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Advances in technology have enabled the development of large spacecraft structures such
as solar sails, expansive antennas, and large solar arrays. A critical design constraint for these
structures is mass, necessitating lightweight construction which, in turn, increases structural flex-
ibility. This flexibility poses significant challenges resulting from structural deformations and
vibrations that complicate attitude control and can degrade the performance and lifespan of the
spacecraft. The goal of this research is to develop estimation and control strategies to mitigate
the effects of spacecraft flexibility.

A flexible spacecraft model is derived using a hub and appendage framework. In this
model one or more flexible appendages attach to a central rigid hub. The model represents the
appendages as a discretized set of flexibly connected elements called panels. Stiff springs connect
the panels, and the dynamic model of the system’s internal forces and moments uses coordinates

in the hub’s reference frame. Reaction wheels on the hub perform attitude control, while dis-



tributed pairs of magnetic torque rods on the appendage influence its shape.

Initially, the model restricts flexibility to one direction, resulting in a planar model. A
Lyapunov-based control design provides a feedback law for the reaction wheel and torque rods
in the planar model. Numerical simulations demonstrate that the proposed controller meets the
control objectives and compares favorably to other controllers. An Extended Kalman Filter is
applied to the system to perform state estimation and output feedback control, which performs at
nearly the same level as state feedback control.

The modeling framework and flexibility are extended to three dimensions. The develop-
ment of a control law for the magnetic torque rods considers the attitude control of a single panel
using two magnetic torque rods. Due to the system being underactuated, the attitude error is
defined in terms of the reduced-attitude representation. Lyapunov analysis yields a control law
that stabilizes the reduced attitude and angular velocity of a rigid panel using only two mag-
netic torque rods. Numerical simulations validate the control law’s performance for a single
panel. This control law is then applied to the flexible appendage to stabilize its shape. Numer-
ical simulations show that this implementation of shape control significantly reduces structural
deformations and dampens structural oscillations compared to scenarios without shape control.

To perform state estimation of the high-dimensional flexible spacecraft model, dynamic
mode decomposition generates a reduced order model that is linear with respect to the evolution
of the resulting modes. A Kalman filter estimates the mode amplitudes of the reduced order
model from a limited set of measurements, enabling the reconstruction of the entire system state.
The optimization of the number and placement of sensors maximizes the observability of the
observer. Numerical simulations demonstrate that this framework yields accurate state estimates

with reduced computational cost.
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Chapter 1: Introduction

Advances in technology have significantly expanded the potential applications for large
spacecraft structures. Examples include spacecraft equipped with solar sails, expansive anten-
nas, large solar arrays to meet substantial energy requirements, extended truss structures, and
manipulator arms.

One of the most critical and demanding constraints in spacecraft design is mass. There-
fore, large structures intended for space must often prioritize lightweight construction to adhere
to mass constraints. The trade-off of achieving a large and lightweight structure is increased
structural flexibility. Additionally, to accommodate volumetric constraints during launch, many
structures are designed to be folded for launch and subsequently deployed in orbit, intentionally
incorporating flexibility at folding points. Consequently, flexibility becomes a crucial consider-
ation for the design and implementation of any large spacecraft structure. However, introducing
flexibility complicates both modeling [1] and control [2], presenting a distinct set of challenges.
The primary cause of these challenges are structural deformations and vibrations of the space-
craft. For example, attitude maneuvers, which involve changing the orientation of the spacecraft,
introduce rotational energy into the structure, leading to bending and vibration. Additionally,
in the space environment, significant thermal gradients resulting from solar heating can induce

deformations of spacecraft components.



Flexibility poses two notable challenges for spacecraft operation. The first is attitude con-
trol. Deformations and oscillations can degrade the performance of an attitude controller which
can compromise stability or extend settling times. Second, if the shape of the structure is critical
to the spacecraft’s function, or if vibrations reduce the lifespan of the structure, any deforma-
tions and oscillations degrade spacecraft performance. Addressing these problems cannot be
achieved merely by stiffening the structure, as this would lead to increased mass, conflicting with
mass constraints. Furthermore, in space, environmental damping is minimal and cannot be relied
upon.

This dissertation explores how advanced actuation and control strategies can address the
issues of attitude and shape control in flexible spacecraft. By developing these control methods,

the objective is to enhance the feasibility and operability of large flexible spacecraft.

1.1 Problem Statement

The modeling framework for a flexible spacecraft used in this dissertation consists of a
hub and one or more flexible appendages. The hub represents a rigid primary structure contain-
ing most of the subsystems of the spacecraft (power, attitude control, thermal control, on-board
computer, scientific payloads, etc.) The appendage(s) is a flexible structure that is attached to
the hub, and could represent a large solar array, an antenna, a manipulator arm, etc. Assume the
appendage has some natural restoring force that causes it to have an equilibrium configuration.
In this dissertation, the appendage is considered as a thin planar structure, with its equilibrium

corresponding to a flat configuration. See Fig. 1.1 for a sample drawing.



Figure 1.1: Spacecraft with hub and thin planar appendage concept drawing

As the hub performs an attitude maneuver and the spacecraft reorients, the angular impulse
will excite the flexible modes of the appendage, inducing vibrations. These vibrations will cause
periodic deformations of the appendage. The vibrations of the appendage will also transfer an-
gular momentum back into the hub at their connection which affects the attitude of the hub and
its control.

The actuation framework considered in this dissertation is as follows. The hub is equipped
with a set of reaction wheels that enable it to fully control the attitude of the hub. The appendage
has magnetic torque rods distributed across its structure that are able to generate small moments
to influence the shape the of the appendage.

The objective of an attitude control law is to drive the spacecraft’s attitude to a specified tra-
jectory while being robust to disturbances induced by appendage vibrations. In this dissertation,
the reference trajectory used for numerical simulations is a nadir-pointing reference, meaning the
spacecraft is oriented directly towards the center of the Earth, aligned with the gravity vector. The
objective of the torque rod control is to stabilize the shape of the spacecraft. Specifically, if the

appendage is perturbed from its equilibrium shape by induced vibrations, the controller should



dampen the vibrations and restore the appendage to its equilibrium state.

In practice, the information available about the state of a system is limited to the measure-
ments taken from the system. Typically, controllers require knowledge of the entire system state
to function effectively. To implement this type of control, an observer is needed. An observer
assimilates system measurements and outputs an estimate of the full system state. This state
estimate is then used as input to a controller in an output feedback framework.

For spacecraft, onboard computational power is severely limited. As the number of states
in a system increases, the computational resources required to perform state estimation increase
significantly. This can make real-time estimation infeasible if the number of states describing the
system becomes too large, as may be the case with large flexible spacecraft.

The primary existing challenges for attitude control and shape stabilization of flexible

spacecraft that are addressed in this dissertation are as follows:

1. Construction of a generalizeable flexible spacecraft dynamic model containing the state

information required to implement distributed control

2. Development of a control law for the magnetic torque rods that is able to influence the local

attitude of the appendage such that the shape of the whole appendage is stabilized.

3. Demonstration of the performance and impact of shape stabilizing control implemented

with magnetic torque rods via numerical simulation.

4. Development of an estimation framework such that a high dimensional state space repre-
sentation of a flexible spacecraft model can be estimated from a limited set of state mea-

surements while minimizing computational resources



1.2 Relation to Prior Work

The work in this dissertation builds on related research conducted by others. In this section,
I'highlight some of this research and discuss the contributions of this dissertation in relation to that
work. First, I provide an overview of research on attitude and shape control of flexible spacecraft.
Second, I review studies on underactuated spacecraft attitude control, including magnetic torque
rod actuation as well as reduced actuator usage. Finally, I discuss prior work on dynamic mode

decomposition and its application for state estimation.

1.2.1 Attitude and Shape Control of Flexible Spacecraft

Structural oscillation may be mitigated by attitude control laws that minimize excitation. A
super-twisting sliding mode control is developed in [3] to simultaneously perform attitude track-
ing and vibration suppression. An extended disturbance observer and backstepping controller
is proposed in [4] for attitude stabilization by rejecting disturbances resulting from the flexible
spacecraft. In [5], the flexible appendages are modeled using partial differential equations; dis-
tributed and boundary controllers are implemented to compensate for disturbances and suppress
vibrations. [6] treats the oscillations as a disturbance and derives a compensator and controller
to guarantee robust attitude control. A controller that plans constrained low-jerk maneuvers is
provided in [7]. Additional attitude control schemes focused on minimizing vibrations due to
structural flexiblity include [2, 8-20].

Another research area involves active vibration suppression using additional actuators. The
use of piezoelectric actuators on flexible structures to perform active vibration suppression has

been studied. In [21], a constrained torque distribution algorithm with a shape input controller for



piezoelectric actuators are used for attitude and shape control. A robust control scheme based on a
distributed observer and controller framework is developed in [22], which also uses piezoelectric
actuation for flatness control of flexible appendages. However, due to size-at-launch constraints,
spacecraft with a large area-to-bus size ratio must be folded and then deployed after launch.
Research in deployable space structures, such as [23], studies the deployment dynamics of folded
spacecraft structures. Whereas the flexing in large lightweight spacecraft structures occurs in the
structure itself, the flexing in a multibody deployable space structure may be more significant
at the hinges. Consequently, while piezoelectric actuators may suppress vibrations in a flexible
appendage, their utility is limited if the main source of flexibility of a spacecraft is in the interface
between bodies, which might occur in a deployable space structure. To better address shape
control of a multibody flexible spacecraft, instead of actuating the shape of an appendage, [24]
assumes that actuators are mounted on the interface between an appendage and the hub and a
control law is proposed to provide attitude and shape control. In [25], a model is formed and a
control law proposed where control moment gyros are distributed across the flexible structure to
provide vibration suppression. This work is extended in [26], where a global matrix formulation
of the dynamics is proposed for a flexible multibodied spacecraft. In the case where the number of
appendages is large or where the area-to-bus size ratio is large, the added mass for each additional
actuator may prohibit implementation. One actuation method for shape control that has not been
investigated is the use of magnetic torque rods to perform shape control, which is a primary

subject of this dissertation.



1.2.2  Underactuated Attitude Control of Spacecraft

The exploration of reduced actuator usage in research is significant not only due to its po-
tential for weight saving potential in small spacecraft, but also because it can demonstrate the
robustness of a spacecraft in the event of actuator failure. Extensive research has addressed at-
titude control using only two reaction wheels. In [27], a time-varying feedback law is proposed
that exponentially stabilizes the attitude of a rigid spacecraft. In [28], it is shown that the an-
gular velocity of a rigid spacecraft can be stabilized with two constant torques. One approach
demonstrated in [29] is to stabilize a pointing axis of the spacecraft and ignore rotations about
that axis. Another area of research evaluates using two control moment gyros instead of reac-
tion wheels. In [30], conditions are defined under which angular velocity damping can occur
using two single-gimbal control moment gyros. Full three-axis control was demonstrated in [31]
using a backstepping controller under the condition that the initial total angular momentum is
zero. In [32], the angular momentum restriction is loosened using the addition of a sliding-mode
control to stabilize the underactuated axis. Although extensive research exists on underactuated
systems employing more conventional actuators, there is comparatively limited investigation into
underactuated control utilizing magnetic actuation.

Magnetic torque rods have been employed on spacecraft from very early on. The primary
advantages of using magnetic actuators are that they are lightweight, small, require no consum-
ables, and are reliable due to their lack of moving parts. One of the disadvantages to using
magnetic actuation is that it renders a system inherently underactuated due to control authority
only being available orthogonal to the local magnetic field. One of the earliest uses of magnetic

torque rods was dumping momentum from a momentum storage device, like a reaction wheel, as



in [33]. Other approaches for this application include [34], which uses the periodicity of orbital
motion to analyze the problem, and [35], which uses techniques from optimal control. Magnetic
actuation has also traditionally been used for the initial detumbling of a spacecraft after deploy-
ment. The most common method used is called B-dot control, which uses the rate of change of
the magnetic field to determine the actuation torque. Extensive analysis has been performed to
validate this control, [36-38]. More recently, there have been efforts to investigate full three-axis
attitude control for spacecraft using magnetic actuation. In [39], the problem is represented by
a linear time-varying system, which enables controllability analysis to be performed and, for a
certain type of orbit, magnetic actuation is shown to make the system controllable. Nonlinear
analysis demonstrates attitude control under the disturbance of gravity gradient torque in [40].
Other work studying three-axis attitude control using only magnetic actuation includes [41-43].
Stabilizing the attitude of spinning spacecraft has also been studied [44—48]. The consideration of
duty cycling between taking measurements of the magnetic field and actuating magnetic torque
rods is explored in [49, 50]. In [51] attitude control using three magnetic torque rods and one
reaction wheel to minimize flexible structure excitation is explored.

While reduced actuator attitude control and magnetic actuation have been thoroughly inves-
tigated separately, there is a lack of research into magnetic attitude control with fewer than three
magnetic torque rods. Detumbling a satellite with a single magnetic torque rod using a model
predictive controller is shown in [52], but there is an absence of attitude stabilization. Attitude
stabilization with two magnetic torque rods is investigated in [53] using controllability analyses
of the linearized dynamics, but the result only holds for a specific attitude reference. The use of
only two magnetic torque rods to stabilize the pointing of a body in space is investigated in this

dissertation.



1.2.3  Shape Estimation of Flexible Spacecraft

In order for any attitude or shape control laws to be effectively applied, the state of the
spacecraft including its shape must be known. In the case of a deployable structure with con-
nected segments, the state of each of the segments may be required for distributed control. How-
ever, if a high dimensional state is needed to represent the structural dynamics, this can require
an increasingly significant amount of computation power to perform state estimation. Due to
the limited computation power available to a spacecraft in orbit and the need to perform estima-
tion in real time, a high dimensional state may make state estimation and thus output feedback
control infeasible. In [54] an Eigensystem Realization Algorithm is used to generate a reduced
order model of a flexible spacecraft in order to estimate shape in real time, although it is focused
primarily on modeling between input and output space which may not be sufficient for imple-
menting control. To reconstruct the shape of a flexible spacecraft structure, [55] investigates the
use of sun sensors, while [56] employs range images. [57] uses an interpolation of displacement
measurements in conjunction with a filter for shape estimation. To estimate the dynamics of a
flexible spacecraft, an adaptive scheme is used in [1] to learn unknown physical parameters of
the spacecraft. Parameter estimation of flexible spacecraft models is further explored in [58—-60].

Modal decomposition encompasses a common class of methods for making algorithms on
high-dimensional systems more computationally tractable. The goal of modal decomposition is
to represent a high-dimensional system with a relatively small number of modes that captures the
relevant behavior of the system. One method that has gained popularity, particularly in the field of
fluid mechanics, is dynamic mode decomposition (DMD) [61]. DMD is a data-driven algorithm

that was first developed for analyzing fluid flows. It is closely related to the Koopman operator,



which is a way to represent a finite-dimensional nonlinear system as an infinite-dimensional linear
system. The goal of DMD is to decompose data from time series measurements into modes that
capture the underlying dynamics of the system [62]. DMD may also be used to perform state
estimation by using measurements of the system to estimate the DMD mode amplitudes using
a Kalman filter, which can be used to estimate the full system state. This framework, described
in [63], is referred to as the DMD Kalman filter and, if the DMD modes are an approximation of
the Koompan modes, is equivalent to the Koopman-Kalman filter [63]. While DMD is popular
in the field of fluid mechanics, it has not received the same level of attention or use in other
fields. However, the model-order reduction and linear estimation framework it enables make it a

promising approach to apply to state estimation of flexible spacecratft.

1.3 Contributions of Dissertation

Planar Attitude and Shape Control

I derive a dynamic spacecraft model using a hub and flexible appendage framework. The
hub is actuated by reaction wheels to manage spacecraft attitude, while magnetic torque rods
actuate the appendage to stabilize its shape. Flexibility is modeled by discretizing the appendage
into flexibly connected elements. I initially restrict the flexibility to one dimension coinciding
with the orbital plane, thus restricting the spacecraft dynamics to that plane.

Using Lyapunov analysis, I derive a nonlinear state feedback control law that drives the
spacecraft’s attitude to a reference and stabilizes the appendage. To validate this control law, I
conduct numerical simulations and compare its performance against various linear control strate-

gies. I then implement an extended Kalman filter for state estimation, demonstrating the control
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law’s robustness in an output feedback framework subjected to measurement noise.

Three-Dimensional Attitude and Shape Control

I extend the discretization of the flexible appendage to two directions and employ a three-
dimensional element connection model to capture its full flexibility across three degrees of free-
dom. The dynamics and control inputs for both attitude and shape are accordingly extended into
three dimensions.

To formulate a control law for the magnetic torque rods in three dimensions, I investi-
gate controlling the reduced attitude and angular velocity of a single element actuated by two
magnetic torque rods. Through Lyapunov analysis, I derive a nonlinear feedback control law that
effectively stabilizes the reduced attitude and angular velocity of the rigid element using only two
magnetic torque rods. I validate this control law through numerical simulations and demonstrate
its robustness in the presence of saturation nonlinearities.

The magnetic torque rod control is applied to each element of the appendage to perform
shape control. Numerical simulations confirm that integrating shape control into the flexible
appendage significantly mitigates structural deformations and oscillations in response to various
disturbances. However, this improvement comes at the cost of increased control effort required

from the reaction wheels.

State Estimation of Flexible Spacecraft Model

I employ dynamic mode decomposition to generate a data driven modal decomposition of

the flexible spacecraft model. The modal decomposition yields a reduced order model such the
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amplitudes of the modes used to form the model evolve linearly with time. The reduced order
model enables full state estimation from a limited set of measurements. I validate application of
this framework to this problem through numerical simulations which demonstrate accurate state
estimates with measurement noise and a substantial reduction in model order. Leveraging this
state estimation framework, I optimize the number and placement of sensors to maximize system

observability.

1.4 Outline of Dissertation

This dissertation is outlined as follows.

Chapter 2 provides an overview of some of the foundational material useful for subsequent
chapters. Orbital and attitude dynamics of spacecraft are reviewed and modeling for magnetic
actuation is shown. The procedure for dynamic mode decomposition is also provided.

Chapter 3 derives a planar version of the flexible spacecraft model. Lyapunov analysis
yields a nonlinear control law that controls the attitude and shape of the model with state and
output feedback.

Chapter 4 extends the flexible spacecraft model to three dimensions. A control law is
developed to facilitate shape control using two magnetic torque rods. Numerical simulations
confirm the effectiveness and validity of this control law.

Chapter 5 employs dynamic mode decomposition to provide a reduced order model of the
spacecraft which enables full state estimation. Numerical simulations validate this approach.
The location and number of sensors providing measurements are optimized to maximize system

observability.

12



Chapter 6 summarizes the dissertation and provides suggestions research directions for

ongoing and future work.
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Chapter 2: Background

This chapter reviews foundational material for the analyses presented in Chapters 3 to 5.
I begin by outlining the approach for modeling spacecraft dynamics, including translational dy-
namics and the use of rotation matrices to represent attitude. I then describe the modeling for
Earth’s magnetic field and for magnetic torque rods and summarize the inherent challenges as-
sociated with utilizing them for attitude control. Lastly I provide an overview of dynamic mode
decomposition and review the framework the decomposition provides for performing state esti-

mation using a reduced order model.

2.1 Spacecraft Dynamics and Control

The equations and models fundamental to describing the spacecraft dynamics and control

used in this dissertation are summarized in this section.

2.1.1 Orbital Dynamics

In this dissertation orbital motion is modeled using the two-body problem. Specifically, the
translational motion of a body in orbit is described by
r=——Tr, 2.1

where 44 1s the gravitational parameter for the orbited body.
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2.1.2 Attitude Dynamics on the Special Orthogonal Group

Consider the rotational dynamics of a spacecraft modeled as a rigid body. Consider the
Earth-centered inertial (ECI) reference frame Z = {ey, e, e3} and a body-fixed reference frame
B = {by, by, b3} attached to the center of mass of the spacecraft B. The attitude of the space-
craft relative to the inertial frame can be expressed using several parameterizations, such as Eu-
ler angles, quaternions, or modified Rodrigues parameters. A rotation matrix R € SO(3) is
used here to avoid kinematic singularities and unwinding that can result from other represen-
tations [64]. Additionally, it is advantageous because it can be represented in a reduced form
for applications such as pointing, where not all degrees of freedom need to be considered. This
is relevant for controlling the attitude of sections of a flexible structure that are constrained by
their attachment to adjoining sections, making rotation matrices a convenient representation of
attitude. The special orthogonal group SO(3) is the group of rigid-body rotations defined as
SO(3) = {R € R¥>3|RTR = Z,det(R) = 1}. The rotational equations of motion on SO(3)
are [64]

R=R& (2.2)
Jw=JwxXw+T, 2.3)

where J is the spacecraft moment of inertia, w is its angular velocity, and 7 is the total external

moment on the spacecraft. The hat map A : R* — so(3) transforms a vector into a skew-
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symmetric matrix, i.e., ab = a x b, i.e.,

0 —as a9
i=|a 0 —a (2.4)
—ay aq 0

Rotation matrices are fundamental to the flexible spacecraft model defined in Section 4.2, and are

used as input to the control law derived in Section 4.3.

2.1.3 Magnetic Torque Rod Control

This dissertation uses a simplified model of the magnetic field of the Earth. Specifically,
the magnetic field of the Earth is modeled as a dipole. For an object in orbit at position r =

[z, v, z]T, the magnetic field of the Earth in the inertial frame is [65]

B3(u-7)7 — p
r3 ’

B(p,r) = (2.5)

Assume the inertial frame is such that g is aligned with 2. The magnetic field in Cartesian

coordinates is

E
B =""[3xz, 3yz, 32 —1?]", (2.6)

r
where E,,, = pop /47 specifies the strength of the magnetic field for Earth.

Magnetic torque rods operate by generating a magnetic field that interacts with the local
magnetic field; the interaction of these two fields produces a moment. Consider a magnetic dipole
generated by magnetic torque rods denoted m and a local magnetic field denoted B. The moment

7 that is produced by the magnetic torque rods is [66]

T=m X B. 2.7

16



This equation underscores the primary challenge of using magnetic torque rods for attitude con-
trol: control authority is restricted to be orthogonal to the local magnetic field B. This problem
is exacerbated when there are fewer than three magnetic torque rods. Without loss of generality,
assume that there are two magnetic torque rods along the first and second axes of the local body

frame. The resulting torque in the body frame is

T
T=mXxB= m233 —m133 m132 — m231 . (28)

In this case, control authority about the first and second axes is zero when the magnetic
field component along the third axis is zero. Additionally, the moment that is generated about
the third axis is coupled. For control applications, if m, and ms are selected to produce specific
moments about the first and second axes, there will inherently be an additional undesired moment
about the third axis.

The magnetic torque rod modeling is used to define the control inputs to the flexible space-

craft model in Section 4.2 and their limitations are addressed in Section 4.3.

2.2 Data-Driven Analysis Techniques for State Estimation

2.2.1 Dynamic Mode Decomposition

Consider a sequence of evolving measurements arising from either simulated or experi-
mental data. Each individual measurement is referred to as a snapshot and the the snapshots at
time ¢, are denoted x(?;). Assume that the time step between each snapshot is constant, i.e.,

tyr1 — tr, = At for all k. If there are m snapshots, a matrix can be formed from these snapshots
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such that kth column corresponds to the vector of measurements at time £, i.e.,

X=1x(t) x(t2) . x(tm)|- (2.9)

Next, two data matrices are formed from the sequence of snapshots such that the kth column in
the second matrix corresponds to the advancement in time of the £th column of the first matrix

by At.

Xo = |x(t) x(t2) ... X(tm-1) (2.10)

X1 = x(t) x(ts) ... x(tw) 2.11)

The goal of dynamic mode decomposition is to find an eigendecomposition of the matrix A
that linearly approximates the evolution of the dynamics of the system by one time step At, i.e,.
X, = AXj. The best fit in the least-squares sense for A can be computed using the psuedoinverse
denoted t, i.e., A = X 1X§ . However, if the dimension of X is very large, this may become

unreasonable to compute. Instead, the singular value decomposition (SVD) of X|, is taken, i.e.,
Xo=UXV" (2.12)
where * denotes the conjugate transpose. The psuedoinverse of the SVD may be taken as Xg =
VE~tU*, yielding
A=XVEU* (2.13)
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An optimal low-dimensional representation of A denoted A may be defined by the columns of U
is [61]

A=U"AU =U*X,VE~L (2.14)

Let A be the eigenvalues of A in matrix form and W the matrix of right eigenvectors of A.

The DMD eigenvalues are given by A and the DMD modes given by [61]
o =UW. (2.15)

Let «(t) represent the mode amplitudes of the vector snapshot x(¢;) in the DMD basis, i.e.
X(tx) ~ Pa(ty). Then the approximate solution for the time evolution of snapshots can be
reconstructed by [61]

X(t) = AL/ Ay (1)) (2.16)

The degree to which the DMD modes and eigenvalues represent the system dynamics is depen-
dent on the linearity of the system. If the system is linear, only the mode amplitudes depend on
the initial condition and the system dynamics may be accurately reconstructed via Eq. (2.16).
The more nonlinear the system is, the more that the modes and eigenvalues obtained via DMD

will also depend on the initial condition of the dataset [67].

2.2.2 Mode Amplitude Kalman Filter

According to the Koopman observer framework [63], a subset of measurements from the
system can be utilized in conjunction with the DMD modes in a linear observer to estimate the
mode amplitudes of the DMD representation. These estimated amplitudes can be then used to

reconstruct the complete state of the original system. This process is performed as follows.
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Consider a matrix C' that is formed from the columns of the DMD modes ® [63]

C; — (752_} if ¢, is real

C; = Re(¢;) (2.17)
if ¢; and ¢, ; are complex conjugates.

Cit1 = 1Im(e;)
Let z; denote a vector of DMD mode amplitudes. The state 7, of the underlying system at

timestep & can be estimated from the mode amplitudes by
M ~ Cz. (2.18)

Consider also a block diagonal matrix F' that is formed from the DMD eigenvalues [63] such that

F has a diagonal entry F;; = \;, if \; is real, and block diagonal entry

Fi; Fiina Re(A;)  Im();)
= (2.19)
Fiii Figii4 —Im(}\;) Re(\;)

if \; and \;;, are complex conjugates. The matrix F represents a linear operator that advances

the vector of mode amplitudes z;, forward in time by one timestep, i.e.,
ZE = sz:—l- (220)

The matrices Eqgs. (2.18) and (2.20) define a linear dynamical system where the state is
the DMD mode amplitudes and the observation is the state of the underlying system. Assume
also that only some subset of the state of the underlying system is measured. Let y, € R"*
denote the portion of the state vector that is measured and x; € R" denote the portion that is

to be estimated. The state vector 1 is reordered such that the observed portion of the state is
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partitioned from the unobserved portion of the state [63], i.e.,

Nk =

Yk

Ty

(2.21)

Note that when performing DMD, the snapshot matrix containing the training data must similarly

be reordered.

(2.22)

The C matrix is reordered the same way and partitioned such that the first n, rows corresponding

to the measured states are denoted C,, and the remaining n, row corresponding to the unmeasured

states are denoted C',. The linear dynamical system may now be written as [63]

2L =

Y =

r =~

Fz,_4
C’yzk

Cx Z

(2.23a)

(2.23b)

(2.23c)

If the system given by Eq. (2.23) is observable, then a state observer may be applied to

estimate the DMD mode amplitudes. For a linear system subject to Gaussian process and mea-

surement noise, the Kalman filter represents an optimal observer. Consequently, a Kalman filter
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may be used to estimate the mode amplitude amplitudes given a set of measurements of the un-

derlying system. The Kalman filter of the mode amplitudes is as follows [68]:

Estimate propagation:

2z, = Fziq (2.24)
P, = FP,_ FT+Q (2.25)
(2.26)

Kalman Gain:
Ky, = PiC, (C,PCT + R) ™ 2.27)

Measurement assimilation:

P, = (I- KCy)P,; (2.29)

Estimate of x:
x;, = CL2; (2.30)

The DMD Kalman filter provides a framework for generating a reduced-order model of a system

and enabling state estimation with a limited subset of measurements [63].
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Chapter 3: Estimation and Control of a Planar Multibody Flexible Spacecraft

3.1 Introduction

This chapter introduces the modeling concepts used to represent the hub and flexible ap-
pendage. The flexibility of the appendage is modeled by discretizing its structure into rigid
elements, referred to as panels, which are flexibly connected via damped spring-like hinges. By
varying the discretization size, as well as the spring and damping coefficients of the panel con-
nections, the model can be adapted to represent different types of structures, such as continuous
flexible structures or hinged deployable structures. Initially, the appendages are restricted to bend
in only one direction. If this rotation occurs about the same axis as the angular momentum of the
spacecraft’s orbit, the spacecraft’s dynamics can be fully described within the orbital plane. This
reduction in degrees of freedom simplifies the problem, enabling insight into the system’s funda-
mental behavior through analysis. A dynamic state-space model for the hub and appendages is
developed using coordinates relative to a body-frame attached to the hub.

The proposed actuation consists of a reaction wheel in the spacecraft hub and a magnetic
torque rod in each of the panels, subject to constraints on allowable outputs. The state-space
system is linearized, enabling the application of linear state feedback control, such as a linear-
quadratic regulator (LQR). The control nonlinearities motivate the design of a nonlinear feedback

controller. Structural deformations and vibrations, along with an artificial potential energy de-

23



scribing the attitude error, form a candidate Lyapunov function. Lyapunov analysis of the system
yields a stabilizing feedback control law for the torque rods and reaction wheels. Numerical
simulations demonstrate the effectiveness of this control law and the impact of using torque rods
to stabilize the appendage shape. An extended Kalman filter is implemented to perform state
estimation, and the control law is evaluated when using output feedback.

The contributions of this chapter are as follows: (1) a planar multibody dynamic model of a
flexible spacecraft actuated by reaction wheels and magnetic torque rods including orbital motion,
gravity gradient torque, and a magnetic field that varies with orbital position; (2) a state-feedback
controller based on a Lyapunov design that tracks a desired attitude, suppresses oscillations in
the appendages, and compares favorably to a linear control design; and (3) an estimation frame-
work and corresponding output feedback design based on rate measurements of each spacecraft
component assimilated by an Extended Kalman Filter. Numerical simulations are performed to
validate the efficacy of the proposed control law, first under idealized conditions and then un-
der more realistic conditions. State estimation and output feedback are added to the model to
demonstrate the retention of performance with limited sensing and measurement noise.

The chapter is organized as follows. Section 3.2 develops the dynamics model of the space-
craft. Section 3.3 proposes the feedback control design and includes simulation results. Sec-
tion 3.4 describes the estimation and output feedback control. Finally, Section 3.5 summarizes

the chapter.
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3.2 Planar Multibody Flexible Spacecraft Model

Consider a spacecraft that consists of a central hub with two adjoining flexible appendages.
Each appendage is discretized into a set of elements, referred to as panels. Consider also an
Earth-centered inertial frame Z = (O, €,, €,, €3), an Earth-centered rotating frame that rotates at
the orbital rate of the spacecraft P = (O, &,, &y, &3), a body-fixed frame affixed to the central hub
of the spacecraft A = (C,a;, as, a3), and body-fixed frames affixed to each of the component
panels comprising the appendages of the spacecraft B%) = (B®, lA)gi), BS) , Bgi)), 1 =1,...,2N.
Angle 0 defines the relative orientation of P with respect to Z, v is the orientation of A with

respect to Z, and o is the orientation of B%*) with respect to A.

€9

Figure 3.1: Reference frames used for the flexible spacecraft model. Frame A is fixed to the hub;

frames BY i =1,...,2N, are fixed to each appendage

To model structural flexibility, the connection of the each of the panels is modeled as a
damped spring-like hinge. The discretization size, as well as the stiffness and damping coef-

ficients of the hinges, can be adjusted to simulate various types of flexible structures, such as
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hinged deployable structures or continuously flexible structures. Assume that the hinged panel
connections have one degree of freedom, specifically that the ith panel may only rotate about the

) = as for all 7. If the rotation of the hub is restricted

f)g) axis. This constraint ensures that f)g
to the a3 axis, and as is aligned with €y, then all spacecraft component rotations occur about €y,
and all spacecraft motion is confined to the orbital plane. Consequently, it is only necessary to
consider two-dimensional dynamics.

The following assumptions are made about the considered spacecraft: each panel is the
same size, L; = L; < Vi,j € {1,...,2N}, the hub is significantly larger and more massive than
each individual panel, I, < I¢, the appendages do not reach very high angular rates relative to the

hub, ¢; < 1, the relative translational velocities of the appendages remain small, 7;,c < y;/c»

and the reaction wheels produce torque on the order of milli-Newton meters, u,, < 1.

3.2.1 Multibody Dynamics

This section derives the dynamics of the spacecraft in the reference frame of the hub and
models its internal forces, control inputs, and disturbances to yield the equations of motion for the
system. To refer to each of the components of the spacecraft notationally, the indexing scheme

shown in Fig. 3.2 is used.

i=2N i =N+2 i=N+1 i=1 i=2 i=N

Figure 3.2: Indexing for proposed spacecraft structure consisting of a hub (C) and 2 flexibly

connected appendages modeled with N panels each
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First, the dynamics of the hub C' and each of the panels comprising the appendages are

derived. For the hub,

rcjo = Tc€p +ycey 3.1

Voo = ol +yce, (3.2)

Tacio = ice, +ijce,. (3.3)

Consider reference frame A. The inertial derivative of unit vector a; is Z24a, = Zw? x &,

where Zw? = 4a; is the angular velocity of frame A in the inertial reference frame. Using the
two-dimensional orbital plane reference frame, the angular velocity of the hub is restricted to the

as = ey direction with magnitude 7. For the panels,
ri/0 =Tcjo + Tijc = To€, + Yoy + Tijcar + Yijcas. (3.4)

Differentiating with respect to time yields

d o A L. o - . - .
Vijo = I%I‘i/o = T, + Yoy + Tijcar + YijcAs + o (€3 X a1) + yijo(Yes X ag)

z
(3.5)
= Tc€, + Yoy + Ti/cay + YijcAz + YTijcdz — YYi/car. (3.6)
Differentiating again yields the inertial acceleration, i.e.,
Ta; /0 = B, Hijcey i cfn+iicBo T o —yidn +29d 080 — 29§ 081 — 3 2 o dn — Y o s
(3.7)
Euler’s first law is applied to the hub and to each panel. It is convenient to express the

forces on the hub in reference frame A. The total force on the hub is Fo = Xca; + Yoa,, which
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implies

WA a Xc . Yo .
Toaj + Ycag = —Cal + —Cag. (38)
mc mc

The sum of the forces on each panel is F; = X;a; + Y;a,. Applying Euler’s first law to the ith

appendage yields

Xi. Y,
Taj 0= —a; + —a (3.9)
m; ;

i i

To control the shape of the entire spacecraft and maintain its alignment with the hub, it
is convenient to analyze the dynamics of each panel relative to the hub. The resulting control
problem is to drive the relative angle, as well as the relative translational and angular velocities,
to zero. To express the equations of motion in the hub’s reference frame, the kinematics for
the panel and hub are substituted into Eq. (3.7) and the expression is rearranged to solve for the
acceleration of the panels relative to the hub, i.e.,

Xi, Y Xe, Yo,

Tijcar + ijcay =—a; + —ay — —a; — —ay — Yr;cay + Yy,

2508 + 29y cAr + V2T car + A2y cds.

The terms are collected to arrive at the following scalar differential equations:

y Xy Xo oo . .

Tyjo =" = o + Jyijc + 2390 + Vxijc (3.1
. Y, Yo . . .
Yije = —— = e Y0 — 2% + 3V yisc- (3.12)

Next, Euler’s second law is applied to the hub and panels, with the total internal moments

on each defined as M and M, respectively, i.e.,

d d .. n .

Ezho = EIC’Ya:& = Icyag = Mcas (3.13)
dr d_ .. ... A .
% hz = afp(’}/ + Oéi)ag = [p(’}/ + CYi>ag = Miag. (314)
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The state for each panel described in two dimensions is

. . . T
fi:[xi/c Yijc  Qijc Tijc  Yi/c ai/C] . (3.15)

The modeling of the forces and moments acting on each component, i.e., X¢, Yo, Mo, X, Y,

and M, are defined next.

3.2.2 Internal Force Model

Assume that the panels are connected to each other and to the hub with damped spring-
like hinges. The attachment force of each hinge is modeled as a spring with spring coefficient
ks and damping coefficient c;. The attachment moment is modeled as a torsion spring that is
linearly proportional to the relative angle between the components that it connects, with spring
coefficient k; and damping coefficient c;. With the spring modeling, the relative force between
two components can be computed by determining the relative position and velocity of adjoining
edges. The relative position and velocity of adjoining edges of the ith panel to its adjacent panel

for: =1, ..., N are expressed as

Tijie1 = Tio + %65” — Tasnyo + L;“B(f*” (3.16)
Avi,:/i+1 =4 vi/c + %%B?) —A V(i+1)/c + L;H %Eﬁ”l) (3.17)
r;—/i-1 = Ti/Cc — %B?) —Trug-1/c — L;_lf)gil) (3.18)
Avi/i—l =A Vi/jc — %Z—f Agi) —A V(i-1)/Cc — L;_l Z—fBY—”. (3.19)

Fori: = N +1, ..., 2N the negation of the shown position and velocity is used due to the indexing

scheme increasing in the opposite direction on the other side of the spacecraft. The resulting
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internal force on an appendage from an adjacent appendage is
Fij =~k — civi;. (3.20)
The torque resulting from the internal forces is
Tijiy1 = %Bgl) X Fijiv1, Ty = —%Bgi) X Fiji1. (3.21)
The internal moment resulting from the spring hinge is modeled as
Mi/i+1 = _kt(ai - ()éi+1) - Ct(dz‘ - difl)a Mi/i—l = kt(ai - Ofifl) - Ct(di - difl)- (3.22)

The forces and moments for the end appendages and for the hub are included in Ap-
pendix A.1. These equations provide a complete description of the internal forces and moments
acting on the modeled spacecraft. The unforced dynamics of the spacecraft can then be described
as a state-space system. Due to the primary investigation being attitude and shape control, the
translational dynamics of the appendages are expressed in the reference frame of the hub, and the
translational dynamics of the hub are excluded from the analysis. Therefore, the total state of the

system 7) representing the attitude and shape of the spacecraft is defined as

. T
n=[0 v & & . & & - &, (3.23)

and the unforced dynamics are
n=fn). (3.24)
For convenience, the portion of the state for the hub orientation  and rate 7 is denoted 1< and

the remainder of the state vector describing the appendages is denoted 7,,, i.e., n = [nc np]T
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3.2.3 Control Input Model

Assume that there is a reaction wheel in the hub and that each of the panels are equipped
with a torque rod. Assume also that the reaction wheel has some saturation limit /<, and that
the control input is simply the reaction wheel torque, so that the torque generated by the reaction

wheel in response to control input u,, is
_KI‘W7 Urw S _Krw
Trw = Sat(urw) - Urw _Krw < Upy < Krw

KI‘W) uI'W 2 KI‘W‘

Assume each torque rod is aligned with the bgi) axis of the body frame assigned to the
respective spacecraft segment. Torque rods typically operate by turning on and off electrical
current through a coil, resulting in a discrete set of control inputs. Assume that the control input
for the th torque rod w;is modeled as the desired dipole generated by the torque rod, and the
maximum possible magnitude of the dipole is denoted K. Using the sign function to implement
the discrete control input set can lead to chattering around u; = 0; the deadband function is used

instead. The possible dipoles generated by each torque rod are as follows:

(

_Ktr u; < —A
m; = Kydbd(ug;, \) = 0 A<y <A
Ktr U; > A

\
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The magnetic dipole resulting from the torque rod expressed in an Earth-centered polar frame is

m; COS ;
m; = \m;siny; | » (3.25)

0

where ) is defined as the angle between the spacecraft’s colatitude 6 and the body frame axis
Béi), ie., ¥; = 0 — v — «, for the appendages. The Earth’s magnetic field is modeled as a dipole,

and in the fixed reference frame of the orbital plane, can be expressed as

3
2H, (%) cos 6

B = He<%>3sin9 - (3.26)

0

The torque developed by this control input can then be computed by taking the cross-product of

the resulting torque rod dipole 3.25 and the Earth’s magnetic field 3.26, i.e.,
R 3
T = 2H, (—) K dbd(u;, A)(sinv; sin @ — 2 cos ; cos 0)és. (3.27)
P
Defining the input vector as
w=[u uy .. ugN,urw]T, (3.28)
the forced dynamics can then be written as

n=fnu). (3.29)

3.2.4 Gravity Gradient Effects

When considering large spacecraft, a significant disturbance moment comes from the grav-
ity gradient effect, which results from each part of the spacecraft experiencing a slightly different
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magnitude of gravitational force from Earth. The generalized first-order approximation of gravity
gradient torque is [65]
3
TG = —/;p x Ip, (3.30)
P

where p = pe, is the vector from the center of the Earth to the center of mass of the body and I

is its moment of inertia tensor. In the body frames of the hub and panels, respectively,
pc = pocos (0 — 7)a — posin (6 — Y)as, i = picos by’ — p; sin by’ (3.31)

I approximate the moment of inertia tensor of the hub as a cube of side-length s and the

panels as thin rods of length L. The moment of inertia tensors are

—Ic 0 0_

e = 1o 1. 0 (3.32)
0 0 I
_Ip 0 0-

L = o 0 o (3.33)
0 0 I,

where [, = %52 and [, = %Lf The first-order approximation for gravity gradient torque for the

hub is therefore zero and, for the panels,

L sin(21))as. (3.34)

The gravity gradient effect is applied as a disturbance in numerical simulations to evaluate control

robustness.
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3.3 State Feedback Control

This section considers reference tracking of a nadir-pointing attitude trajectory in a low
altitude polar orbit (see Appendix C.1 for orbital parameters). The proposed controller tracks the

desired trajectory while maintaining spacecraft flatness.

3.3.1 Linear Feedback Control

The equilibrium of the system Eq. (3.24) is when each appendage is flat and unmoving
relative to the hub reference frame. The dynamics of the undisturbed system are linearized
by taking the Jacobian of the dynamics at the equilibrium condition. The orientation of the
reference frame v does not appear in the Jacobian of the unforced state dynamics. This indi-
cates that the unforced dynamics of the system are invariant with respect to the orientation of
the hub, which arises from using the reference frame of the hub to express the appendage dy-

(1)

namics. For the panels, the equilibrium for z;/c is zeq = +(5 + 2’; LL); it is positive for

1 = 1,..., N and negative for : = N + 1,...,2N. Thus the equilibrium state of each appendage
is féé) =+ [:cg) 0 0 0 0 O T. Because the dynamics of each component of the satellite
are explicitly dependent on only the states of the adjacent components and the hub, the linearized
unforced dynamics from Eq. (3.24) can be written in block matrix form, where the blocks are

defined as

_ 0o e &, O

A= A T ne N

(3.35)
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The overall system Jacobian is

Ac 0 0
AL A0 0
of
A== A2 0 4y o0 |- (3.36)
ACY) 0 0 L Agy

To evaluate the stability of the unforced spacecraft structure, the eigenvalues of A are com-
puted. By inspection, for any number of appendages, A has two eigenvalues with zero real part
and the rest have a negative real part. The two imaginary axis eigenvalues correspond to the
orientation and angular velocity of the hub, because in the unforced case there is no external
damping of the hub’s angular motion. Thus, the unforced dynamics of the appendages near the
equilibrium point are stable due to the damping of the hinges, but the unforced dynamics of the
hub are not.

The input-to-state linearization of the dynamics Eq. (3.29) can also be described in block

matrix form by taking

Or 0 ... 0
Be = 20C _ (3.37)
ou )
Ic
o< oo o
_ 3 _ o)
Bi=2w=10 .. o..o....o..o0 = (3.38)
[0 . 0 0 ...0 —%_
where £ = 21116(%)3 and % appears in the ¢th column of B;. The total matrix is
B = o _ T pr pgr T ' (3.39)
- au - BC Bl BQ RPN B2N : °
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and the portion of the matrix dealing with the torque rods is
B, =BT BT ... BI, (3.40)
The closed-loop linearized dynamics are
1 = An + Bu. (3.41)

From the closed-loop linear dynamics a linear-quadratic regulator (LQR) generates a gain
matrix such that the state feedback control law © = —Kn is an optimal controller that ex-
ponentially stabilizes the origin. LQR serves as a baseline controller for the nonlinear system
Eq. (3.29), because it is optimal, can be tuned to exhibit desired performance characteristics, and
is computationally inexpensive. However, because the actuators are modeled with physical opera-
tion characteristics in mind, additional nonlinearities are introduced into the system. Specifically,
the saturation nonlinearities and discrete control inputs from Section 3.2.3 are applied to the out-
put of the LQR controller before it is applied to the system. The addition of these nonlinearities
undermines the optimality and performance of the LQR and motivates the Lyapunov-based based

control design described next.

3.3.2 Nonlinear Feedback Control

An energy-like function that describes the kinetic and potential energy of the spacecraft

appendages in the reference frame of the hub is

12N

T(ny) = B Z [mi(x.?/c + ?J?/C) + ]idz'Q + (ks(ng/j + y?/j) + kt&?/jﬂ ) (3.42)
i=1

where the subscript i/j denotes the position or angle of appendage i relative to appendage j;
j=i—1fori ¢ {1, N+ 1}andj = Cfori e {1, N + 1}.
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Assume the spacecraft is intended to be nadir-pointing. Then the desired attitude for the
spacecraft hub is such that frame .4 aligns with frame P and the desired angular velocity of the
hub is the angular rate wo of the orbit. An artificial potential energy minimized by the hub’s

desired attitude and angular velocity is
1 2 1 . 2
Une) = ghy(y = 0)° + 51,5 —wo)®. (3.43)
A candidate Lyapunov function is the summation of Egs. (3.42) and (3.43), i.e.,

V(n) =T(n,) +U(ne). (3.44)

Consider a diagonal matrix describing the spring, mass, and inertia properties of the system,

1.e.,

M = diag[M., M), (3.45)
where

M. = diaglky, I],

M, = diag[M, ..., Msn],
with
M, = diag[ks;, ks, kii, mi, my, 1]
Consider also a matrix that captures the relative position and angle of adjacent appendages,

1.e.,

L = diag(L., L,) (3.46)

where £, corresponds to the the hub and £, corresponds to the appendages, i.e.,

ﬁp:diag(/ll,...,£N,£N+1,...,£2N). (347)
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The matrix blocks are

L. =1, (3.48)

T ic{l,N+1}
L, = (3.49)

diag[—1,—1,-1,0,0,0,Z] i ¢& {i, N+ 1}
Letneag =[vy—7v w— wd]T denote the orientation and angular velocity of the hub rel-
ative to the desired values. The state vector including these desired values is 17, = [c.q np]T

The vector of relative states is computed using L, i.e.,

MNrel = ‘Cnd (3.50)

The Lyapunov function candidate Eq. (3.44) in matrix form is

1

V(nrel> = inianrel- (3.51)

The following lemma enables analysis of the Lyapunov candidate function derivative using
the linearized dynamics of the system.

Lemma 1: Let & = f(x,u) be a nonlinear system with = 0 as its equilibrium point. Let
A= % and B = % be the linearization of f about its equilibrium point with « = 0. Consider

u = g(a) so that the closed-loop linear system becomes
z = Ax + Bg(zx). (3.52)

If the quadratic potential V (x) satisfies V() < —c||z|?> < 0 along solutions of the closed loop
linear system Eq. (3.52), then V() is a Lyapunov function for the original nonlinear system. See
Appendix B.3 for the proof of this lemma.

Differentiating the candidate Lyapunov function Eq. (3.51) with respect to time yields

V (Nrets Thret) = My MTpyer. (3.53)
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The linearized dynamics 7),.; = An,.; + Bu are substituted into V to yield
V('rlrela ﬁrel) = nrzlAMnrel + anelMB’U'- (354)

For convenience of analyzing the Lyapunov function derivative, the output is collected into two
terms relating to the energy of the hub V., and the appendages V];, such that V = Vi + f/;,. The

splitting is carried out as follows

Uy
. (ﬁcnc,d)T MAC Nrel (ﬁcnc,d)T BC Uy VC
V= + = |—1,
(Lpmp)" MA, Mrel (Lpmp)” B, : Vp
Uz N

(3.55)
where Ac and B¢ are the first two rows of the the Jacobian matrix A, and A, and B, consist of
the remaining rows of matrices A and B.

The expression for V), can be expanded as
"/p = nﬁl,pMApnrel + nﬁl,pMBpui- (356)

The first term in the expression may be equivalently expressed as n?el,pM ApMrel p, Where A,
excludes the first two columns of A to make it a square matrix. This truncation does not change
the value of V;) because the state variables of the appendages are expressed in the hub’s reference
frame and thus do not depend on the state of the hub. With the exclusion of the dynamics of
the hub, the two zero eigenvalues are also excluded, thus A, is Hurwitz. Because M is positive

definite, the product M A, is also Hurwitz. Consequently,

Moty M ApTyerp < 0. (3.57)
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Assuming that the spacecraft is near the equilibrium, then the translational velocities of each

appendage relative to the hub are small. The expansion of the second term is
2N
nﬁz,poui =k Z Qi (3.58)
i=1
This expression suggests that a control law for each torque rod of
w; = —dbd(d;) Ky (3.59)

guarantees that ng M Byu; < 0 for all ¢ and minimizes Vp subject to the the control constraints of
the torque rods. Under the proposed control law, Vp < 0.

Ve is now considered. Expanding the expression
Ve =nh e MAen +nly oM By, (3.60)
yields
. 2N
Vo = (¥ —wo)(kp(v — 0) + Be(dn + énia) + Brlan + angr) + trw) — u’rw[_p Z &;, (3.61)
c =1

where constants S and (3, are defined as

Lkgs
B = ke — — (3.62)
Legs
Bo = ¢t — 1 (3.63)
The following control law is proposed:
Upy = —PBc (1 + ant1) — Belon + any1) — kp(y — 0) — k(7 — wo). (3.64)
Substituting the proposed control law into Ve yields
Vo = —kp(¥ — wo)?, (3.65)
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which implies Ve < 0 under the proposed control law Eq. (3.64). This expression can also be

written as
Ve =nLyPnea, (3.66)
where
0 kp
P = (3.67)
—kp —kp

Combining Ve and Vp resulting from the proposed control laws yields

2N

V(T’reh ﬁrel) - n?elpMApnrel,p - EKtT Z azdbd(az) - kL (’Y - wO)z' (368)

=1

Note that
) ' . . - P 0
V(nrela nrel) S nrel,pMAinrel,p+nc7dpnc,d - [’r’c,d nrel,p] [T’c,d nrel,p] ’ (369)
0 MA;
where the last term can be rewritten as
T
nrelHnrel ) (3 70)
with
P 0
II = . (3.71)
0 MA,
Therefore,
V(T"r'eh ﬁrel) < nqz;lnnrel < _C||77rel||2 < nﬁl,pMApnrel,p < 0. (372)

along solutions of the closed-loop linear system Eq. (3.41). According to Lemma 1, the proposed
control law asymptotically stabilizes the origin of the nonlinear system Eq. (3.29).

From a practical standpoint, the control law resulting from Lyapunov analysis is favorable
for implementation. The torque rod control law acts in the opposite direction of the angular
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velocity of the appendage relative to the hub. It is also computationally simple and easily im-
plementable using angular velocity measured with gyros. The control law for the reaction wheel
contains proportional and derivative control terms with tuneable gains and also terms that become

relevant if the appendages directly affixed to the hub are not flat.

3.3.3 Simulation Results

Numerical simulations illustrate the performance of the closed-loop system. The simula-
tions conducted involve an initial value problem where the system starts with an initial condition
set some distance from the nadir reference. The controller then actuates the spacecraft to track
the reference, and the response is observed. This scenario simulates a real-world situation where
a spacecraft maneuvers to a different pointing target, such as transitioning from sun alignment
to nadir alignment.To better understand controller behavior and performance, several controllers
are simulated and compared. In addition to the proposed Lyapunov-based controller, an LQR
controller is implemented. To demonstrate the performance loss resulting from the applica-
tion of the saturation and deadband functions described in Section 3.2.3 to the control signal,
the performance of the LQR controller with and without these nonlinearities is compared. The
LQR controller is tuned to keep the control effort near the saturaton limits. Additionally, to
better understand the effect of the torque rods on system performance, the Lyapunov-based con-
troller without the (3, (. terms, and without the torque rod inputs was also tested; this leaves a

proportional-derivative controller for the reaction wheel.
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Idealized Model

The first simulation assumes an idealized scenario where there are no disturbance forces
or moments. Assume that the torque generated by the torque rods is not subject to varying
magnitudes due to the time-varying angles of incidence with the magnetic field lines of the Earth
and, instead, that the maximum control authority is available to the torque rods at all times, i.e.,
Ty = ZHB(%)?’ui. The control objective is to track a reference pointing angle 6(t) = wot + 6,
where 6 is the latitude of the spacecraft at ¢ = 0, and an angular velocity of wy. This reference
corresponds to a constantly nadir-pointing attitude. The simulation is an initial value problem
such that the controller drives the spacecraft from some initial value problem to the reference
trajectory. The initial state of the spacecraft hub is shown in Table C.1, and the appendages are
initially at equilibrium (flat and unmoving relative to the hub). The physical parameters for the
spacecraft are shown in Table C.2.

The dbd function from Eq. (3.27) is used instead of the sgn function, because in the limit of
the deadband approaching zero the dbd function becomes the sgn function, and the dbd function
is preferable for implementation as it reduces chatter. The LQR controller is tuned such that the
cost applied to the control inputs yields values that are near to the saturation limits. The gains
used for the control laws are shown in the Appendix C.1.

The two primary performance metrics used to measure the overall flatness of the system

are the mean-squared angular error and the distance between the two end panels (/V and 2/V) in

the a, direction , i.e., |Yn/c — 2 N/c\. These metrics are shown in Fig. 3.3. To illustrate the impact
on individual panels, the angles relative to flat of the outermost panels where the highest offsets

would be expected are shown in Fig. 3.4. To illustrate the impact of appendage oscillations on the
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hub, the error in the hub’s attitude and angular velocity is shown in Fig. 3.5. Finally, the actuation

effort for the reaction wheel and the torque rod on panel « = /N are shown in Fig. 3.6.
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Figure 3.3: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers
over a 1400 second simulation. In (a) the mean squared angle error is shown and (b) shows
the difference in vertical displacement between the two end appendages. The Lyapunov-based

controller damps oscillations from the system more quickly than the other controllers.
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Figure 3.4: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers

with respect to the angular offset of the outermost panels over a 1400 second simulation. The

Lyapunov-based controller damps angular oscillations more quickly than the other controllers
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Figure 3.5: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers

with respect to the hub attitude and angular velocity over a 1400 second simulation.
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Figure 3.6: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers
over a 1400 second simulation. (a) The reaction wheel control histories and (b) shows the torque
rod control history for panel ¢« = N. The LQR controller attempts to use the torque rods to assist
in the attitude control, as the control inputs mirror each other, whereas the Lypaunov controller
mirrors the oscillations shown in the performance metrics because it is used to damp out the

oscillations in the appendages.

Simulations show that the Lyapunov-based controller performs better than either of the
other two controllers in removing oscillations from the system. Examining Fig. 3.3 and Fig. 3.4
reveals that at around 200 seconds, the oscillations with the Lyapunov-based control are smaller
compared to those with other controllers. By 400 seconds, these oscillations have completely
damped out, whereas they persist with the other controllers. This effect is also demonstrated
in Fig. 3.5b, where some jitter in the angular velocity of the hub due to appendage oscillations
is observed persisting after 400 seconds. This jitter is not present with the Lyapunov-based

control. For controlling hub attitude, the Lyapunov-based controller performs equivalently to the
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LQR controller even with the applied nonlinearities. However, the control input plots shown in
Fig. 3.6 indicate that the torque rod control mirrors the shape of the reaction wheel control. This
suggests that the LQR controller uses the torque generated by the torque rods to assist the reaction
wheel in controlling the hub’s attitude and angular velocity. Consequently, the torque rods do not
significantly contribute to damping out oscillations. This shortcoming illustrates a challenge of
implementing LQR control for high-dimensional systems such as the planar flexible spacecraft
model: constructing the Q and R gain matrices requires a separate gain value for each state and
input of the system. In this model, the state space has 146 states and 25 inputs, resulting in 171
different values that must be tuned. Consequently, it becomes difficult to adjust each parameter
to achieve the desired behavior. Conversely, for the Lyapunov-based control, there are only two
gains k, and &y, which makes tuning the system to achieve the desired behavior simpler.

The performance of the PD control of the reaction wheel and the exclusion of torque rods
demonstrate the utility of the torque rods and of incorporating knowledge of the appendage states
into the controller. Fig. 3.6a reveals that the control signal for the PD controller takes signifi-
cantly longer to converge to zero. This is a consequence of the appendages imparting angular
momentum to the hub that the controller must manage. The LQR controller uses the full system
state and thus can factor the appendages into the control signal, and the Lyapunov-based con-
troller benefits from increased damping as well as some knowledge of the appendages through

the /3 terms.
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Orbital Model

A second simulation was performed where the following orbital effects were included: the
disturbance resulting from gravity gradient torque modeled in Eq. (3.30), and the time-varying
effects of the orientation of the torque rods relative to Earth’s magnetic field in Eq. (3.27). The
spacecraft parameters used in the previous simulation are utilized. While the orbit remains un-
changed, the initial latitude is set to 45 degrees, corresponding to half of the maximum torque
available to the torque rods. The initial condition of the hub relative to the nadir reference is kept
the same as in the previous simulation.

The flatness metrics are shown in Fig. 3.7 to evaluate controller performance with time-
varying control authority of the torque rods and external disturbances. The performance of the

controller for the hub’s attitude and angular velocity is depicted in Fig. 3.8.
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Figure 3.7: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers
over a 1400 second on-orbit simulation with time-varying control authority. (a) The mean squared

angle error and (b) the difference in vertical displacement between the two end appendages.
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Figure 3.8: Comparison of the control performance of PD, LQR, and Lyapunov-based controllers
with time-varying control authority over a 1400 second simulation. (a) The hub attitude error and

(b) the hub angular velocity error

The simulations show that despite reduced and time-varying control authority, the Lyapunov-
based control law still is able to use the torque rods to damp out the oscillations from the ap-
pendages. The damping takes longer to achieve than in the idealized case as a result of the lower
average control authority. The added orbital effects have negligible impact on the control of the
hub’s attitude and angular velocity, suggesting that, for the chosen spacecraft parameters, the
gravity gradient torque is easily managed by the controller.

To further illustrate the impact of the time-varying control authority of the torque rods,
simulations using the Lyapunov-based control law are conducted across different initial latitudes.
The latitudes chosen are 0 degrees, 45 degrees, and 90 degrees, corresponding to having zero,
half of the maximum, and the maximum torque available to the torque rods at the start of the

simulation, respectively. Fig. 3.9 depicts the torque available over the duration of the simulation
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for each initial condition.
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Figure 3.9: Available torque to torque rods

The flatness metrics are shown in Fig. 3.10 to evaluate the differences in controller perfor-
mance with varying levels of control authority available. The performance of the controller for

the hub’s attitude and angular velocity is depicted in Fig. 3.11.
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Figure 3.10: Comparison of the the Lyapunov-based controller with varying levels of torque rod
control authority initially available over a 1400 second simulation. (a) The mean squared angle

error and (b) the difference in vertical displacement between the two end appendages.
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Figure 3.11: Comparison of the the Lyapunov-based controller with varying levels of torque rod
control authority initially available over a 1400 second simulation.(a) The hub attitude error and
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The simulation results in Fig. 3.10 demonstrate that even when starting with the minimum
available torque, induced oscillations can still be removed from the system, albeit at a slower
rate. They also illustrate that, for best performance in achieving flatness, having more torque
available to the torque rods at the beginning of a maneuver enables quicker damping of induced
oscillations. Further characterization of this behavior would be useful for a spacecraft mission
designer, as it would enable them to plan maneuvers at times when a desired level of flatness
could be maintained.

Fig. 3.11 demonstrates that the torque rods have a minor impact on the attitude and angular
velocity of the hub. During maneuvers, the additional angular momentum of the appendages
effectively increases the rotational inertia of the hub. The torque rods act to counteract the angular

momentum of the appendages relative to the hub, thereby diminishing this effect. Consequently,
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the scenario with maximum initial torque exhibits slightly smaller overshoot compared to the
other cases. This leads to a reduction in the control effort required for the reaction wheels,
although the effect is limited by the relatively small magnitude of torque generated by the torque

rods.

3.4 Output Feedback Control

This section considers an observer to estimate the the system state from a limited set of
measurements. The controller described in Section 3.3 is paired with an observer in an output

feedback control framework.

3.4.1 Measurement Function and State Estimation

In most applications, information about the full state of a system is not measured or avail-
able as input to a state feedback controller. Consequently, a state estimator must be used to
convert measurements into state estimates that can then be used as inputs to the controller. The
nonlinear dynamics of the system with the linearized model developed in Section 3.3 makes this
model well suited for an Extended Kalman Filter (EKF). An EKF is an estimator that applies a
Kalman filter to the dynamics of a nonlinear system linearized about an equilibrium point [68].
An EKF is performed using two steps: a prediction step and an update step. Given a state-space

system in discrete time defined as

M1 = F(, ur) (3.73)

zr = h(ng), (3.74)

an EKF is implemented as follows.
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The prediction step is [68]

Mek—1 = F(r—1jp—1, wr)- (3.75)

Pyji-1 = APe g1 AL + Qr, (3.76)

where Ay is the Jacobian of the system dynamics evaluated at the current state estimate, and (),

is the process noise covariance. The update step to incorporate the measurement data is [68]

U = 2k — h(frr-1) (3.77)

Sy = CpPup1CF + Ry (3.78)

Ky = PyaCrS;! (3.79)

Mk = Tee—1 + Krlr (3.80)

Pur = (I — KiCy)Prji—1 (3.81)

where (', is the linearized measurement equation g—f’ evaluated at the current state estimate and

Ry, is the measurement noise covariance.
Assume that the attitude and angular velocity of the hub and the rates of each of the panels

relative to the hub are measured directly, e.g.,

2L =

Y Y Tyc e oo oo Zanjo Yen/c Qan/c (3.82)

The resulting measurement function is a linear function of the state and can be expressed in block
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matrix form

0O 0 O
0O 0 O
where

1

H. =
0

and _
000
Hi=10 0 0
000

0

0

0

1

(3.83)

The measurement function is described by a matrix multiplication, h(n) = Cmn, and can be

directly used in the EKF.

To evaluate its suitability in an output feedback control framework, an EKF was imple-

mented and applied to a numerical simulation of the unforced dynamics of the system. The

simulation consisted of setting the initial condition of the system to a point in state space a

small distance away from the equilibrium point and simulating the resulting unforced dynamic

response. Gaussian noise is applied to the measurement of the system and the initial estimate of

the EKF is set to the equilibrium point. See Appendix C.1 for the parameters used for the EKF.

To measure the performance of the EKF, plots of the state estimate error are shown. Specifically

plots of the attitude estimate error of the hub, and the mean error magnitude of the appendages

attitude, angular velocity, and vertical displacement are used.
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Figure 3.12: State estimation error of the extended Kalman filter applied to a simulation of the
system’s unforced dynamics. (a) The estimation error magnitude of the hub attitude, (b) the es-
timation error magnitude of the hub angular velocity, (c) the average panel attitude estimation
error magnitude, (d) the average panel angular velocity estimation error magnitude, (e) the aver-
age panel displacement estimation error magnitude, and (f) the average panel velocity estimation
error magnitude. The state estimate converges to the true state estimate after around 150 seconds,

with some residual noise left in the angular velocity estimate.

The numerical simulations show that the state estimate converges to the true state around
150 seconds, except for the panel angular velocity estimates, which retains some of the mea-
surement noise. This effect is likely due to the stiffness of the state space system causing the
estimator to respond to variations in the angular rate measurements too quickly. However, these
effects can be mitigated in the output feedback controller by setting the deadband for the torque
rods such that near an angular velocity of zero, the residual noise will fall within the deadband

and not cause noisy control inputs.

3.4.2 Simulation Results

The state estimator was then used in an output feedback control framework. In this simu-
lation the same estimator parameters are used. The simulation parameters and initial conditions
are the same as in Section 3.3.3. The initial state estimate is set to be the same as the initial
condition. In practice, between maneuvers after the oscillations have been damped out, the state

estimate will have converged to the equilibrium (flat state) and will thus be approximately true

58



once the next maneuver begins. Each of the controllers in Section 3.3 are implemented with out-
put feedback and the performance of each are compared with the the Lyapunov controller with
state feedback. The flatness metrics, angles relative to flat of the outermost panels, and the hub’s
attitude and angular velocity error are shown in are shown in Fig. 3.13, the angles relative to flat
of the outermost panels are shown in Fig. 3.14, and the error in the hub’s attitude and angular
velocity is shown in Fig. 3.15.
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Figure 3.13: Comparison of PD, LQR, and Lyapunov-based controllers using output feedback
and Lyapunov state feedback control. In (a) the mean squared angle error is shown and (b) shows

the difference in vertical displacement between the two end appendages.
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The output feedback control is able to achieve the control objectives of tracking a reference
attitude and angular velocity while removing oscillations from the structure to maintain flatness.
For attitude tracking, the output feedback controller retains the performance of the state feed-
back control. For shape control, the Lyapunov controller in output feedback does help to damp
out structural oscillations, although not as quickly as the state feedback control. Because the
controller relies on the estimate of the angular velocity of each of the panels, this reduction in

performance can be attributed to the time it takes for the angular velocity estimates to converge.

3.5 Conclusion

This chapter proposes a feedback control law for a spacecraft model consisting of a central
hub and multiple flexibly connected appendages on either side of this hub. This model could
represent either the flexibility of a large single appendage or the behavior of a deployable space
structure after it had been deployed. To control the shape and attitude of this model, actuation
consisting of a reaction wheel on the hub and magnetic torque rods on each of the appendages
is proposed. Springs to model internal forces and moments, external disturbances, and actuator
constraints are considered in modeling the dynamics of the system. The nonlinearities in the
model suggest a Lyapunov-based approach to the control design. By performing Lyapunov anal-
ysis on the system dynamics, feedback control laws for the reaction wheel and each torque rod
are obtained. Numerical simulations show that the proposed controller removes vibrations from
the system more quickly than both a system without torque rods and a system with torque rods
but with a different control law. The implementation of an Extended Kalman filter provides state

estimation from a measurement of the rate terms of each component of the spacecraft. The EKF
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combined with the Lyapunov-based control and numerical simulations demonstrated stabilization
of the system with output feedback control. The output feedback controller retains most of the

performance of the state feedback control.
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Chapter 4: Attitude and Shape Control of a Flexible Spacecraft in Three Di-

mensions

4.1 Introduction

In this chapter, I extend the planar flexible spacecraft model to a full three-dimensional
model using similar concepts. In the 3D model, the appendage is considered planar instead
of one-dimensional. The flexibility of the appendage is similarly modeled via discretization into
individual flexibly connected panels; however, compared with the planar model, the appendage is
discretized along two different axes. I extend the multibody dynamics to three dimensions using
rotation matrices to represent the attitude of each component. Like the planar model, I model
the panel connections with stiff damped springs to simulate the physical panel connections and
a damped torsional spring to simulate flexibility between panels. However, unlike the planar
model, the panels are not constrained to rotate in only one direction.

In three dimensions, the torque generated by the magnetic torque rods is no longer isolated
to a fixed axis of rotation. Furthermore, to control the additional rotational degrees of freedom of
a panel, an additional torque rod per panel is required. However, the additional torque rod results
in an output torque that is coupled, meaning the direction cannot be fully specified by the input,

as described in Section 2.1.3. To address the actuation of magnetic torque rods for shape control,
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I first consider a single panel actuated by two magnetic torque rods. Using the reduced-attitude
representation to describe the panel’s attitude, I employ Lyapunov’s direct method to derive a
control law that stabilizes the relevant degrees of freedom. This control law is also applicable for
controlling the reduced attitude of a rigid spacecraft for pointing applications, as demonstrated
by simulations.

I apply the derived torque rod control law to each torque rod pair on the panels of the three-
dimensional spacecraft model to implement shape control. Through simulation, I investigate the
performance of the controller and assess the impact of shape control in response to two types of
disturbances: maneuver-induced oscillations and thermoelastic bending.

The contributions of this chapter are (1) a nonlinear feedback control law for two-axis atti-
tude control of a rigid body actuated by two magnetic torque rods; (2) a state-space representation
of the dynamics of a spacecraft consisting of a hub and a planar flexible appendage modeled by
a discretized set of flexibly connected elements; and (3) simulation validation demonstrating that
applying the magnetic torque rod control law to the spacecraft model effectively removes vibra-
tions of the flexible appendage.

The remainder of the chapter is organized as follows: Section 4.2 presents the proposed
three-dimensional spacecraft model; Section 4.3 describes two-axis attitude control, derives a
control law for two magnetic torque rods using Lyapunov analysis, and validates the control
law through simulation on a single rigid body; Section 4.4 proposes a control design to achieve
attitude and shape control of the spacecraft model and is validated via simulation; Section 4.5

provides a summary of the chapter.
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4.2 Three-Dimensional Flexible Spacecraft Model

Consider a spacecraft consisting of a hub and a large flexible appendage connected to the
hub. This appendage could represent a large solar array, antenna, solar sail, or other relevant
structure. To model the flexibility of the structure, assume that the appendage is modeled as a
discretized set of flexibly connected rigid square elements referred to as panels. This modeling
choice can represent a deployable structure that is folded for launch and deployed in space, but
by varying the size of the panel discretization and the flexibility of the panel connections, can be

generalized to represent a continuous flexible planar structure.

Figure 4.1: Spacecraft with a hub and a flexible appendage modeled as N flexibly connected

panels

Consider an Earth-centered inertial frame Z = (O, €,, &,, €3), a body-fixed frame affixed
to the central hub of the spacecraft A = (C,a;, a,, a3), and body-fixed frames affixed to each of
the component panels of the appendage B® = (B, b\’ b{’ b{"), i = 1,...,2N. The panels
are assumed to all be the same size with side length L, and their body-fixed reference frames are

such that the origin is at the center of the panel, and the 15@ and E)gl) axes are aligned with the
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panel edges.

The state of the hub consists of its position, velocity, attitude, and angular velocity, i.e.,

T
ne = [rcjo vejo Re we] 4.1)

where the attitude is represented by a rotation matrix. To better capture the shape of the flexible
appendage with the states of the panels, the position and velocity of the panels relative to and in

the reference frame of the hub are used, i.e.,

T

i = ri/c Vi/C RBi wpg,| - 4.2)

The state of the full spacecraft model is then a concatenation of the hub and all panels making up
the appendage, i.e.,

T

n=Mmc m m ... 0, (4.3)

where N is the number of elements comprising the appendage.

4.2.1 Spacecraft Attitude and Shape Dynamics

The dynamics for the state of the hub are as follows:

rcio = Vgjo (4.4)
Vo0 = 2 45)
Re = Rew} (4.6)
Jowe = —wlJowe + Me 4.7)

where the * operator is a mapping from R to a 3 x 3 skew-symmetric matrix such that a*b =
a X b, where T is the total external torque experienced by the hub, and where the derivatives are
taken with respect to the inertial frame.
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To derive the dynamics of each panel in the reference frame of the hub, the inertial frame

dynamics must first be considered. The position of panel ¢ in the inertial frame is
rijo = Trcjo + Tijc- (4.8)
Differentiating twice yields the acceleration of each panel in the inertial frame, i.e.,
a0 = acjo + a;jc +we X Tic + 2we X vic + we X (We X 1c). 4.9)

Rearranging and substituting in Fo = mgac and F; = m;a,;, where F and F; are the total

forces on the hub and :th panel respectively, yields

F, F )
ajc=—— il We X T — 2we X V0 — we X (We X 1y0). (4.10)
m; mgc

The dynamics for the :th panel are

ric = Vic (4.11)
Viie = %—TZ—Z—@CXH/C—QUJCX%/C—CUC X (we X 1) (4.12)
Rp, = Rpwp, (4.13)
Jp,wp, = —wgJpwp + M, (4.14)

4.2.2 Flexural Modeling and Dynamics

Assume that each of the panels are connected to each adjacent panel and at each connection
there is a torsional spring that generates a restoring moment for adjacent panels with offset atti-
tudes. In order to avoid the unnecessary complexities associated with explicitly considering the
panel connections as constraints, the attachment force of each panel is modeled as a stiff damped
spring with spring coefficient k; and damping coefficient c;. Assume the torsional springs at adja-
cent panels are linearly proportional to the relative angle between the panels that it connects, with
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spring coefficient k; and damping coefficient ¢;. With the spring modeling, the attachment force
and resulting moment between two adjacent panels can be computed from the relative position

and velocity of the panel edges. The position of an edge in a panel’s reference frame is
L:j:{g 0 O] or :I:{O % 0}. (4.15)
The relative position between the edges of two adjacent panels 7 and 7 is
T jjedge = Tijc + Reyp, L — (vj/c — Reyp, L), (4.16)

where Rcyp, is the rotation matrix from B; to C' computed by Re/p, = RLRp,. The relative
velocity between the edges of panels 7 and j is derived by taking the derivative of r; ; /cqge, Which

yields
Vijjedge = Vijo+ Royp, (Wi — Rp,jowe) X L—(vj,c+ Reyp,(wj — Rp,jowe) x (=L)) (4.17)

The force on panel ¢ resulting from panel j is

Fij = —ksTijjedge — CsVij/edges (4.18)
where F};; = —F; ;. The moment on ¢ resulting from the attachment with j is
Tij =L x (RpycFi;). (4.19)

Similarly, the moment arising from the torsional spring between two adjacent panels is
computed from the relative attitude and angular velocity of adjacent panels. Assume that the
restoring moment opposes the relative orientation of adjacent panels. The matrix logarithm of
a rotation matrix parameterizes a rotation in three-dimensional space by a direction £ and mag-
nitude 6 of rotation providing a convenient way to define the magnitude and direction of the
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restoring moment induced by the torsional spring. The matrix logarithm of a rotation matrix R is

/

0 — Cosfl(TraceéR)—1> eR

32 — 723

logm(R) = (4.20)

_ 1 3
€_ 2sinf |T13 — T'31 eR

To1 — T2

The relative orientation between adjacent panels 7 and j is computed by taking logm(Rp,/5,) to
get 0; ; and &; ;. The relative angular velocity between adjacent panels ¢ and j is the difference

between their angular velocities given in reference frame B, i.e.,
Wi = W; — RBi/ijj (421)

The resulting moment is

M, ; = kb€ ; — ciw; ;. (4.22)

Assume that the spacecraft is subject to gravity from Earth, that there is some 3 axis control
system on the hub, e.g., a set of reaction wheels, and that the appendage is connected to the hub

via a single panel indexed 7 = 1. Then the total force and moment exerted on the hub via the

flexible appendage is
r
Fo = —pmor—0 + Fo, (4.23)
[rcsol
MC = TC71 -+ MC,I + Uc. (424)

The total force and moment on each panel comprising the appendage is

F o= —pmi— 2o+ > F, (4.25)
M; = Y (Ti;+ M), (4.26)
JEN;
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where N is the set of all panels connected to panel 1.

4.2.3 Control Input Model

Assume that the hub has three reaction wheels aligned with each of its body frame axes,
i.e., (a1, a9, 4a3). Assume also that each reaction wheel has some saturation limit K, and that
the control input is simply the reaction wheel torque. The saturation is applied to each reaction
wheel individually. The torque generated by the reaction wheels in response to control input w,,
is

T
Trw = |sab(Ury1) Sab(Upwo) Sab(tUg3) 4.27)

where the subscript denotes each axis component of the control input and where

(
_Krw Uyrw,k S _Krw

Sat(urw’k) - Uyw, k _Krw < Uy, k < Krw

\Krw Upw k> Ko

Assume that each panel is equipped with two magnetic torque rods lying orthogonally in
the plane of the panel and to each other. Specifically, the torque rods on panel 7 are aligned with
axes 135” and Bgi) and orthogonal to f)g). Assume the control input to each ugi), ug) corresponds
to the strength of the magnetic dipole generated, my, ms. Assume that each torque rod has a

maximum strength dipole that it can generate, denoted as K%,. The magnetic dipole generated by

the control inputs to panel 7 expressed in the body frame is

T
m = [ml - 0} (4.28)
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where
.

_Ktr Uk S _Ktr

My = U K <up < Ky (4.29)
Ktr Uy Z Ktr-
\
The resulting moment in the body frame is
T
Ter = MM X B = mng —mlBg mlBg — mQBl ) (430)

where B is the local magnetic field of the Earth expressed in the body frame of the spacecratft.

4.3 Two-Axis Attitude Control Using Two Magnetic Torque Rods

To determine a control law for the magnetic torque rods, consider a single panel from the
flexible appendage with a magnetic torque rod pair as described in Section 4.2.3. Assume that
its attitude is parameterized by a rotation matrix and the dynamics evolve on SO(3) as described
in Section 2.1. With only two magnetic torque rods, it is not possible to control the full attitude
of the panel. When part of the flexible appendage, rotations about the Bé’) axis relative to the
hub or neighboring panels are not relevant, as the geometric constraints enforced by the panel
connections render rotations in this direction negligible. The objective of controlling a panel’s
attitude, when it is part of the appendage, is to ensure that it and its neighbors remain flat relative
to the hub. Explicitly, this objective can be defined as aligning the Bgf) axis of each panel with the
as axis of the hub.

When considering the panel as a separate entity, akin to a small spacecraft actuated by only

two magnetic torque rods, an analogous problem arises: pointing control of a spacecraft. Solving
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this analogous problem effectively addresses the challenge of performing shape control using two
magnetic torque rods. The problem of pointing control of a spacecraft is now addressed.
Assume that the objective of the spacecraft is to point an onboard instrument in a desired
direction, given that the instrument is fixed in the body frame. In a pointing application, rotations
about the pointing direction are irrelevant; a reduced-attitude representation can be used instead.
The pointing direction of the instrument can be described by a vector b on the two-sphere, defined
asS? = {x € R?| ||z|| = 1}. Assume that the body-fixed frame is aligned with the principal axes
of the spacecraft and that the pointing vector b is aligned with the one of the body-frame axes.
Without loss of generality, consider b to be aligned with the third principal axis, i.e., expressed
in the body-fixed frame, b = [0 0 1]7. In the inertial frame, I' = Rb € S? represents the
pointing direction of the vector b. Because I' is invariant to rotations about bs, it is a reduced-

attitude representation of the orientation of the spacecraft [64]

4.3.1 Error States for Reduced Attitude Control

A function W that defines the pointing error between the spacecraft b and the desired point-
ing direction R r, is [69]

U=1-b-Rlr,, 4.31)

where 7, is the desired pointing direction in the inertial frame. The error function 4.31 can also
be expressed as 1 — cos 6, where @ is the angle between the unit vectors b and R r,. The error
function is positive definite and has critical points occurring at § = £, [69].

Define the pointing error vector as

e, = RTr, x b. (4.32)
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The error vector 4.32 can be interpreted as a gradient vector field on S? induced by the potential
function V¥; e, vanishes at the critical points of W [69].

Define the angular velocity error as
e, =w— R'Qy, (4.33)

where €2 is the desired angular velocity of the spacecraft in the inertial frame and w; = RTQy,
is the angular velocity of the spacecraft expressed in the body frame.

The dynamics of the pointing error are computed by taking the derivative of W, which
yields

b= 0" (R'rg+ R'rg) = —b" (~w*Rlrg+ R (Qq x 1) . (434)

Taking advantage of the triple product identity @ - (b X ¢) = b (¢ x a) = ¢+ (a x b) and

rearranging Eq. (4.34) yields
U= (R'ryxb) (w—R'Q,) =ele,, (4.35)

which conveniently contains e, and e,,.
The dynamics of the angular velocity error are computed by taking the derivative of e, as

follows:

e, =w—R'Q, —R™Qy=w+w Ry — RTQy = w + w X wy — wy. (4.36)

The objective of a control law is to drive both error states, ¥ and e, to zero.
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4.3.2 Lyapunov-Based Control Design

The angular velocity of the spacecraft about the pointing vector b does not affect the kine-
matics of the reduced attitude representation. Therefore consideration of only the angular velocity
orthogonal to b is required track a pointing angle reference because the reduced-attitude repre-
sentation is invariant to rotations about itself. The projection of a vector a onto another vector b,

proj,a, can be expressed in matrix form as 1I;(b)a, where
I (b) = bb" (4.37)
The orthogonal projection of a vector in R? can be expressed in matrix form as
I1,(b) = I — IIj(b) = I, — bb". (4.38)
The angular velocity error orthogonal to b can then be expressed as
e, =1l e,. (4.39)

The projection matrices about the pointing vector b will be denoted as IT and II, for simplicity.

Assume that the attitude dynamics occur on a significantly faster time scale than the or-
bital dynamics and so variations of the local magnetic field due to translation are neglected (an
assumption commonly made in analysis of the B-dot algorithm [52]), therefore B in the inertial
reference frame is assumed to be constant. Assume also that the local magnitude field is never
exactly orthogonal to b, i.e., B3 # 0. A common spacecraft pointing objective is to orient a
sensor or other instrument directly towards the body that it is orbiting (e.g., an Earth-imaging
spacecraft). In these applications, for the instrument to remain correctly aligned, the desired an-
gular velocity of the spacecraft must be equal to the angular velocity of its orbit and, for circular
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orbits, that angular velocity is constant. Therefore, assume that the angular velocity reference
remains constant, i.e., Qd = 0.
Consider the following sum of the pointing angle error and the angular velocity error or-

thogonal to the pointing vector as a candidate Lyapunov function:
V=kVU+T=k,(1-b"R'ry)+ %efLJewl, (4.40)
Taking the derivative of the candidate Lyapunov function V' yields
V =keel e.+el Jé, = kel e.+el JI [T wx Jw+ J 7 —wxwy). 4.41)
Under the assumptions stated in Section 4.3, the matrices J and II, commute, thus
V="kel e +el Jé, =kel e +el Il [wxJw+T—Jwxw (4.42)

Substituting wy = w — e, and utilizing the identity @ - (b x ¢) = b- (c x a) = ¢ (a x b), the

expression Eq. (4.42) becomes
V=rkele+el 7+el(Je, xw)+el x(wxJw). (4.43)
Consider the following control input to the magnetic torque rods:
m = H|% X (—kper —wX Jw — HLJerw) — kI, (B x 11 e,). (4.44)

Note that because the first term is a cross product with a vector parallel to b and the second term
is an orthogonal projection relative to b, this expression yields a vector orthogonal to b. In the
body frame, there are nonzero entries corresponding to the directions of the magnetic torque rods
and a zero entry corresponding to the direction of b. Therefore, m represents a valid expression
for the specified control input model. Substituting the torque resulting from the control input in
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Eq. (4.44) T = m x B into Eq. (4.43) yields
V = —ky,Bile, > <0 V=0 iff |e,.||=0. (4.45)

Therefore, the proposed control law asymptotically drives the pointing error and angular velocity

error orthogonal to the pointing vector to zero for any constantly-varying pointing reference.

4.3.3 Simulation Results

Numerical simulations illustrate the performance of the closed-loop system. A rigid space-
craft is simulated in a circular orbit around Earth. The orbit with the initial true anomaly is
specified in Table C.4 The initial conditions of attitude and angular velocity used for the numeri-
cal simulation are

T
Ry =T w,= [4 —5 2] x 1077

with a mass of 5kg and a moment of inertia matrix of

J = diag {0.25 0.25 0.4}

The magnetic field is modeled as in Section 2.1.3 and the control authority available to the mag-
netic torque rods varies with orbital position. The gains used in the controller are k, = 5 x 1075,
and £k, = 0.1.

The reference attitude trajectory supplied to the controller is a nadir-pointing attitude, i.e.,

pointing towards the Earth’s center 4 = r/||r

, with the reference angular velocity €2, as the
angular velocity of the spacecraft’s orbit. The given initial conditions require a slewing maneuver
to align with the reference attitude at the correct angular velocity. The results of the simulation

are plotted below.
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Figure 4.2: Magnitude of the pointing error and angular velocity error over a 750-second simu-
lation. The error of the pointing angle and the angular velocity error orthogonal to the pointing

vector both converge to zero.
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Figure 4.3: Control inputs and resulting torques over a 750-second simulation. The actuation

torque is on the order of tenths of millinewton meters, which is a magnitude realistic to magnetic

torque rods.

Simulation results demonstrate the asymptotic convergence of the error states representing
pointing error and angular velocity error orthogonal to the pointing vector to zero. Note that
there is some residual angular velocity about the pointing vector, which is akin to a nadir-pointing
spacecraft that is rotating about its pointing axis. This outcome is expected because, with only
two magnetic torque rods, full attitude stabilization is not possible. However, when the other
error states have converged to zero, this residual angular velocity does not affect the pointing
angle or its kinematics. Note also that because the magnetic field in the simulation is taken as a
function of the spacecraft’s position relative to Earth, the simulation suggests that the controller

still stabilizes the closed-loop system even when relaxing the assumption of a constant magnetic

field.
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An additional simulation was performed with a larger initial angular velocity to repre-
sent the scenario of detumbling the spacecraft and then aligning it in the desired direction.
The same parameters were used except the initial angular velocity, which is now set as wy =

[—3

—4 2]T x 1072. The resulting simulations are shown below.
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Figure 4.4: Magnitude of the pointing error and angular velocity error over a detumbling simu-

lation. The error of the pointing angle and the angular velocity error orthogonal to the pointing

vector both converge to zero.
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Figure 4.5: Control inputs and resulting torques over a 4000-second detumbling simulation. The

torque developed by the magnetic torque rods is on the order of millinewton meters.

The simulation results demonstrate controller performance from a more demanding initial
condition. Although it takes longer, the simulation shows that the controller does eventually
remove enough rotational energy from the spacecraft to then successfully track the desired refer-
ence.

Finally, a simulation was performed where the control input is saturated as shown in
Eq. (4.29) and with a demanding initial condition to ensure that that the control law still performs
with the added constraint. The same parameters are used except the initial angular velocity, which

is now set as wy = [0.2  — 0.25 0.1]". The resulting simulations are shown below.
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These simulations demonstrate that the attitude control law in Eq. (4.44) subject to sat-
uration limits stabilizes the reduced attitude and angular velocity to a nadir reference despite
an initial condition with very high rotational energy and a magnetic field varying with orbital
position.

For shape control, the objective of aligning the lA):(,f) axis of each panel with the as axis of
the hub is equivalent to the reduced attitude control problem, but with different references. With
the analogous problem of controlling the reduced attitude of a single panel solved, the control

law can be applied to the panels comprising the appendage for effective shape control.

4.4  State-Feedback Control of 3D Flexible Spacecraft Model

This section implements the derived magnetic torque rod control law to actuate the mag-
netic torque rod pairs attached to the panels in the flexible spacecraft model to achieve shape
control. Simulations evaluate the effectiveness of the shape control in response to different types
of disturbances, namely oscillations induced from performing an attitude maneuver, and shape
deformations resulting from thermoelasticity.

Similar to the two-dimensional model, the control paradigm remains unchanged. The re-
action wheels on the hub are employed to control the hub’s attitude and angular velocity. The
torque rods are used to maintain the appendage’s flatness and to minimize structural vibrations.

Because the attitude of the hub is represented as a rotation matrix, a feedback controller
using the full attitude R and angular velocity w is required. The controller used for the reaction
wheels is taken from [64] which explores closed loop control on SO(3). A control law to track a

desired attitude R4 and angular velocity wc rer that uses a proportional derivative feedback control
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structure is given by [64]
u=—Kye, — K,Q.,(Rc) (4.46)

(©)

.. . . T
ot s Ko, K, € R*™ are positive definite matrices, @ = [a; ap as]” where

where e, = we — W

a1, as,and ag are distinct positive integers and
3
Qa(Re) £ " aie; x (Rj Re;) (4.47)
i=1

with [e; e, e3]” the identity matrix.

For shape control, the torque rod control developed in Section 4.3 is used. Specifically
Eq. (4.44) is taken as the control input with the saturation limits shown in Eq. (4.29) applied.
Whereas in Section 4.3 the desired pointing direction r; and angular velocity €2, corresponded
to a nadir-pointing reference, for shape control of the appendage, the reference pointing direction
aligns with a3 and the reference angular velocity is that of the hub. Specifically, the reduced
attitude error for the ¢th panel is

el’) = R}, Rees x e3, (4.48)

r

and the angular velocity error is

w

el = w; — R}, Rewe. (4.49)

To evaluate the impact of incorporating shape control, simulations are conducted with two
different types of disturbances. First, the structural vibrations induced by an attitude maneuver
are examined. Second, shape deformations resulting from thermoelastic effects are considered. A
comparison between using reaction wheels for attitude control and the combined use of reaction
wheels for attitude control and torque rods for shape stabilization is presented for each simulation.
In each set of simulations, the system is subjected to orbital effects. Specifically, the spacecraft
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experiences gravity gradient torque, and the magnetic field varies with orbital position, leading
to fluctuations in control authority throughout an orbit. In each of the simulations the reference
attitude and angular velocity is a nadir-pointing reference. The desired attitude is defined such
that as aligns with the vector from the center of the Earth to the spacecraft, a, is aligned with
the local horizontal in the direction of orbital motion and a, = as X a;, which is parallel with
the angular momentum vector of the orbit. The orbit used for each simulation in this section is
shown in Table C.5.

Because the considered orbit is circular, the reference attitude for the hub can be defined
using its state. The vector from nadir to the hub is simply its position r¢/o, thus the desired
direction for as is rc/0/||rc/ol|. For a circular orbit, the local horizontal is parallel with the
spacecraft’s velocity vector, thus the desired direction for a, is ve/0/||ve/o| Therefore, R, is

defined as

Ry = ch/o rc/o lo, el } ' 30

lvesoll”  liresoll lvesoll? liresoll
The angular velocity reference is the angular velocity of the orbit in the direction of the orbit’s

angular momentum. In the inertial frame

T
Wi = Raia(Qi,w) {0 0 ms] (4.51)

where R313 1s a 3-1-3 rotation matrix parametrized by the orbital parameters right ascension of the
ascending node (€2), inclination (7), and argument of periapsis (w) that rotates from the perifocal
frame to the Earth-centered inertial frame.

The spacecraft model used for the simulations has a 15 meters by 15 meter flexible ap-
pendage discretized into a 6x6 grid depicted in Fig. 4.1 with the physical parameters shown in
Table C.6.
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To evaluate the performance in attitude control, the attitude and angular velocity of hub
relative to the reference is measured. The attitude error of the hub ey, is defined as the angular
distance between its attitude and the reference

 Te(RYR¢) — 1
2

ER, = COS™ 4.52)

The hub’s angular velocity error €, is defined as the magnitude of the angular velocity error
vector.

Eup = |lwe — w9 (4.53)

ref

To evaluate the performance in shape control, appendage flexures are characterized via two panel
measurements. The first is the deviation in pointing angle of panels relative to the hub. This
metric denoted 5%; for the ith panel measures the rotation between the axes as and i)él) and is

zero when the panel is flat relative to the hub:

el = cos™ ! (Rb Roes - 5) (4.54)

The second metric sg? is the displacement of panels in the a3 direction characterizing how far a

panel is displaced from the flat configuration relative to the hub:
el) = |rijc - e (4.55)

To characterize the entire appendage, the mean and maximum values over all panels for each of
these metrics are calculated. The mean provides an indication of the overall flatness of the entire
appendage, while the maximum value highlights the most significant deviations that exist. To
understand the effects of the moments generated by the torque rods on the attitude controller, the
control inputs and the total angular momentum stored by the reaction wheels as they are actuated
are also considered.
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4.4.1 Maneuver-Induced Oscillation

The first disturbance investigated is the structural vibration of the appendage resulting from
the moment generated by the reaction wheels. This moment excites the flexible modes of the
appendage resulting in structural oscillation. To examine the impact of shape control via the
magnetic torque rods, an initial value problem is formulated. In this scenario, the initial attitude
of the hub is set some angle off nadir. The attitude control then drives the system towards a
nadir-pointing reference, introducing structural oscillation. This scenario simulates an attitude
maneuver performed in orbit, where the spacecraft switches attitude references, such as from
aligning with the sun to a nadir-pointing reference.

The initial attitude of the hub is 16 degrees off nadir, with the initial angular velocity
matching the angular velocity of the orbit. The appendage is initially at equilibrium, meaning
it is flat and stationary relative to the hub. The control parameters used in this simulation are
shown in Table C.7.

The results of the initial value problem simulation are shown below. For the hub, the
attitude error €. and angular velocity error €, are shown in Fig. 4.8. The appendage flatness
metrics (55237; and 5&?) are shown in Fig. 4.9. The control inputs and total accumulation of angular

momentum stored in the reaction wheels are shown in Fig. 4.10.
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Accumulation of reaction wheel angular momentum. The reaction wheels must accumulate ad-
ditional angular momentum to maintain the desired attitude and angular velocity reference due to

the moment generated by the torque rods for shape control.

Simulations show that using the torque rods to perform shape control significantly improves
controller performance during an attitude maneuver. Fig. 4.8 illustrates that the attitude controller
converges faster and with fewer vibrations when shape control is implemented compared to when
it is not. This improvement is due to shape control reducing appendage bending, thereby causing
less disturbance to the hub and enabling better performance by the attitude controller. Fig. 4.9
shows that the shape controller significantly reduces appendage deformations during an attitude
maneuver. During the first 600 seconds of the simulation, the vibrations are damped, and by
approximately 1400 seconds, the appendage converges to a flat configuration. Without shape

control, the appendage continues to oscillate significantly after 1400 seconds, with average de-
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formations of up 5 degrees offset and 6 cm of displacement, and maximum deformations of up
to 6 degrees offset and 13 cm of displacement.

Fig. 4.10 illustrates the effect of the cumulative moment induced on the spacecraft by the
torque rods over time. As the appendage oscillates, the reaction wheels generate a counteracting
moment. Without shape stabilization, this counteracting moment changes direction along with
the appendage deformation resulting in the accumulation of angular momentum due to oscillation
generally averaging out. In contrast, with shape stabilization, each pair of torque rods exerts a
moment that slightly influences the spacecraft’s attitude. The reaction wheels must counteract
these moments to maintain the desired attitude reference, leading to a higher accumulation of
angular momentum in the reaction wheels during maneuvers. With the torque rods, the attitude
maneuver necessitates approximately 25 Nms of angular momentum from the 1st and 3rd reaction

wheels, whereas without them, it requires significantly less.

4.4.2 Thermoelastic Bending

The second disturbance investigated is shape deformations resulting from thermoelastic
effects. As the spacecraft orbits the Earth, various parts of the spacecraft will intermittently face
the sun. When one face of the appendage is exposed to sunlight, it heats up more than the opposite
side, creating a significant temperature gradient. The heating causes thermal expansion and the
temperature differential induces mechanical stress, leading to structural bending. In this case, the
objective of shape control is to mitigate this bending and keep the appendage as flat as possible.

The discretization of the appendage provides a convenient way to model thermoelasticity.

To model the thermal induced bending, the equilibrium angle of the hinge between each panel
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is varied. Let ¢ be a parameter that quantifies the degree of bending and € be a vector with
magnitude e that represents the difference in hinge equilibrium. For panels joined along the a,

axis,

ei,j = Il: el > (456)

0

where € is positive if j is in the positive a, direction relative to ¢ and negative otherwise. For

panels joined along the a- axis,

Ei,j = :l: O > (4.57)

0

where € is positive if j is in the positive a, direction relative to ¢ and negative otherwise. The

moment between panels ¢ and j becomes

M, ; = —k(0&; + € j) — ciw; ;. (4.58)

Assume that rate at which the incidence of the sun on the spacecraft changes periodically
with the orbit. Assume also that the incidence of the sun determines the rate of change of €. The

evolution of € over time can then be approximated as a function of the true anomaly of the orbit

€ = Asinv, (4.59)

where A encapsulates the factors that determine the magnitude of thermal deformation. € is added
as a state to the system and integrated according to Eq. (4.59).
For the thermal deformation simulations, the initial condition of the spacecraft is its refer-

ence configuration. Specifically the hub is in a nadir-pointing reference and the appendage is flat
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and stationary relative to the hub. The initial condition for € is 0 and the value of A is 2.7 x 1075,
The control parameters in Table C.7 are used.

For illustration, the bending parameter over several orbital periods is plotted in Fig. 4.11.
The appendage flatness metrics are shown in Fig. 4.12, and the control inputs and total accumu-

lation of angular momentum stored in the reaction wheels are shown in Fig. 4.13a.
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Figure 4.11: Panel interface equilibrium angle over three orbital periods
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Figure 4.13: Control input and angular momentum accumulation of reaction wheels due to ther-
mal deformations. (a) Control inputs to each reaction wheel and (b) the accumulation of reaction
wheel angular momentum. The reaction wheels require taking on additional angular momentum
to maintain the desired attitude and angular velocity reference due to the moment generated by

the torque rods.

Simulations show that the shape-stabilizing controller counteracts the effects of thermal
deformation. Fig. 4.9 illustrates the effect that the torque rods have on the appendage flatness.
Over the three orbital periods, the use of torque rods reduces the average and maximum angular
deviation of the panels uniformly. When ¢ is at its highest, the effect is more pronounced with
maximum displacements being reduced from nearly 25 cm to less than 10 cm. The torque rods
are unable to maintain perfect flatness with the parameters used in the simulation. This is because
torque rods can only produce a very small amount of torque, insufficient to overcome the stiffness
of the structure. In reality, the structure would need to have almost no rigidity for the magnetic

torque rods to maintain perfect flatness. However, despite not maintaining perfect flatness, the
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benefit they provide is still significant.

The reduction in shape deformation, however, comes at the cost of the reaction wheels
accumulating angular momentum to counteract the torque generated by the torque rods, as illus-
trated by Fig. 4.10b. Without shape control, the angular momentum introduced into the system is
minimal, resulting in a small net angular momentum stored in the reaction wheels to maintain the
attitude reference. In contrast, with shape stabilization, the reaction wheels must store approxi-
mately 4 Nms of angular momentum per orbit along the a; and a, axes to maintain the attitude

reference.

4.5 Conclusion

This chapter addresses the use of distributed pairs of magnetic torque rods across a flexible
spacecraft structure to regulate its shape. A three-dimensional dynamic spacecraft model consist-
ing of a hub and flexible appendage modeled by a discretized series of flexibly connected rigid
elements is proposed. The hub is actuated by a set of reaction wheels and each element (panel) is
actuated by a magnetic torque rod pair. To develop a control law for a magnetic torque rod pair,
control of the reduced attitude of a single panel is considered. The panel considered separately
could also be thought of as its own spacecraft actuated by two magnetic torque rods. To achieve
this objective, a novel control law is proposed and analyzed using Lyapunov analysis. The theo-
retical analysis suggests that the proposed control law effectively stabilizes the reduced attitude
and angular velocity of a rigid spacecraft using only two magnetic torque rods. Numerical sim-
ulations are conducted to validate the performance of the proposed control law. The results of

these simulations demonstrate that the proposed control law successfully stabilizes the defined
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error states. Although developed for shape control of a flexible appendage, the control law has
applicability to the field of smallscale satellites such as a CubeSat.

The magnetic torque rod control law is applied to the three-dimensional spacecraft model
to implement shape control of a flexible appendage. Simulations are conducted under two dif-
ferent types of disturbances: attitude maneuvers that induce structural oscillations and shape
deformations caused by periodic solar heating. The implementation of shape stabilization using
distributed pairs of torque rods throughout the appendage significantly dampens oscillations and
mitigates deformations under both disturbances. This has several important implications.

First, a flexible spacecraft structure, such as an antenna, may only be functional if deforma-
tions are limited within a certain range. Second, if the speed of attitude maneuvers is constrained
to prevent excitation of a flexible appendage, there may be a loss of mission time due to the addi-
tional time required for maneuvers. Consequently, the reduction in deformation provided by the
torque rods could render an otherwise infeasible design feasible.

However, the cost of shape stabilization is that the reaction wheels on the hub accumulate
additional angular momentum to counteract the moment generated by the torque rods. Since
reaction wheels have a finite capacity for storing angular momentum before needing to offload,
this would result in the spacecraft spending more time over its lifespan dumping momentum from

the reaction wheels.
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Chapter 5:  State Estimation of Flexible Spacecraft

5.1 Introduction

This chapter addresses state estimation of the flexible spacecraft model in Section 4.2. The
control law presented in Section 4.4 requires knowledge of the state of each panel comprising the
appendage. In practice, only a limited set of measurements is available, necessitating the estima-
tion of the system’s state for the control law to be applied. Given the computational challenges of
state estimation for high-dimensional nonlinear systems and the limited computational resources
onboard a spacecraft, model reduction is explored.

To obtain a linear reduced-order model from a high-dimensional nonlinear system, dynamic
mode decomposition (DMD) originating from the field of fluid dynamics is applied to the flexi-
ble spacecraft model. The most significant mode shapes are identified. The error resulting from
using a reduced-order model is computed for varying numbers of modes, considering both finer
and coarser discretizations of the flexible appendage. The DMD Kalman filter is then applied
to perform state estimation of mode amplitudes using limited measurements, and the quality of
the resulting state estimates is evaluated. The linearized representation of the mode amplitudes’
evolution and the DMD modes provide a measure of observability for a given set of state mea-
surements. This measure is used to optimize the number and placement of sensors to maximize

observability.
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The contributions of this chapter are as follows: (1) the application of dynamic mode de-
composition to the flexible spacecraft model to produce a reduced-order representation; (2) using
the reduced order model to enable full state estimation with a limited set of measurements; and
(3) optimization of the number and placement of sensors to maximize observability for state
estimation.

This chapter is organized as follows. Section 5.2 applies dynamic mode decomposition to
the flexible spacecraft model and investigates the resulting modes. Section 5.3 uses the DMD
Kalman filter to perform state estimation of the dynamic model and investigates the performance
of the state estimator. Section 5.4 describes the framework for optimizing sensor number and
placement to maximize observability of the mode amplitudes. Section 5.5 provides a concluding

summary of the chapter

5.2 Dynamic Mode Decomposition of Flexible Spacecraft Model

In this section, dynamic mode decomposition (DMD) is used to generate a modal decom-
position of the flexible spacecraft model. The goal of the modal decomposition is to be able to

estimate the attitude shape of the spacecraft. To decouple the spacecraft’s attitude and shape dy-

F

namics from its translational dynamics, consider the term £+ — £< appearing in Eq. (4.10) for the
m. mg

translational dynamics for each panel. Substituting the total forces 4.25, 4.23 into this expression

yields

F, F¢ ri/0
A a—— — 4+ F; __FCl (5.1
m;  me Irisoll? ||I‘C/O||3 Z /

For a large spacecraft, the difference between r;;o and rc /o might be on the order of 10s of

meters at most while their magnitude is on the order of thousands of kilometers. Consequently,
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the gravitational influence on each term differs minimally, allowing for the approximation r;,o ~

rc/o. As aresult, the gravitational contributions cancel out in Eq. (5.1), i.e.,

F, F 1 1
S x ) F,-—Fe (5.2)
mi —mc M =% mc

Any relative acceleration between panel ¢ and the hub induced by the differing gravitational
forces is negligible compared to the system’s structural dynamics. With this approximation,
the dynamics of the appendage no longer depend on the inertial position and velocity of the
spacecraft. As a result, the attitude and shape of the flexible spacecraft can be written as a state-
space system independent of the translational dynamics of the hub. The state of this reduced
system is

n=[Ro we m M ... "N (5.3)

and its dynamics can be written entirely as a function of its state, i.e.,

n=fn). (5.4)

5.2.1 Modal Decomposition

To perform DMD on the flexible spacecraft model, a training dataset is required. To gener-
ate training data, a time-varying control input profile is applied to the system via uc(¢) for some
amount of time, and the resulting unforced dynamics are measured and collected as a training
dataset. For DMD to accurately capture the behavior of the underlying system, it is important
that the training data contain all relevant modes. Because different magnitudes and frequencies
of the control input will excite different modes of the structure, using a single set of data would

likely not yield a representative modal decomposition. To mitigate this, many different datasets
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resulting from varying control input profiles were collected. These datasets concatenated together
form a single dataset that ideally reflects all the relevant modes of the system to which can DMD
can be applied.

The training dataset is generated in simulation via a Monte Carlo approach as follows: (1)
a control input profile bounded in magnitude and time is randomly generated and applied to the
system; (2) the resulting unforced dynamic response is measured and collected for the subsequent
1200 seconds (about a fifth of a period of a low Earth orbit). This procedure is performed a
number of times and each of the resulting datasets is concatenated together.

Training datasets are generated for a spacecraft model with different discretization sizes of
the flexible appendage. In both cases the flexible appendage is a 15 meter by 15 meter square
structure. The coarse discretization consists of a 6x6 grid of larger panels, whereas the finer dis-
cretization consists of an 18x18 grid of smaller panels. The snapshot matrices are constructed
from the compiled training data and DMD was performed via the procedure described in Sec-
tion 2.2.1 to obtain a modal decomposition for each discretization size. To rank the relative
importance of each mode, the procedure described in [70] computing projection coefficients over
all snapshot data is applied here. The 9 mode shapes of the appendage that contribute most to the

system’s response for each discretization are shown below. The hub is located at (0, 0).
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Model Mode2 Model

Figure 5.1: First 9 modes of spacecraft model with the 6x6 discretization of the flexible ap-

pendage.

Model Mode2 Mode3

Figure 5.2: First 9 modes of spacecraft model with the 18x18 discretization of the flexible ap-

pendage.
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5.2.2 Impact of Mode Selection on Reconstruction Error

To evaluate how well the decomposition captures the underlying behavior of the system,
dynamics of the spacecraft model from an initial condition separate from any in the training
dataset can be projected onto the DMD modes. The projection, defined by = CCTn is used
to quantify the information lost due to projecting onto a lower-dimensional model. A separate
dataset is generated using the same procedure as before and the projection computed. To compute
the error of a projection compared to the actual state, the following metrics are used. For position,

the distance between the projected and actual position of an element is computed

For velocity, the magnitude of the difference in the projected and actual velocity vectors of an
element is computed

For attitude, the angle between the attitudes of the actual and projection is computed

L Te(RTR;) —1

5 (5.7

ER, = COS

For angular velocity, the magnitude of the difference between the actual and projected angular
velocity is computed

Ew; = ||@s — will. (5.8)

To quantify the projection error for each type of panel state (position, velocity, attitude, and
angular velocity), the root mean square (RMS) error for each is taken over time and averaged

over all the panels comprising the appendage. The results are shown in Fig. 5.3. To quantify
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error with a single quantity, a normalized root mean square error (NRMSE) metric is used. The
error for each state type is normalized by the maximum measured value of that state type for the

simulation, i.e., for position

“’rz — TZH
Terr = — . 5.9
Z () (5.9)
Each normalized quantity is summed together. The sum and contribution of each state type is
shown in Fig. 5.4. These metrics illustrate the effect of using different numbers of modes to

represent the system dynamics. The resulting number of modes represents a significant reduction

in the size of the original state-space model, which has 660 states.
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Figure 5.3: Projection error of the position, velocity, attitude, and angular velocity of resulting

from using varying numbers of DMD modes to represent the underlying system dynamics.
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Figure 5.4: Normalized projection error resulting from using varying numbers of DMD modes to

represent the underlying system dynamics.

The projection error results show that differing numbers of modes are required for different
state quantities. For example, with about 50 modes, the position of each panel can be almost fully
recovered from the reduced order model. For angular velocity, about 150 modes are required for
minimal projection loss. In the sum of normalized errors, the angular velocity contributes most
to the total error. There are also two elbows occurring around 50 and 150 modes. Until around
50 modes, significantly less error is incurred with each additional mode added. At 150 modes,

there is very little benefit to adding additional modes.

5.3 State Estimation via a Mode Amplitude Kalman Filter

In this section, a DMD Kalman filter shown in Section 2.2.2 is applied to the flexible
spacecraft model to perform state estimation given a limited set of measurements. A measure-
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ment function is proposed and numerical simulations are performed to evaluate the performance

of the observation.

5.3.1 Simulation Results

Assume that there are sensors on the hub that measure the attitude and angular velocity
of the hub. Assume also that there is a sensor package such as an optical sensor on the hub or
some array of differential GPS sensors distributed across the appendage that capture the shape
deformation of the appendage. Specifically, assume that the relative offset of a subset of the
panels along the as axis, i.e., ; = 7;/c - a3, is measured. If there are M panels measured, the

measurement vector of the system is

T
Y= |nc -0 Cuva| o (5.10)

where M is the set of panels that are measured and M is the size of M.

To perform state estimation, the unforced dynamics of the system are simulated in response
to an angular impulse imparted by the reaction wheels. The modal decomposition shown in
Section 5.2 is used to generate the mode amplitude state transition matrix F' and observation
matrix C'. The initial state estimate is set assuming that the initial state of the appendage is flat
and unmoving relative to the hub. Other simulation parameters are shown in Appendix C.3. The
DMD Kalman filter algorithm is then applied to the measurements of the test simulation data to
estimate the mode amplitudes from the shape measurements Eq. (5.10), which in turn are used
to estimate the full state of the system. To evaluate the effect of model reduction on the quality
of the resulting state estimate, the elbows shown in Fig. 5.4 at 50 and 150 modes are selected

to represent the system. For each discretization size the measurements will be taken at the same
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locations on the appendage. For the 6x6 discretization, M is selected to be all 36 panels. For the
18x18 discretization, M corresponds to measuring the center panel in each 3x3 group of panels.
The spacecraft parameters for each discretization size are shown below. The parameters used for
the DMD Kalman filter are found in Appendix C.3. Gaussian measurement noise with a standard
deviation of 0.5 cm is applied to the panel measurements.

To quantify the performance of the DMD Kalman filter, the state estimate is compared to
the true state values. The same metrics as in Egs. (5.5) to (5.8) are used (with the state estimate
instead of the projected state) to quantify the state estimate error. Specifically, the magnitude of
the difference in position, velocity, and angular velocity between the estimated and real states
and the angle between the real and estimated attitude estimate are computed and averaged over
each panel. The results are shown in Fig. 5.5 for the coarse discretization and Fig. 5.6 for the
fine discretization. The total normalized error is again computed by normalizing each of these
quantities by the maximum measured value as in Eq. (5.9). The procedure is applied to the
position, velocity, attitude, and angular velocity estimates, and the normalized quantities are

summed. The summed normalized error plots are shown in Fig. 5.7a and Fig. 5.7b.
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Figure 5.5: Average estimation error of the position, velocity, attitude, and angular velocity of

each panel for the 6x6 discretization of the flexible appendage.
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Figure 5.6: Average estimation error of the position, velocity, attitude, and angular velocity of

each panel for the 18x18 discretization of the flexible appendage.
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Figure 5.7: Normalized estimation error of the state of each panel of the flexible appendage

compared using 50 and 150 modes for the (a) 6x6 discretization and (b) 18x18 discretization.

The results demonstrate that the estimator is able to estimate the states accurately, partic-
ularly when using 150 modes. For 150 modes, the position error is on the order of millimeters,
the velocity error is on the order of millimeters per second, the attitude error is on the order of
hundredths of a radian, and the angular velocity error is on the order of milliradians per second.

The difference in performance between the number of modes in estimation corresponds
to what is seen in the projection error in Fig. 5.3. For position and velocity, the projection er-
ror suggests only marginal improvement going from 50 to 150 modes, whereas in attitude and
angular velocity, the improvement is more substantial. This is seen in the estimation error, as
the estimation of attitude and angular velocity improves more significantly by increasing to 150

modes.
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5.3.2 Impact of Model Fidelity and Mode Number on Computation Time

The results from Section 5.3.1 also suggest that despite using a finer discretization, the es-
timator is able to accurately estimate the underlying dynamics with a similar number of modes as
the coarser discretization. Consequently, the computation savings from using DMD to perform
state estimation becomes more valuable the larger the state size is. For the 6x6 discretization,
there are 660 states, which can be represented using 150 modes and both can be estimated using
36 measurements. For the 18x18 discretization, there are 5844 states, which also can be repre-
sented using 150 modes and estimated with only 36 measurements. Whereas estimation of such
a high degree system in real time on space hardware would be computationally infeasible, the
computational burden is significantly reduced using DMD and the DMD Kalman filter. To illus-
trate the comparison of performance versus computation time, the computation time to perform
state estimation for the 1200 second simulation and the resulting steady state error was measured
and shown in Fig. 5.8. The hardware that computation is measured on is a Dell Precision 3570

laptop with an Intel Core 15-1235U processor.
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Figure 5.8: Computation time compared with performance of state estimation across different

modes and discretization sizes

5.4 Optimizing Observability via Sensor Placement

The DMD Kalman Filter framework provides a structure that identifies a set of modes with
amplitudes that evolve linearly, while the modes themselves are a transformation between the
mode space and the state space. This framework, being inherently linear, allows the application
of linear systems theory to gain deeper insights. Specifically, the observability check, which
involves determining if the observability matrix is full rank, can be used to assess whether the
mode amplitudes can be estimated from a given set of state measurements. A measurement
function of the form Eq. (5.10) can be defined for a3 displacement measurements of any subset of
panels. Using this measurement function, a corresponding observation matrix can be constructed

as described in Eq. (2.23). Together with the mode amplitude evolution matrix, this forms a
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linear system from which the observability Gramian can be constructed, allowing the rank test to
be performed.

The measurement function and thus the observability of the system depends on both the
number of sensors and sensor locations as well. To address this without exhaustively searching
the entire measurement function space, a random sampling of the space of measurement functions
is taken for each possible number of sensors. The rank test for observability is performed for each
sample, and the percentage of samples that yield an observable system is determined. The number

of random samples is chosen as 20,000 and the results of this procedure are shown in Table 5.1.

number of sensors <6| 7 8 9 > 10

% observable systems | 0 | <1 |33 | >99| 100

Table 5.1: Percentage of observable systems from 20,000 random samplings of the measurement

function space for m sensors

The results of this observability test suggest that the critical number of measurements
needed is 8. In many configurations 8 displacement measurements is sufficient to fully observe
the system. For 7 sensors, almost no configuration of placements yield an observable system and
for 9 sensors, almost all configurations of placements yield an observable system. To illustrate
this effect state estimation using varying numbers of sensors is simulated and a plot of the total

normalized error for various number of sensors is shown in Fig. 5.9.
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Figure 5.9: Total normalized estimation error resulting from using varying numbers of measure-

ments of panel displacements.

The simulation demonstrates the effects of using additional sensors. Going from 6 to 8
sensors results in an observable system, and thus state estimates of reasonable quality. Increasing
the numbers of sensors beyond 8 does yield better state estimates, but the gains become marginal.

More recent research addresses the use of the observability Gramian to not only answer the
question of if a system is observable, but to give a qualitative metric of how observable a system
is. In [71] the local unobservability index and the local estimation condition number are intro-

duced to quantify the observability of a system. Given an observability Gramian Wy, the local

unobservability index is defined as ﬁ, where A, is the smallest eigenvalue of WWy. The local

unobservability index represents a measure of the impact that measurement noise will have on
estimation error. A larger index indicates a greater impact of measurement noise and thus less ob-

servability of the system. The local estimation condition number is defined as —V)‘mj“, where A ax

>\m1n
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is the largest eigenvalue of WWy. The local estimation condition number quantifies how sensitive
the system’s output is to changes in the initial conditions. A higher local estimation condition
number indicates greater sensitivity to initial conditions, which means the system’s output is
more affected by small changes in its initial conditions. This increased sensitivity makes it more
difficult to observe or estimate the system’s state accurately, thus indicating less observability of
the system.

These metrics can be computed analytically for the modal decomposition of the flexible
spacecraft model for any given measurement function, enabling the comparison of the quality of
different measurement functions. This capability allows for optimization over different measure-
ment functions to maximize the observability of the resulting system.

Assume that the only type of measurements of the appendage that are available are the
displacements of each panel along the a3 axis, as shown in Eq. (5.10). Assume also that there are
N possible locations that M different sensors can be placed. The objective is to determine which
set of M sensor locations out of the N possible locations will yield a measurement function that
provides the system with the highest observability.

To generate the globally optimal location of M sensors, then all possible size M com-
binations of N sensor locations must be computed and the observability index checked. This
requires checking (N+'),M, possible measurement functions. To find the optimal location for all
possible numbers of sensors in N, the number of measurement functions that must be checked
1s Zﬁzl m For example, for V = 36, this quantity is on the order of billions which
makes it computationally infeasible to ensure that the global optimum is found for all M.

Assume that the for the 626 discretization the set of available sensor locations are at the

center of each panel. This defines the set of possible sensor locations, which has a size of N = 36.
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To find locally optimal solutions to the sensor placement problem for this configuration, two
different optimization algorithms are employed. The first is a greedy algorithm to significantly
reduce the search space, and the second uses a Monte Carlo approach to randomly sample the
search space.

The first optimization technique utilized is a greedy algorithm. In this approach, the optimal
position for the first sensor is determined and fixed. Subsequently, the optimal position for the
second sensor is determined while keeping the first sensor’s position fixed. This process continues
iteratively, with each previously selected sensor location remaining fixed while the position of
each new sensor is optimized. With this method, the search space for determining the location of
the sth sensor is N — 1. To determine the optimal location for all possible number of sensors in /V,
the total number of measurement functions that must be checked is N+(N—1)+(N—2)+...4+1 =
w. This approach reduces the order of magnitude of the entire search space to N2 which for
N = 36 makes an exhaustive search feasible.

The second optimization technique employs a Monte Carlo approach. This approach uti-
lizes random sampling and perturbation to explore the solution space and identify configurations

that maximize observability. In this approach, to determine the optimal location of M sensors in

N possible locations, the iterative process shown in Algorithm 1 is followed:
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Algorithm 1 Monte Carlo Optimization Algorithm

1: Initialization:

2: Generate S random samples of different size M combinations of N.

3: Compute the measurement function and observability index for each sample.
4: Keep the U samples with the best observability and discard the rest.

5: repeat

6: for each of the U samples do

7: Randomly perturb sample P times to generate P new sample measurement functions.
8: end for
9: Compare observability index of the original U and the new U x P samples

10: Collect U samples with the highest observability

11: until convergence or maximum number of iterations .J is reached

This iterative process continues until a convergence criterion is met or a maximum number
of iterations is reached. The best sample from the final set of U samples is selected and represents
a local optimum. The maximum total number of measurement functions that need to be checked
with this approach is S + J(UP). The parameters S, U, P, and J can be chosen such that the
search space is limited to a computationally feasible size.

Using the 150 mode decomposition for the 6x6 discretization and displacement measure-
ments of the form shown in Eq. (5.10), both optimization procedures were performed for varying
numbers of sensors, specifically for all even numbers from 6 to 32. For the Monte Carlo ap-
proach, the search parameters are set as S = 20,000, U = 100, P = 20, and J = 50 The

results are visualized in Fig. 5.10 which shows a heatmap indicating the frequency with which
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each sensor location was selected across the optimization solutions.
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Figure 5.10: Heatmap of sensor locations for varying number of sensors optimized via a greedy
approach and a Monte Carlo approach. The optimization tends to favor sensors on the edges of

the appendage

The distribution of sensors in the heatmap indicates that sensors are most valuable on the
edges and corners of the appendage, and away from the diagonal running from (0, 0) to (15, 15).
This suggests that for displacement measurements, the most informative data for estimating the
mode amplitudes is obtained from those locations. This observation is consistent with the mode
shape plots in Fig. 5.1, where the most significant modes exhibit the largest displacements in
these areas. As the appendage oscillates, the most substantial motions occur at the corners and
edges, away from the central diagonal. Placing sensors at these locations effectively captures
these motions, enabling better estimations of the mode amplitudes and highlighting the utility of

understanding the shapes of the most impactful modes.
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5.5 Conclusion

This chapter explores the use of dynamic mode decomposition (DMD) for state estimation
of the flexible spacecraft model. First, the attitude and shape dynamics of the spacecraft are
decoupled from the translational dynamics of the hub. A Monte Carlo approach simulating the
system’s response to random control input profiles generates a set of training data to encompass
all the relevant modes of the system. DMD is then applied to yield a modal decomposition of
the training data, and the mode shapes are analyzed for two different discretization sizes of the
flexible appendage.

The modal decomposition results in a linear framework wherein the mode amplitudes of
the reduced-order model evolve linearly over time, and the mode shapes serve as a linear op-
erator transforming between the mode amplitude space and the system state space. This linear
framework facilitates the implementation of a Kalman filter to estimate the mode amplitudes of
the system from a set of state space measurements. Numerical simulations demonstrate that this
observer provides accurate state estimates from displacement measurements of the panels com-
prising the appendage in the a3 direction. Additionally, the reduced-order model requires less
computation time for state estimation.

The observer framework facilitates the computation of the observability matrix and Gramian.
The rank condition for observability with varying numbers of measurements offers insight into
the minimum number of measurements required to make the system observable. The eigenvalues
of the observability Gramian for a given measurement function provide a metric that quantifies
the level of observability. This metric enables the optimization of the measurement function

to maximize system observability. The optimization process involves varying the number and
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placement of displacement sensors. The results highlight the optimal locations on the appendage
where measurements will contribute most to system observability. Comparing these optimal lo-
cations with the mode shapes reveals that the best sensor positions correspond to areas with the

largest displacements.
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Chapter 6: Conclusion

6.1 Summary of Dissertation

This dissertation explores the use of magnetic torque rods to stabilize the shape of a flexible
spacecraft. This dissertation has contributed to the dynamic modeling, estimation, and control
of a flexible spacecraft. The spacecraft model utilizes a hub and appendage framework such
that the hub is rigid, actuated by reaction wheels and is responsible for attitude control, and the
appendage is a flexible, thin, planar structure and has magnetic torque rods distributed across
it to stabilize its shape. A multibody model consisting of rigid elements connected by damped
spring-like hinges models the flexibility of the structure.

Initially the flexibility of the appendage is restricted to one direction, enabling the dynamics
of the model to be restricted to the orbital plane. Springs to model internal forces and moments,
external disturbances, and actuator constraints are considered in modeling the dynamics of the
system. The nonlinearities in the model suggest a Lyapunov-based approach to the control design.
Lyapunov analysis yields an attitude and shape-stabilizing control law that asymptotically drives
the attitude to a reference and the shape of the appendage to flat.

Numerical simulations demonstrate that the magnetic torque rods contribute significantly
to a reduction in deformations and oscillations of the appendage compared to a system without

torque rods and a system with torque rods but with a different control law. The faster stabi-
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lization of the appendage also improves the performance of the attitude controller. Simulations
further illustrate the impact of time-varying control authority of the magnetic torque rods, show-
ing reduced performance with diminished control authority, yet still performing better than an
unactuated appendage.

The application of an extended Kalman filter (EKF) to the planar model enables state es-
timation of the flexible spacecraft. Using a measurement function that includes the translational
and angular rates of the appendage’s elements results in an observable system. The state estimate
serves as feedback for the controller within an output feedback control framework. Numerical
simulations compare the performance of controllers in output feedback with the Lyapunov-based
controller in state feedback, demonstrating that control objectives are still achievable with the
output feedback controller with nearly the same performance.

The flexible spacecraft model is extended to three dimensions, using rotation matrices to
represent the attitude dynamics. The appendage is discretized in two directions, allowing for
unrestricted bending between elements. To compensate for the additional degrees of freedom,
an additional torque rod is incorporated, resulting in pairs of torque rods distributed across the
appendage. Lyapunov analysis is employed to derive a control law for the reduced attitude of
a single element. Numerical simulations validate the effectiveness of this control law for a sin-
gle rigid element, highlighting its applicability to the field of pointing control for small-scale
satellites Additional simulations demonstrate that the control law remains effective even when
saturation nonlinearities are introduced.

The reduced attitude control law for a pair of magnetic torque rods is implemented to
stabilize the shape of the flexible appendage. To evaluate the impact and robustness of this

shape stabilization, two types of disturbances are considered. The first disturbance focuses on the
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excitation of the flexible modes of the appendage resulting from an attitude maneuver performed
by the hub. The second disturbance examines periodic shape deformations caused by thermal
gradients, which induce bending as the faces of the appendage are unevenly heated throughout an
orbit. In response to maneuver-induced oscillations, numerical simulations demonstrate that the
shape-stabilizing control effectively dampens vibrations and returns the appendage to its flat state
more quickly compared to performing the same maneuver without the torque rods. Additionally,
the average deformation of the appendage over time is significantly reduced. In response to
thermoelastic bending, the torque rods significantly mitigate the deformation experienced by the
appendage, reducing the deformation magnitude by up to half. The simulations also show that the
reaction wheels must exert more control effort to maintain an attitude reference when the torque
rods are actuated.

To enable computationally feasible state estimation, dynamic mode decomposition (DMD)
is employed. Using a set of training data generated via simulation, DMD yields a modal de-
composition of the spacecraft dynamics. By reducing the number of modes used, the space-
craft dynamics can be represented by a reduced-order model with significantly fewer states than
the original state-space system. Additionally, the reduced order model is linear in the mode-
amplitude space. Using the mode shapes, a linear observation function transforms between the
mode amplitude space and the state space. This linear framework allows for the application of a
Kalman filter that estimates the mode amplitudes from a limited set of state space measurements.

Numerical simulations demonstrate the DMD Kalman filter is able to estimate the state
of the spacecraft accurately using the reduced order model with measurement noise and with
a significant reduction in states, which represents significant savings in computation cost. The

linear framework resulting from DMD enables the observability to be computed for various mea-
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surement functions corresponding to different numbers and locations of sensors. The observabil-
ity rank condition shows that generally 8 displacement sensors are needed to fully observe the
system. The eigenvalues of the observability Gramian quantify observability and facilitate the
optimization of sensor locations to maximize observability for a given number of sensors. The
optimization results for various sensor quantities reveal the critical locations on the appendage

where measurements most significantly contribute to the system’s overall observability.

6.2 Suggestions for Future Research

The modeling approach to structural flexibility in this dissertation seeks to approximate the
flexibility of both continuous and multibody structures via a multibody discretization. Ongoing
and future work should seek to examine the accuracy with which this approach approximates the
dynamics of a continuous flexible body. Investigating the trade between modeling accuracy and
discretization size is also of interest.

The analysis for the reduced attitude control of a rigid body using only two magnetic torque
rods can be improved by relaxing some of the simplifying assumptions made in this dissertation
to provide additional robustness guarantees of the control law. Specifically, future analysis should
include the periodic variations of the local magnetic field corresponding to orbital periods, which
make the dynamics non-autonomous and requires additional analysis to characterize. Analysis
that explicitly considers the saturation nonlinearities typical of a physical system should also be
explored.

Dynamic mode decomposition (DMD) is a promising approach for estimating high-dimensional

representations of flexible spacecraft. However, because DMD requires training data that cannot
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be directly obtained from a physical system without measuring all the system states, this presents
a challenge. To address this challenge future work should investigate methods for performing
system identification to estimate parameters that characterize the spacecraft dynamics. System
identification would facilitate the correlation of physical data with simulated data, allowing the
simulation data to accurately represent the dynamics of the real system. Consequently, the dy-
namic modes derived from numerical simulation data would be valid for the physical system,
thereby making the training data appropriate for DMD applications.

In optimizing the number and location of sensors, this dissertation only considers mea-
surements of displacements at various points on the appendage. Optimizations that consider
other types of measurements, such as the attitude and angular rate at various locations on the

appendage should be considered.
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Appendix A: Additional Equations

A.1 Two-Dimensional Internal Forces and Moments

The force terms for each spacecraft component are shown. For an appendage that has two
appendages on either side of it and is on the right side of the hub, ¢ € [2, N — 1], the forces and

moments are as follows:

L; L;
Xi/i+1 = ]{]S (x(i—i—l)/C — xi/C — T+1 COS (i1 — 7 COS Oéi>

Liq . L;
+ ¢ $(1+1)/C — a:,/c + — 5 —— Q1 8inayyy + ?ozz sin oy

L; L;_
Xijio1 = —ks (%‘/C — T(-1)/C — 5 CoS (v; — 5 L cos %‘—1)

L; L. .
sz/c — :1: (i-1)/Cc + Eal sin o; + Tai_l Sin ;1

Yijigr = ks (y i+1)/c — Yi/c — 2+1 S Qi — b} Sm Oéz)

L. L;
y (i+1)/C — yz/c + Tazﬂ COS Oitr1 + ?az COS Qv;

L; . Liy .
Yz‘/iq = —k (?Ji/c —Yu-1)/Cc — ) S — 5 . S 041'—1)

) . L. Liy,
+¢s | Yijo — Yu-1)/0 + — i Cos + —5 Gi-1C08 1
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L; L; .
,-Z—Yi/i-l—l = ? COS aiY;'/i—i-l — ? S11 aiXi/i-l—l
L; L; .
Tz’/z‘—l = —? COS OéiXi/i_l + ? s OziY;/i_l
Mijipr = (v — i) + ci(Gipr — &)

M;jioq = —ki(ov — cim1) — (6 — di—q)

For appendages on the left that have a appendage on either side, i € [N + 2,2N — 1], the
forces and moments are the negation of what is shown above, because the indexing goes in the
opposite direction.

For the appendage where ¢ = 1 the forces and moments are as follows.

L2 Ll . . L2 . . Ll . .
X2 = ks | x2/c — 170 — > COoS (g — > cosay |+¢s | Tayc — Tyjo + 7@2 sin aig + 7a1 sin ag
L L L L
Xije = —ks (961/0 — Tefe — 71 CcoS vy — 70 COS”)/) + ¢ <f1/c — Tefe + 710'41 sin oy + 76(546 sin*y)
L L L
= —ks| T10 — L cos ay — i) +cs | 710 + —10'41 sin o
2 2 2
Lo . Ly . ) . Ly . Ly,
Yi2 = ks ( Y270 — Y170 — - Siney — —=sinay |46 | Yo/ = Yo + 5 dpcos oy + —~dycos oy
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Ly . Le . : L. Lc .
)/l/C = _ks (yl/C —Yeje — 71 sin g — 70 Sln7> + Cs (yl/C — Ye/e + 71651 cosag + 70050 COS ’7)

L, . . L.
= —ks | y1/c — > sinay | +¢s | Y10 + 7041 cos
L L
Ty = 71 cosaiYyo — 71 sin o X o
L L
Tyc = —71 cos a1 X1 ¢ + ?1 sina Y1 ¢

Mo = k(oo — o) + ci(dg — )

MI/C = —kt(Oél - ’Y) - Ct(dl - Oéc)

= —k’t(Oél) — Ct(dl)

For the appendage : = N + 1, which is the appendage directly to the left of the hub

L L . L ) .
Xv+1yc = ks (—33(N+1)/C - 70 - ]\;1 Ccos 04N+1> +¢s (—IL‘(N+1)/C + %QNH sin OéN+1)
X — ( Ly Lo )
(N+1)/(N+2) = — Rs | T(N+1)/C — T(N+2)/C — COS N1 — COS AN +-2
. . Ly . . Lyia . .
+Cs | T(N+1)/0 — T(N+2)/C T T@NH SIN QN1 + TaN+2 SIN VN 42

LN+1 . . LN+1 .
5 smanyy | +¢s | —yw+1)0 + 5 QN+1 COSQAN41

Yinvinyo = ks <—y<N+1>/C -
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Lyt . Lyio
sinayi, —

YNt/ (vez) = = ks <y<N+1)/C — Y(N+2)/C — sin aN+2)

Lnyi . Lo
5 QN1 COSQNL] + 5

+cs (?J(NH)/G —Yw+2)/c t+ (i 42 COS aN+2)

Tinyyc = L cosan1Y(Nt1)/0 — L sin ay 1 X (Nt1)/0
TNt/ (N+2) = _Lyn cos N1 X Ny1,N42 + Ly sinan1 N1, v42
Mni1yc = ki(—any1) + c(—dngr)

Mni1y)(nv+2) = —ki(an1 — anie) — c(dngr — dnya)

For the case of the end appendage, ¢« = NV, the same equations as the middle appendages
between i = 1 and ¢« = N are used, except X;/(i+1), Yi/(i+1)> Li/(i+1), Miju+1) are all zero,
because there is only one adjacent appendage. Similarly, for the other end appendage, : = 2N,
the equations for i € [V 4 2,2N — 1] can be used, where X;/(i11), Yi/(i+1)> Ti/(i+1), Mijis1) are
also all zero. The forces and moments acting on the hub are equal and opposite to those acting

on the appendages attached to the hub, i.e.,
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The total forces and moments are

= —Mn+1)/c

Xijir1) + Xij-1)
Yi i+ + Yiji-1)
Tijiiv1) + Tij-1)

Miy(ir) + Miji-y)
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Appendix B: Lyapunov Stability Analysis

B.1 Lyapunov’s Direct Method

The behavior of an equilibrium point of an autonomous system can be characterized us-
ing Lyapunov’s direct method [72]. This method utilizes a scalar potential candidate function
and its derivative to assess the stability of the system near the equilibrium point. Consider the

autonomous system
z = f(x).

Let * = 0 be an equilibrium point for the system and D C R" be a domain containing x*. Let
V' : D — R the scalar function such that V' (0) = 0and V() > 0 Vz # x*, i.e., V is positive

definite. If V' is continuously differentiable and V' is negative definite, i.e., [72]

V(z) <0 Ve #x",

then the equilibrium point * = 0 is asymptotically stable.

B.2 LaSalle’s Invariance Principle

LaSalle’s theorem extends Lyapunov’s direct method by allowing the use of Lyapunov

functions that do not have a negative definite derivative. It provides a way to determine the
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asymptotic behavior of the system, leading to conclusions about stability based on the largest in-
variant set where the derivative of the Lyapunov function is zero. The main idea of the invariance
principle is if it can be established that no trajectory can stay at points where V(m) = 0 except at

the origin, then the origin is asymptotically stable [72]. Consider the autonomous system

z = f(x).

If there exists a Lyapunov function V() such that V(z) > 0 and V() < 0, then the system
will converge to the largest invariant set of the set where V() = 0. If it can be shown that the

largest invariant setin « : V(a:) = (O 1s the origin, * = 0, then * is asymptotically stable [72].

B.3 Proof of Lemma 1

Proof: Assume V(:I:) < 0 along solutions of the closed loop linear system Eq. (3.52),

which implies

oV
a—w(Aa: + Bg(x)) <0

Assume solutions of the closed loop linear system Eq. (3.52) can be be shown to be bounded

ov
o (Az+ By(x)) < —c|],
for some constant ¢ > 0. Then,
ov ov ov , OV

Because 2YH.0.T. is O(||z?), then %% f(x) < O for sufficiently small ||z| and % f(z) = 0

when ||z|| = 0.
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Appendix C:  Simulation Parameters

C.1

Parameters Used in Chapter 3

parameter name symbol | value | units
semi-major axis a 6778 | km
eccentricity e 0

inclination l 90 deg

right ascension of the ascending node Q 0 deg
argument of periapsis w 0 deg
latitude at epoch U 90 deg

attitude Yo 112 | deg

angular velocity Yo 0.07 | dee

Table C.1: Hub initial conditions
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Control Parameters

Q. = diag(300,5)

0, = diag(1,1,1000, 1, 10, 10)
Q = diag(Qc, @1, -, Qan)
R, = 20000
R, =0.001
R = diag(R., Ry, ..., Ray)
k, = 10

kg, = 1100
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Spacecraft Parameters

parameter symbol value unit
panels per appendage N 12
hub mass me 100 kg
panel mass m; 1 kg
hub moment of inertia 1o 50 kgm?
panel moment of inertia I; 0.1 kgm?
panel length L; 1 m
hub length L¢ 2 m
connection spring coefficient ks 100 %
connection damping coefficient Cs 0.1 %
torsional spring coefficient ky 10 i—‘g
torsional damping coefficient Ct 0.1 T;?f
orbit angular speed wy | 12x1073%| =d
reaction wheel saturation K, 0.01 Nm
torque rod saturation Ky, 1x107* | Nm

Table C.2: Spacecraft Parameters
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State Estimation Simulation Parameters

parameter | value | unit

Oy 0.01 | =
o4 05 | 4=
o 0.3 | deg
o4 03 | 4=
P~ 0.6 | deg
Py 0.6 | %

Py 0.01 | m

Pa 0.25 | deg
Py 001 | =
e 02 | d=

Table C.3: State Estimation Measurement and Process Noise Parameters

Q. = diag(p2,p3)) Qs = diag(p2,, p2y. P2 P2ys P3)
Q = diag(Qc, Qi; .-, Qi)
R. = diag(o,,05) R; = diag(ouy, 0uy, 04)
Q = diag(R., R;, ..., R;)
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C.2 Parameters Used in Chapter 4

Single Panel Simulation Parameters

parameter symbol | value | units

semi-major axis a 7178 | km
eccentricity e 0 \

inclination 1 70 deg

right ascension of the ascending node Q 0 deg

argument of periapsis w 0 deg

true anomaly at epoch 12 90 deg

Table C.4: Orbit parameters for rigid body simulations
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Flexible Spacecraft Model Simulation Parameters

parameter symbol | value | units

semi-major axis a 7178 | km
eccentricity e 0

inclination ? 70 deg

right ascension of the ascending node Q 0 deg

argument of periapsis w 0 deg

true anomaly at epoch Y 85 deg

Table C.5: Orbit parameters for flexible model simulations
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parameter symbol | value | unit
connection spring coefficient ks 1000 g
connection damping coefficient Cs ) %

torsional spring coefficient ks 0.1 %

torsional damping coefficient Ct 0.05 T;lf

hub mass me 1000 | kg

panel mass m; 20 kg

panel side length L, 2.5 m

hub side length L¢ 4 m

Table C.6: Spacecraft physical parameters

The moment of inertia matrix for each component is as follows:

I = diag (2400, 2400, 3600)

I, = diag(25, 25, 50)
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parameter symbol value units

hub proportional gain K, 0.8 /

hub derivative gain K, 700 /

panel proportional gain k, 6.5 x 1073 /

panel derivative gain Ky, 3 /
reaction wheel saturation K. 0.05 Nm
torque rod saturation K, 5x107* | Am?

Table C.7: Section 4.4.1 Control parameters
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C.3 Parameters Used in Chapter 5

parameter symbol | value | unit
connection spring coefficient ks 1000 %
connection damping coefficient Cs 5) %

torsional spring coefficient ky 0.1 fa—‘g

torsional damping coefficient Ct 0.05 T;‘clf

hub mass me 1000 | kg

panel mass m; 100 | kg

panel side length L 2.5 m

Table C.8: 6x6 discretization DMD simulation parameters
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parameter symbol | value | unit
connection spring coefficient ks 1000 g
connection damping coefficient Cs ) %
torsional spring coefficient ks 0.1 1_1211

torsional damping coefficient Ct 0.05 T;‘:f
hub mass me 1000 | kg

panel mass m; 11.11 | kg

panel side length L 0.83 | m

Table C.9: 18x18 discretization DMD simulation parameters

DMD Kalman Filter Parameters

Q =0.1 Inmxnm
0.01 Zgzo 0
R =
0 0.1 Zxm
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