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Advances in technology have enabled the development of large spacecraft structures such

as solar sails, expansive antennas, and large solar arrays. A critical design constraint for these

structures is mass, necessitating lightweight construction which, in turn, increases structural flex-

ibility. This flexibility poses significant challenges resulting from structural deformations and

vibrations that complicate attitude control and can degrade the performance and lifespan of the

spacecraft. The goal of this research is to develop estimation and control strategies to mitigate

the effects of spacecraft flexibility.

A flexible spacecraft model is derived using a hub and appendage framework. In this

model one or more flexible appendages attach to a central rigid hub. The model represents the

appendages as a discretized set of flexibly connected elements called panels. Stiff springs connect

the panels, and the dynamic model of the system’s internal forces and moments uses coordinates

in the hub’s reference frame. Reaction wheels on the hub perform attitude control, while dis-



tributed pairs of magnetic torque rods on the appendage influence its shape.

Initially, the model restricts flexibility to one direction, resulting in a planar model. A

Lyapunov-based control design provides a feedback law for the reaction wheel and torque rods

in the planar model. Numerical simulations demonstrate that the proposed controller meets the

control objectives and compares favorably to other controllers. An Extended Kalman Filter is

applied to the system to perform state estimation and output feedback control, which performs at

nearly the same level as state feedback control.

The modeling framework and flexibility are extended to three dimensions. The develop-

ment of a control law for the magnetic torque rods considers the attitude control of a single panel

using two magnetic torque rods. Due to the system being underactuated, the attitude error is

defined in terms of the reduced-attitude representation. Lyapunov analysis yields a control law

that stabilizes the reduced attitude and angular velocity of a rigid panel using only two mag-

netic torque rods. Numerical simulations validate the control law’s performance for a single

panel. This control law is then applied to the flexible appendage to stabilize its shape. Numer-

ical simulations show that this implementation of shape control significantly reduces structural

deformations and dampens structural oscillations compared to scenarios without shape control.

To perform state estimation of the high-dimensional flexible spacecraft model, dynamic

mode decomposition generates a reduced order model that is linear with respect to the evolution

of the resulting modes. A Kalman filter estimates the mode amplitudes of the reduced order

model from a limited set of measurements, enabling the reconstruction of the entire system state.

The optimization of the number and placement of sensors maximizes the observability of the

observer. Numerical simulations demonstrate that this framework yields accurate state estimates

with reduced computational cost.
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Chapter 1: Introduction

Advances in technology have significantly expanded the potential applications for large

spacecraft structures. Examples include spacecraft equipped with solar sails, expansive anten-

nas, large solar arrays to meet substantial energy requirements, extended truss structures, and

manipulator arms.

One of the most critical and demanding constraints in spacecraft design is mass. There-

fore, large structures intended for space must often prioritize lightweight construction to adhere

to mass constraints. The trade-off of achieving a large and lightweight structure is increased

structural flexibility. Additionally, to accommodate volumetric constraints during launch, many

structures are designed to be folded for launch and subsequently deployed in orbit, intentionally

incorporating flexibility at folding points. Consequently, flexibility becomes a crucial consider-

ation for the design and implementation of any large spacecraft structure. However, introducing

flexibility complicates both modeling [1] and control [2], presenting a distinct set of challenges.

The primary cause of these challenges are structural deformations and vibrations of the space-

craft. For example, attitude maneuvers, which involve changing the orientation of the spacecraft,

introduce rotational energy into the structure, leading to bending and vibration. Additionally,

in the space environment, significant thermal gradients resulting from solar heating can induce

deformations of spacecraft components.
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Flexibility poses two notable challenges for spacecraft operation. The first is attitude con-

trol. Deformations and oscillations can degrade the performance of an attitude controller which

can compromise stability or extend settling times. Second, if the shape of the structure is critical

to the spacecraft’s function, or if vibrations reduce the lifespan of the structure, any deforma-

tions and oscillations degrade spacecraft performance. Addressing these problems cannot be

achieved merely by stiffening the structure, as this would lead to increased mass, conflicting with

mass constraints. Furthermore, in space, environmental damping is minimal and cannot be relied

upon.

This dissertation explores how advanced actuation and control strategies can address the

issues of attitude and shape control in flexible spacecraft. By developing these control methods,

the objective is to enhance the feasibility and operability of large flexible spacecraft.

1.1 Problem Statement

The modeling framework for a flexible spacecraft used in this dissertation consists of a

hub and one or more flexible appendages. The hub represents a rigid primary structure contain-

ing most of the subsystems of the spacecraft (power, attitude control, thermal control, on-board

computer, scientific payloads, etc.) The appendage(s) is a flexible structure that is attached to

the hub, and could represent a large solar array, an antenna, a manipulator arm, etc. Assume the

appendage has some natural restoring force that causes it to have an equilibrium configuration.

In this dissertation, the appendage is considered as a thin planar structure, with its equilibrium

corresponding to a flat configuration. See Fig. 1.1 for a sample drawing.
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Figure 1.1: Spacecraft with hub and thin planar appendage concept drawing

As the hub performs an attitude maneuver and the spacecraft reorients, the angular impulse

will excite the flexible modes of the appendage, inducing vibrations. These vibrations will cause

periodic deformations of the appendage. The vibrations of the appendage will also transfer an-

gular momentum back into the hub at their connection which affects the attitude of the hub and

its control.

The actuation framework considered in this dissertation is as follows. The hub is equipped

with a set of reaction wheels that enable it to fully control the attitude of the hub. The appendage

has magnetic torque rods distributed across its structure that are able to generate small moments

to influence the shape the of the appendage.

The objective of an attitude control law is to drive the spacecraft’s attitude to a specified tra-

jectory while being robust to disturbances induced by appendage vibrations. In this dissertation,

the reference trajectory used for numerical simulations is a nadir-pointing reference, meaning the

spacecraft is oriented directly towards the center of the Earth, aligned with the gravity vector. The

objective of the torque rod control is to stabilize the shape of the spacecraft. Specifically, if the

appendage is perturbed from its equilibrium shape by induced vibrations, the controller should

3



dampen the vibrations and restore the appendage to its equilibrium state.

In practice, the information available about the state of a system is limited to the measure-

ments taken from the system. Typically, controllers require knowledge of the entire system state

to function effectively. To implement this type of control, an observer is needed. An observer

assimilates system measurements and outputs an estimate of the full system state. This state

estimate is then used as input to a controller in an output feedback framework.

For spacecraft, onboard computational power is severely limited. As the number of states

in a system increases, the computational resources required to perform state estimation increase

significantly. This can make real-time estimation infeasible if the number of states describing the

system becomes too large, as may be the case with large flexible spacecraft.

The primary existing challenges for attitude control and shape stabilization of flexible

spacecraft that are addressed in this dissertation are as follows:

1. Construction of a generalizeable flexible spacecraft dynamic model containing the state

information required to implement distributed control

2. Development of a control law for the magnetic torque rods that is able to influence the local

attitude of the appendage such that the shape of the whole appendage is stabilized.

3. Demonstration of the performance and impact of shape stabilizing control implemented

with magnetic torque rods via numerical simulation.

4. Development of an estimation framework such that a high dimensional state space repre-

sentation of a flexible spacecraft model can be estimated from a limited set of state mea-

surements while minimizing computational resources
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1.2 Relation to Prior Work

The work in this dissertation builds on related research conducted by others. In this section,

I highlight some of this research and discuss the contributions of this dissertation in relation to that

work. First, I provide an overview of research on attitude and shape control of flexible spacecraft.

Second, I review studies on underactuated spacecraft attitude control, including magnetic torque

rod actuation as well as reduced actuator usage. Finally, I discuss prior work on dynamic mode

decomposition and its application for state estimation.

1.2.1 Attitude and Shape Control of Flexible Spacecraft

Structural oscillation may be mitigated by attitude control laws that minimize excitation. A

super-twisting sliding mode control is developed in [3] to simultaneously perform attitude track-

ing and vibration suppression. An extended disturbance observer and backstepping controller

is proposed in [4] for attitude stabilization by rejecting disturbances resulting from the flexible

spacecraft. In [5], the flexible appendages are modeled using partial differential equations; dis-

tributed and boundary controllers are implemented to compensate for disturbances and suppress

vibrations. [6] treats the oscillations as a disturbance and derives a compensator and controller

to guarantee robust attitude control. A controller that plans constrained low-jerk maneuvers is

provided in [7]. Additional attitude control schemes focused on minimizing vibrations due to

structural flexiblity include [2, 8–20].

Another research area involves active vibration suppression using additional actuators. The

use of piezoelectric actuators on flexible structures to perform active vibration suppression has

been studied. In [21], a constrained torque distribution algorithm with a shape input controller for
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piezoelectric actuators are used for attitude and shape control. A robust control scheme based on a

distributed observer and controller framework is developed in [22], which also uses piezoelectric

actuation for flatness control of flexible appendages. However, due to size-at-launch constraints,

spacecraft with a large area-to-bus size ratio must be folded and then deployed after launch.

Research in deployable space structures, such as [23], studies the deployment dynamics of folded

spacecraft structures. Whereas the flexing in large lightweight spacecraft structures occurs in the

structure itself, the flexing in a multibody deployable space structure may be more significant

at the hinges. Consequently, while piezoelectric actuators may suppress vibrations in a flexible

appendage, their utility is limited if the main source of flexibility of a spacecraft is in the interface

between bodies, which might occur in a deployable space structure. To better address shape

control of a multibody flexible spacecraft, instead of actuating the shape of an appendage, [24]

assumes that actuators are mounted on the interface between an appendage and the hub and a

control law is proposed to provide attitude and shape control. In [25], a model is formed and a

control law proposed where control moment gyros are distributed across the flexible structure to

provide vibration suppression. This work is extended in [26], where a global matrix formulation

of the dynamics is proposed for a flexible multibodied spacecraft. In the case where the number of

appendages is large or where the area-to-bus size ratio is large, the added mass for each additional

actuator may prohibit implementation. One actuation method for shape control that has not been

investigated is the use of magnetic torque rods to perform shape control, which is a primary

subject of this dissertation.
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1.2.2 Underactuated Attitude Control of Spacecraft

The exploration of reduced actuator usage in research is significant not only due to its po-

tential for weight saving potential in small spacecraft, but also because it can demonstrate the

robustness of a spacecraft in the event of actuator failure. Extensive research has addressed at-

titude control using only two reaction wheels. In [27], a time-varying feedback law is proposed

that exponentially stabilizes the attitude of a rigid spacecraft. In [28], it is shown that the an-

gular velocity of a rigid spacecraft can be stabilized with two constant torques. One approach

demonstrated in [29] is to stabilize a pointing axis of the spacecraft and ignore rotations about

that axis. Another area of research evaluates using two control moment gyros instead of reac-

tion wheels. In [30], conditions are defined under which angular velocity damping can occur

using two single-gimbal control moment gyros. Full three-axis control was demonstrated in [31]

using a backstepping controller under the condition that the initial total angular momentum is

zero. In [32], the angular momentum restriction is loosened using the addition of a sliding-mode

control to stabilize the underactuated axis. Although extensive research exists on underactuated

systems employing more conventional actuators, there is comparatively limited investigation into

underactuated control utilizing magnetic actuation.

Magnetic torque rods have been employed on spacecraft from very early on. The primary

advantages of using magnetic actuators are that they are lightweight, small, require no consum-

ables, and are reliable due to their lack of moving parts. One of the disadvantages to using

magnetic actuation is that it renders a system inherently underactuated due to control authority

only being available orthogonal to the local magnetic field. One of the earliest uses of magnetic

torque rods was dumping momentum from a momentum storage device, like a reaction wheel, as
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in [33]. Other approaches for this application include [34], which uses the periodicity of orbital

motion to analyze the problem, and [35], which uses techniques from optimal control. Magnetic

actuation has also traditionally been used for the initial detumbling of a spacecraft after deploy-

ment. The most common method used is called B-dot control, which uses the rate of change of

the magnetic field to determine the actuation torque. Extensive analysis has been performed to

validate this control, [36–38]. More recently, there have been efforts to investigate full three-axis

attitude control for spacecraft using magnetic actuation. In [39], the problem is represented by

a linear time-varying system, which enables controllability analysis to be performed and, for a

certain type of orbit, magnetic actuation is shown to make the system controllable. Nonlinear

analysis demonstrates attitude control under the disturbance of gravity gradient torque in [40].

Other work studying three-axis attitude control using only magnetic actuation includes [41–43].

Stabilizing the attitude of spinning spacecraft has also been studied [44–48]. The consideration of

duty cycling between taking measurements of the magnetic field and actuating magnetic torque

rods is explored in [49, 50]. In [51] attitude control using three magnetic torque rods and one

reaction wheel to minimize flexible structure excitation is explored.

While reduced actuator attitude control and magnetic actuation have been thoroughly inves-

tigated separately, there is a lack of research into magnetic attitude control with fewer than three

magnetic torque rods. Detumbling a satellite with a single magnetic torque rod using a model

predictive controller is shown in [52], but there is an absence of attitude stabilization. Attitude

stabilization with two magnetic torque rods is investigated in [53] using controllability analyses

of the linearized dynamics, but the result only holds for a specific attitude reference. The use of

only two magnetic torque rods to stabilize the pointing of a body in space is investigated in this

dissertation.
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1.2.3 Shape Estimation of Flexible Spacecraft

In order for any attitude or shape control laws to be effectively applied, the state of the

spacecraft including its shape must be known. In the case of a deployable structure with con-

nected segments, the state of each of the segments may be required for distributed control. How-

ever, if a high dimensional state is needed to represent the structural dynamics, this can require

an increasingly significant amount of computation power to perform state estimation. Due to

the limited computation power available to a spacecraft in orbit and the need to perform estima-

tion in real time, a high dimensional state may make state estimation and thus output feedback

control infeasible. In [54] an Eigensystem Realization Algorithm is used to generate a reduced

order model of a flexible spacecraft in order to estimate shape in real time, although it is focused

primarily on modeling between input and output space which may not be sufficient for imple-

menting control. To reconstruct the shape of a flexible spacecraft structure, [55] investigates the

use of sun sensors, while [56] employs range images. [57] uses an interpolation of displacement

measurements in conjunction with a filter for shape estimation. To estimate the dynamics of a

flexible spacecraft, an adaptive scheme is used in [1] to learn unknown physical parameters of

the spacecraft. Parameter estimation of flexible spacecraft models is further explored in [58–60].

Modal decomposition encompasses a common class of methods for making algorithms on

high-dimensional systems more computationally tractable. The goal of modal decomposition is

to represent a high-dimensional system with a relatively small number of modes that captures the

relevant behavior of the system. One method that has gained popularity, particularly in the field of

fluid mechanics, is dynamic mode decomposition (DMD) [61]. DMD is a data-driven algorithm

that was first developed for analyzing fluid flows. It is closely related to the Koopman operator,
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which is a way to represent a finite-dimensional nonlinear system as an infinite-dimensional linear

system. The goal of DMD is to decompose data from time series measurements into modes that

capture the underlying dynamics of the system [62]. DMD may also be used to perform state

estimation by using measurements of the system to estimate the DMD mode amplitudes using

a Kalman filter, which can be used to estimate the full system state. This framework, described

in [63], is referred to as the DMD Kalman filter and, if the DMD modes are an approximation of

the Koompan modes, is equivalent to the Koopman-Kalman filter [63]. While DMD is popular

in the field of fluid mechanics, it has not received the same level of attention or use in other

fields. However, the model-order reduction and linear estimation framework it enables make it a

promising approach to apply to state estimation of flexible spacecraft.

1.3 Contributions of Dissertation

Planar Attitude and Shape Control

I derive a dynamic spacecraft model using a hub and flexible appendage framework. The

hub is actuated by reaction wheels to manage spacecraft attitude, while magnetic torque rods

actuate the appendage to stabilize its shape. Flexibility is modeled by discretizing the appendage

into flexibly connected elements. I initially restrict the flexibility to one dimension coinciding

with the orbital plane, thus restricting the spacecraft dynamics to that plane.

Using Lyapunov analysis, I derive a nonlinear state feedback control law that drives the

spacecraft’s attitude to a reference and stabilizes the appendage. To validate this control law, I

conduct numerical simulations and compare its performance against various linear control strate-

gies. I then implement an extended Kalman filter for state estimation, demonstrating the control
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law’s robustness in an output feedback framework subjected to measurement noise.

Three-Dimensional Attitude and Shape Control

I extend the discretization of the flexible appendage to two directions and employ a three-

dimensional element connection model to capture its full flexibility across three degrees of free-

dom. The dynamics and control inputs for both attitude and shape are accordingly extended into

three dimensions.

To formulate a control law for the magnetic torque rods in three dimensions, I investi-

gate controlling the reduced attitude and angular velocity of a single element actuated by two

magnetic torque rods. Through Lyapunov analysis, I derive a nonlinear feedback control law that

effectively stabilizes the reduced attitude and angular velocity of the rigid element using only two

magnetic torque rods. I validate this control law through numerical simulations and demonstrate

its robustness in the presence of saturation nonlinearities.

The magnetic torque rod control is applied to each element of the appendage to perform

shape control. Numerical simulations confirm that integrating shape control into the flexible

appendage significantly mitigates structural deformations and oscillations in response to various

disturbances. However, this improvement comes at the cost of increased control effort required

from the reaction wheels.

State Estimation of Flexible Spacecraft Model

I employ dynamic mode decomposition to generate a data driven modal decomposition of

the flexible spacecraft model. The modal decomposition yields a reduced order model such the
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amplitudes of the modes used to form the model evolve linearly with time. The reduced order

model enables full state estimation from a limited set of measurements. I validate application of

this framework to this problem through numerical simulations which demonstrate accurate state

estimates with measurement noise and a substantial reduction in model order. Leveraging this

state estimation framework, I optimize the number and placement of sensors to maximize system

observability.

1.4 Outline of Dissertation

This dissertation is outlined as follows.

Chapter 2 provides an overview of some of the foundational material useful for subsequent

chapters. Orbital and attitude dynamics of spacecraft are reviewed and modeling for magnetic

actuation is shown. The procedure for dynamic mode decomposition is also provided.

Chapter 3 derives a planar version of the flexible spacecraft model. Lyapunov analysis

yields a nonlinear control law that controls the attitude and shape of the model with state and

output feedback.

Chapter 4 extends the flexible spacecraft model to three dimensions. A control law is

developed to facilitate shape control using two magnetic torque rods. Numerical simulations

confirm the effectiveness and validity of this control law.

Chapter 5 employs dynamic mode decomposition to provide a reduced order model of the

spacecraft which enables full state estimation. Numerical simulations validate this approach.

The location and number of sensors providing measurements are optimized to maximize system

observability.
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Chapter 6 summarizes the dissertation and provides suggestions research directions for

ongoing and future work.
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Chapter 2: Background

This chapter reviews foundational material for the analyses presented in Chapters 3 to 5.

I begin by outlining the approach for modeling spacecraft dynamics, including translational dy-

namics and the use of rotation matrices to represent attitude. I then describe the modeling for

Earth’s magnetic field and for magnetic torque rods and summarize the inherent challenges as-

sociated with utilizing them for attitude control. Lastly I provide an overview of dynamic mode

decomposition and review the framework the decomposition provides for performing state esti-

mation using a reduced order model.

2.1 Spacecraft Dynamics and Control

The equations and models fundamental to describing the spacecraft dynamics and control

used in this dissertation are summarized in this section.

2.1.1 Orbital Dynamics

In this dissertation orbital motion is modeled using the two-body problem. Specifically, the

translational motion of a body in orbit is described by

r̈ = −mu
r3

r, (2.1)

where µ is the gravitational parameter for the orbited body.
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2.1.2 Attitude Dynamics on the Special Orthogonal Group

Consider the rotational dynamics of a spacecraft modeled as a rigid body. Consider the

Earth-centered inertial (ECI) reference frame I = {e1, e2, e3} and a body-fixed reference frame

B = {b1, b2, b3} attached to the center of mass of the spacecraft B. The attitude of the space-

craft relative to the inertial frame can be expressed using several parameterizations, such as Eu-

ler angles, quaternions, or modified Rodrigues parameters. A rotation matrix R ∈ SO(3) is

used here to avoid kinematic singularities and unwinding that can result from other represen-

tations [64]. Additionally, it is advantageous because it can be represented in a reduced form

for applications such as pointing, where not all degrees of freedom need to be considered. This

is relevant for controlling the attitude of sections of a flexible structure that are constrained by

their attachment to adjoining sections, making rotation matrices a convenient representation of

attitude. The special orthogonal group SO(3) is the group of rigid-body rotations defined as

SO(3) = {R ∈ R3×3|RTR = I, det(R) = 1}. The rotational equations of motion on SO(3)

are [64]

Ṙ = Rω̂ (2.2)

Jω̇ = Jω × ω + τ , (2.3)

where J is the spacecraft moment of inertia, ω is its angular velocity, and τ is the total external

moment on the spacecraft. The hat map ∧ : R3 → so(3) transforms a vector into a skew-
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symmetric matrix, i.e., âb = a× b, i.e.,

â =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.4)

Rotation matrices are fundamental to the flexible spacecraft model defined in Section 4.2, and are

used as input to the control law derived in Section 4.3.

2.1.3 Magnetic Torque Rod Control

This dissertation uses a simplified model of the magnetic field of the Earth. Specifically,

the magnetic field of the Earth is modeled as a dipole. For an object in orbit at position r =

[x, y, z]T , the magnetic field of the Earth in the inertial frame is [65]

B(µ, r) =
3(µ · r̂)r̂ − µ

r3
. (2.5)

Assume the inertial frame is such that µ is aligned with ẑ. The magnetic field in Cartesian

coordinates is

B =
Em

r5
[
3xz, 3yz, 3z2 − r2

]T
, (2.6)

where Em = µ0µ/4π specifies the strength of the magnetic field for Earth.

Magnetic torque rods operate by generating a magnetic field that interacts with the local

magnetic field; the interaction of these two fields produces a moment. Consider a magnetic dipole

generated by magnetic torque rods denoted m and a local magnetic field denoted B. The moment

τ that is produced by the magnetic torque rods is [66]

τ = m×B. (2.7)
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This equation underscores the primary challenge of using magnetic torque rods for attitude con-

trol: control authority is restricted to be orthogonal to the local magnetic field B. This problem

is exacerbated when there are fewer than three magnetic torque rods. Without loss of generality,

assume that there are two magnetic torque rods along the first and second axes of the local body

frame. The resulting torque in the body frame is

τ = m×B =

[
m2B3 −m1B3 m1B2 −m2B1

]T
. (2.8)

In this case, control authority about the first and second axes is zero when the magnetic

field component along the third axis is zero. Additionally, the moment that is generated about

the third axis is coupled. For control applications, if m1 and m2 are selected to produce specific

moments about the first and second axes, there will inherently be an additional undesired moment

about the third axis.

The magnetic torque rod modeling is used to define the control inputs to the flexible space-

craft model in Section 4.2 and their limitations are addressed in Section 4.3.

2.2 Data-Driven Analysis Techniques for State Estimation

2.2.1 Dynamic Mode Decomposition

Consider a sequence of evolving measurements arising from either simulated or experi-

mental data. Each individual measurement is referred to as a snapshot and the the snapshots at

time tk are denoted χ(tk). Assume that the time step between each snapshot is constant, i.e.,

tk+1 − tk = ∆t for all k. If there are m snapshots, a matrix can be formed from these snapshots
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such that kth column corresponds to the vector of measurements at time k, i.e.,

X =


| | |

χ(t1) χ(t2) . . . χ(tm)

| | |

 . (2.9)

Next, two data matrices are formed from the sequence of snapshots such that the kth column in

the second matrix corresponds to the advancement in time of the kth column of the first matrix

by ∆t.

X0 =


| | |

χ(t1) χ(t2) . . . χ(tm−1)

| | |

 (2.10)

X1 =


| | |

χ(t2) χ(t3) . . . χ(tm)

| | |

 (2.11)

The goal of dynamic mode decomposition is to find an eigendecomposition of the matrixA

that linearly approximates the evolution of the dynamics of the system by one time step ∆t, i.e,.

X1 = AX0. The best fit in the least-squares sense forA can be computed using the psuedoinverse

denoted †, i.e., A = X1X
†
0 . However, if the dimension of X0 is very large, this may become

unreasonable to compute. Instead, the singular value decomposition (SVD) of X0 is taken, i.e.,

X0 = UΣV ∗ (2.12)

where ∗ denotes the conjugate transpose. The psuedoinverse of the SVD may be taken as X†
0 =

V Σ−1U∗, yielding

A = X1V Σ−1U∗. (2.13)
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An optimal low-dimensional representation of A denoted Ã may be defined by the columns of U

is [61]

Ã = U∗AU = U∗X1V Σ−1. (2.14)

Let Λ be the eigenvalues of Ã in matrix form and W the matrix of right eigenvectors of Ã.

The DMD eigenvalues are given by Λ and the DMD modes given by [61]

Φ = UW. (2.15)

Let α(tk) represent the mode amplitudes of the vector snapshot χ(tk) in the DMD basis, i.e.

χ(tk) ≈ Φα(tk). Then the approximate solution for the time evolution of snapshots can be

reconstructed by [61]

χ(tk) ≈ ΦΛ(tk−t1)/∆tα(t1) (2.16)

The degree to which the DMD modes and eigenvalues represent the system dynamics is depen-

dent on the linearity of the system. If the system is linear, only the mode amplitudes depend on

the initial condition and the system dynamics may be accurately reconstructed via Eq. (2.16).

The more nonlinear the system is, the more that the modes and eigenvalues obtained via DMD

will also depend on the initial condition of the dataset [67].

2.2.2 Mode Amplitude Kalman Filter

According to the Koopman observer framework [63], a subset of measurements from the

system can be utilized in conjunction with the DMD modes in a linear observer to estimate the

mode amplitudes of the DMD representation. These estimated amplitudes can be then used to

reconstruct the complete state of the original system. This process is performed as follows.
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Consider a matrix C that is formed from the columns of the DMD modes Φ [63]

Ci = ϕi

}
if ϕi is real

Ci = Re(ϕi)

Ci+1 = Im(ϕi)

 if ϕi and ϕi+1 are complex conjugates.
(2.17)

Let zk denote a vector of DMD mode amplitudes. The state ηk of the underlying system at

timestep k can be estimated from the mode amplitudes by

η̂k ≈ Czk. (2.18)

Consider also a block diagonal matrix F that is formed from the DMD eigenvalues [63] such that

F has a diagonal entry Fi,i = λi, if λi is real, and block diagonal entry Fi,i Fi,i+1

Fi+1,i Fi+1,i+1

 =

 Re(λi) Im(λi)

−Im(λi) Re(λi)

 (2.19)

if λi and λi+1 are complex conjugates. The matrix F represents a linear operator that advances

the vector of mode amplitudes zk forward in time by one timestep, i.e.,

zk = Fzk−1. (2.20)

The matrices Eqs. (2.18) and (2.20) define a linear dynamical system where the state is

the DMD mode amplitudes and the observation is the state of the underlying system. Assume

also that only some subset of the state of the underlying system is measured. Let yk ∈ Rnx

denote the portion of the state vector that is measured and xk ∈ Rny denote the portion that is

to be estimated. The state vector η is reordered such that the observed portion of the state is
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partitioned from the unobserved portion of the state [63], i.e.,

ηk =



|

yk

|

xk

|


. (2.21)

Note that when performing DMD, the snapshot matrix containing the training data must similarly

be reordered.

X =



| | |

y(t1) y(t2) . . . y(tm)

| | |

x(t1) x(t2) . . . x(tm)

| | |


. (2.22)

The C matrix is reordered the same way and partitioned such that the first ny rows corresponding

to the measured states are denotedCy and the remaining nx row corresponding to the unmeasured

states are denoted Cx. The linear dynamical system may now be written as [63]

zk = Fzk−1 (2.23a)

yk ≈ Cyzk (2.23b)

xk ≈ Cxzk (2.23c)

If the system given by Eq. (2.23) is observable, then a state observer may be applied to

estimate the DMD mode amplitudes. For a linear system subject to Gaussian process and mea-

surement noise, the Kalman filter represents an optimal observer. Consequently, a Kalman filter
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may be used to estimate the mode amplitude amplitudes given a set of measurements of the un-

derlying system. The Kalman filter of the mode amplitudes is as follows [68]:

Estimate propagation:

ẑk̄ = F ẑk−1 (2.24)

Pk̄ = FPk−1F
T +Q (2.25)

(2.26)

Kalman Gain:

Kk = Pk̄Cy

(
CyPk̄C

T
y +R

)−1
(2.27)

Measurement assimilation:

ẑk = ẑk̄ +K(yk − Cyẑk̄) (2.28)

Pk = (I −KCy)Pk̄ (2.29)

Estimate of x:

x̂k = Cxẑk (2.30)

The DMD Kalman filter provides a framework for generating a reduced-order model of a system

and enabling state estimation with a limited subset of measurements [63].
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Chapter 3: Estimation and Control of a Planar Multibody Flexible Spacecraft

3.1 Introduction

This chapter introduces the modeling concepts used to represent the hub and flexible ap-

pendage. The flexibility of the appendage is modeled by discretizing its structure into rigid

elements, referred to as panels, which are flexibly connected via damped spring-like hinges. By

varying the discretization size, as well as the spring and damping coefficients of the panel con-

nections, the model can be adapted to represent different types of structures, such as continuous

flexible structures or hinged deployable structures. Initially, the appendages are restricted to bend

in only one direction. If this rotation occurs about the same axis as the angular momentum of the

spacecraft’s orbit, the spacecraft’s dynamics can be fully described within the orbital plane. This

reduction in degrees of freedom simplifies the problem, enabling insight into the system’s funda-

mental behavior through analysis. A dynamic state-space model for the hub and appendages is

developed using coordinates relative to a body-frame attached to the hub.

The proposed actuation consists of a reaction wheel in the spacecraft hub and a magnetic

torque rod in each of the panels, subject to constraints on allowable outputs. The state-space

system is linearized, enabling the application of linear state feedback control, such as a linear-

quadratic regulator (LQR). The control nonlinearities motivate the design of a nonlinear feedback

controller. Structural deformations and vibrations, along with an artificial potential energy de-
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scribing the attitude error, form a candidate Lyapunov function. Lyapunov analysis of the system

yields a stabilizing feedback control law for the torque rods and reaction wheels. Numerical

simulations demonstrate the effectiveness of this control law and the impact of using torque rods

to stabilize the appendage shape. An extended Kalman filter is implemented to perform state

estimation, and the control law is evaluated when using output feedback.

The contributions of this chapter are as follows: (1) a planar multibody dynamic model of a

flexible spacecraft actuated by reaction wheels and magnetic torque rods including orbital motion,

gravity gradient torque, and a magnetic field that varies with orbital position; (2) a state-feedback

controller based on a Lyapunov design that tracks a desired attitude, suppresses oscillations in

the appendages, and compares favorably to a linear control design; and (3) an estimation frame-

work and corresponding output feedback design based on rate measurements of each spacecraft

component assimilated by an Extended Kalman Filter. Numerical simulations are performed to

validate the efficacy of the proposed control law, first under idealized conditions and then un-

der more realistic conditions. State estimation and output feedback are added to the model to

demonstrate the retention of performance with limited sensing and measurement noise.

The chapter is organized as follows. Section 3.2 develops the dynamics model of the space-

craft. Section 3.3 proposes the feedback control design and includes simulation results. Sec-

tion 3.4 describes the estimation and output feedback control. Finally, Section 3.5 summarizes

the chapter.
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3.2 Planar Multibody Flexible Spacecraft Model

Consider a spacecraft that consists of a central hub with two adjoining flexible appendages.

Each appendage is discretized into a set of elements, referred to as panels. Consider also an

Earth-centered inertial frame I = (O, êx, êy, ê3), an Earth-centered rotating frame that rotates at

the orbital rate of the spacecraft P = (O, êr, êθ, ê3), a body-fixed frame affixed to the central hub

of the spacecraft A = (C, â1, â2, â3), and body-fixed frames affixed to each of the component

panels comprising the appendages of the spacecraft B(i) = (B(i), b̂
(i)
1 , b̂

(i)
2 , b̂

(i)
3 ), i = 1, ..., 2N .

Angle θ defines the relative orientation of P with respect to I, γ is the orientation of A with

respect to I, and αi is the orientation of B(i) with respect to A.

Figure 3.1: Reference frames used for the flexible spacecraft model. Frame A is fixed to the hub;

frames B(i), i = 1, . . . , 2N , are fixed to each appendage

To model structural flexibility, the connection of the each of the panels is modeled as a

damped spring-like hinge. The discretization size, as well as the stiffness and damping coef-

ficients of the hinges, can be adjusted to simulate various types of flexible structures, such as
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hinged deployable structures or continuously flexible structures. Assume that the hinged panel

connections have one degree of freedom, specifically that the ith panel may only rotate about the

b̂
(i)
3 axis. This constraint ensures that b̂(i)

3 = â3 for all i. If the rotation of the hub is restricted

to the â3 axis, and â3 is aligned with êh, then all spacecraft component rotations occur about êh

and all spacecraft motion is confined to the orbital plane. Consequently, it is only necessary to

consider two-dimensional dynamics.

The following assumptions are made about the considered spacecraft: each panel is the

same size, Li = Lj ≪ ∀i, j ∈ {1, ..., 2N}, the hub is significantly larger and more massive than

each individual panel, Ip ≪ IC , the appendages do not reach very high angular rates relative to the

hub, α̇i ≪ 1, the relative translational velocities of the appendages remain small, ẋi/C ≪ ẏi/C ,

and the reaction wheels produce torque on the order of milli-Newton meters, urw ≪ 1.

3.2.1 Multibody Dynamics

This section derives the dynamics of the spacecraft in the reference frame of the hub and

models its internal forces, control inputs, and disturbances to yield the equations of motion for the

system. To refer to each of the components of the spacecraft notationally, the indexing scheme

shown in Fig. 3.2 is used.

Figure 3.2: Indexing for proposed spacecraft structure consisting of a hub (C) and 2 flexibly

connected appendages modeled with N panels each
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First, the dynamics of the hub C and each of the panels comprising the appendages are

derived. For the hub,

rC/O = xC êx + yC êy (3.1)

IvC/O = ẋC êx + ẏC êy (3.2)

IaC/O = ẍC êx + ÿC êy. (3.3)

Consider reference frame A. The inertial derivative of unit vector â1 is I d
dt
âi = IωA × âi,

where IωA = γ̇â3 is the angular velocity of frame A in the inertial reference frame. Using the

two-dimensional orbital plane reference frame, the angular velocity of the hub is restricted to the

â3 = ê3 direction with magnitude γ̇. For the panels,

ri/O = rC/O + ri/C = xC êx + yC êy + xi/C â1 + yi/C â2. (3.4)

Differentiating with respect to time yields

Ivi/O = I d

dt
ri/O = ẋC êx + ẏC êy + ẋi/C â1 + ẏi/C â2 + xi/C(γ̇ê3 × â1) + yi/C(γ̇ê3 × â2)

(3.5)

= ẋC êx + ẏC êy + ẋi/C â1 + ẏi/C â2 + γ̇xi/C â2 − γ̇yi/C â1. (3.6)

Differentiating again yields the inertial acceleration, i.e.,

Iai/O = ẍC êx+ÿC êy+ẍi/C â1+ÿi/C â2+γ̈xi/C â2−γ̈yiâ1+2γ̇ẋi/C â2−2γ̇ẏi/C â1−γ̇2xi/C â1−γ̇2yi/C â2.

(3.7)

Euler’s first law is applied to the hub and to each panel. It is convenient to express the

forces on the hub in reference frame A. The total force on the hub is FC = XC â1 + YC â2, which
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implies

ẍC â1 + ÿC â2 =
XC

mC

â1 +
YC
mC

â2. (3.8)

The sum of the forces on each panel is Fi = Xiâ1 + Yiâ2. Applying Euler’s first law to the ith

appendage yields

Iai/O =
Xi

mi

â1 +
Yi
mi

â2 (3.9)

To control the shape of the entire spacecraft and maintain its alignment with the hub, it

is convenient to analyze the dynamics of each panel relative to the hub. The resulting control

problem is to drive the relative angle, as well as the relative translational and angular velocities,

to zero. To express the equations of motion in the hub’s reference frame, the kinematics for

the panel and hub are substituted into Eq. (3.7) and the expression is rearranged to solve for the

acceleration of the panels relative to the hub, i.e.,

ẍi/C â1 + ÿi/C â2 =
Xi

mi

â1 +
Yi
mi

â2 −
XC

mC

â1 −
YC
mC

â2 − γ̈xi/C â2 + γ̈yiâ1

−2γ̇ẋi/C â2 + 2γ̇ ˙yi/C â1 + γ̇2xi/C â1 + γ̇2yi/C â2.

(3.10)

The terms are collected to arrive at the following scalar differential equations:

ẍi/C =
Xi

mi

− XC

mC

+ γ̈yi/C + 2γ̇ẏi/C + γ̇2xi/C (3.11)

ÿi/C =
Yi
mi

− YC
mC

− γ̈xi/C − 2γ̇ẋi/C + γ̇2yi/C . (3.12)

Next, Euler’s second law is applied to the hub and panels, with the total internal moments

on each defined as MC and Mi, respectively, i.e.,

d

dt
IhC =

d

dt
IC γ̇â3 = IC γ̈â3 =MC â3 (3.13)

d

dt
Ihi =

d

dt
Ip(γ̇ + α̇i)â3 = Ip(γ̈ + α̈i)â3 =Miâ3. (3.14)
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The state for each panel described in two dimensions is

ξi =
[
xi/C yi/C αi/C ẋi/C ẏi/C α̇i/C

]T
. (3.15)

The modeling of the forces and moments acting on each component, i.e., XC , YC ,MC , Xi, Yi,

and Mi, are defined next.

3.2.2 Internal Force Model

Assume that the panels are connected to each other and to the hub with damped spring-

like hinges. The attachment force of each hinge is modeled as a spring with spring coefficient

ks and damping coefficient cs. The attachment moment is modeled as a torsion spring that is

linearly proportional to the relative angle between the components that it connects, with spring

coefficient kt and damping coefficient ct. With the spring modeling, the relative force between

two components can be computed by determining the relative position and velocity of adjoining

edges. The relative position and velocity of adjoining edges of the ith panel to its adjacent panel

for i = 1, ..., N are expressed as

ri/i+1 = ri/C +
Li

2
b̂
(i)
1 − r(i+1)/C +

Li+1

2
b̂
(i+1)
1 (3.16)

Avi,=/i+1 =
A vi/C +

Li

2

Ad

dt
b̂
(i)
1 −A v(i+1)/C +

Li+1

2

Ad

dt
b̂
(i+1)
1 (3.17)

ri,=/i−1 = ri/C − Li

2
b̂
(i)
1 − r(i−1)/C − Li−1

2
b̂
(i−1)
1 (3.18)

Avi/i−1 =
A vi/C − Li

2

Ad

dt
b̂
(i)
1 −A v(i−1)/C − Li−1

2

Ad

dt
b̂
(i−1)
1 . (3.19)

For i = N +1, ..., 2N the negation of the shown position and velocity is used due to the indexing

scheme increasing in the opposite direction on the other side of the spacecraft. The resulting
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internal force on an appendage from an adjacent appendage is

Fi,j = −ksri/j − cAs vi/j. (3.20)

The torque resulting from the internal forces is

Ti/i+1 =
Li

2
b̂
(i)
1 × Fi/i+1, Ti/i−1 = −Li

2
b̂
(i)
1 × Fi/i−1. (3.21)

The internal moment resulting from the spring hinge is modeled as

Mi/i+1 = −kt(αi − αi+1)− ct(α̇i − α̇i−1), Mi/i−1 = kt(αi − αi−1)− ct(α̇i − α̇i−1). (3.22)

The forces and moments for the end appendages and for the hub are included in Ap-

pendix A.1. These equations provide a complete description of the internal forces and moments

acting on the modeled spacecraft. The unforced dynamics of the spacecraft can then be described

as a state-space system. Due to the primary investigation being attitude and shape control, the

translational dynamics of the appendages are expressed in the reference frame of the hub, and the

translational dynamics of the hub are excluded from the analysis. Therefore, the total state of the

system η representing the attitude and shape of the spacecraft is defined as

η =
[
γ γ̇ ξT1 ξT2 . . . ξTN ξTN+1 . . . ξT2N

]T
, (3.23)

and the unforced dynamics are

η̇ = f(η). (3.24)

For convenience, the portion of the state for the hub orientation γ and rate γ̇ is denoted ηC and

the remainder of the state vector describing the appendages is denoted ηp, i.e., η = [ηC ηp]
T .
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3.2.3 Control Input Model

Assume that there is a reaction wheel in the hub and that each of the panels are equipped

with a torque rod. Assume also that the reaction wheel has some saturation limit Krw and that

the control input is simply the reaction wheel torque, so that the torque generated by the reaction

wheel in response to control input urw is

τrw = sat(urw) =



−Krw, urw ≤ −Krw

urw, −Krw < urw < Krw

Krw, urw ≥ Krw.

Assume each torque rod is aligned with the b
(i)
1 axis of the body frame assigned to the

respective spacecraft segment. Torque rods typically operate by turning on and off electrical

current through a coil, resulting in a discrete set of control inputs. Assume that the control input

for the ith torque rod uiis modeled as the desired dipole generated by the torque rod, and the

maximum possible magnitude of the dipole is denoted Ktr. Using the sign function to implement

the discrete control input set can lead to chattering around ui = 0; the deadband function is used

instead. The possible dipoles generated by each torque rod are as follows:

mi = Ktrdbd(ui, λ) =



−Ktr ui < −λ

0 −λ < ui < λ

Ktr ui > λ
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The magnetic dipole resulting from the torque rod expressed in an Earth-centered polar frame is

mi =


mi cosψi

mi sinψi

0

 , (3.25)

where ψ is defined as the angle between the spacecraft’s colatitude θ and the body frame axis

b̂
(i)
2 , i.e., ψi = θ− γ−αi, for the appendages. The Earth’s magnetic field is modeled as a dipole,

and in the fixed reference frame of the orbital plane, can be expressed as

B =


2He

(
R
ρ

)3

cos θ

He

(
R
ρ

)3

sin θ

0

 . (3.26)

The torque developed by this control input can then be computed by taking the cross-product of

the resulting torque rod dipole 3.25 and the Earth’s magnetic field 3.26, i.e.,

τtr = 2He

(
R

ρ

)3

Ktrdbd(ui, λ)(sinψi sin θ − 2 cosψi cos θ)ê3. (3.27)

Defining the input vector as

u = [u1 u2 ... u2N , urw]
T , (3.28)

the forced dynamics can then be written as

η̇ = f(η,u). (3.29)

3.2.4 Gravity Gradient Effects

When considering large spacecraft, a significant disturbance moment comes from the grav-

ity gradient effect, which results from each part of the spacecraft experiencing a slightly different
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magnitude of gravitational force from Earth. The generalized first-order approximation of gravity

gradient torque is [65]

τG =
3µ

ρ5
ρ× Iρ, (3.30)

where ρ = ρêr is the vector from the center of the Earth to the center of mass of the body and I

is its moment of inertia tensor. In the body frames of the hub and panels, respectively,

ρC = ρC cos (θ − γ)â1 − ρC sin (θ − γ)â2, ρi = ρi cosψib̂
(i)
1 − ρi sinψib̂

(i)
2 (3.31)

I approximate the moment of inertia tensor of the hub as a cube of side-length s and the

panels as thin rods of length L. The moment of inertia tensors are

IC =


Ic 0 0

0 Ic 0

0 0 Ic

 (3.32)

Ii =


Ip 0 0

0 0 0

0 0 Ip

 (3.33)

where Ic = 1
6
s2 and Ip = 1

12
L2
i . The first-order approximation for gravity gradient torque for the

hub is therefore zero and, for the panels,

τG = −µmiL
2
i

8ρ3i
sin(2ψ)â3. (3.34)

The gravity gradient effect is applied as a disturbance in numerical simulations to evaluate control

robustness.
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3.3 State Feedback Control

This section considers reference tracking of a nadir-pointing attitude trajectory in a low

altitude polar orbit (see Appendix C.1 for orbital parameters). The proposed controller tracks the

desired trajectory while maintaining spacecraft flatness.

3.3.1 Linear Feedback Control

The equilibrium of the system Eq. (3.24) is when each appendage is flat and unmoving

relative to the hub reference frame. The dynamics of the undisturbed system are linearized

by taking the Jacobian of the dynamics at the equilibrium condition. The orientation of the

reference frame γ does not appear in the Jacobian of the unforced state dynamics. This indi-

cates that the unforced dynamics of the system are invariant with respect to the orientation of

the hub, which arises from using the reference frame of the hub to express the appendage dy-

namics. For the panels, the equilibrium for xi/C is x(i)eq = ±( s
2
+ 2i−1

2
L); it is positive for

i = 1, ..., N and negative for i = N + 1, ..., 2N . Thus the equilibrium state of each appendage

is ξ(i)eq = ±
[
x
(i)
eq 0 0 0 0 0

]T
. Because the dynamics of each component of the satellite

are explicitly dependent on only the states of the adjacent components and the hub, the linearized

unforced dynamics from Eq. (3.24) can be written in block matrix form, where the blocks are

defined as

AC =
∂η̇C

∂η
, A

(i)
C =

∂ξ̇i
∂ηC

, Ai =
∂ξ̇i
∂ηp

. (3.35)
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The overall system Jacobian is

A =
∂f

∂η
=



AC 0 . . . . . . 0

A
(1)
C A1 0 . . . 0

A
(2)
C 0 A2 . . . 0

...
...

... . . . ...

A
(2N)
C 0 0 . . . A2N


. (3.36)

To evaluate the stability of the unforced spacecraft structure, the eigenvalues of A are com-

puted. By inspection, for any number of appendages, A has two eigenvalues with zero real part

and the rest have a negative real part. The two imaginary axis eigenvalues correspond to the

orientation and angular velocity of the hub, because in the unforced case there is no external

damping of the hub’s angular motion. Thus, the unforced dynamics of the appendages near the

equilibrium point are stable due to the damping of the hinges, but the unforced dynamics of the

hub are not.

The input-to-state linearization of the dynamics Eq. (3.29) can also be described in block

matrix form by taking

BC =
∂η̇C

∂u
=

0 . . . 0

0 . . . 1
IC

 (3.37)

Bi =
∂ξ̇i
∂u

=


04×1 . . . . . . . . . . . . . . . . . . 04×1

0 . . . . . . . . . . . . . . . 0 −x
(i)
eq

IC

0 . . . 0 E
Ip

0 . . . 0 − 1
IC

 , (3.38)

where E = 2He(
R
ρ
)3 and E

Ip
appears in the ith column of Bi. The total matrix is

B =
∂η

∂u
=

[
BT

C BT
1 BT

2 . . . BT
2N

]T
. (3.39)
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and the portion of the matrix dealing with the torque rods is

Bp =

[
BT

1 BT
2 . . . BT

2N

]T
(3.40)

The closed-loop linearized dynamics are

η̇ = Aη +Bu. (3.41)

From the closed-loop linear dynamics a linear-quadratic regulator (LQR) generates a gain

matrix such that the state feedback control law u = −Kη is an optimal controller that ex-

ponentially stabilizes the origin. LQR serves as a baseline controller for the nonlinear system

Eq. (3.29), because it is optimal, can be tuned to exhibit desired performance characteristics, and

is computationally inexpensive. However, because the actuators are modeled with physical opera-

tion characteristics in mind, additional nonlinearities are introduced into the system. Specifically,

the saturation nonlinearities and discrete control inputs from Section 3.2.3 are applied to the out-

put of the LQR controller before it is applied to the system. The addition of these nonlinearities

undermines the optimality and performance of the LQR and motivates the Lyapunov-based based

control design described next.

3.3.2 Nonlinear Feedback Control

An energy-like function that describes the kinetic and potential energy of the spacecraft

appendages in the reference frame of the hub is

T (ηp) =
1

2

2N∑
i=1

[
mi(ẋ

2
i/C + ẏ2i/C) + Iiα̇

2
i + (ks(x

2
i/j + y2i/j) + ktα

2
i/j)

]
, (3.42)

where the subscript i/j denotes the position or angle of appendage i relative to appendage j;

j = i− 1 for i ̸∈ {1, N + 1} and j = C for i ∈ {1, N + 1}.
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Assume the spacecraft is intended to be nadir-pointing. Then the desired attitude for the

spacecraft hub is such that frame A aligns with frame P and the desired angular velocity of the

hub is the angular rate ωO of the orbit. An artificial potential energy minimized by the hub’s

desired attitude and angular velocity is

U(ηC) =
1

2
kp(γ − θ)2 +

1

2
Ip(γ̇ − ωO)

2. (3.43)

A candidate Lyapunov function is the summation of Eqs. (3.42) and (3.43), i.e.,

V (η) = T (ηp) + U(ηC). (3.44)

Consider a diagonal matrix describing the spring, mass, and inertia properties of the system,

i.e.,

M = diag[Mc,Mp], (3.45)

where

Mc = diag[kp, Ic],

Mp = diag[M1, ...,M2N ],

with

Mi = diag[ks,i, ks,i, kt,i,mi,mi, Ii].

Consider also a matrix that captures the relative position and angle of adjacent appendages,

i.e.,

L = diag(Lc,Lp) (3.46)

where Lc corresponds to the the hub and Lp corresponds to the appendages, i.e.,

Lp = diag(L1, ...,LN ,LN+1, ...,L2N). (3.47)
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The matrix blocks are

Lc = I2 (3.48)

Li =


I6 i ∈ {1, N + 1}

diag[−1,−1,−1, 0, 0, 0, I6] i ̸∈ {i, N + 1}

(3.49)

Let ηC,d = [γ − γd ω − ωd]
T denote the orientation and angular velocity of the hub rel-

ative to the desired values. The state vector including these desired values is ηd = [ηC,d ηp]
T

The vector of relative states is computed using L, i.e.,

ηrel = Lηd (3.50)

The Lyapunov function candidate Eq. (3.44) in matrix form is

V (ηrel) =
1

2
ηT
relMηrel. (3.51)

The following lemma enables analysis of the Lyapunov candidate function derivative using

the linearized dynamics of the system.

Lemma 1: Let ẋ = f(x,u) be a nonlinear system with x = 0 as its equilibrium point. Let

A = ∂f
∂x

and B = ∂f
∂u

be the linearization of f about its equilibrium point with u = 0. Consider

u = g(x) so that the closed-loop linear system becomes

ẋ = Ax+Bg(x). (3.52)

If the quadratic potential V (x) satisfies V̇ (x) < −c∥x∥2 < 0 along solutions of the closed loop

linear system Eq. (3.52), then V (x) is a Lyapunov function for the original nonlinear system. See

Appendix B.3 for the proof of this lemma.

Differentiating the candidate Lyapunov function Eq. (3.51) with respect to time yields

V̇ (ηrel, η̇rel) = ηT
relM η̇rel. (3.53)
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The linearized dynamics η̇rel = Aηrel +Bu are substituted into V̇ to yield

V̇ (ηrel, η̇rel) = ηT
relAMηrel + ηT

relMBu. (3.54)

For convenience of analyzing the Lyapunov function derivative, the output is collected into two

terms relating to the energy of the hub V̇C , and the appendages V̇p, such that V̇ = V̇C + V̇p. The

splitting is carried out as follows

V̇ =


(Lcηc,d)

T

(Lpηp)
T



MAC

MAp




ηrel

ηrel

+


(Lcηc,d)

T

(Lpηp)
T



BC

Bp





urw

u1

...

u2N


=


V̇C

V̇p

 ,

(3.55)

where AC and BC are the first two rows of the the Jacobian matrix A, and Ap and Bp consist of

the remaining rows of matrices A and B.

The expression for Vp can be expanded as

V̇p = ηT
rel,pMApηrel + ηT

rel,pMBpui. (3.56)

The first term in the expression may be equivalently expressed as ηT
rel,pMApηrel,p, where Ap

excludes the first two columns of A to make it a square matrix. This truncation does not change

the value of V̇p because the state variables of the appendages are expressed in the hub’s reference

frame and thus do not depend on the state of the hub. With the exclusion of the dynamics of

the hub, the two zero eigenvalues are also excluded, thus Ap is Hurwitz. Because M is positive

definite, the product MAp is also Hurwitz. Consequently,

ηT
rel,pMApηrel,p < 0. (3.57)
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Assuming that the spacecraft is near the equilibrium, then the translational velocities of each

appendage relative to the hub are small. The expansion of the second term is

ηT
rel,pBpui = E

2N∑
i=1

α̇iui (3.58)

This expression suggests that a control law for each torque rod of

ui = −dbd(α̇i)Ktr (3.59)

guarantees that ηT
pMBpui ≤ 0 for all i and minimizes V̇p subject to the the control constraints of

the torque rods. Under the proposed control law, V̇p < 0.

VC is now considered. Expanding the expression

V̇C = ηT
rel,CMACη + ηT

rel,CMBCurw, (3.60)

yields

V̇C = (γ̇ − ωO)(kp(γ − θ) + βC(α̇1 + α̇N+1) + βk(α1 + αN+1) + urw)− urw
Ip
IC

2N∑
i=1

α̇i, (3.61)

where constants βC and βk are defined as

βk = kt −
Lkss

4
(3.62)

βC = ct −
Lcss

4
(3.63)

The following control law is proposed:

urw = −βC(α̇1 + α̇N+1)− βk(α1 + αN+1)− kp(γ − θ)− kL(γ̇ − ωO). (3.64)

Substituting the proposed control law into V̇C yields

V̇C = −kL(γ̇ − ωO)
2, (3.65)
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which implies V̇C ≤ 0 under the proposed control law Eq. (3.64). This expression can also be

written as

V̇C = ηT
c,dPηc,d, (3.66)

where

P =

 0 kp

−kp −kL

 (3.67)

Combining V̇C and V̇p resulting from the proposed control laws yields

V̇ (ηrel, η̇rel) = ηT
rel,pMApηrel,p − EKtr

2N∑
i=1

α̇idbd(α̇i)− kL(γ̇ − ωO)
2. (3.68)

Note that

V̇ (ηrel, η̇rel) ≤ ηT
rel,pMAiηrel,p+ηT

c,dPηc,d = [ηc,d ηrel,p]
T

P 0

0 MAi

 [ηc,d ηrel,p] , (3.69)

where the last term can be rewritten as

ηT
relΠηrel, (3.70)

with

Π =

P 0

0 MAi

 . (3.71)

Therefore,

V̇ (ηrel, η̇rel) ≤ ηT
relΠηrel ≤ −c∥ηrel∥2 ≤ ηT

rel,pMApηrel,p < 0. (3.72)

along solutions of the closed-loop linear system Eq. (3.41). According to Lemma 1, the proposed

control law asymptotically stabilizes the origin of the nonlinear system Eq. (3.29).

From a practical standpoint, the control law resulting from Lyapunov analysis is favorable

for implementation. The torque rod control law acts in the opposite direction of the angular
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velocity of the appendage relative to the hub. It is also computationally simple and easily im-

plementable using angular velocity measured with gyros. The control law for the reaction wheel

contains proportional and derivative control terms with tuneable gains and also terms that become

relevant if the appendages directly affixed to the hub are not flat.

3.3.3 Simulation Results

Numerical simulations illustrate the performance of the closed-loop system. The simula-

tions conducted involve an initial value problem where the system starts with an initial condition

set some distance from the nadir reference. The controller then actuates the spacecraft to track

the reference, and the response is observed. This scenario simulates a real-world situation where

a spacecraft maneuvers to a different pointing target, such as transitioning from sun alignment

to nadir alignment.To better understand controller behavior and performance, several controllers

are simulated and compared. In addition to the proposed Lyapunov-based controller, an LQR

controller is implemented. To demonstrate the performance loss resulting from the applica-

tion of the saturation and deadband functions described in Section 3.2.3 to the control signal,

the performance of the LQR controller with and without these nonlinearities is compared. The

LQR controller is tuned to keep the control effort near the saturaton limits. Additionally, to

better understand the effect of the torque rods on system performance, the Lyapunov-based con-

troller without the βk, βc terms, and without the torque rod inputs was also tested; this leaves a

proportional-derivative controller for the reaction wheel.
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Idealized Model

The first simulation assumes an idealized scenario where there are no disturbance forces

or moments. Assume that the torque generated by the torque rods is not subject to varying

magnitudes due to the time-varying angles of incidence with the magnetic field lines of the Earth

and, instead, that the maximum control authority is available to the torque rods at all times, i.e.,

τtr = 2He(
R
ρ
)3ui. The control objective is to track a reference pointing angle θ(t) = ω0t + θ0,

where θ0 is the latitude of the spacecraft at t = 0, and an angular velocity of ω0. This reference

corresponds to a constantly nadir-pointing attitude. The simulation is an initial value problem

such that the controller drives the spacecraft from some initial value problem to the reference

trajectory. The initial state of the spacecraft hub is shown in Table C.1, and the appendages are

initially at equilibrium (flat and unmoving relative to the hub). The physical parameters for the

spacecraft are shown in Table C.2.

The dbd function from Eq. (3.27) is used instead of the sgn function, because in the limit of

the deadband approaching zero the dbd function becomes the sgn function, and the dbd function

is preferable for implementation as it reduces chatter. The LQR controller is tuned such that the

cost applied to the control inputs yields values that are near to the saturation limits. The gains

used for the control laws are shown in the Appendix C.1.

The two primary performance metrics used to measure the overall flatness of the system

are the mean-squared angular error and the distance between the two end panels (N and 2N ) in

the â2 direction , i.e., |yN/c− y2N/c|. These metrics are shown in Fig. 3.3. To illustrate the impact

on individual panels, the angles relative to flat of the outermost panels where the highest offsets

would be expected are shown in Fig. 3.4. To illustrate the impact of appendage oscillations on the
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hub, the error in the hub’s attitude and angular velocity is shown in Fig. 3.5. Finally, the actuation

effort for the reaction wheel and the torque rod on panel i = N are shown in Fig. 3.6.

(a) Mean squared angle error

(b) End-to-end separation

Figure 3.3: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers

over a 1400 second simulation. In (a) the mean squared angle error is shown and (b) shows

the difference in vertical displacement between the two end appendages. The Lyapunov-based

controller damps oscillations from the system more quickly than the other controllers.
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Figure 3.4: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers

with respect to the angular offset of the outermost panels over a 1400 second simulation. The

Lyapunov-based controller damps angular oscillations more quickly than the other controllers

(a) Hub attitude error (b) Hub angular velocity error

Figure 3.5: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers

with respect to the hub attitude and angular velocity over a 1400 second simulation.
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(a) Reaction wheel input (b) Torque rod input

Figure 3.6: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers

over a 1400 second simulation. (a) The reaction wheel control histories and (b) shows the torque

rod control history for panel i = N . The LQR controller attempts to use the torque rods to assist

in the attitude control, as the control inputs mirror each other, whereas the Lypaunov controller

mirrors the oscillations shown in the performance metrics because it is used to damp out the

oscillations in the appendages.

Simulations show that the Lyapunov-based controller performs better than either of the

other two controllers in removing oscillations from the system. Examining Fig. 3.3 and Fig. 3.4

reveals that at around 200 seconds, the oscillations with the Lyapunov-based control are smaller

compared to those with other controllers. By 400 seconds, these oscillations have completely

damped out, whereas they persist with the other controllers. This effect is also demonstrated

in Fig. 3.5b, where some jitter in the angular velocity of the hub due to appendage oscillations

is observed persisting after 400 seconds. This jitter is not present with the Lyapunov-based

control. For controlling hub attitude, the Lyapunov-based controller performs equivalently to the
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LQR controller even with the applied nonlinearities. However, the control input plots shown in

Fig. 3.6 indicate that the torque rod control mirrors the shape of the reaction wheel control. This

suggests that the LQR controller uses the torque generated by the torque rods to assist the reaction

wheel in controlling the hub’s attitude and angular velocity. Consequently, the torque rods do not

significantly contribute to damping out oscillations. This shortcoming illustrates a challenge of

implementing LQR control for high-dimensional systems such as the planar flexible spacecraft

model: constructing the Q and R gain matrices requires a separate gain value for each state and

input of the system. In this model, the state space has 146 states and 25 inputs, resulting in 171

different values that must be tuned. Consequently, it becomes difficult to adjust each parameter

to achieve the desired behavior. Conversely, for the Lyapunov-based control, there are only two

gains kp and kL, which makes tuning the system to achieve the desired behavior simpler.

The performance of the PD control of the reaction wheel and the exclusion of torque rods

demonstrate the utility of the torque rods and of incorporating knowledge of the appendage states

into the controller. Fig. 3.6a reveals that the control signal for the PD controller takes signifi-

cantly longer to converge to zero. This is a consequence of the appendages imparting angular

momentum to the hub that the controller must manage. The LQR controller uses the full system

state and thus can factor the appendages into the control signal, and the Lyapunov-based con-

troller benefits from increased damping as well as some knowledge of the appendages through

the β terms.
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Orbital Model

A second simulation was performed where the following orbital effects were included: the

disturbance resulting from gravity gradient torque modeled in Eq. (3.30), and the time-varying

effects of the orientation of the torque rods relative to Earth’s magnetic field in Eq. (3.27). The

spacecraft parameters used in the previous simulation are utilized. While the orbit remains un-

changed, the initial latitude is set to 45 degrees, corresponding to half of the maximum torque

available to the torque rods. The initial condition of the hub relative to the nadir reference is kept

the same as in the previous simulation.

The flatness metrics are shown in Fig. 3.7 to evaluate controller performance with time-

varying control authority of the torque rods and external disturbances. The performance of the

controller for the hub’s attitude and angular velocity is depicted in Fig. 3.8.

48



(a) Mean squared angle error

(b) End-to-end separation

Figure 3.7: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers

over a 1400 second on-orbit simulation with time-varying control authority. (a) The mean squared

angle error and (b) the difference in vertical displacement between the two end appendages.
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(a) Hub attitude error (b) Hub angular velocity error

Figure 3.8: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers

with time-varying control authority over a 1400 second simulation. (a) The hub attitude error and

(b) the hub angular velocity error

The simulations show that despite reduced and time-varying control authority, the Lyapunov-

based control law still is able to use the torque rods to damp out the oscillations from the ap-

pendages. The damping takes longer to achieve than in the idealized case as a result of the lower

average control authority. The added orbital effects have negligible impact on the control of the

hub’s attitude and angular velocity, suggesting that, for the chosen spacecraft parameters, the

gravity gradient torque is easily managed by the controller.

To further illustrate the impact of the time-varying control authority of the torque rods,

simulations using the Lyapunov-based control law are conducted across different initial latitudes.

The latitudes chosen are 0 degrees, 45 degrees, and 90 degrees, corresponding to having zero,

half of the maximum, and the maximum torque available to the torque rods at the start of the

simulation, respectively. Fig. 3.9 depicts the torque available over the duration of the simulation
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for each initial condition.

Figure 3.9: Available torque to torque rods

The flatness metrics are shown in Fig. 3.10 to evaluate the differences in controller perfor-

mance with varying levels of control authority available. The performance of the controller for

the hub’s attitude and angular velocity is depicted in Fig. 3.11.

51



(a) Mean squared angle error

(b) End-to-end separation

Figure 3.10: Comparison of the the Lyapunov-based controller with varying levels of torque rod

control authority initially available over a 1400 second simulation. (a) The mean squared angle

error and (b) the difference in vertical displacement between the two end appendages.
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(a) Hub attitude error (b) Hub angular velocity error

Figure 3.11: Comparison of the the Lyapunov-based controller with varying levels of torque rod

control authority initially available over a 1400 second simulation.(a) The hub attitude error and

(b) the hub angular velocity error

The simulation results in Fig. 3.10 demonstrate that even when starting with the minimum

available torque, induced oscillations can still be removed from the system, albeit at a slower

rate. They also illustrate that, for best performance in achieving flatness, having more torque

available to the torque rods at the beginning of a maneuver enables quicker damping of induced

oscillations. Further characterization of this behavior would be useful for a spacecraft mission

designer, as it would enable them to plan maneuvers at times when a desired level of flatness

could be maintained.

Fig. 3.11 demonstrates that the torque rods have a minor impact on the attitude and angular

velocity of the hub. During maneuvers, the additional angular momentum of the appendages

effectively increases the rotational inertia of the hub. The torque rods act to counteract the angular

momentum of the appendages relative to the hub, thereby diminishing this effect. Consequently,
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the scenario with maximum initial torque exhibits slightly smaller overshoot compared to the

other cases. This leads to a reduction in the control effort required for the reaction wheels,

although the effect is limited by the relatively small magnitude of torque generated by the torque

rods.

3.4 Output Feedback Control

This section considers an observer to estimate the the system state from a limited set of

measurements. The controller described in Section 3.3 is paired with an observer in an output

feedback control framework.

3.4.1 Measurement Function and State Estimation

In most applications, information about the full state of a system is not measured or avail-

able as input to a state feedback controller. Consequently, a state estimator must be used to

convert measurements into state estimates that can then be used as inputs to the controller. The

nonlinear dynamics of the system with the linearized model developed in Section 3.3 makes this

model well suited for an Extended Kalman Filter (EKF). An EKF is an estimator that applies a

Kalman filter to the dynamics of a nonlinear system linearized about an equilibrium point [68].

An EKF is performed using two steps: a prediction step and an update step. Given a state-space

system in discrete time defined as

ηk+1 = f(ηk,uk) (3.73)

zk = h(ηk), (3.74)

an EKF is implemented as follows.

54



The prediction step is [68]

η̂k|k−1 = f(η̂k−1|k−1,uk). (3.75)

Pk|k−1 = AkPk−1|k−1A
T
k +Qk, (3.76)

where Ak is the Jacobian of the system dynamics evaluated at the current state estimate, and Qk

is the process noise covariance. The update step to incorporate the measurement data is [68]

ỹk = zk − h(η̂k|k−1) (3.77)

Sk = CkPk|k−1C
T
k +Rk (3.78)

Kk = Pk|k−1C
T
k S

−1
k (3.79)

η̂k|k = η̂k|k−1 +Kkỹk (3.80)

Pk|k = (I −KkCk)Pk|k−1 (3.81)

where Ck is the linearized measurement equation ∂h
∂η

evaluated at the current state estimate and

Rk is the measurement noise covariance.

Assume that the attitude and angular velocity of the hub and the rates of each of the panels

relative to the hub are measured directly, e.g.,

zk =

[
γ γ̇ ẋ1/C ẏ1/C α̇1/C · · · ẋ2N/C ẏ2N/C α̇2N/C

]T
. (3.82)

The resulting measurement function is a linear function of the state and can be expressed in block
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matrix form

C =



Hc 0 0 . . . 0

0 Hi 0 . . . 0

0 0 Hi . . . 0

0 0 0
. . . 0

0 0 0 0 Hi


, (3.83)

where

Hc =

1 0

0 1

 ,
and

Hi =


0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 .

The measurement function is described by a matrix multiplication, h(η) = Cη, and can be

directly used in the EKF.

To evaluate its suitability in an output feedback control framework, an EKF was imple-

mented and applied to a numerical simulation of the unforced dynamics of the system. The

simulation consisted of setting the initial condition of the system to a point in state space a

small distance away from the equilibrium point and simulating the resulting unforced dynamic

response. Gaussian noise is applied to the measurement of the system and the initial estimate of

the EKF is set to the equilibrium point. See Appendix C.1 for the parameters used for the EKF.

To measure the performance of the EKF, plots of the state estimate error are shown. Specifically

plots of the attitude estimate error of the hub, and the mean error magnitude of the appendages

attitude, angular velocity, and vertical displacement are used.
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(a) Hub attitude error (b) Hub angular velocity error

(c) Average panel attitude error (d) Average panel angular velocity error

(e) Average panel displacement error (f) Average panel velocity error
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Figure 3.12: State estimation error of the extended Kalman filter applied to a simulation of the

system’s unforced dynamics. (a) The estimation error magnitude of the hub attitude, (b) the es-

timation error magnitude of the hub angular velocity, (c) the average panel attitude estimation

error magnitude, (d) the average panel angular velocity estimation error magnitude, (e) the aver-

age panel displacement estimation error magnitude, and (f) the average panel velocity estimation

error magnitude. The state estimate converges to the true state estimate after around 150 seconds,

with some residual noise left in the angular velocity estimate.

The numerical simulations show that the state estimate converges to the true state around

150 seconds, except for the panel angular velocity estimates, which retains some of the mea-

surement noise. This effect is likely due to the stiffness of the state space system causing the

estimator to respond to variations in the angular rate measurements too quickly. However, these

effects can be mitigated in the output feedback controller by setting the deadband for the torque

rods such that near an angular velocity of zero, the residual noise will fall within the deadband

and not cause noisy control inputs.

3.4.2 Simulation Results

The state estimator was then used in an output feedback control framework. In this simu-

lation the same estimator parameters are used. The simulation parameters and initial conditions

are the same as in Section 3.3.3. The initial state estimate is set to be the same as the initial

condition. In practice, between maneuvers after the oscillations have been damped out, the state

estimate will have converged to the equilibrium (flat state) and will thus be approximately true
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once the next maneuver begins. Each of the controllers in Section 3.3 are implemented with out-

put feedback and the performance of each are compared with the the Lyapunov controller with

state feedback. The flatness metrics, angles relative to flat of the outermost panels, and the hub’s

attitude and angular velocity error are shown in are shown in Fig. 3.13, the angles relative to flat

of the outermost panels are shown in Fig. 3.14, and the error in the hub’s attitude and angular

velocity is shown in Fig. 3.15.

(a) Mean squared angle error

(b) End-to-end separation

Figure 3.13: Comparison of PD, LQR, and Lyapunov-based controllers using output feedback

and Lyapunov state feedback control. In (a) the mean squared angle error is shown and (b) shows

the difference in vertical displacement between the two end appendages.
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Figure 3.14: Comparison of PD, LQR, and Lyapunov-based controllers using output feedback

and Lyapunov state feedback control with respect to the angular offset of the outermost panels.

(a) Hub attitude error (b) Hub angular velocity error

Figure 3.15: Comparison of the control performance of PD, LQR, and Lyapunov-based con-

trollers using output feedback with Lyapunov-based state feedback control with respect to the

hub attitude and angular velocity error.
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The output feedback control is able to achieve the control objectives of tracking a reference

attitude and angular velocity while removing oscillations from the structure to maintain flatness.

For attitude tracking, the output feedback controller retains the performance of the state feed-

back control. For shape control, the Lyapunov controller in output feedback does help to damp

out structural oscillations, although not as quickly as the state feedback control. Because the

controller relies on the estimate of the angular velocity of each of the panels, this reduction in

performance can be attributed to the time it takes for the angular velocity estimates to converge.

3.5 Conclusion

This chapter proposes a feedback control law for a spacecraft model consisting of a central

hub and multiple flexibly connected appendages on either side of this hub. This model could

represent either the flexibility of a large single appendage or the behavior of a deployable space

structure after it had been deployed. To control the shape and attitude of this model, actuation

consisting of a reaction wheel on the hub and magnetic torque rods on each of the appendages

is proposed. Springs to model internal forces and moments, external disturbances, and actuator

constraints are considered in modeling the dynamics of the system. The nonlinearities in the

model suggest a Lyapunov-based approach to the control design. By performing Lyapunov anal-

ysis on the system dynamics, feedback control laws for the reaction wheel and each torque rod

are obtained. Numerical simulations show that the proposed controller removes vibrations from

the system more quickly than both a system without torque rods and a system with torque rods

but with a different control law. The implementation of an Extended Kalman filter provides state

estimation from a measurement of the rate terms of each component of the spacecraft. The EKF
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combined with the Lyapunov-based control and numerical simulations demonstrated stabilization

of the system with output feedback control. The output feedback controller retains most of the

performance of the state feedback control.
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Chapter 4: Attitude and Shape Control of a Flexible Spacecraft in Three Di-

mensions

4.1 Introduction

In this chapter, I extend the planar flexible spacecraft model to a full three-dimensional

model using similar concepts. In the 3D model, the appendage is considered planar instead

of one-dimensional. The flexibility of the appendage is similarly modeled via discretization into

individual flexibly connected panels; however, compared with the planar model, the appendage is

discretized along two different axes. I extend the multibody dynamics to three dimensions using

rotation matrices to represent the attitude of each component. Like the planar model, I model

the panel connections with stiff damped springs to simulate the physical panel connections and

a damped torsional spring to simulate flexibility between panels. However, unlike the planar

model, the panels are not constrained to rotate in only one direction.

In three dimensions, the torque generated by the magnetic torque rods is no longer isolated

to a fixed axis of rotation. Furthermore, to control the additional rotational degrees of freedom of

a panel, an additional torque rod per panel is required. However, the additional torque rod results

in an output torque that is coupled, meaning the direction cannot be fully specified by the input,

as described in Section 2.1.3. To address the actuation of magnetic torque rods for shape control,
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I first consider a single panel actuated by two magnetic torque rods. Using the reduced-attitude

representation to describe the panel’s attitude, I employ Lyapunov’s direct method to derive a

control law that stabilizes the relevant degrees of freedom. This control law is also applicable for

controlling the reduced attitude of a rigid spacecraft for pointing applications, as demonstrated

by simulations.

I apply the derived torque rod control law to each torque rod pair on the panels of the three-

dimensional spacecraft model to implement shape control. Through simulation, I investigate the

performance of the controller and assess the impact of shape control in response to two types of

disturbances: maneuver-induced oscillations and thermoelastic bending.

The contributions of this chapter are (1) a nonlinear feedback control law for two-axis atti-

tude control of a rigid body actuated by two magnetic torque rods; (2) a state-space representation

of the dynamics of a spacecraft consisting of a hub and a planar flexible appendage modeled by

a discretized set of flexibly connected elements; and (3) simulation validation demonstrating that

applying the magnetic torque rod control law to the spacecraft model effectively removes vibra-

tions of the flexible appendage.

The remainder of the chapter is organized as follows: Section 4.2 presents the proposed

three-dimensional spacecraft model; Section 4.3 describes two-axis attitude control, derives a

control law for two magnetic torque rods using Lyapunov analysis, and validates the control

law through simulation on a single rigid body; Section 4.4 proposes a control design to achieve

attitude and shape control of the spacecraft model and is validated via simulation; Section 4.5

provides a summary of the chapter.
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4.2 Three-Dimensional Flexible Spacecraft Model

Consider a spacecraft consisting of a hub and a large flexible appendage connected to the

hub. This appendage could represent a large solar array, antenna, solar sail, or other relevant

structure. To model the flexibility of the structure, assume that the appendage is modeled as a

discretized set of flexibly connected rigid square elements referred to as panels. This modeling

choice can represent a deployable structure that is folded for launch and deployed in space, but

by varying the size of the panel discretization and the flexibility of the panel connections, can be

generalized to represent a continuous flexible planar structure.

Figure 4.1: Spacecraft with a hub and a flexible appendage modeled as N flexibly connected

panels

Consider an Earth-centered inertial frame I = (O, êx, êy, ê3), a body-fixed frame affixed

to the central hub of the spacecraft A = (C, â1, â2, â3), and body-fixed frames affixed to each of

the component panels of the appendage B(i) = (B(i), b̂
(i)
1 , b̂

(i)
2 , b̂

(i)
3 ), i = 1, ..., 2N . The panels

are assumed to all be the same size with side length L, and their body-fixed reference frames are

such that the origin is at the center of the panel, and the b̂
(i)
1 and b̂

(i)
2 axes are aligned with the
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panel edges.

The state of the hub consists of its position, velocity, attitude, and angular velocity, i.e.,

ηC =
[
rC/O vC/O RC ωC

]T
, (4.1)

where the attitude is represented by a rotation matrix. To better capture the shape of the flexible

appendage with the states of the panels, the position and velocity of the panels relative to and in

the reference frame of the hub are used, i.e.,

ηi =

[
ri/C vi/C RBi

ωBi

]T
. (4.2)

The state of the full spacecraft model is then a concatenation of the hub and all panels making up

the appendage, i.e.,

η = [ηC η1 η2 . . . ηN ]
T , (4.3)

where N is the number of elements comprising the appendage.

4.2.1 Spacecraft Attitude and Shape Dynamics

The dynamics for the state of the hub are as follows:

ṙC/O = v̇C/O (4.4)

v̇C/O =
FC

mC

(4.5)

ṘC = RCω
×
C (4.6)

JCω̇C = −ω×
CJCωC +MC (4.7)

where the × operator is a mapping from R3 to a 3 × 3 skew-symmetric matrix such that a×b =

a× b, where τC is the total external torque experienced by the hub, and where the derivatives are

taken with respect to the inertial frame.
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To derive the dynamics of each panel in the reference frame of the hub, the inertial frame

dynamics must first be considered. The position of panel i in the inertial frame is

ri/O = rC/O + ri/C . (4.8)

Differentiating twice yields the acceleration of each panel in the inertial frame, i.e.,

ai/O = aC/O + ai/C + ω̇C × ri/C + 2ωC × vi/C + ωC × (ωC × ri/C). (4.9)

Rearranging and substituting in FC = mCaC and Fi = miai, where FC and Fi are the total

forces on the hub and ith panel respectively, yields

ai/C =
Fi

mi

− FC

mC

− ω̇C × ri/C − 2ωC × vi/C − ωC × (ωC × ri/C). (4.10)

The dynamics for the ith panel are

ṙi/C = v̇i/C (4.11)

v̇i/C =
Fi

mi

− FC

mC

− ω̇C × ri/C − 2ωC × vi/C − ωC × (ωC × ri/C) (4.12)

ṘBi
= RBi

ω×
Bi

(4.13)

JBi
ω̇Bi

= −ω×
Bi
JBi

ωBi
+Mi (4.14)

4.2.2 Flexural Modeling and Dynamics

Assume that each of the panels are connected to each adjacent panel and at each connection

there is a torsional spring that generates a restoring moment for adjacent panels with offset atti-

tudes. In order to avoid the unnecessary complexities associated with explicitly considering the

panel connections as constraints, the attachment force of each panel is modeled as a stiff damped

spring with spring coefficient ks and damping coefficient cs. Assume the torsional springs at adja-

cent panels are linearly proportional to the relative angle between the panels that it connects, with
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spring coefficient kt and damping coefficient ct. With the spring modeling, the attachment force

and resulting moment between two adjacent panels can be computed from the relative position

and velocity of the panel edges. The position of an edge in a panel’s reference frame is

L = ±
[
L
2

0 0

]
or ±

[
0 L

2
0

]
. (4.15)

The relative position between the edges of two adjacent panels i and j is

ri,j/edge = ri/C +RC/Bi
L− (rj/C −RC/Bi

L), (4.16)

where RC/Bi
is the rotation matrix from Bi to C computed by RC/Bi

= RT
CRBi

. The relative

velocity between the edges of panels i and j is derived by taking the derivative of ri,j/edge, which

yields

vi,j/edge = vi/C +RC/Bi
(ωi−RBi/CωC)×L− (vj/C +RC/Bi

(ωj −RBi/CωC)× (−L)) (4.17)

The force on panel i resulting from panel j is

Fi,j = −ksri,j/edge − csvi,j/edge, (4.18)

where Fj,i = −Fi,j . The moment on i resulting from the attachment with j is

Ti,j = L× (RBi/CFi,j). (4.19)

Similarly, the moment arising from the torsional spring between two adjacent panels is

computed from the relative attitude and angular velocity of adjacent panels. Assume that the

restoring moment opposes the relative orientation of adjacent panels. The matrix logarithm of

a rotation matrix parameterizes a rotation in three-dimensional space by a direction ξ and mag-

nitude θ of rotation providing a convenient way to define the magnitude and direction of the
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restoring moment induced by the torsional spring. The matrix logarithm of a rotation matrix R is

logm(R) =



θ = cos−1(Trace(R)−1
2

) ∈ R

ξ = 1
2 sin θ



r32 − r23

r13 − r31

r21 − r12


∈ R3

(4.20)

The relative orientation between adjacent panels i and j is computed by taking logm(RBi/Bj
) to

get θi,j and ξi,j . The relative angular velocity between adjacent panels i and j is the difference

between their angular velocities given in reference frame B(i), i.e.,

ωi,j = ωi −RBi/Bj
ωj. (4.21)

The resulting moment is

Mi,j = −ktθξi,j − ctωi,j. (4.22)

Assume that the spacecraft is subject to gravity from Earth, that there is some 3 axis control

system on the hub, e.g., a set of reaction wheels, and that the appendage is connected to the hub

via a single panel indexed i = 1. Then the total force and moment exerted on the hub via the

flexible appendage is

FC = −µmC

rC/O

∥rC/O∥3
+ FC,1 (4.23)

MC = TC,1 +MC,1 + uC . (4.24)

The total force and moment on each panel comprising the appendage is

Fi = −µmi

ri/O
∥ri/O∥3

+
∑
j∈Ni

Fi,j (4.25)

Mi =
∑
j∈Ni

(Ti,j +Mi,j) , (4.26)
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where Ni is the set of all panels connected to panel i.

4.2.3 Control Input Model

Assume that the hub has three reaction wheels aligned with each of its body frame axes,

i.e., (â1, â2, â3). Assume also that each reaction wheel has some saturation limit Krw and that

the control input is simply the reaction wheel torque. The saturation is applied to each reaction

wheel individually. The torque generated by the reaction wheels in response to control input urw

is

τrw =

[
sat(urw,1) sat(urw,2) sat(urw,3)

]T
(4.27)

where the subscript denotes each axis component of the control input and where

sat(urw,k) =



−Krw urw,k ≤ −Krw

urw,k −Krw < urw,k < Krw

Krw urw,k ≥ Krw.

Assume that each panel is equipped with two magnetic torque rods lying orthogonally in

the plane of the panel and to each other. Specifically, the torque rods on panel i are aligned with

axes b̂(i)
1 and b̂

(i)
2 and orthogonal to b̂

(i)
3 . Assume the control input to each u(i)1 , u

(i)
2 corresponds

to the strength of the magnetic dipole generated, m1,m2. Assume that each torque rod has a

maximum strength dipole that it can generate, denoted as Ktr. The magnetic dipole generated by

the control inputs to panel i expressed in the body frame is

m =

[
m1 m2 0

]T
(4.28)
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where

mk =



−Ktr uk ≤ −Ktr

uk −Ktr < uk < Ktr

Ktr uk ≥ Ktr.

(4.29)

The resulting moment in the body frame is

τtr = m×B =

[
m2B3 −m1B3 m1B2 −m2B1

]T
, (4.30)

where B is the local magnetic field of the Earth expressed in the body frame of the spacecraft.

4.3 Two-Axis Attitude Control Using Two Magnetic Torque Rods

To determine a control law for the magnetic torque rods, consider a single panel from the

flexible appendage with a magnetic torque rod pair as described in Section 4.2.3. Assume that

its attitude is parameterized by a rotation matrix and the dynamics evolve on SO(3) as described

in Section 2.1. With only two magnetic torque rods, it is not possible to control the full attitude

of the panel. When part of the flexible appendage, rotations about the b̂
(i)
3 axis relative to the

hub or neighboring panels are not relevant, as the geometric constraints enforced by the panel

connections render rotations in this direction negligible. The objective of controlling a panel’s

attitude, when it is part of the appendage, is to ensure that it and its neighbors remain flat relative

to the hub. Explicitly, this objective can be defined as aligning the b̂(i)3 axis of each panel with the

â3 axis of the hub.

When considering the panel as a separate entity, akin to a small spacecraft actuated by only

two magnetic torque rods, an analogous problem arises: pointing control of a spacecraft. Solving
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this analogous problem effectively addresses the challenge of performing shape control using two

magnetic torque rods. The problem of pointing control of a spacecraft is now addressed.

Assume that the objective of the spacecraft is to point an onboard instrument in a desired

direction, given that the instrument is fixed in the body frame. In a pointing application, rotations

about the pointing direction are irrelevant; a reduced-attitude representation can be used instead.

The pointing direction of the instrument can be described by a vector b on the two-sphere, defined

as S2 = {x ∈ R3 | ||x|| = 1}. Assume that the body-fixed frame is aligned with the principal axes

of the spacecraft and that the pointing vector b is aligned with the one of the body-frame axes.

Without loss of generality, consider b to be aligned with the third principal axis, i.e., expressed

in the body-fixed frame, b = [0 0 1]T . In the inertial frame, Γ = Rb ∈ S2 represents the

pointing direction of the vector b. Because Γ is invariant to rotations about b3, it is a reduced-

attitude representation of the orientation of the spacecraft [64]

4.3.1 Error States for Reduced Attitude Control

A function Ψ that defines the pointing error between the spacecraft b and the desired point-

ing direction RTrd is [69]

Ψ = 1− b ·RTrd, (4.31)

where rd is the desired pointing direction in the inertial frame. The error function 4.31 can also

be expressed as 1 − cos θ, where θ is the angle between the unit vectors b and RTrd. The error

function is positive definite and has critical points occurring at θ = ±π, [69].

Define the pointing error vector as

er = RTrd × b. (4.32)
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The error vector 4.32 can be interpreted as a gradient vector field on S2 induced by the potential

function Ψ; er vanishes at the critical points of Ψ [69].

Define the angular velocity error as

eω = ω −RTΩd, (4.33)

where Ωd is the desired angular velocity of the spacecraft in the inertial frame and ωd = RTΩd

is the angular velocity of the spacecraft expressed in the body frame.

The dynamics of the pointing error are computed by taking the derivative of Ψ, which

yields

Ψ̇ = 0− bT
(
ṘTrd +RT ṙd

)
= −bT

(
−ω×RTrd +RT (Ωd × rd)

)
. (4.34)

Taking advantage of the triple product identity a · (b × c) = b · (c × a) = c · (a × b) and

rearranging Eq. (4.34) yields

Ψ̇ = (RTrd × b) · (ω −RTΩd) = eT
ωer, (4.35)

which conveniently contains er and ew.

The dynamics of the angular velocity error are computed by taking the derivative of eω as

follows:

ėω = ω̇ − ṘTΩd −RT Ω̇d = ω̇ + ω×RTΩd −RT Ω̇d = ω̇ + ω × ωd − ω̇d. (4.36)

The objective of a control law is to drive both error states, Ψ and eω, to zero.
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4.3.2 Lyapunov-Based Control Design

The angular velocity of the spacecraft about the pointing vector b does not affect the kine-

matics of the reduced attitude representation. Therefore consideration of only the angular velocity

orthogonal to b is required track a pointing angle reference because the reduced-attitude repre-

sentation is invariant to rotations about itself. The projection of a vector a onto another vector b,

projba, can be expressed in matrix form as Π∥(b)a, where

Π∥(b) = bbT (4.37)

The orthogonal projection of a vector in R3 can be expressed in matrix form as

Π⊥(b) = I3 − Π∥(b) = I3 − bbT . (4.38)

The angular velocity error orthogonal to b can then be expressed as

eω⊥ = Π⊥eω. (4.39)

The projection matrices about the pointing vector b will be denoted as Π∥ and Π⊥ for simplicity.

Assume that the attitude dynamics occur on a significantly faster time scale than the or-

bital dynamics and so variations of the local magnetic field due to translation are neglected (an

assumption commonly made in analysis of the B-dot algorithm [52]), therefore B in the inertial

reference frame is assumed to be constant. Assume also that the local magnitude field is never

exactly orthogonal to b, i.e., B3 ̸= 0. A common spacecraft pointing objective is to orient a

sensor or other instrument directly towards the body that it is orbiting (e.g., an Earth-imaging

spacecraft). In these applications, for the instrument to remain correctly aligned, the desired an-

gular velocity of the spacecraft must be equal to the angular velocity of its orbit and, for circular
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orbits, that angular velocity is constant. Therefore, assume that the angular velocity reference

remains constant, i.e., Ω̇d = 0.

Consider the following sum of the pointing angle error and the angular velocity error or-

thogonal to the pointing vector as a candidate Lyapunov function:

V = kpΨ+ T = kp(1− bTRTrd) +
1

2
eT
ω⊥Jeω⊥, (4.40)

Taking the derivative of the candidate Lyapunov function V yields

V̇ = kpe
T
ω⊥er+eT

ω⊥J ėω⊥ = kpe
T
ω⊥er+eT

ω⊥J
(
Π⊥

[
J−1(ω × Jω + J−1τ − ω × ωd

])
. (4.41)

Under the assumptions stated in Section 4.3, the matrices J and Π⊥ commute, thus

V̇ = kpe
T
ω⊥er + eT

ω⊥J ėω⊥ = kpe
T
ω⊥er + eT

ω⊥Π⊥ [ω × Jω + τ − Jω × ωd] (4.42)

Substituting ωd = ω − eω and utilizing the identity a · (b× c) = b · (c× a) = c · (a× b), the

expression Eq. (4.42) becomes

V̇ = kpe
T
ω⊥er + eT

ω⊥τ + eT
ω(Jeω⊥ × ω) + eT

ω⊥ × (ω × Jω). (4.43)

Consider the following control input to the magnetic torque rods:

m = Π∥
1

B
×

(
−kper − ω × Jω − Π⊥Jω

×eω

)
− kωΠ⊥(B × Π⊥eω). (4.44)

Note that because the first term is a cross product with a vector parallel to b and the second term

is an orthogonal projection relative to b, this expression yields a vector orthogonal to b. In the

body frame, there are nonzero entries corresponding to the directions of the magnetic torque rods

and a zero entry corresponding to the direction of b. Therefore, m represents a valid expression

for the specified control input model. Substituting the torque resulting from the control input in
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Eq. (4.44) τ = m×B into Eq. (4.43) yields

V̇ = −kwB2
3∥eω⊥∥2 ≤ 0 V̇ = 0 iff ∥eω⊥∥ = 0. (4.45)

Therefore, the proposed control law asymptotically drives the pointing error and angular velocity

error orthogonal to the pointing vector to zero for any constantly-varying pointing reference.

4.3.3 Simulation Results

Numerical simulations illustrate the performance of the closed-loop system. A rigid space-

craft is simulated in a circular orbit around Earth. The orbit with the initial true anomaly is

specified in Table C.4 The initial conditions of attitude and angular velocity used for the numeri-

cal simulation are

R0 = I3×3, ω0 =

[
4 −5 2

]T
× 10−3

with a mass of 5kg and a moment of inertia matrix of

J = diag

[
0.25 0.25 0.4

]

The magnetic field is modeled as in Section 2.1.3 and the control authority available to the mag-

netic torque rods varies with orbital position. The gains used in the controller are kp = 5× 10−5,

and kw = 0.1.

The reference attitude trajectory supplied to the controller is a nadir-pointing attitude, i.e.,

pointing towards the Earth’s center rd = r/∥r∥, with the reference angular velocity Ωd as the

angular velocity of the spacecraft’s orbit. The given initial conditions require a slewing maneuver

to align with the reference attitude at the correct angular velocity. The results of the simulation

are plotted below.
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Figure 4.2: Magnitude of the pointing error and angular velocity error over a 750-second simu-

lation. The error of the pointing angle and the angular velocity error orthogonal to the pointing

vector both converge to zero.
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Figure 4.3: Control inputs and resulting torques over a 750-second simulation. The actuation

torque is on the order of tenths of millinewton meters, which is a magnitude realistic to magnetic

torque rods.

Simulation results demonstrate the asymptotic convergence of the error states representing

pointing error and angular velocity error orthogonal to the pointing vector to zero. Note that

there is some residual angular velocity about the pointing vector, which is akin to a nadir-pointing

spacecraft that is rotating about its pointing axis. This outcome is expected because, with only

two magnetic torque rods, full attitude stabilization is not possible. However, when the other

error states have converged to zero, this residual angular velocity does not affect the pointing

angle or its kinematics. Note also that because the magnetic field in the simulation is taken as a

function of the spacecraft’s position relative to Earth, the simulation suggests that the controller

still stabilizes the closed-loop system even when relaxing the assumption of a constant magnetic

field.
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An additional simulation was performed with a larger initial angular velocity to repre-

sent the scenario of detumbling the spacecraft and then aligning it in the desired direction.

The same parameters were used except the initial angular velocity, which is now set as ω0 =

[−3 − 4 2]T × 10−2. The resulting simulations are shown below.

Figure 4.4: Magnitude of the pointing error and angular velocity error over a detumbling simu-

lation. The error of the pointing angle and the angular velocity error orthogonal to the pointing

vector both converge to zero.
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Figure 4.5: Control inputs and resulting torques over a 4000-second detumbling simulation. The

torque developed by the magnetic torque rods is on the order of millinewton meters.

The simulation results demonstrate controller performance from a more demanding initial

condition. Although it takes longer, the simulation shows that the controller does eventually

remove enough rotational energy from the spacecraft to then successfully track the desired refer-

ence.

Finally, a simulation was performed where the control input is saturated as shown in

Eq. (4.29) and with a demanding initial condition to ensure that that the control law still performs

with the added constraint. The same parameters are used except the initial angular velocity, which

is now set as ω0 = [0.2 − 0.25 0.1]T . The resulting simulations are shown below.

80



Figure 4.6: Magnitude of the pointing error and angular velocity error over a detumbling simu-

lation with saturated control input. The error of the pointing angle and the angular velocity error

orthogonal to the pointing vector both converge to zero.

Figure 4.7: Control inputs and resulting torques over a detumbling simulation with saturated

control input. The saturation of the inputs and the variation in output magnitude due to the local

magnitude are visible
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These simulations demonstrate that the attitude control law in Eq. (4.44) subject to sat-

uration limits stabilizes the reduced attitude and angular velocity to a nadir reference despite

an initial condition with very high rotational energy and a magnetic field varying with orbital

position.

For shape control, the objective of aligning the b̂
(i)
3 axis of each panel with the â3 axis of

the hub is equivalent to the reduced attitude control problem, but with different references. With

the analogous problem of controlling the reduced attitude of a single panel solved, the control

law can be applied to the panels comprising the appendage for effective shape control.

4.4 State-Feedback Control of 3D Flexible Spacecraft Model

This section implements the derived magnetic torque rod control law to actuate the mag-

netic torque rod pairs attached to the panels in the flexible spacecraft model to achieve shape

control. Simulations evaluate the effectiveness of the shape control in response to different types

of disturbances, namely oscillations induced from performing an attitude maneuver, and shape

deformations resulting from thermoelasticity.

Similar to the two-dimensional model, the control paradigm remains unchanged. The re-

action wheels on the hub are employed to control the hub’s attitude and angular velocity. The

torque rods are used to maintain the appendage’s flatness and to minimize structural vibrations.

Because the attitude of the hub is represented as a rotation matrix, a feedback controller

using the full attitude R and angular velocity ω is required. The controller used for the reaction

wheels is taken from [64] which explores closed loop control on SO(3). A control law to track a

desired attitudeRd and angular velocity ωC,ref that uses a proportional derivative feedback control
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structure is given by [64]

u = −Kweω −KpΩa(RC) (4.46)

where eω = ωC − ω
(C)
ref , Kω, Kp ∈ R3x3 are positive definite matrices, a = [a1 a2 a3]

T where

a1, a2, and a3 are distinct positive integers and

Ωa(RC) ≜
3∑

i=1

aiei × (RT
dRei) (4.47)

with [e1 e2 e3]
T the identity matrix.

For shape control, the torque rod control developed in Section 4.3 is used. Specifically

Eq. (4.44) is taken as the control input with the saturation limits shown in Eq. (4.29) applied.

Whereas in Section 4.3 the desired pointing direction rd and angular velocity Ωd corresponded

to a nadir-pointing reference, for shape control of the appendage, the reference pointing direction

aligns with â3 and the reference angular velocity is that of the hub. Specifically, the reduced

attitude error for the ith panel is

e(i)
r = RT

Bi
RCe3 × e3, (4.48)

and the angular velocity error is

e(i)
ω = ωi −RT

Bi
RCωC . (4.49)

To evaluate the impact of incorporating shape control, simulations are conducted with two

different types of disturbances. First, the structural vibrations induced by an attitude maneuver

are examined. Second, shape deformations resulting from thermoelastic effects are considered. A

comparison between using reaction wheels for attitude control and the combined use of reaction

wheels for attitude control and torque rods for shape stabilization is presented for each simulation.

In each set of simulations, the system is subjected to orbital effects. Specifically, the spacecraft
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experiences gravity gradient torque, and the magnetic field varies with orbital position, leading

to fluctuations in control authority throughout an orbit. In each of the simulations the reference

attitude and angular velocity is a nadir-pointing reference. The desired attitude is defined such

that â3 aligns with the vector from the center of the Earth to the spacecraft, â1 is aligned with

the local horizontal in the direction of orbital motion and â2 = â3 × â1, which is parallel with

the angular momentum vector of the orbit. The orbit used for each simulation in this section is

shown in Table C.5.

Because the considered orbit is circular, the reference attitude for the hub can be defined

using its state. The vector from nadir to the hub is simply its position rC/O, thus the desired

direction for â3 is rC/O/∥rC/O∥. For a circular orbit, the local horizontal is parallel with the

spacecraft’s velocity vector, thus the desired direction for â1 is vC/O/∥vC/O∥ Therefore, Rd is

defined as

Rd =

[
vC/O

∥vC/O∥ ,
rC/O

∥rC/O∥ ×
vC/O

∥vC/O∥ ,
rC/O

∥rC/O∥

]
. (4.50)

The angular velocity reference is the angular velocity of the orbit in the direction of the orbit’s

angular momentum. In the inertial frame

ω
(C)
ref = R313(Ω, i, ω)

[
0 0

√
µ/a3

]T
(4.51)

whereR313 is a 3-1-3 rotation matrix parametrized by the orbital parameters right ascension of the

ascending node (Ω), inclination (i), and argument of periapsis (ω) that rotates from the perifocal

frame to the Earth-centered inertial frame.

The spacecraft model used for the simulations has a 15 meters by 15 meter flexible ap-

pendage discretized into a 6x6 grid depicted in Fig. 4.1 with the physical parameters shown in

Table C.6.
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To evaluate the performance in attitude control, the attitude and angular velocity of hub

relative to the reference is measured. The attitude error of the hub εRC
is defined as the angular

distance between its attitude and the reference

εRC
= cos−1 Tr(R

T
dRC)− 1

2
(4.52)

The hub’s angular velocity error εωC
is defined as the magnitude of the angular velocity error

vector.

εωC
= ∥ωC − ω

(C)
ref ∥ (4.53)

To evaluate the performance in shape control, appendage flexures are characterized via two panel

measurements. The first is the deviation in pointing angle of panels relative to the hub. This

metric denoted ε(i)RBi
for the ith panel measures the rotation between the axes â3 and b̂

(i)
3 and is

zero when the panel is flat relative to the hub:

ε
(i)
RBi

= cos−1
(
RT

Bi
RCe3 · e3

)
. (4.54)

The second metric ε(i)e3 is the displacement of panels in the â3 direction characterizing how far a

panel is displaced from the flat configuration relative to the hub:

ε(i)e3
= |ri/C · e3| (4.55)

To characterize the entire appendage, the mean and maximum values over all panels for each of

these metrics are calculated. The mean provides an indication of the overall flatness of the entire

appendage, while the maximum value highlights the most significant deviations that exist. To

understand the effects of the moments generated by the torque rods on the attitude controller, the

control inputs and the total angular momentum stored by the reaction wheels as they are actuated

are also considered.
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4.4.1 Maneuver-Induced Oscillation

The first disturbance investigated is the structural vibration of the appendage resulting from

the moment generated by the reaction wheels. This moment excites the flexible modes of the

appendage resulting in structural oscillation. To examine the impact of shape control via the

magnetic torque rods, an initial value problem is formulated. In this scenario, the initial attitude

of the hub is set some angle off nadir. The attitude control then drives the system towards a

nadir-pointing reference, introducing structural oscillation. This scenario simulates an attitude

maneuver performed in orbit, where the spacecraft switches attitude references, such as from

aligning with the sun to a nadir-pointing reference.

The initial attitude of the hub is 16 degrees off nadir, with the initial angular velocity

matching the angular velocity of the orbit. The appendage is initially at equilibrium, meaning

it is flat and stationary relative to the hub. The control parameters used in this simulation are

shown in Table C.7.

The results of the initial value problem simulation are shown below. For the hub, the

attitude error εRC
and angular velocity error εωC

are shown in Fig. 4.8. The appendage flatness

metrics (ε(i)RBi
and ε(i)e3 ) are shown in Fig. 4.9. The control inputs and total accumulation of angular

momentum stored in the reaction wheels are shown in Fig. 4.10.
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(a) Hub attitude error (b) Hub angular velocity error

Figure 4.8: Comparison of the attitude control performance of an attitude maneuver simulation

with and without the torque rod control. (a) the hub attitude error and (b) the hub angular velocity

error. The torque rods improve attitude control performance

(a) Panel angular offset (b) Panel displacement

Figure 4.9: Comparison of appendage flatness during an attitude maneuver simulation with and

without shape control. Average and maximum (a) panel angle relative to hub and (b) panel

displacement. Torque rods dampen oscillations and restore flatness.
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(a) Reaction wheel input (b) Reaction wheel angular momentum

Figure 4.10: Comparison of control input and angular momentum accumulation of reaction

wheels during an attitude maneuver simulation. (a) Control inputs to each reaction wheel. (b)

Accumulation of reaction wheel angular momentum. The reaction wheels must accumulate ad-

ditional angular momentum to maintain the desired attitude and angular velocity reference due to

the moment generated by the torque rods for shape control.

Simulations show that using the torque rods to perform shape control significantly improves

controller performance during an attitude maneuver. Fig. 4.8 illustrates that the attitude controller

converges faster and with fewer vibrations when shape control is implemented compared to when

it is not. This improvement is due to shape control reducing appendage bending, thereby causing

less disturbance to the hub and enabling better performance by the attitude controller. Fig. 4.9

shows that the shape controller significantly reduces appendage deformations during an attitude

maneuver. During the first 600 seconds of the simulation, the vibrations are damped, and by

approximately 1400 seconds, the appendage converges to a flat configuration. Without shape

control, the appendage continues to oscillate significantly after 1400 seconds, with average de-
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formations of up 5 degrees offset and 6 cm of displacement, and maximum deformations of up

to 6 degrees offset and 13 cm of displacement.

Fig. 4.10 illustrates the effect of the cumulative moment induced on the spacecraft by the

torque rods over time. As the appendage oscillates, the reaction wheels generate a counteracting

moment. Without shape stabilization, this counteracting moment changes direction along with

the appendage deformation resulting in the accumulation of angular momentum due to oscillation

generally averaging out. In contrast, with shape stabilization, each pair of torque rods exerts a

moment that slightly influences the spacecraft’s attitude. The reaction wheels must counteract

these moments to maintain the desired attitude reference, leading to a higher accumulation of

angular momentum in the reaction wheels during maneuvers. With the torque rods, the attitude

maneuver necessitates approximately 25 Nms of angular momentum from the 1st and 3rd reaction

wheels, whereas without them, it requires significantly less.

4.4.2 Thermoelastic Bending

The second disturbance investigated is shape deformations resulting from thermoelastic

effects. As the spacecraft orbits the Earth, various parts of the spacecraft will intermittently face

the sun. When one face of the appendage is exposed to sunlight, it heats up more than the opposite

side, creating a significant temperature gradient. The heating causes thermal expansion and the

temperature differential induces mechanical stress, leading to structural bending. In this case, the

objective of shape control is to mitigate this bending and keep the appendage as flat as possible.

The discretization of the appendage provides a convenient way to model thermoelasticity.

To model the thermal induced bending, the equilibrium angle of the hinge between each panel
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is varied. Let ϵ be a parameter that quantifies the degree of bending and ϵ be a vector with

magnitude ϵ that represents the difference in hinge equilibrium. For panels joined along the â1

axis,

ϵi,j = ±


0

ϵ

0

 , (4.56)

where ϵ is positive if j is in the positive â1 direction relative to i and negative otherwise. For

panels joined along the â2 axis,

ϵi,j = ±


ϵ

0

0

 , (4.57)

where ϵ is positive if j is in the positive â2 direction relative to i and negative otherwise. The

moment between panels i and j becomes

Mi,j = −kt(θξi,j + ϵi,j)− ctωi,j. (4.58)

Assume that rate at which the incidence of the sun on the spacecraft changes periodically

with the orbit. Assume also that the incidence of the sun determines the rate of change of ϵ. The

evolution of ϵ over time can then be approximated as a function of the true anomaly of the orbit

ϵ̇ = A sin ν, (4.59)

whereA encapsulates the factors that determine the magnitude of thermal deformation. ϵ is added

as a state to the system and integrated according to Eq. (4.59).

For the thermal deformation simulations, the initial condition of the spacecraft is its refer-

ence configuration. Specifically the hub is in a nadir-pointing reference and the appendage is flat
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and stationary relative to the hub. The initial condition for ϵ is 0 and the value of A is 2.7× 10−5.

The control parameters in Table C.7 are used.

For illustration, the bending parameter over several orbital periods is plotted in Fig. 4.11.

The appendage flatness metrics are shown in Fig. 4.12, and the control inputs and total accumu-

lation of angular momentum stored in the reaction wheels are shown in Fig. 4.13a.

Figure 4.11: Panel interface equilibrium angle over three orbital periods
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(a) Panel angular offset (b) Panel displacement

Figure 4.12: Effects of torque rods in mitigating thermal deformations of the appendage. (a)

Average and maximum panel angle relative to hub and (b) average and maximum panel displace-

ment. The torque rods significantly reduce the magnitude of structural deformation.
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(a) Reaction wheel input (b) Reaction wheel angular momentum

Figure 4.13: Control input and angular momentum accumulation of reaction wheels due to ther-

mal deformations. (a) Control inputs to each reaction wheel and (b) the accumulation of reaction

wheel angular momentum. The reaction wheels require taking on additional angular momentum

to maintain the desired attitude and angular velocity reference due to the moment generated by

the torque rods.

Simulations show that the shape-stabilizing controller counteracts the effects of thermal

deformation. Fig. 4.9 illustrates the effect that the torque rods have on the appendage flatness.

Over the three orbital periods, the use of torque rods reduces the average and maximum angular

deviation of the panels uniformly. When ϵ is at its highest, the effect is more pronounced with

maximum displacements being reduced from nearly 25 cm to less than 10 cm. The torque rods

are unable to maintain perfect flatness with the parameters used in the simulation. This is because

torque rods can only produce a very small amount of torque, insufficient to overcome the stiffness

of the structure. In reality, the structure would need to have almost no rigidity for the magnetic

torque rods to maintain perfect flatness. However, despite not maintaining perfect flatness, the
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benefit they provide is still significant.

The reduction in shape deformation, however, comes at the cost of the reaction wheels

accumulating angular momentum to counteract the torque generated by the torque rods, as illus-

trated by Fig. 4.10b. Without shape control, the angular momentum introduced into the system is

minimal, resulting in a small net angular momentum stored in the reaction wheels to maintain the

attitude reference. In contrast, with shape stabilization, the reaction wheels must store approxi-

mately 4 Nms of angular momentum per orbit along the â1 and â2 axes to maintain the attitude

reference.

4.5 Conclusion

This chapter addresses the use of distributed pairs of magnetic torque rods across a flexible

spacecraft structure to regulate its shape. A three-dimensional dynamic spacecraft model consist-

ing of a hub and flexible appendage modeled by a discretized series of flexibly connected rigid

elements is proposed. The hub is actuated by a set of reaction wheels and each element (panel) is

actuated by a magnetic torque rod pair. To develop a control law for a magnetic torque rod pair,

control of the reduced attitude of a single panel is considered. The panel considered separately

could also be thought of as its own spacecraft actuated by two magnetic torque rods. To achieve

this objective, a novel control law is proposed and analyzed using Lyapunov analysis. The theo-

retical analysis suggests that the proposed control law effectively stabilizes the reduced attitude

and angular velocity of a rigid spacecraft using only two magnetic torque rods. Numerical sim-

ulations are conducted to validate the performance of the proposed control law. The results of

these simulations demonstrate that the proposed control law successfully stabilizes the defined
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error states. Although developed for shape control of a flexible appendage, the control law has

applicability to the field of smallscale satellites such as a CubeSat.

The magnetic torque rod control law is applied to the three-dimensional spacecraft model

to implement shape control of a flexible appendage. Simulations are conducted under two dif-

ferent types of disturbances: attitude maneuvers that induce structural oscillations and shape

deformations caused by periodic solar heating. The implementation of shape stabilization using

distributed pairs of torque rods throughout the appendage significantly dampens oscillations and

mitigates deformations under both disturbances. This has several important implications.

First, a flexible spacecraft structure, such as an antenna, may only be functional if deforma-

tions are limited within a certain range. Second, if the speed of attitude maneuvers is constrained

to prevent excitation of a flexible appendage, there may be a loss of mission time due to the addi-

tional time required for maneuvers. Consequently, the reduction in deformation provided by the

torque rods could render an otherwise infeasible design feasible.

However, the cost of shape stabilization is that the reaction wheels on the hub accumulate

additional angular momentum to counteract the moment generated by the torque rods. Since

reaction wheels have a finite capacity for storing angular momentum before needing to offload,

this would result in the spacecraft spending more time over its lifespan dumping momentum from

the reaction wheels.
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Chapter 5: State Estimation of Flexible Spacecraft

5.1 Introduction

This chapter addresses state estimation of the flexible spacecraft model in Section 4.2. The

control law presented in Section 4.4 requires knowledge of the state of each panel comprising the

appendage. In practice, only a limited set of measurements is available, necessitating the estima-

tion of the system’s state for the control law to be applied. Given the computational challenges of

state estimation for high-dimensional nonlinear systems and the limited computational resources

onboard a spacecraft, model reduction is explored.

To obtain a linear reduced-order model from a high-dimensional nonlinear system, dynamic

mode decomposition (DMD) originating from the field of fluid dynamics is applied to the flexi-

ble spacecraft model. The most significant mode shapes are identified. The error resulting from

using a reduced-order model is computed for varying numbers of modes, considering both finer

and coarser discretizations of the flexible appendage. The DMD Kalman filter is then applied

to perform state estimation of mode amplitudes using limited measurements, and the quality of

the resulting state estimates is evaluated. The linearized representation of the mode amplitudes’

evolution and the DMD modes provide a measure of observability for a given set of state mea-

surements. This measure is used to optimize the number and placement of sensors to maximize

observability.
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The contributions of this chapter are as follows: (1) the application of dynamic mode de-

composition to the flexible spacecraft model to produce a reduced-order representation; (2) using

the reduced order model to enable full state estimation with a limited set of measurements; and

(3) optimization of the number and placement of sensors to maximize observability for state

estimation.

This chapter is organized as follows. Section 5.2 applies dynamic mode decomposition to

the flexible spacecraft model and investigates the resulting modes. Section 5.3 uses the DMD

Kalman filter to perform state estimation of the dynamic model and investigates the performance

of the state estimator. Section 5.4 describes the framework for optimizing sensor number and

placement to maximize observability of the mode amplitudes. Section 5.5 provides a concluding

summary of the chapter

5.2 Dynamic Mode Decomposition of Flexible Spacecraft Model

In this section, dynamic mode decomposition (DMD) is used to generate a modal decom-

position of the flexible spacecraft model. The goal of the modal decomposition is to be able to

estimate the attitude shape of the spacecraft. To decouple the spacecraft’s attitude and shape dy-

namics from its translational dynamics, consider the term Fi

mi
− FC

mC
appearing in Eq. (4.10) for the

translational dynamics for each panel. Substituting the total forces 4.25, 4.23 into this expression

yields

Fi

mi

− FC

mC

= −µ
ri/O

∥ri/O∥3
+ µ

rC/O

∥rC/O∥3
+

1

mi

∑
j∈Ni

Fi,j −
1

mC

FC,1. (5.1)

For a large spacecraft, the difference between ri/O and rC/O might be on the order of 10s of

meters at most while their magnitude is on the order of thousands of kilometers. Consequently,
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the gravitational influence on each term differs minimally, allowing for the approximation ri/O ≈

rC/O. As a result, the gravitational contributions cancel out in Eq. (5.1), i.e.,

Fi

mi

− FC

mC

≈ 1

mi

∑
j∈Ni

Fi,j −
1

mC

FC,1 (5.2)

Any relative acceleration between panel i and the hub induced by the differing gravitational

forces is negligible compared to the system’s structural dynamics. With this approximation,

the dynamics of the appendage no longer depend on the inertial position and velocity of the

spacecraft. As a result, the attitude and shape of the flexible spacecraft can be written as a state-

space system independent of the translational dynamics of the hub. The state of this reduced

system is

η = [RC ωC η1 η2 . . . ηN ]
T (5.3)

and its dynamics can be written entirely as a function of its state, i.e.,

η̇ = f(η). (5.4)

5.2.1 Modal Decomposition

To perform DMD on the flexible spacecraft model, a training dataset is required. To gener-

ate training data, a time-varying control input profile is applied to the system via uC(t) for some

amount of time, and the resulting unforced dynamics are measured and collected as a training

dataset. For DMD to accurately capture the behavior of the underlying system, it is important

that the training data contain all relevant modes. Because different magnitudes and frequencies

of the control input will excite different modes of the structure, using a single set of data would

likely not yield a representative modal decomposition. To mitigate this, many different datasets
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resulting from varying control input profiles were collected. These datasets concatenated together

form a single dataset that ideally reflects all the relevant modes of the system to which can DMD

can be applied.

The training dataset is generated in simulation via a Monte Carlo approach as follows: (1)

a control input profile bounded in magnitude and time is randomly generated and applied to the

system; (2) the resulting unforced dynamic response is measured and collected for the subsequent

1200 seconds (about a fifth of a period of a low Earth orbit). This procedure is performed a

number of times and each of the resulting datasets is concatenated together.

Training datasets are generated for a spacecraft model with different discretization sizes of

the flexible appendage. In both cases the flexible appendage is a 15 meter by 15 meter square

structure. The coarse discretization consists of a 6x6 grid of larger panels, whereas the finer dis-

cretization consists of an 18x18 grid of smaller panels. The snapshot matrices are constructed

from the compiled training data and DMD was performed via the procedure described in Sec-

tion 2.2.1 to obtain a modal decomposition for each discretization size. To rank the relative

importance of each mode, the procedure described in [70] computing projection coefficients over

all snapshot data is applied here. The 9 mode shapes of the appendage that contribute most to the

system’s response for each discretization are shown below. The hub is located at (0, 0).
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Figure 5.1: First 9 modes of spacecraft model with the 6x6 discretization of the flexible ap-

pendage.

Figure 5.2: First 9 modes of spacecraft model with the 18x18 discretization of the flexible ap-

pendage.
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5.2.2 Impact of Mode Selection on Reconstruction Error

To evaluate how well the decomposition captures the underlying behavior of the system,

dynamics of the spacecraft model from an initial condition separate from any in the training

dataset can be projected onto the DMD modes. The projection, defined by η̂ = CC†η is used

to quantify the information lost due to projecting onto a lower-dimensional model. A separate

dataset is generated using the same procedure as before and the projection computed. To compute

the error of a projection compared to the actual state, the following metrics are used. For position,

the distance between the projected and actual position of an element is computed

εri = ||r̃i − ri||. (5.5)

For velocity, the magnitude of the difference in the projected and actual velocity vectors of an

element is computed

εvi = ||ṽi − vi||. (5.6)

For attitude, the angle between the attitudes of the actual and projection is computed

εRi
= cos−1 Tr(R̂

T
i Ri)− 1

2
. (5.7)

For angular velocity, the magnitude of the difference between the actual and projected angular

velocity is computed

εωi
= ||ω̃i − ωi||. (5.8)

To quantify the projection error for each type of panel state (position, velocity, attitude, and

angular velocity), the root mean square (RMS) error for each is taken over time and averaged

over all the panels comprising the appendage. The results are shown in Fig. 5.3. To quantify
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error with a single quantity, a normalized root mean square error (NRMSE) metric is used. The

error for each state type is normalized by the maximum measured value of that state type for the

simulation, i.e., for position

rerr =
1

N

N∑
i=1

∥r̂i − ri∥
max(ri)

. (5.9)

Each normalized quantity is summed together. The sum and contribution of each state type is

shown in Fig. 5.4. These metrics illustrate the effect of using different numbers of modes to

represent the system dynamics. The resulting number of modes represents a significant reduction

in the size of the original state-space model, which has 660 states.

Figure 5.3: Projection error of the position, velocity, attitude, and angular velocity of resulting

from using varying numbers of DMD modes to represent the underlying system dynamics.
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Figure 5.4: Normalized projection error resulting from using varying numbers of DMD modes to

represent the underlying system dynamics.

The projection error results show that differing numbers of modes are required for different

state quantities. For example, with about 50 modes, the position of each panel can be almost fully

recovered from the reduced order model. For angular velocity, about 150 modes are required for

minimal projection loss. In the sum of normalized errors, the angular velocity contributes most

to the total error. There are also two elbows occurring around 50 and 150 modes. Until around

50 modes, significantly less error is incurred with each additional mode added. At 150 modes,

there is very little benefit to adding additional modes.

5.3 State Estimation via a Mode Amplitude Kalman Filter

In this section, a DMD Kalman filter shown in Section 2.2.2 is applied to the flexible

spacecraft model to perform state estimation given a limited set of measurements. A measure-
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ment function is proposed and numerical simulations are performed to evaluate the performance

of the observation.

5.3.1 Simulation Results

Assume that there are sensors on the hub that measure the attitude and angular velocity

of the hub. Assume also that there is a sensor package such as an optical sensor on the hub or

some array of differential GPS sensors distributed across the appendage that capture the shape

deformation of the appendage. Specifically, assume that the relative offset of a subset of the

panels along the â3 axis, i.e., ζi = ri/C · â3, is measured. If there are M panels measured, the

measurement vector of the system is

y =

[
ηC ζM1 . . . ζMM

]T
, (5.10)

where M is the set of panels that are measured and M is the size of M.

To perform state estimation, the unforced dynamics of the system are simulated in response

to an angular impulse imparted by the reaction wheels. The modal decomposition shown in

Section 5.2 is used to generate the mode amplitude state transition matrix F and observation

matrix C. The initial state estimate is set assuming that the initial state of the appendage is flat

and unmoving relative to the hub. Other simulation parameters are shown in Appendix C.3. The

DMD Kalman filter algorithm is then applied to the measurements of the test simulation data to

estimate the mode amplitudes from the shape measurements Eq. (5.10), which in turn are used

to estimate the full state of the system. To evaluate the effect of model reduction on the quality

of the resulting state estimate, the elbows shown in Fig. 5.4 at 50 and 150 modes are selected

to represent the system. For each discretization size the measurements will be taken at the same
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locations on the appendage. For the 6x6 discretization, M is selected to be all 36 panels. For the

18x18 discretization, M corresponds to measuring the center panel in each 3x3 group of panels.

The spacecraft parameters for each discretization size are shown below. The parameters used for

the DMD Kalman filter are found in Appendix C.3. Gaussian measurement noise with a standard

deviation of 0.5 cm is applied to the panel measurements.

To quantify the performance of the DMD Kalman filter, the state estimate is compared to

the true state values. The same metrics as in Eqs. (5.5) to (5.8) are used (with the state estimate

instead of the projected state) to quantify the state estimate error. Specifically, the magnitude of

the difference in position, velocity, and angular velocity between the estimated and real states

and the angle between the real and estimated attitude estimate are computed and averaged over

each panel. The results are shown in Fig. 5.5 for the coarse discretization and Fig. 5.6 for the

fine discretization. The total normalized error is again computed by normalizing each of these

quantities by the maximum measured value as in Eq. (5.9). The procedure is applied to the

position, velocity, attitude, and angular velocity estimates, and the normalized quantities are

summed. The summed normalized error plots are shown in Fig. 5.7a and Fig. 5.7b.
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Figure 5.5: Average estimation error of the position, velocity, attitude, and angular velocity of

each panel for the 6x6 discretization of the flexible appendage.

Figure 5.6: Average estimation error of the position, velocity, attitude, and angular velocity of

each panel for the 18x18 discretization of the flexible appendage.
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(a) 6x6 discretization (b) 18x18 discretization

Figure 5.7: Normalized estimation error of the state of each panel of the flexible appendage

compared using 50 and 150 modes for the (a) 6x6 discretization and (b) 18x18 discretization.

The results demonstrate that the estimator is able to estimate the states accurately, partic-

ularly when using 150 modes. For 150 modes, the position error is on the order of millimeters,

the velocity error is on the order of millimeters per second, the attitude error is on the order of

hundredths of a radian, and the angular velocity error is on the order of milliradians per second.

The difference in performance between the number of modes in estimation corresponds

to what is seen in the projection error in Fig. 5.3. For position and velocity, the projection er-

ror suggests only marginal improvement going from 50 to 150 modes, whereas in attitude and

angular velocity, the improvement is more substantial. This is seen in the estimation error, as

the estimation of attitude and angular velocity improves more significantly by increasing to 150

modes.
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5.3.2 Impact of Model Fidelity and Mode Number on Computation Time

The results from Section 5.3.1 also suggest that despite using a finer discretization, the es-

timator is able to accurately estimate the underlying dynamics with a similar number of modes as

the coarser discretization. Consequently, the computation savings from using DMD to perform

state estimation becomes more valuable the larger the state size is. For the 6x6 discretization,

there are 660 states, which can be represented using 150 modes and both can be estimated using

36 measurements. For the 18x18 discretization, there are 5844 states, which also can be repre-

sented using 150 modes and estimated with only 36 measurements. Whereas estimation of such

a high degree system in real time on space hardware would be computationally infeasible, the

computational burden is significantly reduced using DMD and the DMD Kalman filter. To illus-

trate the comparison of performance versus computation time, the computation time to perform

state estimation for the 1200 second simulation and the resulting steady state error was measured

and shown in Fig. 5.8. The hardware that computation is measured on is a Dell Precision 3570

laptop with an Intel Core i5-1235U processor.
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Figure 5.8: Computation time compared with performance of state estimation across different

modes and discretization sizes

5.4 Optimizing Observability via Sensor Placement

The DMD Kalman Filter framework provides a structure that identifies a set of modes with

amplitudes that evolve linearly, while the modes themselves are a transformation between the

mode space and the state space. This framework, being inherently linear, allows the application

of linear systems theory to gain deeper insights. Specifically, the observability check, which

involves determining if the observability matrix is full rank, can be used to assess whether the

mode amplitudes can be estimated from a given set of state measurements. A measurement

function of the form Eq. (5.10) can be defined for â3 displacement measurements of any subset of

panels. Using this measurement function, a corresponding observation matrix can be constructed

as described in Eq. (2.23). Together with the mode amplitude evolution matrix, this forms a
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linear system from which the observability Gramian can be constructed, allowing the rank test to

be performed.

The measurement function and thus the observability of the system depends on both the

number of sensors and sensor locations as well. To address this without exhaustively searching

the entire measurement function space, a random sampling of the space of measurement functions

is taken for each possible number of sensors. The rank test for observability is performed for each

sample, and the percentage of samples that yield an observable system is determined. The number

of random samples is chosen as 20,000 and the results of this procedure are shown in Table 5.1.

number of sensors ≤ 6 7 8 9 ≥ 10

% observable systems 0 < 1 33 > 99 100

Table 5.1: Percentage of observable systems from 20,000 random samplings of the measurement

function space for m sensors

The results of this observability test suggest that the critical number of measurements

needed is 8. In many configurations 8 displacement measurements is sufficient to fully observe

the system. For 7 sensors, almost no configuration of placements yield an observable system and

for 9 sensors, almost all configurations of placements yield an observable system. To illustrate

this effect state estimation using varying numbers of sensors is simulated and a plot of the total

normalized error for various number of sensors is shown in Fig. 5.9.
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Figure 5.9: Total normalized estimation error resulting from using varying numbers of measure-

ments of panel displacements.

The simulation demonstrates the effects of using additional sensors. Going from 6 to 8

sensors results in an observable system, and thus state estimates of reasonable quality. Increasing

the numbers of sensors beyond 8 does yield better state estimates, but the gains become marginal.

More recent research addresses the use of the observability Gramian to not only answer the

question of if a system is observable, but to give a qualitative metric of how observable a system

is. In [71] the local unobservability index and the local estimation condition number are intro-

duced to quantify the observability of a system. Given an observability Gramian WO, the local

unobservability index is defined as 1√
λmin

, where λmin is the smallest eigenvalue of WO. The local

unobservability index represents a measure of the impact that measurement noise will have on

estimation error. A larger index indicates a greater impact of measurement noise and thus less ob-

servability of the system. The local estimation condition number is defined as
√
λmax√
λmin

, where λmax
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is the largest eigenvalue of WO. The local estimation condition number quantifies how sensitive

the system’s output is to changes in the initial conditions. A higher local estimation condition

number indicates greater sensitivity to initial conditions, which means the system’s output is

more affected by small changes in its initial conditions. This increased sensitivity makes it more

difficult to observe or estimate the system’s state accurately, thus indicating less observability of

the system.

These metrics can be computed analytically for the modal decomposition of the flexible

spacecraft model for any given measurement function, enabling the comparison of the quality of

different measurement functions. This capability allows for optimization over different measure-

ment functions to maximize the observability of the resulting system.

Assume that the only type of measurements of the appendage that are available are the

displacements of each panel along the â3 axis, as shown in Eq. (5.10). Assume also that there are

N possible locations that M different sensors can be placed. The objective is to determine which

set of M sensor locations out of the N possible locations will yield a measurement function that

provides the system with the highest observability.

To generate the globally optimal location of M sensors, then all possible size M com-

binations of N sensor locations must be computed and the observability index checked. This

requires checking N !
(N−M)! M !

possible measurement functions. To find the optimal location for all

possible numbers of sensors in N , the number of measurement functions that must be checked

is
∑N

M=1
N !

(N−M)! M !
. For example, for N = 36, this quantity is on the order of billions which

makes it computationally infeasible to ensure that the global optimum is found for all M .

Assume that the for the 6x6 discretization the set of available sensor locations are at the

center of each panel. This defines the set of possible sensor locations, which has a size ofN = 36.
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To find locally optimal solutions to the sensor placement problem for this configuration, two

different optimization algorithms are employed. The first is a greedy algorithm to significantly

reduce the search space, and the second uses a Monte Carlo approach to randomly sample the

search space.

The first optimization technique utilized is a greedy algorithm. In this approach, the optimal

position for the first sensor is determined and fixed. Subsequently, the optimal position for the

second sensor is determined while keeping the first sensor’s position fixed. This process continues

iteratively, with each previously selected sensor location remaining fixed while the position of

each new sensor is optimized. With this method, the search space for determining the location of

the ith sensor isN− i. To determine the optimal location for all possible number of sensors inN ,

the total number of measurement functions that must be checked isN+(N−1)+(N−2)+...+1 =

N(N+1)
2

. This approach reduces the order of magnitude of the entire search space to N2 which for

N = 36 makes an exhaustive search feasible.

The second optimization technique employs a Monte Carlo approach. This approach uti-

lizes random sampling and perturbation to explore the solution space and identify configurations

that maximize observability. In this approach, to determine the optimal location of M sensors in

N possible locations, the iterative process shown in Algorithm 1 is followed:
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Algorithm 1 Monte Carlo Optimization Algorithm
1: Initialization:

2: Generate S random samples of different size M combinations of N .

3: Compute the measurement function and observability index for each sample.

4: Keep the U samples with the best observability and discard the rest.

5: repeat

6: for each of the U samples do

7: Randomly perturb sample P times to generate P new sample measurement functions.

8: end for

9: Compare observability index of the original U and the new U × P samples

10: Collect U samples with the highest observability

11: until convergence or maximum number of iterations J is reached

This iterative process continues until a convergence criterion is met or a maximum number

of iterations is reached. The best sample from the final set of U samples is selected and represents

a local optimum. The maximum total number of measurement functions that need to be checked

with this approach is S + J(UP ). The parameters S, U, P, and J can be chosen such that the

search space is limited to a computationally feasible size.

Using the 150 mode decomposition for the 6x6 discretization and displacement measure-

ments of the form shown in Eq. (5.10), both optimization procedures were performed for varying

numbers of sensors, specifically for all even numbers from 6 to 32. For the Monte Carlo ap-

proach, the search parameters are set as S = 20, 000, U = 100, P = 20, and J = 50 The

results are visualized in Fig. 5.10 which shows a heatmap indicating the frequency with which
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each sensor location was selected across the optimization solutions.

(a) Greedy Optimization (b) Monte Carlo Optimization

Figure 5.10: Heatmap of sensor locations for varying number of sensors optimized via a greedy

approach and a Monte Carlo approach. The optimization tends to favor sensors on the edges of

the appendage

The distribution of sensors in the heatmap indicates that sensors are most valuable on the

edges and corners of the appendage, and away from the diagonal running from (0, 0) to (15, 15).

This suggests that for displacement measurements, the most informative data for estimating the

mode amplitudes is obtained from those locations. This observation is consistent with the mode

shape plots in Fig. 5.1, where the most significant modes exhibit the largest displacements in

these areas. As the appendage oscillates, the most substantial motions occur at the corners and

edges, away from the central diagonal. Placing sensors at these locations effectively captures

these motions, enabling better estimations of the mode amplitudes and highlighting the utility of

understanding the shapes of the most impactful modes.
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5.5 Conclusion

This chapter explores the use of dynamic mode decomposition (DMD) for state estimation

of the flexible spacecraft model. First, the attitude and shape dynamics of the spacecraft are

decoupled from the translational dynamics of the hub. A Monte Carlo approach simulating the

system’s response to random control input profiles generates a set of training data to encompass

all the relevant modes of the system. DMD is then applied to yield a modal decomposition of

the training data, and the mode shapes are analyzed for two different discretization sizes of the

flexible appendage.

The modal decomposition results in a linear framework wherein the mode amplitudes of

the reduced-order model evolve linearly over time, and the mode shapes serve as a linear op-

erator transforming between the mode amplitude space and the system state space. This linear

framework facilitates the implementation of a Kalman filter to estimate the mode amplitudes of

the system from a set of state space measurements. Numerical simulations demonstrate that this

observer provides accurate state estimates from displacement measurements of the panels com-

prising the appendage in the â3 direction. Additionally, the reduced-order model requires less

computation time for state estimation.

The observer framework facilitates the computation of the observability matrix and Gramian.

The rank condition for observability with varying numbers of measurements offers insight into

the minimum number of measurements required to make the system observable. The eigenvalues

of the observability Gramian for a given measurement function provide a metric that quantifies

the level of observability. This metric enables the optimization of the measurement function

to maximize system observability. The optimization process involves varying the number and
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placement of displacement sensors. The results highlight the optimal locations on the appendage

where measurements will contribute most to system observability. Comparing these optimal lo-

cations with the mode shapes reveals that the best sensor positions correspond to areas with the

largest displacements.
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Chapter 6: Conclusion

6.1 Summary of Dissertation

This dissertation explores the use of magnetic torque rods to stabilize the shape of a flexible

spacecraft. This dissertation has contributed to the dynamic modeling, estimation, and control

of a flexible spacecraft. The spacecraft model utilizes a hub and appendage framework such

that the hub is rigid, actuated by reaction wheels and is responsible for attitude control, and the

appendage is a flexible, thin, planar structure and has magnetic torque rods distributed across

it to stabilize its shape. A multibody model consisting of rigid elements connected by damped

spring-like hinges models the flexibility of the structure.

Initially the flexibility of the appendage is restricted to one direction, enabling the dynamics

of the model to be restricted to the orbital plane. Springs to model internal forces and moments,

external disturbances, and actuator constraints are considered in modeling the dynamics of the

system. The nonlinearities in the model suggest a Lyapunov-based approach to the control design.

Lyapunov analysis yields an attitude and shape-stabilizing control law that asymptotically drives

the attitude to a reference and the shape of the appendage to flat.

Numerical simulations demonstrate that the magnetic torque rods contribute significantly

to a reduction in deformations and oscillations of the appendage compared to a system without

torque rods and a system with torque rods but with a different control law. The faster stabi-

118



lization of the appendage also improves the performance of the attitude controller. Simulations

further illustrate the impact of time-varying control authority of the magnetic torque rods, show-

ing reduced performance with diminished control authority, yet still performing better than an

unactuated appendage.

The application of an extended Kalman filter (EKF) to the planar model enables state es-

timation of the flexible spacecraft. Using a measurement function that includes the translational

and angular rates of the appendage’s elements results in an observable system. The state estimate

serves as feedback for the controller within an output feedback control framework. Numerical

simulations compare the performance of controllers in output feedback with the Lyapunov-based

controller in state feedback, demonstrating that control objectives are still achievable with the

output feedback controller with nearly the same performance.

The flexible spacecraft model is extended to three dimensions, using rotation matrices to

represent the attitude dynamics. The appendage is discretized in two directions, allowing for

unrestricted bending between elements. To compensate for the additional degrees of freedom,

an additional torque rod is incorporated, resulting in pairs of torque rods distributed across the

appendage. Lyapunov analysis is employed to derive a control law for the reduced attitude of

a single element. Numerical simulations validate the effectiveness of this control law for a sin-

gle rigid element, highlighting its applicability to the field of pointing control for small-scale

satellites Additional simulations demonstrate that the control law remains effective even when

saturation nonlinearities are introduced.

The reduced attitude control law for a pair of magnetic torque rods is implemented to

stabilize the shape of the flexible appendage. To evaluate the impact and robustness of this

shape stabilization, two types of disturbances are considered. The first disturbance focuses on the
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excitation of the flexible modes of the appendage resulting from an attitude maneuver performed

by the hub. The second disturbance examines periodic shape deformations caused by thermal

gradients, which induce bending as the faces of the appendage are unevenly heated throughout an

orbit. In response to maneuver-induced oscillations, numerical simulations demonstrate that the

shape-stabilizing control effectively dampens vibrations and returns the appendage to its flat state

more quickly compared to performing the same maneuver without the torque rods. Additionally,

the average deformation of the appendage over time is significantly reduced. In response to

thermoelastic bending, the torque rods significantly mitigate the deformation experienced by the

appendage, reducing the deformation magnitude by up to half. The simulations also show that the

reaction wheels must exert more control effort to maintain an attitude reference when the torque

rods are actuated.

To enable computationally feasible state estimation, dynamic mode decomposition (DMD)

is employed. Using a set of training data generated via simulation, DMD yields a modal de-

composition of the spacecraft dynamics. By reducing the number of modes used, the space-

craft dynamics can be represented by a reduced-order model with significantly fewer states than

the original state-space system. Additionally, the reduced order model is linear in the mode-

amplitude space. Using the mode shapes, a linear observation function transforms between the

mode amplitude space and the state space. This linear framework allows for the application of a

Kalman filter that estimates the mode amplitudes from a limited set of state space measurements.

Numerical simulations demonstrate the DMD Kalman filter is able to estimate the state

of the spacecraft accurately using the reduced order model with measurement noise and with

a significant reduction in states, which represents significant savings in computation cost. The

linear framework resulting from DMD enables the observability to be computed for various mea-
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surement functions corresponding to different numbers and locations of sensors. The observabil-

ity rank condition shows that generally 8 displacement sensors are needed to fully observe the

system. The eigenvalues of the observability Gramian quantify observability and facilitate the

optimization of sensor locations to maximize observability for a given number of sensors. The

optimization results for various sensor quantities reveal the critical locations on the appendage

where measurements most significantly contribute to the system’s overall observability.

6.2 Suggestions for Future Research

The modeling approach to structural flexibility in this dissertation seeks to approximate the

flexibility of both continuous and multibody structures via a multibody discretization. Ongoing

and future work should seek to examine the accuracy with which this approach approximates the

dynamics of a continuous flexible body. Investigating the trade between modeling accuracy and

discretization size is also of interest.

The analysis for the reduced attitude control of a rigid body using only two magnetic torque

rods can be improved by relaxing some of the simplifying assumptions made in this dissertation

to provide additional robustness guarantees of the control law. Specifically, future analysis should

include the periodic variations of the local magnetic field corresponding to orbital periods, which

make the dynamics non-autonomous and requires additional analysis to characterize. Analysis

that explicitly considers the saturation nonlinearities typical of a physical system should also be

explored.

Dynamic mode decomposition (DMD) is a promising approach for estimating high-dimensional

representations of flexible spacecraft. However, because DMD requires training data that cannot
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be directly obtained from a physical system without measuring all the system states, this presents

a challenge. To address this challenge future work should investigate methods for performing

system identification to estimate parameters that characterize the spacecraft dynamics. System

identification would facilitate the correlation of physical data with simulated data, allowing the

simulation data to accurately represent the dynamics of the real system. Consequently, the dy-

namic modes derived from numerical simulation data would be valid for the physical system,

thereby making the training data appropriate for DMD applications.

In optimizing the number and location of sensors, this dissertation only considers mea-

surements of displacements at various points on the appendage. Optimizations that consider

other types of measurements, such as the attitude and angular rate at various locations on the

appendage should be considered.
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Appendix A: Additional Equations

A.1 Two-Dimensional Internal Forces and Moments

The force terms for each spacecraft component are shown. For an appendage that has two

appendages on either side of it and is on the right side of the hub, i ∈ [2, N − 1], the forces and

moments are as follows:

Xi/i+1 = ks

(
x(i+1)/C − xi/C − Li+1

2
cosαi+1 −

Li

2
cosαi

)
+ cs

(
ẋ(i+1)/C − ẋi/C +

Li+1

2
α̇i+1 sinαi+1 +

Li

2
α̇i sinαi

)

Xi/i−1 = −ks
(
xi/C − x(i−1)/C − Li

2
cosαi −

Li−1

2
cosαi−1

)
+ cs

(
ẋi/C − ẋ(i−1)/C +

Li

2
α̇i sinαi +

Li−1

2
α̇i−1 sinαi−1

)

Yi/i+1 = ks

(
y(i+1)/C − yi/C − Li+1

2
sinαi+1 −

Li

2
sinαi

)
+ cs

(
ẏ(i+1)/C − ẏi/C +

Li+1

2
α̇i+1 cosαi+1 +

Li

2
α̇i cosαi

)

Yi/i−1 = −ks
(
yi/C − y(i−1)/C − Li

2
sinαi −

Li−1

2
sinαi−1

)
+ cs

(
ẏi/C − ẏ(i−1)/C +

Li

2
α̇i cosαi +

Li−1

2
α̇i−1 cosαi−1

)
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Ti/i+1 =
Li

2
cosαiYi/i+1 −

Li

2
sinαiXi/i+1

Ti/i−1 = −Li

2
cosαiXi/i−1 +

Li

2
sinαiYi/i−1

Mi/i+1 = kt(αi+1 − αi) + ct(α̇i+1 − α̇i)

Mi/i−1 = −kt(αi − αi−1)− ct(α̇i − α̇i−1)

For appendages on the left that have a appendage on either side, i ∈ [N + 2, 2N − 1], the

forces and moments are the negation of what is shown above, because the indexing goes in the

opposite direction.

For the appendage where i = 1 the forces and moments are as follows.

X1,2 = ks

(
x2/C − x1/C − L2

2
cosα2 −

L1

2
cosα1

)
+cs

(
ẋ2/C − ẋ1/C +

L2

2
α̇2 sinα2 +

L1

2
α̇1 sinα1

)

X1/C = −ks
(
x1/C − xc/c −

L1

2
cosα1 −

LC

2
cos γ

)
+ cs

(
ẋ1/C − ẋc/c +

L1

2
α̇1 sinα1 +

LC

2
α̇c sin γ

)
= −ks

(
x1/C − L1

2
cosα1 −

LC

2

)
+ cs

(
ẋ1/C +

L1

2
α̇1 sinα1

)

Y1/2 = ks

(
y2/C − y1/C − L2

2
sinα2 −

L1

2
sinα1

)
+cs

(
ẏ2/C − ẏ1/C +

L2

2
α̇2 cosα2 +

L1

2
α̇1 cosα1

)
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Y1/C = −ks
(
y1/C − yc/c −

L1

2
sinα1 −

LC

2
sin γ

)
+ cs

(
ẏ1/C − ẏc/c +

L1

2
α̇1 cosα1 +

LC

2
α̇c cos γ

)
= −ks

(
y1/C − L1

2
sinα1

)
+ cs

(
ẏ1/C +

L1

2
α̇1 cosα1

)

T1/2 =
L1

2
cosα1Y1,2 −

L1

2
sinα1X1,2

T1/C = −L1

2
cosα1X1,C +

L1

2
sinα1Y1,C

M1/2 = kt(α2 − α1) + ct(α̇2 − α̇1)

M1/C = −kt(α1 − γ)− ct(α̇1 − α̇C)

= −kt(α1)− ct(α̇1)

For the appendage i = N + 1, which is the appendage directly to the left of the hub

X(N+1)/C = ks

(
−x(N+1)/C − LC

2
− LN+1

2
cosαN+1

)
+cs

(
−ẋ(N+1)/C +

LN+1

2
α̇N+1 sinαN+1

)

X(N+1)/(N+2) =− ks

(
x(N+1)/C − x(N+2)/C − LN+1

2
cosαN+1 −

LN+2

2
cosαN+2

)
+ cs

(
ẋ(N+1)/C − ẋ(N+2)/C +

LN+1

2
α̇N+1 sinαN+1 +

LN+2

2
α̇N+2 sinαN+2

)

Y(N+1)/C = ks

(
−y(N+1)/C − LN+1

2
sinαN+1

)
+ cs

(
−ẏ(N+1)/C +

LN+1

2
α̇N+1 cosαN+1

)
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Y(N+1)/(N+2) =− ks

(
y(N+1)/C − y(N+2)/C − LN+1

2
sinαN+1 −

LN+2

2
sinαN+2

)
+ cs

(
ẏ(N+1)/C − ẏ(N+2)/C +

LN+1

2
α̇N+1 cosαN+1 +

LN+2

2
α̇N+2 cosαN+2

)

T(N+1)/C =
LN+1

2
cosαN+1Y(N+1)/C − LN+1

2
sinαN+1X(N+1)/C

T(N+1)/(N+2) = −LN+1

2
cosαN+1XN+1,N+2 +

LN+1

2
sinαN+1YN+1,N+2

M(N+1)/C = kt(−αN+1) + ct(−α̇N+1)

M(N+1)/(N+2) = −kt(αN+1 − αN+2)− ct(α̇N+1 − α̇N+2)

For the case of the end appendage, i = N , the same equations as the middle appendages

between i = 1 and i = N are used, except Xi/(i+1), Yi/(i+1), Ti/(i+1),Mi/(i+1) are all zero,

because there is only one adjacent appendage. Similarly, for the other end appendage, i = 2N ,

the equations for i ∈ [N + 2, 2N − 1] can be used, where Xi/(i+1), Yi/(i+1), Ti/(i+1),Mi/(i+1) are

also all zero. The forces and moments acting on the hub are equal and opposite to those acting

on the appendages attached to the hub, i.e.,
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XC/1 = −X1/C

XC/(N+1) = −X(N+1)/C

YC/1 = −Y1/C

YC/(N+1) = −Y(N+1)/C

TC/1 = Lc

2
YC/1

TC/(N+1) = −Lc

2
YC/(N+1)

MC/1 = −M1/C

MC/(N+1) = −M(N+1)/C

The total forces and moments are

Xi = Xi/(i+1) +Xi/(i−1)

Yi = Yi/(i+1) + Yi/(i−1)

Ti = Ti/(i+1) + Ti/(i−1)

Mi = Mi/(i+1) +Mi/(i−1)
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Xc = XC,1 +XC,N

Yc = YC,1 + YC,N

Tc = TC,1 + TC,N

Mc = MC,1 +MC,N
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Appendix B: Lyapunov Stability Analysis

B.1 Lyapunov’s Direct Method

The behavior of an equilibrium point of an autonomous system can be characterized us-

ing Lyapunov’s direct method [72]. This method utilizes a scalar potential candidate function

and its derivative to assess the stability of the system near the equilibrium point. Consider the

autonomous system

ẋ = f(x).

Let x∗ = 0 be an equilibrium point for the system and D ⊂ Rn be a domain containing x∗. Let

V : D → R the scalar function such that V (0) = 0 and V (x) > 0 ∀x ̸= x∗, i.e., V is positive

definite. If V is continuously differentiable and V̇ is negative definite, i.e., [72]

V̇ (x) < 0 ∀x ̸= x∗,

then the equilibrium point x∗ = 0 is asymptotically stable.

B.2 LaSalle’s Invariance Principle

LaSalle’s theorem extends Lyapunov’s direct method by allowing the use of Lyapunov

functions that do not have a negative definite derivative. It provides a way to determine the
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asymptotic behavior of the system, leading to conclusions about stability based on the largest in-

variant set where the derivative of the Lyapunov function is zero. The main idea of the invariance

principle is if it can be established that no trajectory can stay at points where V̇ (x) = 0 except at

the origin, then the origin is asymptotically stable [72]. Consider the autonomous system

ẋ = f(x).

If there exists a Lyapunov function V (x) such that V (x) > 0 and V̇ (x) ≤ 0, then the system

will converge to the largest invariant set of the set where V̇ (x) = 0. If it can be shown that the

largest invariant set in x : V̇ (x) = 0 is the origin, x∗ = 0, then x∗ is asymptotically stable [72].

B.3 Proof of Lemma 1

Proof: Assume V̇ (x) < 0 along solutions of the closed loop linear system Eq. (3.52),

which implies

∂V

∂x
(Ax+Bg(x)) < 0

Assume solutions of the closed loop linear system Eq. (3.52) can be be shown to be bounded

∂V

∂x
(Ax+Bg(x)) < −c∥x∥2,

for some constant c > 0. Then,

∂V

∂x
f(x) =

∂V

∂x
(Ax+Bg(x)) +

∂V

∂x
H.O.T. < −c∥x∥2 + ∂V

∂x
H.O.T.

Because ∂V
∂x
H.O.T. is O(∥x∥3), then ∂V

∂x
f(x) < 0 for sufficiently small ∥x∥ and ∂V

∂x
f(x) = 0

when ∥x∥ = 0.

130



Appendix C: Simulation Parameters

C.1 Parameters Used in Chapter 3

parameter name symbol value units

semi-major axis a 6778 km

eccentricity e 0

inclination i 90 deg

right ascension of the ascending node Ω 0 deg

argument of periapsis ω 0 deg

latitude at epoch u0 90 deg

attitude γ0 112 deg

angular velocity γ̇0 0.07 deg
s

Table C.1: Hub initial conditions
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Control Parameters

Qc = diag(300, 5)

Qi = diag(1, 1, 1000, 1, 10, 10)

Q = diag(Qc, Q1, ..., Q2N)

Rc = 20000

Ri = 0.001

R = diag(Rc, R1, ..., R2N)

kp = 10

kL = 1100
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Spacecraft Parameters

parameter symbol value unit

panels per appendage N 12

hub mass mC 100 kg

panel mass mi 1 kg

hub moment of inertia IC 50 kgm2

panel moment of inertia Ii 0.1 kgm2

panel length Li 1 m

hub length LC 2 m

connection spring coefficient ks 100 N
m

connection damping coefficient cs 0.1 Ns
m

torsional spring coefficient kt 10 Nm
rad

torsional damping coefficient ct 0.1 Nms
rad

orbit angular speed w0 1.2× 10−3 rad
s

reaction wheel saturation Krw 0.01 Nm

torque rod saturation Ktr 1× 10−4 Nm

Table C.2: Spacecraft Parameters
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State Estimation Simulation Parameters

parameter value unit

σẋy 0.01 m
s

σα̇ 0.5 deg
s

σγ 0.3 deg

σγ̇ 0.3 deg
s

ργ 0.6 deg

ργ̇ 0.6 deg
s

ρxy 0.01 m

ρα 0.25 deg

ρẋy 0.01 m
s

ρα̇ 0.2 deg
s

Table C.3: State Estimation Measurement and Process Noise Parameters

Qc = diag(ρ2γ, ρ
2
γ̇)) Qi = diag(ρ2xy, ρ

2
xy, ρ

2
α, ρ

2
ẋy, ρ

2
α̇)

Q = diag(Qc, Qi, ..., Qi)

Rc = diag(σγ, σγ̇) Ri = diag(σẋy, σẋy, σα̇)

Q = diag(Rc, Ri, ..., Ri)
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C.2 Parameters Used in Chapter 4

Single Panel Simulation Parameters

parameter symbol value units

semi-major axis a 7178 km

eccentricity e 0 \

inclination i 70 deg

right ascension of the ascending node Ω 0 deg

argument of periapsis ω 0 deg

true anomaly at epoch ν0 90 deg

Table C.4: Orbit parameters for rigid body simulations
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Flexible Spacecraft Model Simulation Parameters

parameter symbol value units

semi-major axis a 7178 km

eccentricity e 0

inclination i 70 deg

right ascension of the ascending node Ω 0 deg

argument of periapsis ω 0 deg

true anomaly at epoch ν0 85 deg

Table C.5: Orbit parameters for flexible model simulations
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parameter symbol value unit

connection spring coefficient ks 1000 N
m

connection damping coefficient cs 5 Ns
m

torsional spring coefficient kt 0.1 Nm
rad

torsional damping coefficient ct 0.05 Nms
rad

hub mass mC 1000 kg

panel mass mi 50 kg

panel side length Li 2.5 m

hub side length LC 4 m

Table C.6: Spacecraft physical parameters

The moment of inertia matrix for each component is as follows:

IC = diag (2400, 2400, 3600)

Ii = diag (25, 25, 50)
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parameter symbol value units

hub proportional gain Kp 0.8 /

hub derivative gain Kω 700 /

panel proportional gain kp 6.5× 10−3 /

panel derivative gain kω 3 /

reaction wheel saturation Krw 0.05 Nm

torque rod saturation Ktr 5× 10−4 Am2

Table C.7: Section 4.4.1 Control parameters
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C.3 Parameters Used in Chapter 5

parameter symbol value unit

connection spring coefficient ks 1000 N
m

connection damping coefficient cs 5 Ns
m

torsional spring coefficient kt 0.1 Nm
rad

torsional damping coefficient ct 0.05 Nms
rad

hub mass mC 1000 kg

panel mass mi 100 kg

panel side length L 2.5 m

Table C.8: 6x6 discretization DMD simulation parameters
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parameter symbol value unit

connection spring coefficient ks 1000 N
m

connection damping coefficient cs 5 Ns
m

torsional spring coefficient kt 0.1 Nm
rad

torsional damping coefficient ct 0.05 Nms
rad

hub mass mC 1000 kg

panel mass mi 11.11 kg

panel side length L 0.83 m

Table C.9: 18x18 discretization DMD simulation parameters

DMD Kalman Filter Parameters

Q = 0.1 Inmxnm

R =

0.01 I9x9 0

0 0.1 Imxm

 .
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