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Abstract6

This paper presents an architecture for estimation of a flow field using a hypothetical oceanographic vehicle that7

is guided along paths of high flow-field observability, a concept quantifying the informativeness of a path. Sampling8

trajectories that pass close to saddle points along separating boundaries of invariant sets provide high observability of9

flow-field parameters. The estimation and control framework consists of a model predictive controller that utilizes a10

measure known as the empirical augmented unobservability index to select from candidate trajectories generated by11

steering the vehicle to separating boundaries of invariant sets. Empirical augmented observability extends empirical12

observability to account for prior uncertainty when performing path planning based on observability. While following13

a selected trajectory, the vehicle takes measurements of its position (e.g., GPS measurements) and accounts for its own14

actuation to produce Lagrangian measurements. The vehicle assimilates this Lagrangian data in a Gaussian Mixture15

Kalman Filter, which is a nonlinear/non-Gaussian filter, to recursively improve its map of the flow field. Using the16

posterior uncertainty of the map, the vehicle plans new candidate routes and continues to sample adaptively. The17

performance of this estimation architecture is demonstrated for a simplified dynamic model of a pair of ocean eddies.18
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I. INTRODUCTION22

Oceanographic forecasters rely on essential data provided by ocean observing systems to infer the approximate23

state of the oceans. These observing systems consist of ocean sampling vehicles that must provide coverage for24

vast areas and remain deployed for extended durations. One such example system is Argo [1], a network of25

approximately 3,750 floats that passively drift in the ocean while collecting hydrographic measurements (e.g.,26

salinity and temperature) during vertical dives. Although Argo measurements are focused on temperature and salinity27

profiles, researchers have used their position data for examining currents at their operating depth of approximately28

1000 m [2], since satellite position fixes of these vehicles also encode flow-current measurements as they drift.29

Other researchers have considered the potential for ocean observing networks that merge the information from30

various heterogeneous sensors to estimate ocean currents at the surface [3]. As forecasters rely increasingly on the31

use of ocean data, these sensor networks must increase in sampling fidelity to adequately capture the dynamic state32

of the 361,900,000 square kilometers of world oceans [4].33

To address the vastness of world oceans, future ocean observing systems should include autonomous vehicles34

such as ocean gliders (long-endurance vehicles capable of steering and buoyancy-driven propulsion) for adaptive35

sampling [3], [5], [6]. Autonomous sampling vehicles may reduce oceanographic uncertainty by selecting beneficial36

routes for collection of measurements in response to uncertainties in estimated environmental processes [7], [8].37

Ocean gliders have already proven useful for adaptive sampling in field experiments [9], however more work is38

necessary to develop an adaptive sampling architecture to use their position data (i.e., Lagrangian data) during39

extended deployments. Position data contains rich information about the underlying flowfield.40

A self-propelled vehicle acts as a quasi-Lagrangian sensor if its position data (e.g., GPS measurements when41

surfacing) are used as measurements after accounting for the control effort exerted by the vehicle. Planning feasible,42

efficient, and information-rich routes is essential for long-endurance vehicles like gliders that are minimally actuated.43

Prior research has planned time-optimal and energy-optimal paths for continuously self-propelled vehicles [10]–[12].44

However, there still exists no comprehensive framework for ocean flow estimation from position data that utilizes45

forecasts of ocean currents for path planning of autonomous vehicles with minimal actuation.46

Our estimation and control architecture enables a self-propelled vehicle to estimate unknown parameters of the47

surrounding flow modeled using potential flow theory. There are three main components of the architecture: (i) the48

Augmented-Observability Planner with expected cost (A-OP) evaluates multiple possible paths and selects one that49

maximizes the augmented observability of the flow-field parameters; (ii) a hybrid steering controller that creates50

candidate vehicle paths by guiding the vehicle along highly observable routes; and (iii) the Gaussian Mixture51

Kalman Filter (GMKF), which performs nonlinear/non-Gaussian estimation of the states and parameters. The A-52

OP plans paths that maximize observability of the flow field parameters, given that the vehicle already has some53

prior knowledge and that the prior probability over the parameter space may be non-Gaussian. The hybrid steering54

controller ensures convergence of the vehicle to a closed, convex curve (a closed streamline of flow field) in the55

presence of an underlying flow that causes the vehicle to drift. The GMKF estimator integrates the non-Gaussian56

uncertainty developed during the propagation of the state through the flow field.57
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The ability to infer uniquely the parameters or the initial state of a system by analyzing its output collected58

over specified time interval is the property of observability in dynamical systems theory. Other works (e.g., [13]59

and [14]) have considered observability or empirical observability (its approximation in the case of a nonlinear60

system) to plan informative trajectories for sampling vehicles. The trajectories can be considered informative due61

to the close connection between observability and information theory (e.g., see [15]). Hinson et al. [13] analytically62

obtain a trajectory that maximizes inertial position and heading observability for a vehicle in a uniform flow. Using63

linearized dynamics, their optimization is posed to select a path that minimizes the condition number for the linear64

observability Gramian. Unfortunately, analytical solutions exist only in specialized cases [13]. DeVries et al. [14]65

confront this difficulty with an optimization evaluated over a finite set of pre-selected candidate trajectories formed66

through discretization. Leonard et al. [16] launched an adaptive sampling field experiment in Monterey Bay that67

utilized a similar optimization over a set of multivehicle sampling patterns with respect to a performance metric68

based on estimation error. Optimization over a finite set of candidate trajectories reduces computational cost and69

enables incorporation of other control objectives by using them to first generate the candidate trajectories.70

Path planning in an uncertain environment requires observability computations that depend on uncertain param-71

eters or states. To include the uncertainty of the state/parameter estimates in observability-based path planning, we72

introduce the augmented observability Gramian in [17], which is the Hessian matrix of an optimal data assimilation73

strategy for initial state inference. Augmented observability combines the observability Gramian with the inverse74

of the state error covariance, which captures the uncertainty present in the estimate of the current state. We75

demonstrate via numerical experiment in [17] that augmented observability-based path planning based on Gaussian76

prior knowledge yields the vehicle path with observability that is most complementary to prior information for initial77

state inference. Augmented observability plays a central role in the path planning portion of the control architecture78

of this paper. Furthermore, we create the A-OP, which extends augmented observability-based path planning to79

probability densities functions (PDFs) that may not be Gaussian by representing the uncertainties using a Gaussian80

mixture model (GMM). The components of the GMM provide weighted realizations from the prior density that can81

be analyzed individually for augmented observability. We achieve an overall analysis that combines the component82

analyses by calculating an (approximate) expected cost with weights drawn from the mixture model.83

An architecture for control of autonomous oceanographic vehicles and flow estimation using position data should84

account for barriers to transport formed by coherent flow structures. Coherent structures can form entrained regions85

of the flow field, also known as (almost) invariant sets; a sampling platform cannot escape an invariant set without86

expending control effort. Salman et al. [18] address this issue of the influence of flow field geometry on estimation87

performance by optimizing locations for the launch of unactuated drifting vehicles. We make use of the separating88

boundaries of invariant sets during path planning; we claim that sampling along these boundaries yields higher89

observability of the overall flow field. This claim complements the work of Michini et al. [19] in which a three-90

robot team is constructed to follow coherent structure boundaries for purposes related to energy- and time-optimal91

transport. The prior works [20], [21] describe coherent-structure path following for surface vessels in laboratory92

experiments using vehicles that measure local flow velocity. Krener and Ide [22] proposed deployment of Eulerian93

and Lagrangian sensors in a two-vortex flow according to an empirical observability analysis. We further their94
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findings for Lagrangian measurements by showing that separating boundaries are associated with high observability95

of a parameterized flow field.96

We utilize a two-vortex model for path planning studies to test out our estimation and control framework, because97

examining the two-vortex model naturally extends prior observability-based path planning work in a two-vortex98

flow without actuated vehicles [22], in stationary point vortex flow [14] and time-invariant, uniform flow [13].99

Point-vortex and potential flow methods have been used to model geophysical flows including ocean eddies in [23]100

and [24]. Two-vortex or vortex dipole models are relevant to oceanography because coherent vortex dipoles have101

been observed in the offshore California current [25] and are known to occur regularly where the southward branch102

of the East Madagascar Current separates from the continental shelf south of Madagascar, where they contribute103

to mixing processes [26]. The work [27] provides additional details on the modification of potential flow models104

for increasing physical relevancy to include rotational effects (in quasigeostrophic balance between the pressure105

gradient and Coriolis acceleration component), changes in vortex circulation strength in time, and the formation and106

shedding of vorticity in time. The two-vortex model is useful in path-planning studies due to the model’s analytical107

representation and the presence of coherent structures, which act as barriers to transport. For general ocean data, a108

technique for identifying coherent flow structures is Finite-Time Lyapunov Exponent (FTLE) analysis [20].109

Steering a vehicle along separating boundaries of invariant sets requires a control law for path following. Zhang110

and Leonard [28] developed such a control law but did not include the effects of the flow field on the vehicle.111

We propose a hybrid controller for a vehicle modeled as a self-propelled particle that includes a streamline control112

law and a streamfunction-value control law. Under this hybrid controller, the vehicle navigates along the separating113

boundaries of a spatially nonuniform, time-invariant flow field, while periodically re-assessing its chosen route.114

The streamline controller is a novel combination of an existing steering algorithm in the absence of flow [28] with115

an existing transformation of the vehicle speed and flow-relative heading [29] for a steering controller in a time-116

invariant flow field. This control law guarantees that the vehicle steers to a unique closed streamline of the flow by117

constructing a Bertrand family of curves from the target streamline, which must be a closed, regular, simple curve.118

We further construct a valid region for the streamline control law by showing that within this region, a unique119

closest point exists on the streamline, thereby extending the existing controller of [28] to closed streamlines that120

are nonconvex. The streamfunction-value control law steers the vehicle to the region of validity of the streamline121

control law. Taken together, these control laws are a hybrid control approach that generates candidate trajectories122

along highly observable paths, i.e., the separating boundaries of invariant sets.123

Another essential element in the adaptive sampling architecture is a state estimator for non-Gaussian densities124

and nonlinear dynamics, the Gaussian Mixture Kalman Filter (GMKF). The GMKF replaces non-Gaussian PDFs125

with approximations based on a mixture of Gaussians, a technique that has been shown to be highly effective126

for nonlinear filtering [30]. Following [31], we choose the number of Gaussians in the approximation to provide127

the simplest fit (i.e., using the fewest parameters) of a Gaussian mixture to the data through minimization of the128

Bayesian Information Criterion (BIC). These elements combine to form a novel architecture for estimation of an129

unknown flow field using measurements of vehicle position. The primary novelty in this framework lies in the use130

of the GMKF estimator to inform the A-OP planner, by which the A-OP weighs candidate paths with respect to131
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how their anticipated observability gains complement prior information. Candidate trajectories are generated by the132

hybrid controller steering along paths of high observability for multiple flow-field realizations, based on a non-133

Gaussian prior density over the flow-field parameters. The A-OP evaluates the pre-selected control signals for the134

most informative path through an analysis of augmented observability. The GMKF processes the Lagrangian data135

(after subtracting the vehicle’s control actions) to output updated estimates of the flow-field parameters.136

This paper contributes: (i) a hybrid control law for steering self-propelled vehicles along separating boundaries of137

invariant sets in a time-invariant flow field; (ii) a novel method of scoring candidate trajectories by calculating the138

approximate expected cost of the augmented unobservability index; and (iii) a guided-Lagrangian adaptive sampling139

architecture for estimation of flow-field parameters. Numerical experiments that demonstrate the additional benefits140

of each element in the proposed architecture are presented for a single vehicle navigating in and estimating the141

strengths and locations of a pair of ocean eddies modeled as two co-rotating, potential-flow vortices.142

The paper represents an integration and significant extension of the conference proceedings [32], [33]. The143

work [33] demonstrates that a kinematically controlled, infrequently actuated vehicle can obtain greater flow-field144

observability than a passively drifting vehicle by executing a user-defined tour of separating boundaries of invariant145

sets. The work [32] shows that a dynamic, steering controlled vehicle can achieve improved estimation performance146

compared to a drifting vehicle by using the GMKF while steering along boundaries prescribed in a user-defined147

tour. This paper proposes path planning for navigation along invariant-set boundaries without requiring a user-148

specified tour; the vehicle considers candidate trajectories guided to all reachable invariant-set boundaries and149

selects the control that minimizes the expected cost of augmented unobservability of flow-field parameters. This150

paper also utilizes the concept of augmented observability from [17] to perform closed-loop flow-field navigation151

and estimation of an entire flow field by a guided Lagrangian sensor using feedback and augmented observability152

analysis. In contrast to [32], which uses only the mean state estimate from the GMKF, the planning algorithm in153

this work utilizes the entire posterior probability density by taking multiple samples of the system parameters for154

generation of the candidate trajectories.155

Section II presents background material needed for the remainder of the paper, including a description of the two-156

vortex system, steering control law, observability-based path planning, and GMKF. Section III motivates and develops157

a controller for steering to the boundaries of invariant sets. Section IV presents the comprehensive framework for158

flow-field estimation using an guided Lagrangian sensor. Section V presents numerical experiments demonstrating159

the sampling framework. Section VI concludes the paper and suggests extensions to this work.160

II. BACKGROUND161

A. Two-vortex model162

A pair of ocean eddies may be represented by an idealized model consisting of two point vortices. A time-163

invariant, incompressible flow f ∈ C evaluated at z ∈ C may be represented using the gradient of a streamfunction164

ψ = ψ (z, z) such that165

f = −2i
∂ψ

∂z
, (1)
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(a) Γ2 = Γ1 (b) Γ2 = 2Γ1

Fig. 1. a), b) Co-rotating frame streamlines and fixed points for the two-vortex system [17]

where the overline operator denotes complex conjugation and the conjugate complex partial derivative operator is166

given by ∂/∂z = 1
2 (∂/∂x+ i∂/∂y) [35]. The flow field associated with two point vortices located at z1 and z2 in167

C, with circulation strengths Γ1 and Γ2, respectfully, has the streamfunction168

ψ (z, z) = − 1

2π
(Γ1 log|z − z1|+ Γ2 log|z − z2|) . (2)

For each vortex, flow from the opposing vortex generates the dynamic motion169

żj = − iΓq
2π

zj − zq
|zj − zq|2

, (3)

for j, q = 1, 2 and j 6= q. Vortices that have circulation strengths with the same sign orbit around a fixed center of170

vorticity zcv = (Γ1z1 + Γ2z2) / (Γ1 + Γ2) with an angular rate ω = (Γ1 + Γ2) /
(
2π|z1 − z2|2

)
. The mapping171

z = ξei(ωt+φ) + zcv (4)

transforms between a reference frame centered at zcv rotating with the vortex pair and a fixed inertial frame, where172

φ is a phase angle from the vortex pair’s initial orientation and ξ ∈ C is the location in the co-rotating frame. In173

the co-rotating frame, the streamfunction that corresponds to the co-rotating flow fR under relationship (1) is174

ψR
(
ξ, ξ
)

= − 1

2π
(Γ1 log|ξ − ξ1|+ Γ2 log|ξ − ξ2|) +

ω

2
|ξ|2, (5)

where ξ1 and ξ2 correspond with the z1 and z2 vortex locations, respectively [32].175

Figure 1a presents the streamlines in the co-rotating frame for two vortices of equal strength. Five fixed points176

of the flow field are shown: two centers are shown as circles and three saddles appear as diamonds. There are six177

invariant sets; the black lines represent their boundaries. These boundaries, or separatrices, are the unstable and178

stable manifolds associated with the saddle fixed points that they intersect. Figure 1b shows seven invariant sets179

are induced for two vortices of unequal strengths Γ1 > Γ2 > 0.180

B. Steering navigation of a self-propelled vehicle181

A model for a self-propelled vehicle with speed ρ in the complex plane C without a flow field present is [36]182

ż = ρeiβ with β̇ = v, (6)
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where v is an input for the vehicle turning rate. This model is commonly used for path-planning of autonomous183

vehicles that self-propel with a nominal speed ρ and have steering as their primary means of control.184

Consider a mobile sensor with speed α advected by an underlying flow field f . The model (6) may be modified185

to additively include the flow velocity such that186

ż = αeiθ + f with θ̇ = u, (7)

where θ measures the counterclockwise angle of the direction of self propulsion, and u is the steering input [29].187

To compensate for the influence of the flow field during control design, Paley and Peterson [29] define the188

speed ρ in (6) to be the total vehicle speed ρ = |αeiθ + f |. They define the heading β in (6) to be the angle189

β = arg(αeiθ + f) of the total velocity vector. Under these transformations, the model with flow (7) simplifies to190

the model without flow (6). The inputs of (7) and (6) are related by [29]191

u =
v −

〈
ḟ , ieiβ

〉

1− ρ−1 〈f, eiβ〉 . (8)

Observe that if the vehicle cannot make forward progress, that is, if
〈
f, eiβ

〉
= ρ, then (8) becomes singular192

[29]. One approach to address this issue in strong flows is to use a saturation function on the steering input [36].193

Transformation (8) enables the use of a control developed by Zhang and Leonard [45] for a self-propelled vehicle194

without a flow field present.195

Zhang and Leonard [45] use a path frame to navigate a (possibly non-constant speed) vehicle through a scalar196

field Θ(z) to a level-set {z : Θ(z) = Θdes} for the desired value Θdes. Let a1 = eiβ represent the direction of a197

vehicle’s instantaneous velocity. Form a2 = ia1, so that a1, a2 ∈ C define a path frame for the trajectory of the198

vehicle. The path frame evolves in time according to the dynamics [45]199

ȧ1 = va2 and ȧ2 = −va1. (9)

The solutions of (6) and (9) provide trajectories for the vehicle and its path frame.200

Let path frame (a1, a2) be co-located at z with the vehicle, and build an additional reference frame (b1, b2) that201

is also located at z with b2 aligned in the direction of the gradient of the field, where b1 resulting from a clockwise202

rotation of b2, i.e.,203

b2 =
∂Θ
∂z

|∂Θ
∂z |

and b1 = −ib2. (10)

Figure 2a shows these definitions, using =(·) and <(·) to denote the imaginary and real operators, respectively.204

Take η to be the angle from a1 to b1. Zhang and Leonard [45] consider how η and Θ change while the vehicle205

moves through the scalar field in order to formulate Proposition 1.206

Proposition 1 (Zhang and Leonard [45]). Consider a scalar field Θ(z) over a connected subset of C. Represent the207

extrema of Θ(z) by −∞ ≤ Θmin < Θmax ≤ ∞. Further, assume |∂Θ/∂z| <∞ and |∂2Θ/∂z∂z+ ∂2Θ/∂z2| <∞.208

Allow |∂Θ/∂z| = 0 only at finitely many points where Θ(z) attains the value of either Θmin or Θmax. Let Π (Θ)209
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(a) (b)

Fig. 2. a) Notation used for steering to a desired, scalar level set. b) Observability-based path planning [17]

be a scalar function (see the technical requirements in the Supplemental Materials document). Assume the initial210

condition is such that η(t0) 6= π and |∂Θ/∂z| 6= 0. Then, the control law211

v = ρ

κa cos η + κb sin η − 4
dΠ

dΘ

∣∣∣∣∣
Θ(z)

∣∣∣∂Θ

∂z

∣∣∣ cos2 η

2
+K1 sin

η

2

 , (11)

with

κa =
−1

|∂Θ
∂z |

〈
b1,

∂2Θ

∂z∂z
b1 +

∂2Θ

∂z2 b1

〉

and

κb =
1

|∂Θ
∂z |

〈
b1,

∂2Θ

∂z∂z
b2 +

∂2Θ

∂z2 b2

〉
,

guides a steered, self-propelled vehicle so that as t→∞, η → 0 and Θ→ Θdes.212

Figure 2a presents two simulations of a vehicle guided by control law (11) for different initial conditions and213

the same desired value Θdes, showing that the final curve is dependent on the initial condition. Section III-D makes214

use of this proposition to form two new control laws: the first control law steers the vehicle to a unique, closed215

streamline, and the second control law steers the vehicle so that it enters the applicable range of the first controller.216

We combine these control laws to create a hybrid controller used in our adaptive sampling architecture. The hybrid217

steering controller guides the vehicle to coherent structures that appear in the co-rotating frame of the two-vortex218

system. The control that is desired in the co-rotating frame is converted back to the inertial frame for simulation.219

C. Augmented observability-based path planning220

Observability-based path planning is a model-predictive control technique of forecasting the anticipated system221

outputs given a finite set of K control inputs {uj}Kj=1 and assessing the system observability along the system222

trajectory for each candidate control signal. Using a scalar measure of observability, such as the unobservability223

index [22], the control choices may be compared and optimized over a finite set of control parameters. This model-224

predictive control strategy assumes that the candidate control signals are generated by another means, e.g., according225
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to a secondary control policy. Figure 2b depicts this process for a vehicle at time t0 assessing control signals over226

the planning interval [t0, Tp].227

From linear systems theory, if the observability Gramian is full rank, then the initial state of the system can be

inferred from measurements, and the system is observable. Krener and Ide [22] constructed an empirical observability

Gramian that applies to nonlinear systems and also gives a measure of the degree of observability through the

unobservability index. Consider the nonlinear system,

ẋ(t) = g(t, x(t))

y(t) = h(t, x(t)) + µ(t), (12)

where x ∈ Rn, y ∈ Rp, f and h are known, nonlinear functions, and measurement noise µ(t) is a white Gaussian228

stochastic process with covariance R(t). For the two-vortex problem considered in this paper, the state vector is229

x = (Γ1,<(z1),=(z1),Γ2,<(z2),=(z2),<(z),=(z))
T
, (13)

where z denotes the location of the sampling vehicle.230

Let φ(·, t0, x(t0)) denote the state solution to (12) from x(t0) at t0. Consider the 2n perturbed initial conditions231

x±j(t0) = x(t0) ± εej , for j = 1, . . . , n where ε > 0, is the perturbation size, ej is the unit vector with 1 in232

the jth location and zeros elsewhere, and annotate the corresponding state solution φ±j similarly. The empirical233

observability Gramian is234

Weo(t0, t, x(t0)) =

∫ t

t0

ΨT
e R(τ)−1Ψedτ, (14)

where Ψe = Ψe(τ, t0, x(t0)) is an n× n matrix with jth column specified by235

[Ψe(τ, t0, x(t0))]j =
h(τ, φ+j) − h(τ, φ−j)

2ε
, (15)

where φ±j = φ±j(τ, t0, x(t0)). Note that Ψe is an approximation to ∂h/∂x0 [17], [22]. For a linear system, as236

ε→ 0 with R(τ) = I, Weo reduces to the usual linear observability Gramian [22], [37].237

One can assess the degree of observability by considering the minimum eigenvalue of the empirical observability238

Gramian, which is zero if Weo is singular and nonzero when the initial state is observable. The unobservability239

index is [22]240

ν(Weo) =
1

λmin(Weo)
. (16)

When ν is small, observability is high. The index ν measures the difficulty of initial-condition inference for the241

nonlinear system over the interval [t0, t].242

Consider now the case in which we have prior background information regarding the initial state x(t0). Specifi-243

cally, assume the uncertainty of the initial condition (prior to observing the output) is Gaussian distributed about a244

mean vector x0 with covariance P0, such that x(t0) ∼ N (x0, P0). In [17], we derive an observability Gramian that245

is augmented with information contained in P−1
0 by using an optimal data assimilation strategy known as 4D-Var.246

We extend augmented observability to the nonlinear setting for system (12) by utilizing the empirical observability247

Gramian of Krener and Ide [22], yielding the empirical augmented observability Gramian248

Wea(t0, t, x(t0)) =

∫ t

t0

ΨT
e R(τ)−1Ψedτ + P−1

0 . (17)
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We also define the augmented unobservability index249

νa (Wea) =
1

λmin(Wea)
=

1

λmin
(
Weo + P−1

0

) , (18)

which quantifies how difficult initial-condition inference is given the anticipated system measurements and the prior250

information and will serve as a cost to minimize during path planning.251

D. Gaussian Mixture Kalman Filter252

The Lagrangian sampling framework developed in this paper performs state estimation using a Gaussian Mixture253

Kalman Filter (GMKF). The GMKF performs nonlinear propagation of uncertainty in the state and permits non-254

Gaussian PDFs that often arise in Lagrangian data assimilation in nonlinear flow fields. Filters based on Gaussian255

mixture models (GMMs) have appeared previously in various forms (e.g., [38], [39], or [31]). The GMKF filter in this256

paper is based on the GMM-DO filter of [31] which combines GMMs and dynamically orthogonal field equations257

(DO). The GMM-DO filter is unique because it implements automated selection of the GMM complexity (i.e. the258

number of Gaussians to use in the GMM). Here, we utilize the GMM-DO filter, without the DO equations—instead259

we directly propagate the estimate of the state.260

Assume a probability density function that can be represented using M multivariate Gaussians. Each Gaussian261

N (x;xm, Pm) has mean vector xm and covariance matrix Pm, for m = 1, . . . ,M , as well as a scalar weight wm.262

To be a valid PDF, the scalar weights of all M Gaussians must sum to unity (i.e.,
∑M
m=1 wm = 1). The GMM [31]263

p
(
x; {(wm, xm, Pm)}Mm=1

)
=

M∑

m=1

wmN (x;xm, Pm) (19)

is a weighted sum of the M component Gaussians. Equation (19) is capable of modeling highly non-Gaussian264

densities depending on the choices of means, covariances, weights, and number of components.265

The GMKF is summarized in Algorithm 1. The GMKF samples an ensemble of realizations from the prior266

probability density of state. After sampling, the GMKF forecasts each ensemble member according to the nonlinear267

dynamics. Then, the GMKF creates a best-fit approximation to the ensemble using a mixture of Gaussians of268

specified complexity through an Expectation-Maximization (EM) algorithm that automatically selects the means,269

covariances, and weights [40]. For a GMM of given complexity, the GMKF of [31] evaluates the Bayesian270

Information Criterion (BIC)271

BIC = −2

N∑

j=1

log p(xj |ΩEM;M) +K logN, (20)

where N is the number of ensemble members, K is the number of model parameters, and ΩEM represents the272

set of parameters found by the EM algorithm (i.e., means, weights, and covariances). Observe that the BIC has273

a goodness-of-fit term and a term that penalizes model complexity [31]. The GMKF of [31] evaluates GMMs of274

increasing complexity so that a local minimum in the BIC score may be identified. We seek the mixture model that275

best fits the ensemble data; the model-complexity penalty in the BIC encourages a simple model to be preferred276

[31]. After fitting a GMM to the ensemble spread, the next filtering step is the assimilation of observations.277
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Input: GMM for prior PDF

Output: GMM for analysis PDF

Parameters: N , maxComplexity, and covariance matrices Q, R

1: Sample N ensemble members from the prior PDF.

2: Integrate the ensemble in time with process noise taken from N (0, (tk − tk−1)Q)

3: Fit a GMM to the forecast ensemble using the EM algorithm with M = 1. Evaluate the BIC.

4: for m = 2 to maxComplexity do

5: Fit m Gaussians in GMM and evaluate the BIC.

6: If the BIC increases, stop and set M=m−1.

7: end for

8: Update the weight for each Gaussian in the GMM:

wa
m =

wf
mN (y;Hxfm, HP

f
mH

T +R)∑M
q=1 w

f
qN (y;Hxfq , HP

f
q HT +R)

9: Find the Kalman gain, analysis mean, and analysis covariance for each Gaussian:

Km = P f
mH

T
(
HP f

mH
T +R

)−1

xam = xfm +Km(y −Hxfm)

Pa
m = (I −KmH)P f

m

Algo. 1. The Gaussian Mixture Kalman Filter (GMKF) [31]

For Lagrangian observations, replace the nonlinear operator h in (12) with the matrix H that acts linearly to pull278

out the vehicle position information, i.e.,279

y(tk) = Hx(tk) + µ(tk) with µ(tk) ∼ N (0, R(tk)) . (21)

Assimilation of the measurement occurs according to a Kalman filter update equations that are modified to include280

weight updates for the GMM components as well. Steps 8 and 9 in Algorithm 1 are derived in [31] and correspond281

to direct application of Bayes’ rule under the assumption that the forecast PDF is a GMM. Step 8 sequentially282

evaluates the likelihood N (y;Hxfm, HP
f
mH

T + R) that the measurement is a realization from each forecasted,283

component Gaussian (i.e., Gaussian m is evaluated using its forecast mean xfm and covariance P fm) and uses it284

to compute an updated weight for each Gaussian component; the weight update is necessary to ensure that the285

posterior density is a valid PDF (i.e., the updated weights of the GMM sum to unity). For each mth Gaussian, Step286

9 calculates the Kalman gain, updated mean, and updated covariance, respectively. Note that the calculations in Step287

9 are the standard Kalman filter update equations applied to Gaussian m. For a complexity of M = 1, note that288

the GMKF reduces to an Ensemble Kalman Filter (EnKF) in which Gaussianity is enforced during assimilation.289

After assimilation, the posterior PDF becomes the prior PDF and the filtering cycle repeats.290

After assimilation of the observation, the posterior PDF that results from the GMKF is a GMM. To extract usable291

estimates from the GMM of the state, one may implement a mode-finding algorithm (e.g., see [41]) or one may292

find the mean for the overall distribution. Representing a possibly multimodal PDF with a single mean estimate293

does not fully make use of the PDF. Section IV designs a path planning algorithm that utilizes the entire posterior294

PDF by considering multiple components in the GMM, and Section V compares the multi-component path planner295
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(a) (b)

(c) (d)

Fig. 3. The unobservability index plotted on a log10 color scale for orbits in the two-vortex system for a) Γ2 = Γ1, and c) Γ2 = 2Γ1.

Extraction of closed, smooth curves for b) Γ2 = Γ1, and d) Γ2 = 2Γ1; extracted curves are scaled in size.

to one that uses only the mean and covariance of the GMM.296

III. EXPLORATION OF INVARIANT-SET BOUNDARIES297

This section steers a vehicle along the highly observable separating boundaries of invariant sets, found by298

extending the stable and unstable manifolds from saddle fixed points of the flow field.299

A. Empirical observability of invariant-set boundaries300

For minimally or infrequently actuated vehicles, it is helpful to understand the natural orbits of the flow field. For301

one period of rotation of the vortex pair in the two-vortex problem, Krener and Ide [22] calculated the empirical302

unobservability index to determine locations to launch drifting sensors. We note that the period of rotation for the303

vortex pair may be shorter or longer than the period of other closed drifter orbits in the two-vortex system. We304

therefore further the analysis of [22] to full orbits for drifting vehicles as follows. We compute the unobservability305

index on a grid, similar to [22], but we assume a time horizon that is longer than all closed drifter orbits in306

the desired domain. Each drifter floats for at least one of period on their individual orbits. For each orbit, we307

assign the average value of the grid-based unobservability indices for the grid cells that the orbit intersects. Grid-308

based unobservability analysis can provide an idea of the most informative location for launch for a given time309

horizon, however unobservability averaged along orbits removes the effect of initial conditions, since different launch310

locations on the same orbit possess slightly different unobservability indices. Figures 3a and 3c respectively show311

these calculations for equal- and unequal-strength vortices, based on 1000 orbits from arbitrary initial locations312

chosen uniformly over the domain and integrated forward in time until t = 24π. The highest unobservability,313
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corresponding to the least informative orbits, appears near the center fixed points (within regions 2 and 3 as labeled314

in Figs. 1a and 1b). The lowest unobservability, corresponding to the most informative orbits, appears near the315

separatrices that divide invariant sets. The separatrices are highly observable because saddle points in a divergence-316

free flow field eventually divide drifters floating on nearby orbits. These findings provide motivation to sample317

along highly informative separatrices when taking Lagrangian measurements.318

B. Construction of steering targets from separatrices319

The following procedure constructs the separatrix geometry for exploration in Lagrangian sampling: (i) locate320

fixed points of the flow field; (ii) numerically integrate forward in time from each saddle point along the unstable321

manifolds and along the stable manifolds backwards in time until closely approaching another saddle point or322

leaving the domain; (iv) remove any redundant curves generated in this process; and (v) build a graph data structure323

containing saddle points as graph vertices and separating curves as directed graph edges. The resulting graph324

holds information on the geometry of the flow field, with the coordinates of saddle points, coordinates of points325

making up separating curves, and the details of connections between saddles and separatrices. Figure 3b presents326

the resulting saddle graph for a two equal-strength vortex case. The graph consists of three saddle points as vertices,327

four heteroclinic separatrices (i.e., connections between two distinct saddle points), and two homoclinic separatrices328

(i.e., connections that start and finish at the same saddle). For the case of two unequal-strength vortices, Fig. 3d329

provides another example of a saddle graph. In this case, the graph contains three isolated saddles with homoclinic330

separatrices forming self-loops at each vertex.331

The next section presents a hybrid controller for navigation along separating boundaries of invariant sets. The332

hybrid controller takes in curves meeting certain acceptability criteria (i.e., they are closed, simple, and regular333

curves) as input to serve as steering targets. Closed curves can be found from separatrices by enumerating all334

elementary cycles in the saddle graph. We note that path planning over graph structures has previously been335

explored in the literature (e.g., see [42], [43]). We implement the algorithm of Hawick and James [44] for finding336

all elementary cycles in the saddle graph. The data structure used in [44] to define the graph allows for multiple337

edges between vertices and self edges, which are necessary features for saddle graphs of divergence-free flows. The338

algorithm of [44] generates sequences of vertex identifiers that make up elementary cycles. We assign a separatrix339

object to each pair of vertices, thereby generating closed, simple curves. We ensure the curves are regular for the340

steering controller by smoothing the cusps at saddle locations using fourth-order Bézier curves. The saddle graphs341

in Figs. 3b and 3d are each surrounded by scaled versions of the closed, simple, regular steering targets that result.342

(See Section SM3 of the Supplemental Materials document for implementation details.)343

C. Steering along a unique streamline of the flow344

This section presents a steering controller for driving to a closed streamline of the flow by combining the steering345

controller of [45], which applies to a vehicle without flow, and the flow-relative transformation of [29] to account346

for flow. Additionally, an existing technique [46] is used to build a Bertrand family of curves around a regular,347

closed curve to ensure that the vehicle drives to a unique, closed curve. By synthesizing these three existing results,348
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we create a novel steering controller that guides a self-propelled vehicle to a unique, regular, closed streamline of349

the flow field. Moreover, we specify the region of validity for the controller, in which convergence to a unique350

streamline is guaranteed.351

Recall the dynamics (7) for planning the path of a self-propelled vehicle in a time-invariant flow. Assume that352

transformation (8) for control u is valid, so that the dynamics may be viewed as model (6). Assume a steering353

target γ0 that is a closed, simple, regular1 curve, possibly enclosing a nonconvex region of the domain. Assign a354

value of χ ∈ {−1,+1} to γ0 for clockwise or counterclockwise orientation, respectively.355

Converging to a target curve γ0 is achieved by building a scalar orbit function Φ(z) that has γ0 as a level curve356

(i.e., for increasing arc length, Φ(γ0(s)) remains constant). Define (·)′ as differentiation with respect to arc length357

s. If curve γ0 is nonconvex, but closed, simple, and regular, then it belongs to a Bertrand family of curves γλ,358

governed by scalar parameter λ, and an orbit function Φ may be built according to [28], i.e.,359

γλ(s) = γ0(s) + λiγ′0(s). (22)

Additional members of the Bertrand family are formed according to (22) by moving λ in the iγ′0(s) direction,360

perpendicular to the curve γ0. A natural orbit function may then be specified as Φ(z) = λ if z lies on the curve361

γλ [28]. Note that the arc length s should be measured along the reference curve γ0 [28].362

For navigation in a flow field described by streamfunction ψ, we require γ0 to be a closed streamline of the flow363

that may be found using the Fundamental Theorem of Calculus to be364

γ0(t) = z(0) +

∫ t

0

−2i
∂ψ

∂z

∣∣∣
z(τ)

dτ, for 0 ≤ t ≤ T, (23)

where z(0) is an initial point on the orbit and T is the period. For the two-vortex problem studied in Section V,365

ψ is replaced with ψR, the streamfunction in the co-rotating frame. The arc length in (22) is given by s(t) =366

∫ t
0
|−2i∂ψ/∂z|z(τ)|dτ . To steer a self-propelled particle to the unique orbit γ0, we construct a Bertrand family of367

curves γλ with orbit function Φ(z) = λ that vanishes when the vehicle lies on γ0.368

Let zc be the point nearest z that lies on γ0. We can write Φ(z) using (22),369

Φ(z) = 〈z − zc, b2〉 . (24)

The gradient of the orbit function ∂Φ/∂z in a Bertrand family of curves is perpendicular to each Bertrand curve.370

Differentiation of the orbit function in (24) gives371

∂Φ

∂z
=

∂

∂z

(
(z − z0)b2 − (z − z0)b2

2

)
=
b2
2
, (25)

which reveals that the b2 direction for a vehicle steering in a scalar field (see Section II-B) is also perpendicular

to each curve in the family. Since γ0 is a streamline of the flow, the direction b2 can also be expressed using the

1Closed curves formed from separatrices in a divergence-free flow do not meet the regularity condition at saddle points. However, smoothing

using Bézier curves (see SM3) produces boundary curves that avoid saddles and meet the regularity condition.
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derivative of the streamfunction ψ evaluated at zc, such that b2 = (∂ψ/∂z/|∂ψ/∂z|) |zc . According to (25), we

find the derivatives of Φ necessary for implementation of control law (11) in terms of the ψ to be

∂2Φ

∂z∂z
=

1

2
∣∣∣∂ψ∂z

∣∣∣

(
∂2ψ

∂z∂z
− ∂2ψ

∂z2
b22

)
,

and
∂2Φ

∂z2 =
1

2
∣∣∣∂ψ∂z

∣∣∣

(
∂2ψ

∂z2 −
∂2ψ

∂z∂z
b22

)
.

These equations are evaluated at the point zc, which is the closest point on the reference orbit to the vehicle location372

z.373

The above development of a streamline steering controller assumes that a unique closest point zc on the reference374

curve γ0 exists. However, this condition may not hold for an arbitrary location z near a nonconvex curve. To address375

possible non-uniqueness, we use the signed curvature κs of curve γ0 to define a region surrounding γ0 in which the376

existence of a unique closest point is guaranteed. The signed curvature κs from differential curve theory is defined377

at arc length s according to378

γ′′(s) = κs(s)iγ
′(s), (26)

where γ′(s) is the tangent direction and iγ′(s) is the normal direction [47]. Equation (26) may also be written379

to solve for signed curvature, such that κs(s) = 〈iγ′(s), γ′′(s)〉. The following proposition defines the region of380

validity Ω for the streamline steering controller, based on the signed curvature κs.381

Proposition 2. Let γ0 be a twice-differentiable, closed, simple and regular curve in the plane. Let γE and γI ,382

respectively, represent exterior and interior Bertrand curves defined by offsets383

λE =
χ

min(0, inf
σ

(κs(σ)χ))
, and λI =

χ

sup
σ

(κs(σ)χ)
. (27)

Define Ω to be the domain bounded by γE and γI . If γE and γI are simple, closed curves,2 then for each z ∈ Ω,384

there exists a unique, closest point zc on the curve γ0, in the sense of the Euclidean distance.385

Proof. We prove Proposition 2 for a point z that falls between curves γ0 and γI ; identically structured arguments

hold for points between γE and γ0. Let zc be the point on γ0 at arc length sc that minimizes the Euclidean distance

|z − γ0(s)|. We will show that zc exists and is unique. If so, the necessary and sufficient conditions to locally

minimize the Euclidean distance |z − γ0(s)|, i.e.,

〈γ′0(sc), z − zc〉 = 0, (28)

〈γ′′0 (sc), z − zc〉 < 1, (29)

must be satisfied. Since |λI | > 0 and γI is simple by assumption, γI cannot cross γ0 and it does not have self-386

intersections. Since |λI | ≥ 0, for every z between γ0 and γI , there exists a λ and an arc length sc, such that387

2Note that for the special case of curve γ0 enclosing a convex region, γE lies at infinity.
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(a) (b)

Fig. 4. a), b) An example that steers a self-propelled particle in a flow field to a unique, non-convex boundary curve. The outer and inner

Bertrand curves γE and γI defined based on the signed curvature are shown in a); Subfigure b) shows the frames of reference needed along

with the unique, nearest point zc for the initial condition

0 ≤ |λ| < |λI | and z lies on the Bertrand curve γλ. Let zc = γ0(sc). From the construction of a Bertrand curve at388

λ, we insert z − zc = iλγ′0(sc) into the left-hand side of (28) to produce389

λ 〈γ′0(sc), iγ
′
0(sc)〉 ,

which vanishes, satisfying the first-order necessary condition (28). Using (26) reduces the second-order condition390

(29) to391

κs(sc) 〈iγ′0(sc), z − γ0(sc)〉 < 1 =⇒ κs(sc)λ < 1. (30)

This inequality is trivially satisfied if κs(sc) = 0, λ = 0, or if κs(sc)λ < 0, which occurs if γ0 turns away from z392

for increasing s. Consider the case of κs(sc)λ > 0, so that γ0 curves towards z. Placing an upper bound on κs(sc)λ393

yields394

κs(sc)λ ≤ |κs(sc)||λ| <
|κs(sc)|∣∣∣sup

σ
(κs(σ)χ)

∣∣∣
.

If γ0(sc) turns towards z, then κs(sc)χ is positive. Hence, the supremum yields a positive value, such that395

κs(sc)χ

sup
σ

(κs(σ)χ)
≤ 1,

implying κs(sc)λ < 1 and satisfying condition (29).396

For uniqueness of zc, note that by (27) and the requirement that γ0 be regular, γλ for each λ such that 0 ≤ |λ| <397

|λI | does not pass through a center of curvature. Therefore, γ0 may be continuously deformed without changing398

topologically (i.e., homotoped) using (22) to γλ for any λ in 0 ≤ |λ| < |λI |. z lies on only one Bertrand curve γλ.399

By this reasoning, zc is the nearest point on the curve γ0 and zc is unique.400

Within the domain Ω defined by Proposition 2 and under the assumption that (8) is valid (i.e., the vehicle can401

make forward progress), the control law (11) coupled with the streamline steering strategy in (23)–(27) is guaranteed402

to converge. We note that it is important that γI and γE are simple curves since the offsets (27) may yield self-403

intersections for pathological γ0 curves (e.g., when γ0 has segments of opposing orientation with relatively near404

approaches to each other, γI may have a self-intersection). To avoid non-simple bounding curves that may be405
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produced by (27), reduce |λ| until (22) results in simple bounding curves. Figure 4a shows the domain Ω in an406

example problem and illustrates steering to a unique, closed streamline. Figure 4b shows the necessary reference407

frames for utilizing the steering control (11) for the scalar field (24) created by a Bertrand family of curves emanating408

from a unique, closed streamline.409

D. Steering to boundaries410

The streamline controller of the previous subsection is only valid with the finite domain of Ω for a given curve411

γ0. Outside of Ω, we create an additional steering controller by allowing the co-rotating frame streamfunction ψR412

to serve as the scalar field Φ in Proposition 1. If a vehicle is outside of the valid domains of all boundary curves,413

we take the streamfunction value of the closest boundary curve as a target Θdes for use in Proposition 1. This414

control law steers the vehicle towards the boundary. Upon entering the valid domain Ω of a boundary curve, the415

vehicle steers according to the unique streamline control law. Together, these two control laws work in tandem and416

constitute our hybrid control strategy.417

IV. LAGRANGIAN ADAPTIVE SAMPLING ARCHITECTURE418

This section provides a novel architecture for adaptive sampling using a guided Lagrangian sensor for estimation of419

the flow field by making use of augmented observability-based path planning. This architecture handles uncertainty420

properly by sharing multiple state estimates and associated covariances between the estimator and the path planner.421

The multiple estimates are utilized in an expected cost analysis that is used for evaluation of the candidate vehicle422

paths.423

A. Architecture for guided Lagrangian estimation and control424

Figure 5a presents the proposed architecture for nonlinear/non-Gaussian estimation of a flow field using a guided425

Lagrangian sensor. The feedback loop in Fig. 5a consists of the true dynamics, such as the ocean currents and426

vehicle dynamics, measurements of vehicle’s position, a nonlinear/non-Gaussian estimator, and the Augmented-427

Observability Planner with expected cost (A-OP). Given a parametric model of the flow field, a self-propelled428

vehicle, and prior uncertainty of the vehicle state and the environment’s parameters, the A-OP creates a route for429

guided sampling that minimizes the expected cost in augmented unobservability index. The vehicle steers until the430

next planning period in an open-loop manner using the control signal u that corresponds to the intended vehicle431

path. Position measurements of the vehicle are available periodically for GMKF. The GMKF combines the prior432

uncertainty and the uncertain position measurement into a posterior GMM that incorporates all uncertainty of the433

vehicle’s state and the flow field’s parameters. At pre-determined planning times, the A-OP generates multiple434

flow-field maps from a sparse representation of the posterior PDF, creates candidate control signals, and calculates435

the expected cost in augmented unobservability index by accounting for the probability of occurrence for each state436

realization it uses.437
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(a)

(b)

Fig. 5. a) Overall architecture for estimation and control. b) Algorithmic details of the Augmented-Observability Planner with expected cost.

B. Augmented-Observability Planner with expected cost438

439

The A-OP encapsulates the augmented-observability guidance strategy, which utilizes multiple state estimates with440

uncertainty for planning. The benefit of using multiple state estimates for planning is demonstrated numerically441

in Section V-B. A traditional empirical observability analysis requires a state estimate as the initial condition. An442

augmented-observability analysis calls for a state estimate together with a covariance that quantifies uncertainty in443

the estimate. The GMKF performs non-Gaussian inference, yielding a non-Gaussian posterior PDF. Extracting an444

individual statistic from the posterior as an estimate of the state would not fully utilize the PDF. We propose to445

utilize more of the posterior PDF by extracting multiple state realizations with associated covariances. The AO-P446

planner combines these multiple state estimates and uncertainties in an expected cost calculation that enables the447

use of a multimodal PDF for planning.448

Choose Dk = {y(t1), y(t2), . . . , y(tk)} to represent a set of measurements accumulated through time index k.449

Create a sparse approximation of the posterior filtering density450

p(x|Dk) ≈
Q∑

j=1

ŵjδ(x− xj) (31)

using a sparse sampling of Q points {xj}Qj=1 and weights ŵj chosen such that
∑Q
j=1 ŵj = 1. For a Monte Carlo451

sampling of realizations, as Q approaches infinity, (31) converges to the true posterior filtering density [48]. For452

a small number of representative realizations, the sampling consists of the component modes of a GMM. Indeed,453
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only the means, covariances, and weights are necessary to perfectly recover a GMM approximation of the full PDF.454

Further, this choice is natural because, by construction of a GMM, each component mode is associated with an455

accumulation of probability mass.456

Given a GMM for the filtering density p(x|Dk) =
∑M
m=1 wmN (x;xm, Pm), one may draw a random sample457

by selecting component Gaussian m with probability wm and then sampling from this Gaussian using standard458

techniques for sampling a multivariate normal distribution (for further details, see [40]). This sampling technique459

reveals that a GMM may be interpreted as the sum of disjoint probabilities that x is distributed according to460

Gaussian m. This interpretation motivates choosing {x̄m}Mm=1 as a sampling of the posterior GMM with weights461

ŵj = wm. That is, we choose each Gaussian component with probability wm and represent each Gaussian by its462

mean to construct a sparse sampling of the posterior PDF.463

For each component mean x̄m, the A-OP finds a flow-field map with corresponding separating boundaries of

invariant sets. Using the hybrid controller, the A-OP steers virtual copies of the vehicle to these boundaries to

generate candidate control signals. Let {uj}Kj=1 be the list of candidate control inputs, where K is the total number

of candidate signals. Note that the empirical augmented unobservability index νa(Wea(t0, t, x, uj)), for a specified

control signal uj , is a random variable that depends on state x, which is stochastic. An approximate expected cost

for νa(Wea(t0, t, x, uj)) can be calculated using the sparse representation (31) of the PDF, such that

E [νa(Wea(t0, t, x, uj))] =

∫
νa(Wea(t0, t, x, uj))p(x)dx

≈
M∑

m=1

wmνa(Wea(t0, t, x̄m, uj)). (32)

Equation (32) provides the expected augmented unobservability index under control signal uj . It is a weighted sum464

of the indices over all considered state realizations. Note that the expected cost involves evaluation of candidate465

control uj over realizations x̄m, with m 6= j. These cases correspond to implementation of a control that was466

derived to under a different assumed state. Thus, this calculation takes into account even cases for which the state467

assumed for planning was incorrect. The A-OP compares the value of (32) across all candidate control inputs and468

chooses the control signal that minimizes this cost index.469

V. NUMERICAL EXPERIMENTS470

This section demonstrates the effectiveness of the proposed adaptive sampling architecture through numerical471

experiments. First, we describe the setup of the simulations, the initial conditions, and some example runs of the472

closed-loop system. Second, we present a comprehensive comparison of test cases in which various elements of the473

architecture (e.g., the non-Gaussian estimator, the adaptive flow map refinement, the augmented observability-based474

path planning, and the expected cost calculation) are incrementally activated.475

A. Simulation setup and closed-loop examples476

We study the two-vortex system with unequal vortex strengths. The vortices co-rotate about a fixed location known477

as the center of vorticity zcv . The vortex strengths and positions are initially unknown and are estimated. We fix478
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(a) (b)

Fig. 6. a) Initial conditions of the numerical experiments in the inertial frame; initial vehicle locations and orientations are shown as arrow

heads; one initial estimate of the vortex locations and their separatrices is shown in green. The true vortices are shown in red. b) The location

of the true separatrices are shown in black in the co-rotating frame.

the simulation duration, measurement sampling frequency, time constants associated with planning, controller and479

estimator gains, initial estimate of the system state, and parameters of the vortices and the vehicle. (Section SM4480

of the Supplemental Materials document describes the parameter selection and some representative dimensional481

quantities.) Large uncertainty in the estimate of the initial condition, which includes vortex circulation strength and482

position, is used. This choice shows that the GMKF performs well at estimating the state of the system for the483

two-vortex system from an uncertain initial condition.484

The GMKF proficiently estimates the state of the system, however, from arbitrary initial conditions, convergence485

cannot be guaranteed (e.g., if the initial vortex estimates are highly inaccurate or if a drifting vehicle remains in486

a region of low observability). To show the robust performance of the proposed architecture, we perform Monte487

Carlo simulations from random initial conditions broadly covering the sample space of initial conditions. The vehicle488

launch location and the phase of vortex rotation relative to the vehicle initial position are varied. We sample 100489

vehicle positions according to a uniform distribution over a 3×3 nondimensional square area, where the side lengths490

of 3 units are twice the size of the initial estimate of the vortex separation distance, which was 1.5. Additional491

sample runs did not noticeably alter the statistics of the run averages beyond 100 samples. Both the true initial phase492

of rotation for the vortices and the vehicle initial orientation are sampled from the interval [0, 2π] uniformly. Figure493

6a presents the sampled initial vehicle orientations and locations for the simulations. Figure 6a also illustrates the494

uncertain initial estimates of the vortex locations along with their separatrices in green. Figure 6b depicts the initial495

locations of vortices and separatrices in the co-rotating frame of the true vortices at a rotation rate of ω.496

Figure 7 shows representative results for three test cases from the same initial condition drawn from those in Fig.497

6a. The left three subfigures (Figs. 7a, 7c, and 7e) are in the inertial frame and show Lagrangian measurements used498

for estimation. The right three subfigures (Figs. 7b, 7d, and 7f) are in the co-rotating frame of the true vortices at a499

rotation rate of ω = 2π radians/time unit (corresponding to approximately five revolutions during the five time-unit500

simulation, which represents a one-month deployment). In the first example (Figs. 7a and 7b), a drifting vehicle501

is launched, tracing out a near-circular trajectory in the inertial frame and remaining on a closed streamline in the502

outermost invariant set of the co-rotating frame. The trajectory of this drifting vehicle does not provide much insight503
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. a and b) Simulation of a drifting vehicle over time interval [0, 5]. c, d) Simulation of an observability-guided vehicle with a known

flow map over time interval [0, 2.5] (shortened for clarity). e, f) Simulation of an observability-guided vehicle in an estimated flow, navigating

according to the A-OP over time interval [0, 2.5] (shortened for clarity). Green diamonds are measurement markers; magenta diamonds are

planning markers; red lines trace the path histories of the vortices

in terms of its Lagrangian measurements into the vortex parameters, because many other vortex-pair realizations504

would yield the same path for the vehicle. In the second example (Figs. 7c and 7d), a self-propelled vehicle with a505

planner that knows the true flow-field navigates along boundary paths to minimize the unobservability index. Only506

the first half of the simulation is shown for clarity. In the co-rotating frame, the trajectory explores the separating507

boundaries of invariant sets, without a priori specification of navigation targets, improving upon previous work [17],508

which requires a user-specified tour. The exploration of invariant sets in the co-rotating frame produces spirographic509

trajectory segments in the inertial frame. The inertial trajectory also contains jagged transitions between trajectory510

segments that correspond to the vehicle changing course at planning times to follow a more observable path.511

Figures 7e and 7f present the results of the full closed-loop, guided-Lagrangian sampling architecture. Only the512
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Estimation results for the closed-loop sampling framework. a)–f) Time histories of the marginalized PDFs for the vortex states

first half of the simulation is shown for clarity. The true flow field is not known to either the estimator or the planner;513

the vehicle plans using flow-field maps that are adapted using feedback of the guided-Lagrangian measurements.514

In the co-rotating frame, the vehicle does not clearly navigate along separating boundaries. However, if viewed515

in the co-rotating frame of the instantaneous state estimate, each trajectory segment in fact steers toward a target516

separatrix; the overall trajectory is an aggregation of the choices in navigation made by the vehicle to minimize the517

expected cost in the augmented unobservability index. Later in the simulation, the state estimate improves and the518

vehicle more closely follows the true flow-field separatrices as shown in Fig. 7d.519

During the simulation of the full closed-loop system shown in Figs. 7e and 7f, the vehicle performed GMKF520

estimation. One to ten Gaussians were adaptively selected by the GMKF to represent the forecast PDF prior to521

assimilation of data at each measurement time. Figure 8 presents the time histories of marginal PDFs for the vortex522

strengths and states. The white lines represent the true parameter and state values during simulation. These results523

show that the closed-loop system can take incorrect initial estimates with large uncertainty and effectively identify524

and track the two unequal-strength vortices. Although in Figs. 8a and 8d the marginal PDFs for vortex strength are525

near Gaussian at each time instant, Figs. 8b–8f clearly contain non-Gaussian marginal PDFs for the components of526

the vortex locations, highlighting the need for a non-Gaussian filter in the architecture.527

In multiple simulation runs, the GMKF converged to estimates in which the estimated trajectory of Vortex528

1 matched the true trajectory of Vortex 2, and vice versa. Note that the system dynamics are invariant to an529

interchange of the labels of the vortices, so this condition is benign. The estimator automatically chooses a vortex530
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TABLE I

MATRIX OF NUMERICAL EXPERIMENTS. IN CASE 8, THE FLOW FIELD IS KNOWN BY THE PLANNER BUT NOT BY THE ESTIMATOR.Table 1: Matrix of numerical experiments. In Case 8, the flow field is known by the
planner but not by the estimator.

Cases

Planning & Control Estimation Results

Off

On

EnKF GMKF

Estimation error averaged over 100 trials

Non-
Adaptive

Adaptive ∑
k‖x̄(tk)− xtrue(tk)‖2

Single
Est.

Single
Est.

Expected
Cost

Fwd.
Obs.

Fwd.
Obs.

Aug.
Obs.

Fwd.
Obs.

Aug.
Obs.

(non-dimensional, ×103, normalized by Case 8)

1 X X 2.95
1.52
1.49
1.31
1.26
1.03
1.02
1.00

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X X

1

This manuscript is for review purposes only.

labeling convention within each run. Prior to accumulation of the test results in Table I, we adjust vortex labels to531

best match the results of the estimator.532

B. Test of component-wise performance benefits533

To test the performance benefits of each feature of the guided Lagrangian architecture, we considered the eight534

cases listed in Table I. The check boxes in Table I indicate the subcomponents of the framework that are active in535

each case. From the 100 randomized initial conditions in Fig. 6a, we execute 100 Monte Carlo runs for each case.536

Table I also presents a bar graph of the results in terms of estimation error, averaged over all runs for each case.537

The error bars show one standard deviation from the mean.538

Case 1 is a drifting vehicle performing estimation with an Ensemble Kalman Filter (EnKF), which is equivalent539

to the GMKF with only one Gaussian permitted during the measurement assimilation step. This case is similar to540

experiments that have been performed in the field (e.g., see [18]). Case 2 is a drifting vehicle with a GMKF for541

estimation. The gain in estimation performance obtained by use of the GMKF is captured by comparing Case 2542

to Case 1, showing a large reduction in estimation error. We note that for many individual runs in Case 1, the543

estimator failed to properly identify the vortex parameters, leading to poor subsequent tracking. Other variants of544

the EnKF algorithm exist including features such as covariance inflation and localization [49] that could improve545

performance. However, we choose a basic EnKF for direct comparison to the GMKF; the algorithms differ only546

by the number of Gaussians permitted in fitting the forecast PDF.547

Cases 3–7 implement guided-Lagrangian sampling using an estimated flow-field map. Case 3 is a self-propelled548

vehicle guided by an observability-based planner. The candidate controls are generated using the initial flow map549

that derived from the initial estimate of the flow field, without updating at later times (i.e., the vehicle does not550

recursively improve its map with new estimates). Case 3 highlights the need for self propulsion in flow-field551

estimation, because this case performs better than Case 2, in which the vehicle drifts. Case 3 steers the vehicle552
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towards separating boundaries of invariant sets in its non-adapted flow-field map. Since the initial estimate of553

the flow field is incorrect, the trajectories may correspond to less observable paths with respect to the true flow554

field. Note that the variance in estimation results is the smallest for Case 3, which is attributable to the use of a555

non-adapted flow-field map.556

Cases 4–7 show that allowing the vehicle to adaptively navigate leads to better flow-field estimation. Similar to557

Case 3, Case 4 plans its sampling with a forward-looking observability analysis. However, Case 4 uses the mean558

estimate of the posterior PDF to re-calculate its flow map after assimilation of new data. The estimation error for559

Case 4 is greatly reduced relative to Case 3, highlighting the need for a self-propelled vehicle to be appropriately560

guided. Case 5 also adapts the flow map used in planning. However, it also utilizes augmented observability561

analysis in planning, based upon the overall mean and overall covariance of the posterior distribution. For the562

set of parameters used in the two-vortex system, Case 5 performs better than Case 4, which only plans sampling563

based upon a forward-looking observability calculation. Non-Gaussian estimation leads to multi-modal posterior564

distributions, but note that Cases 3-5 only make use of one or two statistics extracted from the PDF. Extraction of a565

single statistic for use is consistent with traditional certainty equivalence control (i.e., using a single state estimate566

for feedback), but it discards much of the information present in a multimodal PDF.567

An expected cost calculation allows the path planner to make use of a multimodal PDF by leveraging the GMM568

representation. Case 6 utilizes the GMM for planning by taking the component modes and creating a possible569

flow map for each mode. The hybrid steering controller generates candidate trajectories by simulating steering570

to the separatrices in each of these maps. Case 6 then computes an expected cost in unobservability index for a571

forward-looking observability analysis for each candidate input. Case 6 demonstrates the benefit of an expected cost572

calculation, over Cases 4 and 5, in which only single estimates are used for planning. Lastly, Case 7 represents the573

full architecture for path planning based on augmented-observability and expected cost. Case 7 uses multiple state574

estimates in an expected cost calculation of augmented unobservability index, in contrast to Case 6, which uses575

only the unobservability index. Case 7 modestly improves the estimation error relative to Case 6. The improvement576

from Case 6 to Case 7 is present, but not as prominent as the improvement from Case 4 to Case 5. This effect may577

be attributed to the use of multiple samples from the posterior PDF Case 6, which effectively encodes some prior578

information from the PDF without the use of covariance matrices.579

Case 8 is a benchmark case in which planning is performed in an ideal manner, but estimation is left up to the580

GMKF. In Case 8, the planner knows the true flow field, but the truth is hidden from the estimator. A vehicle581

in this case therefore knows the most observable areas for sampling. As expected, this benchmark case yields the582

smallest estimation error. Note that the cumulative performance gains for the adaptive sampling architecture cause583

the average estimation error of Case 7 to closely approach the estimation error under ideal path planning in Case584

8.585

VI. CONCLUSION586

This paper puts forward an architecture for flow-field estimation using a guided Lagrangian sensor. In this587

framework, a self-propelled Lagrangian sensor is guided along highly observable paths, which we have shown588
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correspond to the separating boundaries of invariant sets. The main elements of the architecture are the hybrid589

steering controller, the Gaussian Mixture Kalman Filter, and the Augmented-Observability Planner with expected590

cost. The hybrid steering controller includes a streamfunction-value control law and streamline control law. The591

streamfunction-value control law steers the vehicle to within a region for which the streamline control law is592

guaranteed to converge. The streamline control law combines a flow-relative transformation, a Bertrand family of593

curves, and a steering control law for steering to a unique, closed streamline. The region of validity for the streamline594

controller is established analytically. The Gaussian Mixture Kalman Filter is a nonlinear/non-Gaussian estimator595

that produces a non-Gaussian posterior distribution encoding all uncertainty of the state in the form of a Gaussian596

mixture representation. Using the Gaussian mixture model of the posterior probability density, the Augmented-597

Observability Planner with expected cost samples the mixture’s component means as possible realizations of the598

state and takes their associated covariances as the uncertainties for these realizations. For each possible realization599

of the state, the Augmented-Observability Planner with expected cost generates an estimate of the flow field and600

simulates the vehicle virtually steering to the most informative regions in the flow field. These simulations generate601

a family of candidate control signals based on the use of the hybrid steering controller. For each candidate control602

signal, the Augmented-Observability Planner with expected cost calculates the augmented unobservability index,603

which measures how well the forward-looking observability for the path complements the prior error covariance604

of the state. This operation is performed for all candidate control signals and all state realizations considered. The605

Augmented-Observability Planner with expected cost then finds an expected cost for each control signal by taking a606

weighted sum of the augmented unobservability indices and selects the control signal that minimizes this cost. The607

resulting control signal is most likely to lead to an informative vehicle trajectory given the prior information and all608

other state realizations considered. Numerical experiments show the benefit of each component of this architecture609

on a case study of a two-vortex system, a model that is relevant to the study of ocean eddy dynamics [23], [24],610

[27].611

Extensions of this work should consider more complex flow environments, time-varying flows, and flows for which612

a parameterized model is not known in advance. Additionally, the inclusion of multiple, cooperative sampling agents613

will add to the utility of the sampling framework.614
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