd be
measurement noise. The measurement is zd = A(r̃d) + εd.
Let E[·] denote the expected value of a random variable.
We assume E[εmεl] = σ̃0δml for all pairs m and l, where
σ̃0 is the standard deviation of the measurement noise and
δml is the Kronecker delta equal to one if m = l and zero
otherwise.

Let Ā(ri) be the mean of the random field at location
ri, i = 1, ...,M , and C(ri, rj) be the covariance of points

ri and rj . The least squares estimate Â(ri) of A(ri) is
(Liebelt, 1976)

Â(ri) = Ā(ri) +

D∑
d=1

C(ri, r̃d)

(
D∑
l=1

(M−1)dlzd

)
,

where M−1 is the inverse of the measurement covariance
matrix and

Mdl = E[zdzl] = C(r̃d, r̃l) + σ̃0δdl.

Let Ce denote the matrix of error covariances after assim-
ilating the set of measurements r̃ = [r̃1 · · · r̃D]T . We have
(Gandin, 1963; Bretherton et al., 1976)

Ce(ri, rj ; r̃) =C(ri, rj)− (4)

D∑
d=1

D∑
l=1

C(ri, r̃d)(M
−1)dlC(rj , r̃l).



The mapping error at ri is the diagonal element Ce(ri, ri; r̃)
of the error covariance matrix.

To model nonstationary fields, we adopt a nonstationary
covariance function of the form (Higdon et al., 1999)

C(ri, rj) =
|Σ(ri)|1/4|Σ(rj)|1/4∣∣∣Σ(ri)+Σ(rj)

2

∣∣∣1/2 exp

[
−1

2
(ri − rj)T×

×
(

Σ(ri) + Σ(rj)

2

)−1

(ri − rj)

]
, (5)

where Σ(rk) ∈ R2×2 is a positive definite matrix that is
continuous in rk. We further assume Σ(rk) has the form
Σ(rk) = diag{σ2(θk), τ2(tk)}, so that the decorrelation
scales are decoupled in space and time. The diagonal
entries of Σ(rk) are the spatial and temporal decorrela-
tion scales of the field, respectively, which determine the
elliptical footprint of a measurement. As σ(θk) (or τ(tk))
increases, the area of reduced mapping error around a
measurement location r̃k increases. If σ(θk) and τ(tk) are
constant, (5) reduces to a stationary covariance function.

Figure 1(a) shows the along-track mapping error of two
vehicles traveling around a circle of radius two in a sta-
tionary field, which creates a helical pattern in the space-
time volume. Figure 1(b) shows the error map on a two-
dimensional view of the space-time domain; vehicles trav-
eling counter clockwise around the circle exit on the right
of the space-time domain (θk = 2π) and reappear on the
left (θk = 0). Figure 1(c) shows how using a constant speed
sampling strategy can produce areas of large sampling
error in a nonstationary field. This motivates the need for
sampling strategies designed for nonstationary fields that
contain varying spatial and temporal scales.
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Fig. 1. Two vehicles traveling in a stationary field on

a circular trajectory yield an error map represented
(a) on the cylinder that encompasses the vehicle
trajectories and (b) on a flattened representation of
the space-time volume. (c) The error map for two
constant-speed vehicles in a nonstationary field.

An important quantity in mapping error analysis is the
non-dimensional vehicle speed sk, called the sampling
speed (Leonard et al., 2007), given for model (1) by

sk = θ̇k
τ(tk)

σ(θk)
. (6)

A vehicle’s sensor swath (the portion of the domain cov-
ered by the set of sensor footprints generated along a sam-
pling trajectory) is called spatially constrained if sk < 1

and temporally constrained if sk > 1 (Paley, 2007). Figures
2(a) and 2(b) compare the sensor swath of a spatially
constrained vehicle to a temporally constrained one. The
width of the sensor swath is determined by the spatial
(resp. temporal) decorrelation scale for a spatially (resp.
temporally) constrained vehicle. Figure 2(c) shows the
variation of the sensor swath that occurs for a constant-
speed vehicle in a nonstationary field, whose sampling
speed is variable
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Fig. 2. Sensor swaths for (left) spatially constrained and
(middle) temporally constrained vehicles in a station-
ary field; (right) sensor swath in a nonstationary field.

For a fleet of spatially (resp. temporally) constrained
vehicles in a stationary field, a sampling strategy that
covers the space-time domain is to separate the vehicles
evenly in space (resp. time) (Sydney and Paley, 2011;
Paley, 2007) as shown in Figure 1(b). The number of
vehicles necessary to fully cover the domain is determined
by the value of sk as follows (Paley, 2007). Let dxe denote
the smallest integer larger than x and T be the period of a
single revolution around the path. If sk < 1, the number of
vehicles need to cover the space is N = d2π/σe, otherwise
N = dT/τe (Paley, 2007). These equations are simply the
number of vehicles needed to tile the domain if the vehicle
is spatially (resp. temporally) constrained. If the vehicle
is spatially constrained. N depends on the domain length
and, if the vehicle is temporally constrained, N depends on
the domain time. The advantage of the algorithm in the
following section is that it allows the application of this
rubric to the problem of sampling a nonstationary field.

3. ACHIEVING STATIONARY MAPPING ERROR
USING SPLAY CONTROL

In a stationary field, splay formations can be used to
achieve optimal mapping performance (Sydney and Paley,
2011). In a nonstationary field, a splay formation may
not be the optimal sampling strategy, as shown in Figure
1(c). In this section, we present a change of variables that
renders a nonstationary field locally stationary. In the
stationary coordinates, we optimize the mapping perfor-
mance using a splay controller. We provide conditions for
when the transformation exists and is invertible as well as
conditions for the location of the maximum mapping error.
We also show that a splay formation in the stationary
coordinates corresponds to a time-varying formation in the
nonstationary coordinates that preserves the steady-state
vehicle sampling speed.



Let rk , [θk tk]T be the original coordinates and yk ,
[Ψk Tk]T be a set of transformed coordinates. We would
like to find yk such that the field with covariance (5)
becomes stationary, (after Sampson and Guttorp (1992)).
Let Σ̄(ri, rj) = (Σ(ri) + Σ(rj))/2 and rij = ri − rj . We
seek yk that satisfies

|Σ(ri)|1/4|Σ(rj)|1/4√∣∣Σ̄(ri, rj)
∣∣ exp

[
−1

2
rTij(Σ̄(ri, rj))

−1rij

]

= exp

[
−1

2
(yi − yj)T (yi − yj)

]
(7)

for all pairs i, j ∈ 1, ...,M . Since we assume the decorre-
lation scales are decoupled in space and time, the trans-
formations are decoupled too. Let Ψij , Ψi − Ψj and

Tij , Ti − Tj . Then, (7) yields

Ψij =

√√√√ 2(θi − θj)2

σ2(θi) + σ2(θj)
+ ln

(
σ2(θi) + σ2(θj)

2
√
σ2(θi)σ2(θj)

)
(8)

Tij =

√√√√ 2(ti − tj)2

τ2(ti) + τ2(tj)
+ ln

(
τ2(ti) + τ2(tj)

2
√
τ2(ti)τ2(tj)

)
. (9)

Determining how to transform the domain such that the
(8) and (9) hold for all i and j is a numerical analysis
problem beyond the scope of this paper. Consider instead
the special case where j = i + 1, i.e., Ψj = Ψi + ∆Ψ and
θj = θi + ∆θ. This corresponds to ensuring the domain
is locally stationary about the ith location. By locally
stationary, we mean that only the covariance between
adjacent locations are rendered stationary.

Lemma 1. A coordinate transformation that ensures the
domain is locally stationary is

Ψk =

θk∫
0

1

σ(θ′)
dθ′ (10)

Tk =

tk∫
0

1

τ(t′)
dt′. (11)

Furthermore, the transformations exist and are invertible
if σ(θk) and τ(tk) are positive, bounded, and continuous.

Proof. If j = i+ 1, i.e., Ψj = Ψi + ∆Ψ and θj = θi + ∆θ,
then (8) reduces to

∆Ψ =

(
2(∆θ)2

σ2(θi) + σ2(θi + ∆θ)
+

ln

(
σ2(θi) + σ2(θi + ∆θ)

2
√
σ2(θi)σ2(θi + ∆θ)

))1/2

(12)

We divide both sides by ∆θ and take the limit as
∆θ,∆Ψ→ 0 to obtain

∂Ψk

∂θk
=

1

σ(θk)
. (13)

Integrating both sides yields the desired result. The deriva-
tion of the temporal transformation is similar.

If σk and τk are bounded and continuous, then the integrals
in both transformations exist. If the decorrelation scales
are both positive, then Ψk and Tk are monotonically
increasing functions of θk and tk and are hence invertible.

In the (Ψk, Tk) coordinates, the mapping error is locally
stationary, thus applying splay control in these coordinates
optimizes sampling performance. In addition, the control
is decentralized, so there is no need for a central unit to
generate and transmit control commands. The following
theorem provides a speed controller that prescribes uni-
form coverage of the field in the stationary coordinates.

Theorem 2. Let

φk =
2π

Ψk(2π)
Ψk(θk)

be a phase variable that is 2π periodic. A speed control
that drives (1) to a splay formation in the stationary
coordinates and a time-varying formation with constant
sampling speed s0 in the original coordinates is

uk =
σ(θk)

τ(tk)

(
s0 −

∂U ′

∂φk

)
, (14)

where U ′(φ) is given by (3) with θ replaced by φ.

Proof. The dynamics of the kth vehicle are

dΨk

dTk
= νk(Ψ1,Ψ2, ...,ΨN ;Tk).

To drive the vehicles to a splay formation, we choose

νk = s0 −
∂U ′

∂φk
, (15)

Using equations (10) and (11) we have

uk = θ̇k =
dθk
dΨk

dΨk

dTk

dTk
dtk

=
σ(θk)

τ(tk)

(
s0 −

∂U ′

∂φk

)
, (16)

which is the desired result.

In steady state, ∂U ′

∂φk
= 0 which implies

θ̇k =
σ(θk)

τ(tk)
s0. (17)

Solving for s0 we see

s0 =
τ(tk)

σ(θk)
θ̇k, (18)

which is the sampling speed given by (6). Thus, the control
(14) preserves the vehicles steady-state sampling speed s0.

Once a splay formation is reached, the vehicle speed
changes such that the sampling speed is constant. Theorem
2 allows us to design sampling trajectories according to the
rubric given in Section 2.2, which determines the number
of vehicles needed to fully cover the sampling domain.
This sampling strategy guarantees coverage of a stationary
field, it does not guarantee full coverage of a nonstationary
one because the coordinate transformation is only valid
locally as mentioned before Lemma 1. So, although the
full domain will not be covered, the constant sampling-
speed strategy performs better in areas of high variability
than a constant-speed strategy.



In a stationary field, mapping error is reduced by in-
creasing the sampling speed of the vehicle. The maximum
attainable sampling speed is dictated by the maximum
speed of the vehicle. Hence, we choose s0 using (6) to
be as large as possible without exceeding the maximum
speed of the platform. In the transformed coordinates the
mapping error is stationary, which implies the location of
the maximum mapping error is can be determined. The
following Lemma provides a necessary condition for the
locations of maximum mapping error.

Lemma 3. Let F : θi(ti) → Ψi(Ti) be the mapping from
the stationary coordinates to the nonstationary coordi-
nates and Ψ̃ = [Ψ̃1(Ti), ..., Ψ̃N (Ti)]

T be the locations of the
the N vehicles at some time Tk in the stationary coordi-
nates. A necessary condition for the location of maximum
mapping error at a specific time, θi,max(ti) is

N∑
k=1

N∑
j=1

∂C(Ψi,max, Ψ̃j)

∂Ψi
(M−1)kjC(Ψi,max, Ψ̃k) = 0 (19)

and

N∑
k=1

N∑
j=1

[
∂2C(Ψi, Ψ̃j)

∂Ψ2
i

(M−1)kjC(Ψi,max, Ψ̃k)+

∂C(Ψi,max, Ψ̃j)

∂Ψi,max
(M−1)kj

∂C(Ψi,max, Ψ̃k)

∂Ψi,max

]
< 0, (20)

where Ψi,max = F (θi,max). The locations of local maxi-
mum error are values of θi,max that satisfy (19) and (20).

The first condition comes from taking the first derivative
of (4) and setting it equal to zero to locate the extreme
points. The locations are guaranteed to be a minimum if
the second derivative of (4) is less than zero at the extreme
point, which is the second condition.

As an example of the overall sampling strategy, consider
the following decorrelation-scale functions for σk and τk:

σk = σ0 − µ1e
µ2(cos(θk−θ0)−1),

τk = τ0 − φ1e
−φ2(tk−t0)2

where µ1, µ2, and θ0 are parameters that determine
the size, shape, and location of a dip in the spatial
decorrelation scale from the nominal value of σ0; and α1,
α2, and t0 are parameters that determine the size, shape,
and location of a dip in the temporal decorrelation scale
from the nominal value of τ0. Figure 3 shows the temporal
decorrelation scale as a function of tk and the transformed
coordinate Tk, which is warped near t0.

Figure 4(a) shows the decorrelation scales of a nonstation-
ary field represented using ellipses in the space-time plane.
Figure 4(b) shows how a uniform grid in the transformed
coordinates looks under the transformation (10)–(11). In
the original coordinates, space and time contract around a
nonstationarity. This means a vehicle traveling at constant
speed in the transformed coordinates will slow down near
a nonstationarity to maintain its sampling speed, which
places more measurements near the nonstationarity.

Using the parameters in Table 1, we conducted a simu-
lation of two vehicles with arbitrary initial conditions in

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

τ 
(h

rs
)

t (hrs)
0 5 10 15 20

0

5

10

15

20

T

t (hrs)

Fig. 3. Example of a nonstationary temporal decorrelation
scale with nonstationarity centered at t0 = 10. The
shaping parameters are τ0 = 1, α1 = 0.5 and α2 = 0.5.
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Fig. 4. (a) Ellipses showing the size of the decorrelation
scales in a nonstationary field. (b) Transformation of
a uniform grid under equations (10)–(11).

Table 1.

Parameter Values

τ0 1.5 hours σ0 1.5 rad
φ1 0.8 hours µ1 0.7 rad
φ2 0.5 hours−2 µ2 1.0
t0 10 hours θ0 π rad
s0 0.6 rad/hour

a hypothetical unknown field. Figure 5(a) shows the tra-
jectories in the transformed coordinates generated using
(1) with uk given by (14) and sampling speed s0 = 0.6.
Figure 5(b) shows the sampling trajectories in the original
coordinates, which warp near the nonstationarity in order
to maintain sk = s0. Figure 5(c) shows the corresponding
mapping error. The black x’s indicate the locations of
the maximum mapping error found using Lemma 3. The
average mapping error using this control strategy is 0.20
whereas the average mapping error for the same number
of vehicles traveling at constant speed is 0.24 (we used a
constant speed equal to the average speed produced by
the sampling-speed strategy.) Driving the vehicles to a
constant sampling speed yields less mapping error.

4. CONCLUSION

This paper provides a multi-vehicle control algorithm for
sampling a nonstationary spatiotemporal field on a closed
path. The control strategy uses a coordinate transforma-
tion that makes the unknown field locally stationary. The
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Fig. 5. Simulation of the sampling algorithm. The trajec-
tories in (a) the transformed coordinates and (b) the
original coordinates; (c) the corresponding error map.

coordinate transformation warps space and time near non-
stationary locations, which clusters measurements in areas
where the decorrelation scales are smaller. We regulate
the inter-vehicle spacing using a phase-oscillator control
strategy. We show that this control strategy corresponds
to prescribing a steady-state sampling speed, which allows
us to design vehicle trajectories using the same method
as that used for stationary fields. We also provide the
locations of local maximum error of the field. In ongoing
work, the coverage strategy is being expanded to two
spatial dimensions. We are also investigating the benefit
of this algorithm as compared to other mapping error
reduction strategies (e.g., Voronoi based approaches) to
determine when it is a beneficial strategy.
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