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Abstract

Predation is a fundamental interaction between species, yet it is largely unclear
what tactics are successful for the survival or capture of prey. One challenge
in this area comes with how to test theoretical ideas about strategy with ex-
perimental measurements of features such as speed, flush distance, and escape
angles. Tactics may be articulated with an analytical model that predicts the
motion of predator or prey as they interact. However, it may be difficult to
recognize how the predictions of such models relate to behavioral measurements
that are inherently variable. Here we present an alternative approach for mod-
eling predator-prey interactions that uses deterministic dynamics, yet incor-
porates experimental kinematic measurements of natural variation to predict
the outcome of biological events. This technique, called probabilistic analyt-
ical modeling (PAM), is illustrated by the interactions between predator and
prey fish in two case studies that draw on recent experiments. In the first case,
we use PAM to model the tactics of predatory bluefish (Pomatomus saltatrix )
as they prey upon smaller fish (Fundulus heteroclitus). We find that bluefish
perform deviated pure pursuit with a variable pursuit angle that is suboptimal
for the time to capture. In the second case, we model the escape tactics of
zebrafish larvae (Danio rerio) when approached by adult predators of the same
species. Our model successfully predicts the measured patterns of survivorship
using measured probability density functions as parameters. As these results
demonstrate, PAM is a data-driven modeling approach that can be predictive,
offers analytical transparency, and does not require numerical simulations of sys-
tem dynamics. Though predator-prey interactions demonstrate the use of this
technique, PAM is not limited to studying biological systems and has broad
utility that may be applied toward understanding a wide variety of natural and
engineered dynamical systems where data-driven modeling is beneficial.
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1. Introduction

Predation is critical to the structure of populations and has guided the evo-
lutionary fate of myriad species. Despite its importance in biology, investigators
have struggled to formulate a predictive body of theory for understanding the
behaviors that succeed in the survival or capture of prey. It is consequently5

unclear what traits of a predator or prey are most important to predation. This
challenge has been met through the development of analytical models that ar-
ticulate tactics and predict the motion of these animals. However, it is difficult
to reconcile these predictions with kinematic measurements due to the highly
uncontrolled and coupled nature of behavioral interactions between predator10

and prey. The aim of the current study is to advance our understanding for
the behavior of predation through the introduction of an analytical approach
that incorporates kinematic measurements of natural variation into analytical
models of predator and prey tactics.

The work here is motivated by the importance of predation in the survival15

of a species. Rather than studying the growth rate of species, we instead take
an individual-centric approach where we seek to quantify the expected value of
a metric of success in the predator-prey interaction. We demonstrate the utility
of our approach, called probabilistic analytical modeling (PAM), by modeling
predator-prey interactions in fishes that have been observed experimentally.20

Measurements of kinematic features such as speed, flush distance (i.e., the escape
or alert distance), and escape angles from experiments combined with dynamical
modeling and probabilistic analysis predict the outcomes of biological events in
ways that experiments or modeling alone cannot.

Hypothetical tactics of predators and prey have been previously formulated25

with analytical pursuit-evasion models. These models predict the trajectories of
individuals [1, 2, 3], or the swarming behavior of one target and many pursuers
[4, 5], as particles capable of responding to the state of the opposing animal
according to a behavioral algorithm [6, 7, 8, 9]. Due to the transparency of an-
alytical mathematics, it possible to resolve the parameters in these algorithms30

that optimize a particular aspect of performance. For example, the classic homi-
cidal chauffeur game model was successfully used to formulate the direction of
the escape response by prey fish that maximizes the distance from a preda-
tor [10, 11]. This model has been invoked in the interpretation of numerous
experimental studies on prey fish [12, 13, 14, 15, 16].35

However, attempts at reconciling theory with experimentation demonstrate
some of the limitations of existing theory. The homicidal chauffeur model as-
sumes that predator and prey maintain a fixed heading and velocity and that
the prey senses the predator’s speed and heading with perfect accuracy. These
assumptions seem unlikely to hold true in most piscivorous interactions and it40

is therefore unclear to what extent measured deviation from predictions may be
attributed to violations of the model’s assumptions, fish using a different tactic,
or other natural variation in behavior. As a consequence, it is not clear whether
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or not prey fish escape optimally with respect to some metric (e.g., distance
from the predator).45

The effects of natural variation have been considered by computational mod-
els that include stochasticity. Such data-driven models include those of fish
schools that respond to a predator [17] and a schooling model that investigates
how perturbations among a small number of agents affects the behavior of the
school at large [18]. Certain classes of stochastic pursuit-evasion games have50

even been solved [19] and the importance of not using deterministic models
in stochastic systems is highlighted in a model of the growth rate of feeding
fish [20]. In work on specific species, data-driven techniques with stochastic or
probabilistic elements are used to model the fast-turning dynamics of zebrafish
[21], the probability of capture for suction feeding sunfish [22], the predation55

by the exotic shrimp species Dikerogammarus villosus [23], and the dynamics
of the bacterial predation in soil [24]. On a macro scale, predator-prey popula-
tion dynamics in the sense of Lokta-Volterra [25] are modeled with stochastic
components to the birth and death rate of the species [26] and with data fitting
techniques that generalize the local predator-prey interactions to the population60

dynamics as a whole [27].
Although perhaps more predictive than a classic analytical model, the above

data-driven models lack the advantages of analytical analysis for formulating
tactics that optimize some payout. The same disadvantage is apparent in a
Monte Carlo approach to pursuit-evasion models. A Monte Carlo method yields65

distributions of numerical results from batches of deterministic trials that draw
parameter values from random-number generation according to measured prob-
ability distributions [28]. This approach is similar in concept to the present
approach, but its numerical execution lacks the advantages of an analytical
approach.70

The proposed approach, PAM, allows for a consideration of natural variation
in a pursuit-evasion model by combining kinematic measurements with dynam-
ical modeling that articulates predator or prey tactics. This approach may be
executed in four steps. First, a model of the dynamics of the predator/prey
interaction is either chosen from existing pursuit-evasion models or developed75

to more specifically address the behavior seen in experiments. Second, for each
of the probabilistic parameters appearing in the model, a probability density
function (PDF) is fit to measurements. Third, the key metric that measures
the success of either the predator or prey is selected and expressed mathemati-
cally. Tools from probability theory are applied to calculate the expected value80

of the key metric as a function of the PDFs of the model parameters. Finally,
the means of the PDFs are varied and the expected value of the key met-
ric is recalculated to determine the relative influence of each parameter. This
procedure reveals which factors are most important to either predator or prey
survival, taking into account the random distribution of parameter values seen85

in experimental observations. Though predator-prey interactions motivated the
development of this technique, PAM is in fact applicable to any process that
can be examined by data-driven mathematical modeling.

The paper proceeds as follows. Section 2 provides technical background
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in pursuit dynamics and probability theory and introduces two case studies of90

fish predator-prey interactions. Section 3 presents the general PAM approach
used to analyze each experimental data set in order to determine the most im-
portant tactical factors in predator-prey interactions. Section 4 applies PAM
to a case study of the pursuit tactics of bluefish predators and Section 5 uses
the methodology on a case study on the evasion tactics of zebrafish prey. Al-95

though the primary data analyzed in these two cases is based on two previous
experimental studies [28, 29], the results reported here can be verified using the
statistical data provided in this work. Section 6 summarizes the results and
describes ongoing work.

2. Background100

2.1. Pursuit dynamics

Literature on pursuit is multi-disciplinary, with works coming from both the
animal behavior [7, 30, 31, 32] and missile guidance [6, 33, 34] communities.
Due to this mixing of disciplines and a lack of formalization in the field, there
are many (sometimes conflicting) terms used to describe various pursuit tactics.105

In pure pursuit, also sometimes called tracking or classical pursuit, a pursuer
aligns its velocity vector with the line of sight (LOS), which is the vector from
the pursuer to the target’s current location and is used by many predators [6, 35].

In deviated pure pursuit (DPP) (i.e., constant bearing pursuit or constant
aspect pursuit), the pursuer aligns its velocity vector a fixed angle away from110

the LOS such that it leads (or lags) the target. Certain fish [30], insects [35],
dogs [36], and humans [37] exhibit this tactic in their pursuit trajectories. The
special case where the target is not turning or changing speed and the pursuer’s
lead angle is such that it moves in a straight line for the entire pursuit phase is
sometimes called interception.115

In constant absolute target direction (CATD) pursuit (also known as motion
camouflage, parallel navigation, or constant bearing), the pursuer moves in such
a way that the LOS angle stays fixed with respect to some inertial reference
frame. This tactic has the effect of masking the pursuer’s transverse movement
from the perspective of the target, because the pursuer appears only to increase120

in size. Certain dragonflies [31], bats [32], and falcons [38] use this tactic. In
the case of a non-manuevering target, CATD pursuit is equivalent to constant
bearing pursuit, but the converse is true only in the case of interception. A
common technique to actualize one of these geometrical tactics into a control
law for a physical system with dynamics is proportional navigation [33], though125

other techniques exist [6, 39].

2.2. Probability theory

Probability theory provides a mechanism to analytically account for inher-
ently variable behavioral measurements observed in predator-prey interactions.
The probability that a random variable X has value less than x is described by130

the cumulative distribution function FX(x) = P (X ≤ x) [40]. The probability
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density function (PDF) of the same random variable describes how often values
occur and is given by fX(x) = dFX(x)/dx. Many techniques and toolboxes
exist for fitting probability density functions to a data set [41, 42].

The expected value of a random variable X with probability density fX(x)
is [40]

E[X] =

∫ ∞
−∞

xfX(x)dx. (1)

The expected value of a function Y = h(X) of random variable X with proba-
bility density fX(x) is [40]

E[Y ] =

∫ ∞
−∞

h(x)fX(x)dx. (2)

Additional results from probability theory necessary for the work herein and135

not contained in the references are in the Appendix.

2.3. Case study 1: Bluefish

Piscivorous interactions may largely be described by two-dimensional kine-
matics, but exhibit a diversity of tactics that have the potential to vary with
the habitat and the physiology of a fish species. Bluefish (Pomatomus salta-140

trix ) are voracious pelagic fish predators that pursue prey at high speed. This
species exhibits predatory behavior in an aquarium with motion that is largely
two dimensional and is therefore conducive to single-camera kinematic mea-
surements. As detailed in a separate study [29], the high-speed kinematics were
measured for bluefish (∼ 30 cm in length) as they preyed upon smaller prey fish,145

mummichog (Fundulus heteroclitus, ∼ 5 cm). These experiment introduced an
individual prey into the center of a large cylindrical aquarium (diameter = 6 m),
which contained all of the predators. Kinematic measurements were performed
for the prey and predator that first struck at the prey. Inherent in this decision
is the assumption that the successful predator’s trajectory is not affected by150

the presence of other predators in the area. The validity of this assumption is
addressed in Section 4. These measurements consisted of a manual frame-by-
frame tracking of the rostrum of each fish from the moment that both appeared
in the camera’s field of view until the predator’s strike. The mummichog did not
attempt an escape when pursued by bluefish, but rather maintained a relatively155

straight path and consistent speed. The trajectories of predator and prey were
recorded for 70 experimental trials. The dynamical model of bluefish predation
presented in Section 4 takes advantage of the largely non-maneuvering prey,
allowing for a deviated pure pursuit representation with only the LOS range
and angle as state variables.160

2.4. Case study 2: Zebrafish

Zebrafish adults (∼ 2.5 cm) prey on larvae (∼ 4 mm) of the same species un-
der laboratory conditions [43]. However, unlike the mummichog preyed upon by
bluefish, zebrafish larvae generally remain stationary until initiating an escape
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response at a certain point during the predator’s approach [16]. This response165

allows for a consideration of the evasion tactic of a prey fish that can be measured
and modeled. The kinematic data were previously reported from experiments in
a hemispherical aquarium (diameter = 8.5 cm), where the predator attempted
multiple strikes at the prey until successful [28]. Within one second of initiating
an escape, the prey ceased swimming and were stimulated to escape again when170

approached by the predator. The predator approached the prey at a constant
speed, well below the prey’s maximum escape speed. This approach was consis-
tent with a pure-pursuit tactic, such that the predator’s heading was directed
towards the instantaneous position of the prey. These interactions repeated for
as many as twenty approaches in experiments performed in a relatively small175

aquarium and were previously characterized by iterating a model of a single
interaction using a Monte Carlo technique [28].

The dynamic model of the zebrafish interaction presented in Section 5 is an
example of a hybrid system. A hybrid system is a dynamical system that has a
combination of continuous- and discrete-time behavior [44, 45]. Hybrid systems180

often involve the discrete switching between sets of dynamics, such as a ther-
mostat, or a discrete jump in states, such as a bouncing ball. Stochastic hybrid
systems are those that have non-deterministic dynamics or non-deterministic
conditions on the state switching [46]. Here, a hybrid system is needed to
model the switch between freezing and escaping behavior.185

3. Probabilistic Analytical Modeling General Method

We now present the general PAM procedure used to determine which pa-
rameters in a given predator-prey interaction are most critical to survival.

1. Choosing a dynamic model. The first step is to analyze the experimental
kinematic data to determine the dynamics of the system. A catalog of standard190

pursuit tactics and their dynamical models may be useful [6, 7], see Section 2.1.
In more complicated cases where the prey is highly responsive to the actions of
the predator, a differential-game setting may be required [47].

The chosen model need not exactly predict the actions of the predator and
prey seen in experiments, but it should capture the essential attributes of their195

behavior. For example, many of the standard pursuit models assume constant
speed of the predator and prey, which is not the case in a biological system. This
assumption may be tolerable (as with the bluefish case study in Section 4) unless
either the predator or prey exhibit some specific speed-changing behavior (such
as the starting and stopping of the larvae’s motion in response to the zebrafish200

in Section 5).
If the predator-prey interaction is well modeled by a dynamical system from

literature (as it is in Section 4), then deriving an analytical expression for the
key metric may be trivial or already available. If a more non-traditional model
is required to describe the behavior (as in Section 5), then the development of205

the model and the derivation of the expression for the key metric may be an
iterative process.

6



2. Fitting probability densities to the experimental data. Once a model has been
selected, each of the parameters in that model are fit from the experimentally
observed data set. These parameters may include predator or prey speeds,210

angles, capture rates, etc. It may be advantageous to model certain parameters
as deterministic and others as probabilistic to simplify the expression of the
expected value of the key metric. For example, in Section 4, the predator and
prey speeds are treated as random variables, whereas in Section 5 they are
deterministic because more interesting behavior in the prey species arises from215

variations in sensing range.
Many techniques exist for fitting PDFs to data sets [41, 42]. A particular

form of the PDF for each parameter is not required for the following steps (e.g.,
it need not be normally distributed) and that fact is a strength of this work. In
certain cases, deterministic functions may be fit to data, like the success rate of220

strikes as a function of distance in Section 5.

3. Choosing a key metric. The key metric will be a measure of the success of
the predator or prey in either the predation or escape behavior. In many cases,
such as for probability of capture, the predator’s goal is to maximize the metric
and the prey’s goal is to minimize it.225

An analytical expression of the key metric is required to calculate its ex-
pected value. The expression is derived from the model of the predator/prey
interaction and both the expression itself and the steps to derive the expression
may be unique to each model and metric. Some component of the system dy-
namics may need to be directly integrated and numerical integration may not230

be sufficient. For this reason, concurrent or iterative development of the model
and the expression of the key metric may be required to modify the model into
an integrable form.

4. Finding the expected value of the key metric. Depending on the form of the
expression of the key metric, a direct application of the multivariate extension235

of equation (2) will provide the expected value, as is the case in Section 4. For
more complicated expressions, something akin to what is done in Section 5 may
be required, where conditional statements are incorporated into the calculation
of the expected value.

5. Parameter perturbation analysis. To study the relative effect each of the pa-240

rameters in the model has on the expected value of the key metric, we employ
a scheme similar to that used in [28], where the expected values of the proba-
bilistic parameters are varied by shifting the terms within the PDFs. In [28],
the varied PDFs were tested in a Monte Carlo framework to recalculate the
expected value of the key metric from a multitude of simulations. In the work245

described here, the expression for the expected value of the key metric need only
be re-evaluted with the varied PDFs, taking advantage of the inclusion of the
system dynamics in the key metric.

The expected value of the key metric as a function of the change of each
parameter from its nominal value reveals which parameter most greatly influ-250

ences the key metric and, therefore, the survival of either the predator or prey.
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Figure 1: Pursuit kinematics for predator (p, red) and prey (t, blue). The swimming direction
of both animals are defined by the velocity of prey (vt) and predator (vp), relative to the
range vector (r, at angle λ), specified by the bearing of predator (δ) and prey (θ). The heading
(γ) of each animal is defined relative to the inertial reference frame.
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Figure 2: Trajectories of predator and prey for three representative experiments. Dotted
trajectories are those generated by the deviated pure pursuit (DPP) control (Eqn. 3) with δ∗ =
−4◦, 11◦, and 27◦, which were the best match for these trials from left to right, respectively.

Though the PAM technique was developed for predator-prey interactions, it is
applicable to examine metrics for any dynamical process with natural variation
in the parameters.

4. Bluefish Case Study255

This section describes the application of PAM to examine the predatory
behavior of bluefish as they preyed upon mummichog [29].

Deviated pure-pursuit (DPP) dynamics. Figure 1 defines the planar pursuit
geometry used in this case study. The vector of length r between the predator
and the prey is known as the line of sight and is inclined from the inertial260

reference frame by an angle λ. The predator’s velocity vector vp is inclined
from the line of sight by the pursuit (deviation) angle δ and likewise the prey’s
velocity vt is inclined by θ. The velocity magnitudes (i.e., speeds) are denoted
vp > 0 and vt > 0. The angle of the velocity vectors from the inertial frame are
γp and γt for the predator and prey, respectively.265

To verify that the bluefish are using DPP, we compared simulations of the
DPP dynamics to the experimental trajectories. Comparisons were very favor-
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Figure 3: PDF for the pursuit angle δ fit from experimental data. Geometric δ(t) data are
determined from the predator heading γp and line of sight angle λ at each time step. Fit δ∗

data are the angles in dynamics (3) that best match the fish trajectories.

able even without accounting for predator-predator interactions. Figure 2 shows
three examples of these comparisons, where the simulated trajectories obey the
following dynamics:

ẋp = vp cos γp

ẏp = vp sin γp

γ̇p = k(λ+ δ∗ − γp) = k(δ∗ − δ)
vp(t) = measured predator speed at time t,

(3)

where (xp, yp) is the predator position, k > 0 is the scalar feedback gain, and δ∗

is the desired pursuit angle. With γp as a control input, these dynamics use only
the geometric angle δ as feedback, a value that may be available to the bluefish
from their visual system [30]. In the experimental data, the predator’s speed
vp varies within a pursuit. Thus, in the simulated trajectories (e.g., Fig. 2) the270

DPP tactic is used for the predator steering, given the experimentally measured
values of speed. The particular pursuit angle δ∗ used in (3) is unique to each
trial and was found by sweeping through values δ∗ ∈ (−π, π] and choosing the
δ∗ that best matched the experimental trajectories in the least-squares sense.

Experimental data fitting. Three probabilistic parameters are needed to calcu-
late the expected value of the time to capture as seen below in the key metric
section. The pursuit angle δ as calculated by the geometry in Fig. 1 is well
represented by a normal distribution. However, since δ ∈ (−π, π], we use a von
Mises distribution, which is often referred to as the wrapped normal distribu-
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Figure 4: Joint PDF for predator speed vp and prey speed vt shown as a contour plot.
Marginal PDFs are shown in blue and orange in the vertical axis.

tion. Figure 3 shows two PDFs given by

f∆(δ) =
1

2πI0(κδ)
exp (κδ cos(δ − µδ)) , (4)

where I0 is the modified Bessel function of order 0, µδ is the mean value and275

κδ ≥ 0 is a term that represents the spread of the distribution with κδ = 0
corresponding to a uniform distribution. The first PDF is fit from the geomet-
rical δ(t) at every time step across all experiments and the second is fit from
the δ∗ value associated with each trial from dynamics (3). The δ(t) PDF has
much more variance because the bluefish do not perfectly track the δ∗ values280

and oscillate about them in each trial. Values for the δ∗ fit parameters are used
in this case study (the result is nearly identical in either case) and are given in
Table 1.

The probability densities for the speed of the predator and prey are not
independent because although the prey is largely unresponsive to the actions
of the predator, it is unclear whether or not the predator adjusts its speed
in response to the prey. A bivariate log-normal density is fit to the data set
of (vp, vt) pairs taken at every time step across all experimental trials. Let
L(vp, vt, µv) = [ln vp, ln vt]

ᵀ − µv. Figure 4 shows the joint PDF

fVp,Vt
(vp, vt) =

1

2π
√

det Σv
exp

(
−1

2
L(vp, vt, µv)

ᵀΣ−1
v L(vp, vt, µv)

)
, (5)

where µv and Σv are given in Table 1.

Key metric. In the experimental setup, many bluefish simultaneously begin285

pursuit when the prey fundulus is
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Probabilistic
parameters

δ Pursuit angle
µδ = 0.0720 rad
κδ = 73.8049

vp Predator speed µv =

[
0.1565
−0.5286

]
vt Prey speed Σv =

[
0.2849 0.1070
0.1070 0.9147

]
Initial
conditions

r0 Range 1 m
θ0 Prey heading π/2 rad

Table 1: Parameters of the bluefish pursuit model. Pursuit angle δ has a von Mises distribution
with PDF f∆(δ). The predator speed vp and prey speed vt form a bivariate lognormal PDF
fVp,Vt (vp, vt). The given parameters correspond to means speeds of 1.38 m/s and 0.95 m/s for
the predator and prey, respectively. Intial conditions are determinisitic with nominal values
as given.

Assume a constant speed for the predator and a non-maneuvering prey,
meaning the prey moves with constant speed and direction. Though this it not
strictly the case for the experimental data, we seek to examine the effect of
pursuit angle δ and so we do not study the effect of changing speed during a290

pursuit. Additionally, assume that the predator maintains a constant pursuit
angle δ throughout its trajectory. The predator speed, prey speed, and pursuit
angle are considered as random variables.

With these assumptions, the dynamics of the DPP system in terms of the
rate of change of the line-of-sight range r and angle λ shown in Fig. 1 are [6]

ṙ = vt cos θ − vp cos δ

−λ̇ = θ̇ =
1

r
(−vt sin θ + vp sin δ) ,

where λ̇ = −θ̇, because the prey is non-maneuvering. Using these dynamics,
the time to capture is [6]

tc(r0, θ0, vp, vt, δ) = r0
vp + vt cos(θ0 + δ)

(v2
p − v2

t ) cos δ
. (6)

Expected value of key metric. For two random variables X and Y and a non-
linear function Z = g(X,Y, ) it is not true in general that E[Z] = g(E[X],E[Y ])
[40]. Since three of the parameters in (6) are random variables, we must instead
calculate the expected value by using the multivariate extension of (2):

E[Tc] =

∞y

−∞
tc(r0, θ0, vp, vt, δ)fVp,Vt(vp, vt)f∆(δ)dvpdvtdδ, (7)

which assumes δ is independent from vp and vt.
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Figure 5: (a) Probabilistic parameter variation for the bluefish case study (solid). Dashed lines
are those from deterministic perturbation analysis. (b) Extended variation for the pursuit
angle δ with the black circle showing the minimum time to capture. The region outlined in
gray is shown in (a).

Parameter perturbation analysis. To determine which parameters have the great-295

est effect on the time to capture tc, we use the technique described in Section
3. Figure 5(a) shows the result of this process, in comparison to a determinis-
tic evaluation of (6) directly using E[Vp], E[Vt], and E[∆]. Increasing the prey
speed or decreasing the predator speed has a much less pronounced effect on
E[Tc] as compared to the deterministic technique. This effect is because the300

deterministic case considers only single values of vp or vt that may become very
close as either is varied, causing tc to become large. The probabilistic case bal-
ances this effect by considering all possible values of vp and vt according to their
likelihood from (5). Even if E[Vp] and E[Vt] are very close, there are still many
other values that are accounted for by (7). The nominal initial conditions used305

in this plot are r0 = 1 m and θ0 = π/2 rad.
Figure 5(b) shows an extended variation of the pursuit angle δ from its small

nominal value of 4.13◦. We see that there exists an optimal pursuit angle much
higher than the pursuit angle most often used by the bluefish. This optimal
angle corresponds to the intercept tactic (see Section 2.1). Since the bluefish310

do not appear to be optimizing this metric, we discuss alternative explanations
below.
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Discussion. The deterministic versus probabilistic study of the effect of varying
the parameters yields different, yet qualitatively consistent results as seen in
Fig. 5. Though the unperturbed (0% change from experimental parameters)315

value of time to capture is incorrect, the deterministic study yields the correct
trends near the nominal values, but does not accurately predict time to capture
as the parameters are varied further. For larger deviations, the probabilistic
study shows the expected effect on the time to capture tc.

As seen in the δ curve in Fig. 5(a), increasing/decreasing the pursuit angle δ320

has very little effect on the time to capture, because the bluefish most often use
small, but non-zero, pursuit angles (Fig. 3). Why the bluefish use a deviated
pure pursuit (DPP) tactic over a pure pursuit (PP) tactic (the δ = 0 case)
when it yields such small changes in capture time is not clear. The analysis
shows that a time-optimal pursuit angle exists (Fig. 5(b)), though the bluefish325

operate far from its value. DPP may present a tactical advantage for a more
evasive prey than the prey presently considered. For example, a faster prey
might prompt the bluefish to increase δ such that their swimming trajectory
more closely resembles the CATD tactic (see Section 2.1). Alternatively, DPP
may indicate a constraint or bias on the sensorimotor system of the bluefish.330

Bluefish may more quickly process the position of the prey when it is present in
the visual field of a single eye, which is facilitated by a non-zero value for δ. In
most cases, the predator chose to fix the prey in the eye on the side that leads
the prey velocity (δ > 0), which does slightly reduce capture time compared to
the negative of that angle.335

5. Zebrafish Case Study

The second PAM case study considers prey evasion tactics in larval zebrafish
pursued by adult zebrafish [28]. The prey in this case attempts to escape by
accelerating to a speed that is faster than the predator, as described in Section
2.4.340

To calculate the key metric for this case study, a one-dimensional hybrid
system model of the dynamics is formulated. The continuous part of the hybrid
system describes the approach of the predator and the escape behavior of the
prey, whereas the discrete part handles the switching of parameters between
repeated approaches and the onset of escaping behavior.345

Hybrid pursuit model. Among pursuit tactics [6, 7, 8], pure pursuit is best rep-
resented by a one-dimensional model since the predator always moves directly
towards the prey and the distance between them is of prime importance.

The distance between the predator and prey at time t is r(t). The predator
will attempt a strike if r(t) is less than the strike distance s. The prey begins its350

escape if r(t) is less than its sensing range (flush distance) l. The prey escapes
for η seconds, reaching its maximum speed vt at a fraction χ of its escape time.
C(s) is the probability of a successful strike as a function of strike distance s
and is experimentally determined. Table 2 summarizes the parameters used in
the model and includes their values for this case study.355
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Probabilistic
parameters

s Strike distance of predator
µs = −4.980
σs = 0.448

l Sensing distance of prey
µl = −4.546
σl = 0.587

η Escape duration of prey
µη = −1.369
ση = 0.552

Deterministic
parameters

vp Predator speed 0.13 m/s
vt Maximum prey speed 0.4 m/s
χ Fraction of η when u is reached 0.2

Deterministic
function

C(s) Strike success chance
ρ = −0.573
ρ0 = 5.20

Table 2: Parameters of the model for the zebrafish case study. Probabilistic parameters have
log-normal probability density functions fS(s), fL(l), and fH(η). C(s) is a sigmoidal function
of the form C(s) = [1 + exp(−ρ(s− ρ0))]−1.

Figure 6: Prey velocity profile (vt) after detecting the predator. The prey escape duration is
η; it reaches its maximum speed at fraction χ of the escape duration.

Assume that the predator reaches its maximum speed vp sufficiently far
from the prey so that predator acceleration may be ignored. The prey remains
stationary until it detects the predator, that is, until r(t) ≤ l, the sensing
distance of the prey. Once the predator is detected, the prey escapes with a
sawtooth velocity profile, as shown in Fig. 6. This type of velocity profile is360

general to many startle responses seen in nature where the prey quickly flees
only to come to rest again a short time later [28].

Figure 7 illustrates the hybrid dynamics of this non-deterministic system for
one or more approaches. The approach number an = n counts the number of
times the prey has begun escaping from the predator. The time since observation365

begins is t. The time from when approach an begins is t(n) = t − t(n)
0 , where

t
(n)
0 is the time when an increments. Additionally, on approach n, each of the

probabilistic parameters s(n), l(n), and η(n) are redrawn from their densities,
fS(s), fL(l), and fH(η), respectively. Figure 8 shows a sample trajectory of the
dynamics using the case-study data.370
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Figure 7: Non-deterministic hybrid system model of predator-prey interaction. The box rep-
resents the discrete dynamics and the ellipses represent continuous dynamics. Probabilistic
variables are redrawn from their respective PDFs each time the approach number an is incre-
mented.

Experimental data fitting. All of the parameters in Table 2 were experimentally
determined or fit in [28]. The probabilistic parameters have log-normal PDFs
with the form

fX(x) =
1

x
√

2πσ2
x

exp

(
− (lnx− µx)2

2σ2
x

)
.

The strike probability of success has the form C(s) = [1 + exp(−ρ(s− ρ0))]−1.
Though the experiments showed some variation in the maximum speed of the
predator and prey, here we treat them as constants because we seek to study
the more interesting fleeing behavior of the prey.

Key metric. Probability of capture has relevance to both the predator and prey,375

one seeking to maximize it and the other to minimize. The goal is now to
analyze the hybrid system to derive an expression for the expected value of
the probability of capture on approach and the probability of survival after n
approaches.

Expected value of key metric. For the prey to be captured, two conditions must
be met. First, the minimum distance r(n) must be less than the strike distance.
If r(n) is not less than s(n), then no other point on the trajectory will be. This
condition states that a strike will be attempted, though not where the strike
will occur. Second, the strike must be successful. This condition is given by the
function C(s), which gives the probability of success of a strike at distance s(n).
Thus for the predator-prey interaction described by the dynamics in Fig. 7, the
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Figure 8: Sample trajectory of simulated dynamics in Fig. 7 using the zebrafish case-study
data and model. The prey begins escape three times before a strike occurs at the black ×.

probability of capture on approach is

PCoA = E[C(s)], given r ≤ s.

Critical to this analysis is finding the minimum distance r(n) between the380

predator and prey. With the goal to find the minimum distance r on a single
approach, we restrict our analysis to the interval t(n) ∈ [0, η(n)]. The first of two
possibilities where r may achieve a minimum is r1 during the prey accelerating

phase in Fig. 7, when ṙ = 0 at t(n) = vpχη
(n)/vt. The second possibility is r2

during the prey decelerating phase in Fig. 7, which occurs at the end of the385

interval, t(n) = η(n). The minimum on the interval is then r = min(r1, r2).
To find r1, from Fig. 7, we have

ṙ(t) = −vp +
vt
χη
t, r(0) = l (8)

on the interval t ∈ [0, χη], where we dropped the superscripts on t(n), η(n),
and l(n) as we are considering only a single approach and each approach is an
independent event. Integrating directly and evaluating at t = vp(χη/vt), the
local minimum is

r1(η, l) = −
v2
pχ

2vt
η + l. (9)

The second possible minimum, r2, occurs at the end of the entire escape
phase shown in Fig. 6 at t = η. The distance traveled by the predator and prey
during this time are vpη and vtη/2, so

r2(η, l) =
(vt

2
− vp

)
η + l, (10)

The two possible minima r1 and r2 are each a linear combination of η and
l, so the joint PDF is expressed in terms of fH(η) and fL(l) as [48]

fR1R2(r1, r2) =
1

ad− bc
fH

(
dr1 − br2

ad− bc

)
fL

(−cr1 + ar2

ad− bc

)
, (11)
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where a = −v2
pχ/2vt, b = 1, c = vt/2−vp, and d = 1. The PDF of the minimum

of r1 and r2 is found using (see Appendix) (16):

fR(r) =

∫ ∞
r

(
fR1R2(r, w) + fR1R2(w, r)

)
dw, (12)

The joint probability density function of r and s is fRS(r, s) = fR(r)fS(s)
[40], assuming the minimum distance and the strike distance are independent.
The probability of capture PCoA = E[Ĉ(r, s)], where Ĉ(r, s) is an auxiliary
function that takes value C(s), if r ≤ s, and 0 otherwise. From (see Appendix)
(17), we have the probability of capture on approach

PCoA =

∫ ∞
−∞

C(s)fS(s)

(∫ s

−∞
fR(r)dr

)
ds. (13)

Equation (13) provides the probability that the prey is captured on a given
approach of the predator. Applying this equation to the case-study data yields
PCoA = 0.07. As a check, the dynamics given in Fig. 7 were simulated until
the result was invariant to the number of simulations and it was found that390

PCoA matched the result from (13). For each trial in the simulation, r(t) was
integrated using a first-order Euler method. To calculate PCoA, the total number
of captures was divided by the total number of trials in the simulation. Figure
9 shows the result of the Monte Carlo trials, where 100,000 trials were needed
to converge to the output of the single equation (13).395

Assuming each approach is an independent event, the probability that the
prey survives after n approaches is [40]

PSnA(n) = (1− PCoA)n. (14)

Equation (14) in conjunction with (13) allows experimentally gathered PDFs
of predator-prey parameters to be used to calculate the odds of prey survival
after repeated approaches by the predator. Note that as n→∞, PSnA(n)→ 0
and thus the prey are always captured eventually.

Parameter perturbation analysis. Equations (12) and (13) allow interrogation400

of experimentally gathered data to find which parameters are most important in
the predator-prey interaction. By shifting the mean of the probabilistic param-
eters (or shifting the values of the deterministic parameters) and recalculating
(13), the most important parameters to prey survival become readily apparent.

Figure 10 shows the result of the perturbation analysis. Increasing sensing405

range l and maximum escape speed vt increases the probability of survival of the
prey. However, there is a larger increase seen when sensing range is increased
rather than escape speed. Increasing escape duration η decreases probability
of survival, likely because it takes the prey longer to reach its maximum speed
(escape duration and maximum speed determine acceleration). Parameter χ,410

the fraction of the escape time at which the prey reaches its maximum speed,
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Figure 9: Monte Carlo simulation results of the dynamics in Section 5. The dashed line
indicates the prediction of (13).

matches the result of varying η almost exactly because both terms determine
the prey’s acceleration on the first leg of its velocity profile.

When strike distance s is increased, the probability of survival also increases.
In this case study, the decrease in probability of capture that results from the415

condition r ≤ s is outweighed by the decrease in likelihood of a strike being
successful at the increased range (capture probability C(s) is much lower when
striking from a farther distance). Decreasing s decreases prey survival only
up until a point where the trend reverses. The probability densities interact
such that the increased odds of a successful strike at a short distance eventually420

outweigh the chance that the prey escapes due to sensing the predator before it
can strike.

Discussion. Trend-reversing behavior such as is seen here when strike distance is
varied cannot be predicted from the dynamics of the non-deterministic hybrid
system presented in Fig. 7 alone, as it depends on the particular parameter425

PDFs. The ability to predict behavior of this type by combining experimentally
fit PDFs with a model of the dynamics is a strength of the data-driven approach.
In this case study, sensing range is pivotal to prey survival. Especially in the
negative changes in l, there is a much larger decrease in survivability compared
to the other parameters. These results agree with those of a comparable analysis430

performed by a Monte Carlo simulation [28], but was resolved here analytically.
The PAM method gives something more than agreement with numerical

simulations for this case study: it explains why sensing range is most impor-
tant. The derivation of the probability of capture revealed that it is imperative
to increase the minimum distance if the prey wishes to survive. The analyti-435

cal expressions (9,10) for the minimum distance show that it has a one-to-one
correspondence with sensing range. (Compare this observation to the other pa-
rameters that enter the expressions multiplied by other factors.) To increase sur-
vivorship, natural selection would favor individuals with greater sensing range
more so than greater speed. However, to account for additional features such440
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% Change in Parameter

Figure 10: Probability of suvival PSnA(1) = 1 − PCoA for n = 1 approach, as the means of
the parameter distributions are varied.

as a requirement of the prey to feed or predators that have difficulty sensing
motionless prey, the model used here is insufficient. Special consideration would
be needed in that case, which adds complexity to the model formulation.

Figure 10 also includes a curve corresponding to varying escape angle θ from
a nominal value of 2π, which corresponds to when the prey flees directly away445

from the predator. Since our dynamics model is one dimensional, a reasonable
approximation to the two-dimensional concept of escape angle is to reduce the
effective escape speed to ueff = u cos θ. We see that in our model any variations
away from direct escape result in lower chances of survival, something not seen
in [28]. Our choice to represent the pursuit in only the one-dimension r ignores450

any turning dynamics that may exist in the predators motion, i.e., it is always
heading directly towards the prey. This choice neglects the potential tactic of
the prey of changing its escape direction unexpectedly after each escape phase,
thereby requiring the predator to change its orientation with some associated
time delay corresponding to its turning dynamics. Expanding this model to455

include turning dynamics of the predator and thereby allowing an investigation
of the benefit of unpredictability in the prey’s escape angle is a suitable topic
for ongoing work.

6. Conclusion

This study models the tactical behavior of predator or prey with a novel460

combination of analytical mathematics and data-driven variability called prob-
abilistic analytical modeling (PAM). Experimental measurements of kinematic
features such as speed and flush distance combined with PAM predicts the out-
comes of biological events in ways that experiments or modeling alone cannot.
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Our first case study showed that the trajectory of a bluefish predator may be465

predicted with a deviated pure pursuit tactic. Analysis of this tactic revealed no
substantial advantage compared to pure pursuit, indicating that the small, non-
zero values for the pursuit angle may indicate a sensorimotor bias or perhaps a
tactical advantage not revealed by the prey species presently considered. The
second case study on zebrafish predicted the survivorship of prey using a simple470

evasion algorithm. Analysis of this model was consistent with previous numeri-
cal results showing that sensing range is most important to survival among the
behavioral parameters of the prey. In both case studies, PAM demonstrates the
utility of a principled approach for understanding tactics in predation.

Beyond predator-prey interactions, the PAM method offers advantages for475

the modeling of a variety of dynamical systems. These benefits compare well
against a Monte Carlo method, which may similarly incorporate measurements
but requires numerical simulations to formulate its predictions. Unlike Monte
Carlo, the predictions of PAM do not vary with the number of simulations or the
tolerances of the numerical solver [49]. PAM scales well with the number of prob-480

abilistic variables in the model, whereas the number of Monte Carlo simulations
required to formulate a prediction is a multiple of these variables. Models with
stochastic processes additionally challenge the capacity of numerical solvers to
converge or arrive at an accurate solution [50]. Therefore, the capacity of PAM
to formulate predictions through analytical means should become increasingly485

more apparent for systems of greater complexity.
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Appendix

Given random variable Z = min(X,Y ), let us compute fZ(z). We first
state that from the definition of a cumulative distribution function FZ(z) =
P [min(X,Y ) ≤ z]. The event min(X,Y ) ≤ z is true if either X ≤ z or Y ≤ z.
In set notation,

FZ(z) = P [min(X,Y ) ≤ z]
= P [X ≤ z ∪ Y ≤ z]
= P [X ≤ z] + P [Y ≤ z]− P [X ≤ z ∩ Y ≤ z]
= FX(z) + FY (z)− FXY (z, z), (15)

where the third line is a direct application of the inclusion-exclusion principle,
which states that, for two events A and B, P [A∪B] = P [A] +P [B]−P [A∩B]
[40]. To find the PDF from the CDF (15), we take the derivative with respect
to z, i.e.,

fZ(z) =
dFz(z)

dz
= fX(z) + fY (z)− d

dz
FXY (z, z)

= fX(z) + fY (z)−
∫ z

−∞
(fXY (z, w) + fXY (w, z)) dw

=

∫ ∞
−∞

fXY (z, w)dw +

∫ ∞
−∞

fXY (w, z)dw −
∫ z

−∞
(fXY (z, w) + fXY (w, z)) dw

=

∫ ∞
z

(fXY (z, w) + fXY (w, z)) dw. (16)

For independent random variables X and Y , the expected value of

h(X,Y ) =

{
g(Y ) if X ≤ Y,
0 otherwise

21



is

E[h(X,Y )] =

∞ ∞x

−∞−∞
h(x, y)fXY (x, y)dxdy

=

∞ ∞x

−∞−∞
h(x, y)fX(x)fY (y)dxdy

=


∞ ∞s

−∞−∞
g(y)fX(x)fY (y)dxdy if X ≤ Y

0 otherwise

=

∞ yx

−∞−∞
g(y)fX(x)fY (y)dxdy

=

∫ ∞
−∞

g(y)fY (y)

(∫ y

−∞
fX(x)dx

)
dy. (17)
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