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Summary. This paper presents analysis and design of feedback control laws for
stabilization of parallel and circular trajectories of a network of self-propelled parti-
cles. Time-scale separation of inter-particle alignment and spacing controls permits
application of previous convergence results for oscillator phase synchronization and
particle motion.

1 Introduction

Collective motion occurs in large groups of natural organisms such as flocks of
birds and schools of fish. One remarkable aspect of this motion is the stability
of the aggregate linear momentum. Feedback control laws that stabilize group
trajectories are important for engineering applications such as autonomous
underwater vehicles (AUVs). For example, a fleet of AUVs can be used as a
reconfigurable moving sensor array for data collection in the ocean [FBLS03].
We study a particle model that consists of self-propelled particles subject to
planar steering controls, after [JK02]. The steering controls can be separated
into relative alignment and spacing components. We use results from the cou-
pled oscillator literature, namely [WS94], to stabilize the linear momentum of
the group via relative orientation controls. The spacing controls are then used
to achieve parallel and circular group motion.
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The particle model we consider in this paper is a kinematic model of
self-propelled particles introduced in [JK02]. Each particle moves at constant
speed in the plane but adapts its orientation (i.e. the direction of its unit veloc-
ity vector) according to the motion of neighboring particles. The state space
of each particle is the group SE(2) ≈ R2 × S1 of rigid displacements in the
plane. The system of N coupled particles thus evolves on a high-dimensional
state space (N copies of SE(2)). However, when the coupling only includes
relative orientation variables and disregards relative spacing variables, the
spatial variables can be ignored and the reduced dynamics evolve on N copies
of S1, i.e. an N -dimensional torus. The reduced dynamics then become equiv-
alent to phase models of N coupled oscillators in which each oscillator is only
modelled by a phase variable.

Analysis results have been obtained by Watanabe and Strogatz [WS94]
for phase models of coupled oscillators under the particular assumption of
(all-to-all) pure sinusoidal coupling. They showed that this model possesses
N − 3 constants of motion and provided a global analysis of the remaining
low-dimensional dynamics. The oscillators either asymptotically synchronize
or converge to a manifold of “incoherent” states. These incoherent states are
characterized by an arbitrary distribution of phase differences on the unit
circle such that the centroid of the oscillators vanishes. In our particle model,
phase synchronization corresponds to parallel motion of the moving particles,
whereas a vanishing centroid of the oscillators corresponds to motion of the
particles around a fixed center of mass. Sinusoidal coupling of the orientation
(phase) variables thus stabilizes the linear momentum of the group; either to a
maximal value (parallel motion) or to a minimal value (fixed center of mass).

The connection between the phase-oscillator model of Watanabe and Stro-
gatz [WS94] and the particle model of Justh and Krishnaprasad [JK02] is thus
exploited to decouple the design of relative orientations from the design of rel-
ative spacing in particle models. The resulting dynamics have provable global
convergence properties, and the proposed methodology should be applicable
beyond the stabilization problems considered in this paper. The last section
of the paper summarizes limitations of the present approach and possible
directions for future research.

2 Particle Model

We consider a continuous-time kinematic model of N identical particles (of
unit mass) moving in the plane at unit speed [JK02]:

ṙk = eiθk

θ̇k = uk, 1 ≤ k ≤ N.
(1)

In complex notation, the vector rk ∈ C ≈ R2 denotes the position of particle
k and the angle θk ∈ S1 denotes the orientation of its (unit) velocity vector
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eiθk = cos θk + i sin θk. We omit the index of a coordinate to denote the
corresponding N -vector, e.g. r = (r1, . . . , rN )T . In the absence of steering
control (θ̇k = 0), each particle moves at unit speed in a fixed direction and
its motion is decoupled from the other particles. We study the influence of
various feedback control laws that result in coupled dynamics and closed-loop
convergence to different types of organized or collective motion. We assume
identical control for each particle. In that sense, the collective motions that
we analyze in the present paper do not require differentiated control action
for the different particles (e.g. the presence of a leader for the group). For
convenience, we decompose the steering control of particle k into the sum of
two terms:

uk = uspac
k + Kualign

k . (2)

The term ualign
k depends only on relative orientation, i.e., on the variables

θjk = θj − θk, 1 ≤ j, k ≤ N . The term uspac
k depends both on relative orien-

tation and relative spacing, i.e., on the variables θjk and rjk = rj − rk, 1 ≤
j, k ≤ N . The simplest form of phase coupling,

ualign
k =

1
N

N∑
j=1

sin(θj − θk), (3)

is adopted throughout the paper, while different choices are discussed for the
feedback uspac

k . The sign of the parameter K plays an important role in the
results of the paper.

The kinematic model (1) has been recently studied by Justh and Krish-
naprasad [JK02, JK03]. These authors have emphasized the Lie group struc-
ture that underlies the state space. The configuration space consists of N
copies of the group SE(2). When the control law only depends on relative ori-
entations and relative spacing, it is invariant under an action of the symmetry
group SE(2) and the closed-loop dynamics evolve on a reduced shape space.
Equilibria of the reduced dynamics correspond to equilibrium shapes and can
be only of two types [JK02]: parallel motions, characterized by a common ori-
entation for all the particles, and circular motions, characterized by circular
orbits of the particles around a fixed point. Both types of motion have been
observed in simulations in a number of models that are kinematic or dynamic
variants of the model (1), see for instance [LRC01].

A simplification of the model (1) occurs when the feedback laws depend
on relative orientations only (uspac

k ≡ 0). The control has then a much larger
symmetry group (N copies of the translation group), and the reduced model
becomes equivalent to phase models of the form

θ̇k = ωk +
∑

j

ujk(θj − θk), 1 ≤ k ≤ N (4)

where the phase variable (θ1, . . . , θN ) belongs to the N -dimensional torus TN .
(The model (4) still has an S1-symmetry because the feedback only depends on
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phase differences). Formal equivalence with (1)-(2) is obtained with uspac
k = ωk

and Kualign
k =

∑
j ujk(θj − θk). In the absence of coupling (ujk ≡ 0 for all

j and k), each particle “rotates” at its natural frequency ωk around a fixed
point. The phase coupling function, ujk, between oscillator j and oscillator k
is assumed to be continuously differentiable and 2π-periodic. The choice (3)
assumes all-to-all coupling with an identical phase-difference coupling function
that only includes one harmonic.

Our goal is to make the available results for phase models relevant to the
particle model (1), even when the control uspac

k is no longer constant. The
proposed approach is to assume a large enough value for the parameter K
such as to enforce a time-scale decomposition between the (fast) orientation
dynamics (determined by the phase model (4)) and the (slow) spacing dy-
namics determined by the particle model (1) restricted to its slow manifold.
Thus, we study the singularly perturbed model

ṙk = eiθk

εθ̇k = εuspac
k + 1

N

∑N
j=1 sin(θj − θk), 1 ≤ k ≤ N,

(5)

where the small parameter ε enforces a time-scale separation between fast
dynamics in the time-scale τ = t−t0

ε and slow dynamics in the time-scale t.
In the fast time-scale τ , the variable r is frozen and the dynamics reduce to

d

dτ
θk = εuspac

k +
1
N

N∑
j=1

sin(θj − θk)

which, in the limit ε → 0, is precisely the phase model

θ̇k =
1
N

N∑
j=1

sin(θj − θk), 1 ≤ k ≤ N (6)

studied by Strogatz and Watanabe. In the decomposition (2) of the feedback
control, the control term ualign

k will determine the fast dynamics whereas the
control term uspac

k will affect the slow dynamics only.
We consider continuous-time models in this paper, but we mention a few

relevant references to study their discrete-time counterpart. Couzin et al.
[CKJ+02] have studied such a model where the feedback control is deter-
mined from a set of simple rules: repulsion from close neighbors, attraction
to distant neighbors, and preference for a common orientation. Their model
includes stochastic effects but also exhibits collective motions reminiscent of
either parallel motion or circular motion around a fixed center of mass. Inter-
estingly, these authors have shown coexistence of these two types of motion in
certain parameter ranges and hysteretic transition from one to the other. A
discrete version of (4) has been studied by Viczek et al. [VCBJ+95], in which
ωk is a random variable.
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3 Linear Momentum Stabilization

The centroid of oscillators in the model (4) is defined by

pθ =
1
N

N∑
k=1

eiθk(=
1
N

∑
k

ṙk) (7)

Equivalently, pθ is the linear momentum of the group of particles in the model
(1). The codimension-two manifold defined by the algebraic condition pθ = 0
will be termed the balanced manifold, because individual motions of particles
balance in this manifold to result in a fixed position for the center of mass of
the group.3

Considering the singularly perturbed particle model (5), we can apply the
conclusions of [SPL03] to the fast subsystem

( sign K)θ̇k =
1
N

N∑
j=1

sin(θj − θk), 1 ≤ k ≤ N. (8)

Namely, the balanced manifold is globally attracting when K < 0 and the
synchronized state is globally attracting when K > 0 [WS94].

If K > 0, (almost) all the solutions of (8) asymptotically synchronize. For
the singularly perturbed model (5), the conclusion is that for K large enough,
all solutions converge in the fast time scale, t

ε , to an invariant slow manifold
where the motion is nearly parallel. The slow manifold of parallel motion has
codimension N − 1; in the asymptotic limit ε → 0, it is determined by the
N − 1 algebraic conditions

θk = θ1, 1 < k ≤ N.

In contrast, if K < 0, then the solutions of (8) converge to the balanced
manifold characterized by pθ = 0. For the singularly perturbed model (5),
the conclusion is that for |K| large enough, all solutions converge in the fast
time scale, t

ε , to an invariant slow manifold where the center of mass is nearly
fixed. This slow manifold has codimension 2; in the asymptotic limit ε → 0,
it is determined by the two algebraic conditions

N∑
k=1

cos θk =
N∑

k=1

sin θk = 0 .

In the next two sections, we illustrate how the slow dynamics can be
designed to stabilize relative equilibria of (5).

3 In the literature of phase oscillators, it has been termed the incoherent state
manifold because N−2 phase differences are arbitrary in this manifold in contrast
to the synchronized state in which all phase differences vanish.
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4 Parallel Motion Design

To analyze the slow dynamics of the singularly perturbed particle model (5)
in the case ε = 1/K > 0, we determine the first-order approximation of its
slow manifold. The slow manifold has the expression

θk = θ1 + hk(r, ε), 1 < k ≤ N

To determine the functions hk, 1 < k < N , one expresses the invariance of
the manifold

θk − θ1 = hk ⇒ θ̇k − θ̇1 = ḣk

As shown in [SPL03], the functions hk have the first-order approximation

hk(r, ε) = ε(uspac
k − uspac

1 ) + O(ε2), 1 < k ≤ N . (9)

The slow dynamics are obtained by substituting the approximation (9) in (5):

ṙk = eiθ1(1 + iε(uspac
k − uspac

1 )) + O(ε2) . (10)

For the difference rjk = rj − rk, this yields the slow dynamics

ṙjk = εieiθ1(uspac
j − uspac

k ) + O(ε2) . (11)

The controls uspac
k , 1 < k ≤ N , can now be determined to assign formations

for the group of particles moving in parallel. As an illustration, we follow
the approach proposed in [BL02] to stabilize formations of (non-oriented)
particles: the desired formation is specified by the critical points of a scalar
potential

U =
N∑

j=1

∑
k>i

UI(rjk)

where the potential UI(rjk) = UI(rj − rk) = UI(rkj) determines the desired
interaction from particle k on particle j. For instance, the choice

UI(rjk) = log ‖rjk‖+
r0

‖rjk‖
(12)

results in the feedback

∇UI =
∂UI

∂rj
=

(
1

‖rjk‖
− r0

‖rjk‖2

)
rjk

‖rjk‖
(13)

from particle k on particle j which vanishes only at the equilibrium distance
‖rjk‖ = ‖rj − rk‖ = r0. Gradient-like dynamics for the slow system (10) are
obtained with the feedback control

uspac
k = −

∑
j 6=k

< ∇UI(rkj), ieiθk > (14)

which causes the scalar potential U to decrease along the solutions in the slow
manifold [SPL03]. Equilibrium configurations that minimize the potential U
favor uniform spacing between the particles, e.g. see Figure 1.
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(a) (b)

Fig. 1. Parallel motion (K > 0) for ten vehicles with random initial conditions: (a)
without spacing control; (b) with spacing control the group favors formations with
uniform spacing between the particles.

5 Circular Motion Design

The design of the particle model on the slow manifold corresponding to K < 0,
is the design of the original particle model assuming a center of mass at rest
[SPL03]. We illustrate how making this assumption simplifies the design of
collective motions around a fixed point. The design of the complete particle
model is thus decomposed into two steps: (1) the design of a reduced control
ubal under the assumption of a fixed center of mass, that is, restricted to the
balanced manifold, and (2) the design of a complete control u which reduces
to ubal in the balanced manifold and at the same time enforces convergence
to the balanced manifold. For N ≥ 3, the full control is deduced from the
reduced control by the expression

u = uspac + Kualign = (I − Pθ(PT
θ Pθ)−1PT

θ )ubal + Kualign, K << 0 (15)

where Pθ denotes the N ×2 matrix with first column cos θ
N and second column

sin θ
N [SPL03]. The projector I −Pθ(PT

θ Pθ)−1PT
θ enforces the constraint, ṗθ =

0, which, in matrix notation, reads PT
θ uspac = 0.

As an illustration of the above design procedure, we consider the stabi-
lization of the group of particles on a circle of fixed radius, ρ0, centered at
the (fixed) center of mass. The design of a circular motion for a single parti-
cle with coordinates (rk, θk) around a fixed beacon R has been addressed in
[JK02]. A variant of this feedback control is

ubal
k = −f(ρk) <

r̃k

ρk
, ieiθk > − <

r̃k

ρk
, eiθk > (16)

with r̃k = rk −R and ρk = ‖r̃k‖, as shown in Figure 2.
The second term of the control law (16) stabilizes circular motions: it

vanishes when the velocity vector is orthogonal to the relative position vector.
The function f(·) in (16) plays the same role as (13) in the parallel control
of the previous section, creating an attractive interaction when the distance
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Fig. 2. Circular motion of a single particle around the fixed beacon R

ρk exceeds the equilibrium distance ρ0 and a repulsive interaction otherwise.
(The choice f(ρk) = 1 − (ρ0/ρk)2 is proposed in [JK03]). With the control
(16), the Lyapunov function

Uk = − log | < r̃k

ρk
, ieiθk > |+

∫ ρk

ρ̄

(f(s)− 1
s
)ds

has a global minimum at a relative equilibrium which corresponds to circular
motion around the fixed beacon: the equilibrium is determined by a velocity
vector orthogonal to the relative position vector (i.e. < r̃k, eiθk >= 0), and a
distance ρ̄ to the beacon such that f(ρ̄) = 1

ρ̄ . Note that ubal
k is nonzero for

ρk = ρ̄ since this is an equilibrium value in the shape coordinates [JK03].
Assuming Ṙ = 0, the time-derivative of Uk satisfies

U̇k = − <
r̃k

ρk
, eiθk >2 / <

r̃k

ρk
, ieiθk >

The Lyapunov function Uk provides a global convergence analysis for the
single particle model. In particular, it can be used to prove asymptotic stability
of the clockwise rotation around the fixed beacon.

The design of circular motion for N particles in the balanced manifold is
an immediate extension of the single particle design: we apply (16) to each
particle 1 ≤ k ≤ N , with the fixed beacon replaced by the center of mass of
the group R = 1

N

∑
k rk. Under the constraint Ṙ = pθ = 0, the Lyapunov

function U =
∑

k Uk provides the same global convergence analysis for the
group of particles as for a single particle.

Inserting the control law (16) in the general formula (15) thus yields a sta-
bilizing control law for the original particle model (1). The conclusions of the
asymptotic analysis, which assumes large values for the parameter |K|, seem
well retained in simulations even when a time-scale separation is not enforced
between the fast stabilization of the center of mass and the slow stabilization
of the circular formation on the balanced manifold, e.g. see Figure 3.
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Fig. 3. Circular motion with K = −1 and random initial conditions.

6 Conclusion

This paper summarizes a global convergence analysis for the stabilization of
relative equilibria by feedback control of self-propelled particles. The pro-
posed approach rests on a two-time scale decomposition of the dynamics that
decouples the stabilization of orientation variables from the stabilization of
spacing variables. The fast dynamics analysis exploits previous results of the
literature for models of phase oscillators. All-to-all sinusoidal coupling of the
relative orientations results in stabilization of the linear momentum either to
a maximal value (resulting in parallel motion) or to a minimal value (result-
ing in motion around a fixed center of mass). The slow dynamics analysis
also exploits previous results in the literature to achieve parallel motion with
prescribed formations or motion of all the particles on a fixed circle.

An important limitation of the present paper is the assumption of all-
to-all coupling. This assumption is unrealistic in large groups of organisms
and requires a prohibitively demanding communication topology in engineer-
ing applications. The results presented are likely to hold under relaxed as-
sumptions on the network connectivity but extending the analysis to these
situations is not straightforward. Convergence results for the Viczek model
under weak connectivity assumptions [JLM02] provide analysis tools for such
generalizations.

The stabilization results can be extended to more challenging modelling
and design problems. For example, it can be seen by linearization that certain
steering control laws exhibit stability of both parallel and circular group mo-
tion for intermediate values of the parameter K, i.e. |K| < 1. This bistability is
reminiscent of the hysteresis observed in simulations of fish schools, [CKJ+02],
albeit via a different mechanism. Furthermore, a library of behavior primitives
can be developed based on the parallel and circular motions described here
and then used for path planning of vehicle groups. These techniques may
prove useful in optimization problems such as area coverage control by a fleet
of mobile sensor platforms.
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