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Abstract: Undersea burrowing of worm-like animals involves complex hybrid dynamics with
continuous-time elastic and friction forces and discrete-time events that occur when a crack
forms and propagates. This paper presents a state-space model of worm-inspired burrowing
locomotion using discrete elastic rod theory applied to a segmented body representing the
worm’s body. The effects of soil and fracture mechanics are considered in the hybrid dynamics
of crack propagation. Anisotropic friction inspired by bristle-like structures in biological systems
allows the worm model to create stress concentrations and advance forward through the soil.
Constant-volume segments change width as they stretch and compress, affecting the friction
and fracture forces on the worm body. The model is controlled by changing the intrinsic length
of each segment, with several peristaltic travelling-wave gaits considered. Simulations varying
gait parameters show that some travelling-wave gaits allow the worm model to make faster
progress. The derived state-space model permits improved control and estimation for worm-
inspired robots and empirically shows how differing travelling-wave gaits affect the speed of
locomotion.
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1. INTRODUCTION

Burrowing animals inhabit, consume, and modify undersea
sediments by consuming and shifting benthic soils as
they form their burrows. Underwater burrows provide a
hunting ground, habitat, and protection from predators to
more than 8,000 species of polychaetes, bristle worms. As
discussed in Merz and Woodin (2006), these worms are
named for the bristles (chaetae) attached to each body
segment. Bristles aid anchoring, sensing, and locomotion.
We are particularly interested in how these bristles enable
polychaete worms to burrow in marine sediments using
the cyclical burrowing gaits of marine worms examined in
Dorgan (2015).

Previous work in soft robotics using Discrete Elastic Rod
(DER) theory (see Goldberg et al. (2019) and Scott et al.
(2021)) has examined soft robotic actuation and bio-
inspired models of undersea undulatory swimming locomo-
tion. Additionally, Scott et al. (2021) studied the effect of
intrinsic parameter control in actuating a soft robotic body
through a fluid medium and over flat ground using stick-
slip friction. Foundational work in Dorgan et al. (2008)
and Dorgan (2015) in understanding the biomechanics of
worm burrowing is modeled using DER theory to investi-
gate worm-inspired soft robotic locomotion in a segmented
analogue.

Leveraging an understanding of linear elastic fracture
mechanics along with the anisotropic soil interactions
of polychaete bristles, we study the hybrid dynamics
involved in locomotion of the worm model. The crack tip
position experiences discrete jumps as the stress surpasses
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the critical fracture value. The position of each worm
segment changes continuously in time, governed by elastic,
frictional, and fracture forces. We use a Lagrangian model
of the system to derive the equations of motion.

The contributions of this paper are (1) the derivation
of a state-space model of burrowing motion with sliding
friction, crack propagation, and constant volume segments;
(2) the investigation of the use of intrinsic length control
in burrowing locomotion; and (3) an examination of a
worm-inspired peristaltic gait through simulations. The
contributions of this work allow for analytical descriptions
of hybrid burrowing motion in robotic systems and future
studies in the relationship between marine soil conditions
and locomotion performance.

The paper is organized as follows. Section 2 reviews DER
modeling, intrinsic length control, and fracture mechanics.
Section 3 introduces an anisotropic friction model and
derives the state-space model of crack propagation and
worm locomotion. Section 4 presents simulation results
validating the worm behavior and comparing peristaltic
gaits. Section 5 summarizes contributions and discusses
ongoing and future work.

2. BACKGROUND

This section introduces background material central to
the proposed burrowing modeling and control scheme.
Discrete elastic rod theory, control of the intrinsic length
of segments, and linear elastic fracture mechanics relevant
to burrowing are discussed.



2.1 Discrete Elastic Rod Model

To model the soft continuum body of a polychaete worm,
Discrete Elastic Rod (DER) theory (see Bergou et al.
(2008), Goldberg et al. (2019)) discretizes the worm body
into segments. Burrowing behavior is examined using
linearly extensible, unbending segments. The rod model
has N nodes and N − 1 segments. Shape variables with a
subscript (e.g., xk) denote node properties and variables
with a superscript (e.g., lk) denote segment properties.
The value of time-varying properties at t = 0 are identified
by subscript 0 (e.g., lk0).

The position and velocity of each node is denoted by xk
and vk, respectively, for k = 1, . . . , N . Node k = 1 is the
head of the worm and node k = N is the tail. The length
of the kth segment is lk = xk − xk+1. Assume xk > xk+1

and equivalently lk > 0 for all k = 1, . . . , N − 1. The
initial length of the kth segment is lk0 . The width of the
kth segment is wk and the initial width wk

0 . The initial
widths and lengths of all segments are identical.

Fig. 1. The worm model is discretized into N nodes
connected by N − 1 linearly elastic segments. The
variables x1, x2, ..., xN are the node positions. The
length and width of each segment k is denoted as
lk and wk for k = 1, ..., N − 1, respectively. (Left)
The unstretched initial worm position, with equal
segment lengths (lk0) and widths (wk

0 ); (Right) the
worm in motion, with variable segment widths. The
crack tip xc is in front of the worm’s head; the crack
propagation times are denoted tn.

The mass of segment k is mk = m for all k = 0, . . . , N − 1.
The mass mk of node k is found by distributing the mass
of each segment to each node it adjoins, with m1 = mN =
m/2 and mk = m for k = 2, . . . , N − 1. Following Dorgan
et al. (2006), the volume Vconst of each segment is constant
during peristalsis.

The position of the crack tip is denoted xc. The constant
width of the crack profile is wc. Assume the worm and
crack have the same out-of-plane thickness h.

The resting position of the worm model in the absence of
external forces is defined by the intrinsic length l̄k of each
segment. For an unstretched worm at rest, the length of
each segment matches, i.e., lk = l̄k. The stretching stiffness
of each worm segment is the product of its elasticity and
the segment area and denoted as EA.

To derive the equations of motion, we use a Langrangian
approach, following Goldberg et al. (2019). The total
kinetic energy T is

T =
1
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mkẋ
2
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1

4
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1

2
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Using the standard Lagrangian L = T − V , Lagrange’s
equation d

dt
∂L
∂ẋk
− ∂L

∂xk
= Qk yields the following equations

of motion:
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mẍ1 + EA

(
x1 − x2
l̄1

− 1

)
= Q1
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(3)

where k = 2, . . . , N − 1.

The generalized, non-conservative forces Q1, Qk, and QN

are derived in Section 3. Note, there is no bending or
twisting energy in the worm model.

2.2 Intrinsic Length Control

Introduced in Scott et al. (2021), a practical control
scheme for actuating soft robotic structures is intrinsic
parameter control. Here, the control input is the time
rate of change of the intrinsic lengths l̄ =

[
l̄1, . . . , l̄N−1

]
.

Intrinsic length control mimics the muscular contraction
and changing pressure of the body fluid of worm and
worm-like animals that change their shape (see Chapman
(1950) and Quillin (1998)).



The control scheme defines the rate of change of intrinsic

length as ˙̄l = u. The control input u may be designed using
open-loop or closed-loop control. The benefits of closed-
loop control on soft robotic locomotion are in the rejection
of disturbances arising from unmodeled external forces and
sensor noise.

Another benefit of modeling the input as the rate of change
˙̄l of the intrinsic length is the stretching potential. The
control input does not appear explicitly in the potential
energy, which is a function of the state variables. Addition-
ally, the rate of change of intrinsic length mimics the pump
fluid flow rate in a physical bellows-style fluidic actuator
(see Scott et al. (2021)).

2.3 Worm-Soil Interactions and Fracture Mechanics

We analytically study the growth of cracks in marine soils
to characterize how undersea animals burrow using linear
elastic fracture mechanics. To characterize marine soil,
consider the soil’s modulus of elasticity Es, Poisson’s ratio
ν, and fracture constants KIc and KIth.

Additionally, we examine the interface between worms and
soil. Polychaete worms have outward-facing bristles that
serve a multitude of functions (Merz and Woodin (2006)).
Hooked-shaped and mobile bristles enable burrowing of
polychaete worms using anisotropic friction.

These marine fauna exert fracture forces around their
heads to open cracks, called Mode I loading (Dorgan et al.
(2008)). Accumulated stress results in crack propagation.
By advancing forward into cracks using a four-stage gait,
an undersea animal creates a burrow. As described in
Dorgan (2015), the four stages of burrowing in a marine
worm are (i) the worm advances to the front of the crack;
(ii) the worm pushes its head forward to propagate the
crack; (iii) the worm thickens its segments to widen the
crack; and (iv) a peristaltic travelling wave advances the
body while the head slips back.

For small length and time scales (Dorgan et al. (2007)), lin-
ear elastic fracture mechanics are applicable to burrowing
behavior. The stress concentration factor KI characterizes
the accumulation of stress at crack tips, with the subscript
I denoting stress concentrations as a result of Mode I
loading. We examine two specific values of KI : the critical
stress intensity factor KIc and the threshold stress inten-
sity factor KIth. The critical value KIc is the upper limit
of stress concentration before unstable crack propagation
begins. The threshold value KIth is the lower threshold
of stress concentrations, below which crack propagation
ceases to occur.

From Dorgan et al. (2008), the time-varying stress inten-
sity factor KI due to a worm acting as a wedge at the tip
of a crack is

KI(t) =
Esw

1√
2π(xc(tn)− x1(t))(1− ν2)

, (4)

where we have used the profile of a square-headed worm.

As discussed in Dorgan (2015), soil conditions and bur-
rowing behavior of marine worms is characterized by the

dimensionless wedge number denoted in literature as Wg.
Let Gc = K2

Ic/Es denote the fracture toughness. We have

Wg =
Wfracture

Welastic
=

Gcwc

Eshw1
0

=
K2

Icwc

E2
shw

1
0

. (5)

3. BURROWING MODEL

This section derives a state-space model of burrowing
locomotion. Included in this model are anisotropic friction
effects, linear elastic fracture mechanics, and the effect of
crack tip position on the worm itself. Simulation results of
worm locomotion and crack propagation are included to
illustrate the model behavior.

3.1 Anisotropic Friction Model

Considering a constant friction coefficient, let µs be the
coefficient of sliding friction. Let λ be the frictional coef-
ficient multiplier that causes increased friction opposing
backwards motion.

For a given crack width wc, the displacement of the soil
around the kth segment depends on the width wk of the
kth segment. For a constant segment volume, wk depends
on the length of the kth segment, lk = xk − xk+1. Using
the initial length lk0 of the kth segment and a constant
planar thickness h, we have Vconst = wk

0 l
k
0h = wklkh,

which implies

wk = wk
0

lk0
lk

=
wk

0 l
k
0

xk − xk+1
. (6)

When the width of the kth segment exceeds the constant
crack width wc, a normal stress develops on the segment.
For segments thinner than wc, no stress develops. As
the soil is linearly elastic, the force exerted on the worm
segments is proportional to the displacement of the soil.
The normal stress σk

N and the normal force F k
N on the kth

segment are

σk
N = max

{
Es

[
wk

0 l
k
0

xk − xk+1
− wc

]
, 0

}
, (7)

F k
N = (xk − xk+1)hmax

{
Es

[
wk

0 l
k
0

xk − xk+1
− wc

]
, 0

}
= max

{
Esh(wk

0 l
k
0 − wc[xk − xk+1]), 0

}
.

(8)

Since (xk−xk+1)h > 0, we can move this expression inside
the max function.

Equation (8) shows that the normal force on the kth seg-
ment is a function of the state variables xk and xk+1, and
affected by the soil elasticity Es, planar worm thickness h,
original worm width wk

0 , original segment length lk0 , and
crack width wc.

For the derivation of the frictional forces, the velocity vk of
the kth segment is the average velocity of the surrounding
nodes, i.e.,

vk =
vk + vk+1

2
=
ẋk + ẋk+1

2
. (9)



The sliding friction on the kth segment opposes the di-
rection of motion. When the kth segment is moving back-
wards, the friction coefficient is λµs, whereas when the
kth segment is moving forward, the friction coefficient is
µs. The force of friction is

F k
f = µs

[
λ− 1

2
− λ+ 1

2
sgn(vk)

]
F k
N , (10)

where sgn(·) denotes the signum function.

The friction acting on the kth node is half that acting
on each adjacent segment. The first node has a friction
contribution from only the segment k = 1, and the last
node from only k = N − 1:

Ff,1 =
F 1
f

2

Ff,k =
F k−1
f + F k

f

2
for k = 2, . . . , N − 1

Ff,N =
FN−1
f

2
.

(11)

3.2 Crack Propagation Model

Recall KIc is the critical stress intensity factor that de-
termines when crack propagation occurs and KIth is the
threshold stress intensity factor below which crack propa-
gation does not occur. Both quantities are constant prop-
erties of the soil.

When the stress intensity factor KI(t) rises above the
critical value KIc, the crack propagates forward until
KI(t) falls below the threshold value KIth. Let tn denote
the time of the nth crack propagation, for n = 1, 2, . . . .
Adapting (4) for constant volume (and variable width)
worm segments using (6) yields

KI(t)=
Esw

1
0l

1
0√

2π(xc(tn)−x1(t))(1−ν2)(x1(t)−x2(t))
. (12)

When KI(t) exceeds KIc, the crack tip advances until
KI(t) = KIth. The new crack position is found by equating
these quantities and solving for xc(tn+1):

xc(tn+1)=x1(tn)+
E2

s (w1
0)2(l10)2

2πK2
Ith(1−ν2)2(x1(tn)−x2(tn))2

. (13)

To model the force of the soil on the head of the worm, i.e.,
the soil back pressure, consider the dimensionless wedge
ratio Wg from (5).

From linear elastic fracture mechanics, the stress σ(t)
resulting from stress intensity factor KI at a distance r
from the crack tip is

σ(t) =
KI(t)√

2πr
f (14)

for a shape factor f . The force is the product of the contact
area and the stress on the contact area. Using Wg to relate

the fracture and elastic work, the soil back pressure caused
by fracturing is

Fp(t) =
KI(t)√

2π(xc(tn)− x1(t))
Wgw1h

=
KI(t)√

2π(xc(tn)− x1(t))
Wg

w1
0l

1
0

x1(t)− x2(t)
h

(15)

for tn < t < tn+1. Here, the blunt head of the worm is the
contact area w1h that the stress acts on. Rewriting (15)
using (12) yields

Fp(t) =
Es(w

1
0)2(l10)2hWg

2π(xc(tn)− x1(t))(x1(t)− x2(t))2(1− ν2)
(16)

for tn < t < tn+1.

3.3 State Space Model

Recalling the equations of motion (3), we equate the sum
of the frictional (11) and soil back pressure (16) forces
with the generalized forces Q1, Q2, . . . , QN . The equations
of motion are
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2
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l̄1

− 1

)
= Ff,1 − Fp
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1

2
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)
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for k = 2, . . . , N − 1.

Let x = [x1, x2, . . . , xN ]
T

and ẋ = [ẋ1, ẋ2, . . . , ẋN ]
T

. We
have ẍ = h(x, ẋ, l̄, xc), where

h(x, ẋ, l̄, xc)=−M−1(Vs(x, l̄)−Ff (x, ẋ)+Fp(x, xc)) (18)

M−1 =



2

m
0 0 · · · 0 0

0
1

m
0 · · · 0 0

0 0
1

m
· · · 0 0

...
...

...
. . . 0 0

0 0 0 · · · 1

m
0

0 0 0 · · · 0
2

m


(19)

Vs(x, l̄) =
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Fig. 2. Left: Relationship between crack tip position (magenta), worm head position (blue), worm body positions (cyan),
and stress intensity factor (orange). Black dotted lines indicate the critical and threshold values of KI . When KI

overcomes the critical value, the crack advances. Upper right: Stretching forces (blue), frictional forces (magenta),
and back-pressure forces (red). Lower right: Kinetic energy (blue) and stretching potential energy (orange).
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Fp(x, xc) =


Es(w

1
0)2(l10)2hWg

2π(xc − x1)(x1 − x2)2(1− ν2)
0
...
0

 (22)

for k = 2, . . . , N − 1.

Let q = [q1, q2]
T

= [x, ẋ]
T

. The first-order state-space
dynamics with intrinsic length control u are

q̇ =

[
q2

h(q, l̄, xc)

]
˙̄l = u.

(23)

4. SIMULATION RESULTS

This section illustrates the behavior of the burrowing
model and studies locomotion performance. We integrate

the state-space dynamics in MATLAB using an implicit
backwards Euler solver, using the representative simula-
tion parameters shown in Table 1.

As discussed in Section 2.2, we actuate the system dy-
namics with intrinsic length control. Consider an open-
loop travelling-wave gait, where the rate of change of the

intrinsic length ˙̄l follows a sinusoidal function of a phase
variable ψk(t). The control input u is (Scott et al. (2021))

u(t)=[A sin(ψ1(t)) A sin(ψ2(t)) . . . A sin(ψN (t))] , (24)

and the phase variable ψk(t) is (Scott et al. (2021))

ψk(t) = ωt+ δk, (25)

where δ is the phase offset between nodes of the gait.

The simulated worm uses peristaltic motion to advance
forward in the crack. Crack propagation occurs when the
stress intensity factor K exceeds the critical value KIc. As



Table 1. Model Simulation Parameters

Parameter Value Units

Number of nodes (N) 7 -
Soil elasticity (Es) 1.4 × 105 Pa

Critical stress intensity factor (KIc) 250 Pa
√

m
Threshold stress intensity factor (KIth) 200 Pa

√
m

Poisson’s ratio (ν) 0.3 -
Crack width (wc) 0.001 m

Wedge number (Wg) 4.59 × 10−4 -
Stretching stiffness (EA) 13 Pa·m2

Unstretched segment width (wk
0 ) 0.001 m

Unstretched segment length (lk0 ) 0.01 m
Planar thickness (h) 0.001 m

Mass per segment (mk) 10−5 kg
Sliding friction coefficient (µs) 0.3 -

Friction coefficient multiplier (λ) 1.5 -
Gait amplitude (A) 0.02 m/s

Gait angular frequency (ω) 4π rad/s
Gait offset (δ) π/4 rad

shown in Figure 2, the crack tip advancement coincides
with forward progress of the worm head that results in
increased stress intensity factor.

4.1 Locomotive Parameter Study

To further study the burrowing model and control scheme,
we simulated worm locomotion over 60 seconds for a range
of gait parameters. The gait amplitude A = 0.02 m/s was
held constant while the angular frequency ω was varied
between 3π and 5π and offset δ was varied between π/6
and π/3. The speed of the center of mass was calculated
over the 60 second period and plotted in Figure 3.

Fig. 3. The average velocity varies for gait frequencies and
offsets described in Section 4.1. The red tick mark in
the center of the figure indicates the simulation shown
in Figure 2, with average velocity 0.0022 m/s.

For the range of values examined, the velocity of locomo-
tion increases with increasing offset δ. Values of δ below
approximately δ = 0.74 caused the center of mass of the
worm to travel backwards, retreating out of the crack.
The fastest forward-progressing simulation (v = 0.0108
m/s) arose from the lowest frequency, ω = 3π, and the
largest offset, δ = π/3. The fastest retreating simulation
(v = −0.0137 m/s) occurred for ω = 3π and δ = π/6.

Lower travelling-wave frequencies ω caused faster locomo-
tion regardless of the direction of travel. Lower frequencies
caused the model worm to either advance into the crack
or extract itself at a higher speed. The fastest travel
wave frequencies examined, ω = 5π, caused slower overall
locomotion than the slower frequencies examined. Though
the model still made nonzero progress for values of δ near
π/3 and π/6, the velocity was constrained between −0.005
m/s and 0.005 m/s, a factor of two slower than ω = 3π.

5. CONCLUSION

This paper presents a state-space model of burrowing lo-
comotion for a worm-inspired segmented robot. The model
includes anistropic friction inspired by polychaete worms
and linear elastic fracture mechanics. Simulations of worm
model locomotion exhibit the cyclical relationship between
crack propagation and the progress of the worm. Each
segment has constant volume. The widths contract and ex-
pand as the lengths are driven by phase-shifted sinusoidal
input representing the travelling wave characteristics of
peristaltic locomotion. Ongoing and future research aims
to further study how changing gait parameters A, ω, and
δ permits faster and more energy-efficient locomotion. Soil
parameters Es, KIc, and KIth and wedge number Wg
also affect the speed of locomotion and energy loss due
to friction.
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