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The continued development of sophisticated aircraft with high fidelity

control systems will enable autonomous execution of challenging tasks such

as aerial refueling and close formation flight. In order to achieve such

tasks autonomously, an aircraft must sense other aircraft in close proximity

and position itself relative to them. For example, formation-flying aircraft

must position themselves strategically to realize benefits of aerodynamic ef-

ficiency; aerial refueling requires the follower aircraft to intercept the filling

nozzle attached to the leader aircraft. This paper uses lifting-line theory

to represent a two-aircraft formation and presents a grid-based, recursive

Bayesian filter for estimating the wake parameters of the lead aircraft using

noisy pressure measurements distributed along the trailing aircraft’s wing;

the estimator also utilizes a binary, relative-altitude measurement to break

the vertical symmetry. The paper employs measures of observability to

quantify spatial regions prone to degraded estimation performance. Opti-

mal control strategies are presented to steer the follower aircraft to a desired

lateral position relative to the leader while simultaneously optimizing the

observability of the leader’s relative position. The control algorithms guide

the follower aircraft along trajectories that maintain adequate observabil-

ity, thereby guaranteeing estimator performance. Theoretical results are

illustrated using numerical examples of a two-aircraft formation.

Nomenclature

B Body reference frame attached to follower aircraft
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O Origin of follower aircraft body frame

bi ith unit vector of frame B, i = 1, . . . , 3

rL Three-dimensional position of leader aircraft relative to follower (wingspans)

r Two-dimensional position of leader aircraft in the (b2,b3) plane (wingspans)

xL Position coordinate of leader aircraft relative to follower in the b1 direction (wingspans)

yL Position coordinate of leader aircraft relative to follower in the b2 direction (wingspans)

zL Position coordinate of leader aircraft relative to follower in the b3 direction (wingspans)

Vf Velocity of follower aircraft with respect to leader aircraft (wingspans per second)

Vy Velocity component of follower aircraft in the b2 direction (wingspans per second)

Vz Velocity component of follower aircraft in the b3 direction (wingspans per second)

b Leader and follower aircraft wingspans (meters)

ΓL Circulation strength of leader aircraft wake vortices (m2/s)

wL Upwash wake created by leader aircraft (m/s)

Φ Flow potential function used to describe wake

N Number of horseshoe vortices in lifting-line model

U∞ Freestream velocity (m/s)

α Angle of attack of freestream velocity (radians)

ni Unit vector normal to wing at wingspan location yi

whs Vertical component of flow generated by horseshoe vortices (m/s)

c Chord length of follower aircraft wing (meters)

∆Cp Differential pressure coefficient signal measured by follower aircraft

Ω Set of leader aircraft wake parameters

M Number of parameters characterizing the leader aircraft wake

P Number of measurement locations

φ P × 1 column matrix of differential pressure coefficient measurements

ξ Unobservability index measure

λ Estimation condition number

σ Singular value of empirical observability Gramian

WO Empirical observability Gramian

ei ith basis vector in RM , i = 1, . . . ,M

Σi Variance of Gaussian noise in ith sensor measurement

ηi zero mean noise with variance Σi

θ Binary relative-altitude measurement

µ (P + 1)× 1 column matrix of measurements (φ, θ)

Ψ Motion matrix used in Bayesian filter

J Trajectory optimization cost function

Tf Horizon time of optimal control calculation (seconds)
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Te Execution time of optimal control calculation (seconds)

ζ Weighting constant of multi-objective optimization

β Scaling constant of avoidance potential function

K constant gain of gradient descent control

I. Introduction

As airspaces of the world grow increasingly crowded with manned and unmanned aircraft,

closely coordinated formations may provide a method of organizing the sky. Close formation

flight has been shown to extend the range of individual platforms through aerial refueling1,2

and increased fuel efficiency3,4 and, in the future, may provide a means of safely coordinating

arrival and departure of commercial aircraft.5 Another application is increased effectiveness

in environmental sampling.6–8 In order to achieve these benefits with autonomous systems,

strategies for individual vehicles to sense other aircraft in the formation are needed; using

the aerodynamic wake that is perceptible when flying in close proximity may be a reliable

method. This paper considers a two-aircraft leader-follower formation and employs tools from

nonlinear observability, nonlinear estimation, and nonlinear control to enable the follower

aircraft to use differential pressure measurements to estimate the leader aircraft’s wake and to

position itself at a desired location relative to the leader. This work has potential applications

in close formation flight such as aerial refueling and increasing aerodynamic efficiency through

induced drag reduction.1,3, 4

An extensive body of literature exists regarding the modeling of close formation flight,4

from the aerodynamics of birds in formation9 to power savings produced by specific air-

craft formations.10 A large portion of the close-formation modeling,3,11,12 control,13,14 and

experimental15 studies have focused on formations that produce significant reductions in

the induced drag on an aircraft flying within the wake of another aircraft. Most of these

works utilize lifting-line or vortex-lattice methods16,17 to model the aerodynamics of aircraft

interactions. Closely related work1,2 addresses the modeling and experimental study of aero-

dynamic and dynamical effects related to aerial refueling and presents a feedback controller

to stabilize a two-aircraft refueling maneuver.

Success of close-formation flight is predicated on knowledge of the leader aircraft’s relative

position and the characteristics of its associated wake. One aspect of this paper addresses the

problem of estimating characteristics of the leader aircraft wake from its effects on the aero-

dynamics of the follower aircraft. Similar to Hemati, Eldredge, and Speyer,18,19 this paper

uses lifting-line theory to model a two-aircraft formation and to estimate parameters of the

wake. However, unlike prior work,18 this paper implements a grid-based recursive Bayesian
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filter to estimate the nonlinear wake properties, as opposed to an extended Kalman filter or

particle filter; a grid-based implementation is possible because the follower’s kinematics are

presumed known. In addition, analysis of the nonlinear observability of the leader aircraft

wake parameters facilitates the development of two optimal control strategies that steer the

follower aircraft to a desired position while accounting for wake observability. These strate-

gies serve to increase estimator performance and, in turn, the overall performance of the

control algorithms, which are based on a receding horizon optimal control strategy20 and a

wavefront propagation strategy.21 Though this paper assumes simplified aircraft kinematics,

the control strategies derived in this paper provide observability-optimal motion primitives

upon which a high fidelity aircraft control algorithm could be built.13,14

Tools from nonlinear observability have been used in a wide range of applications based

on analytical, numerical, and empirical methods. When applied to close formation flight,

observability analysis provides a method of mapping “blind spots” in which the follower air-

craft may not be able to estimate the leader aircraft wake parameters because they are nearly

unobservable. Analytical approaches to nonlinear system observability were introduced by

Hermann and Krener22 using a Lie algebra to establish local observability over varying time

scales. However, analytical methods are often complicated for even simple nonlinear sys-

tems. Numerical techniques,23–25 such as the empirical observability Gramian employed in

this paper, are often easier to implement and produce comparable results. Empirical meth-

ods have been used for model reduction of nonlinear systems,23 to evaluate candidate sensor

placements for observing chemical processes,26,27 to evaluate the effectiveness of Lagrangian

drifter sensors for estimating point vortex flows,24 and in adaptive sampling and control for

flowfield estimation.28–30 This paper is the first instance in which empirical observability

measures have been applied to wake sensing in close-formation flight.

The contributions of this paper are (1) a method for quantitative analysis of the non-

linear observability of a leader aircraft’s wake parameters from distributed measurements

of differential pressure collected by the follower aircraft; (2) a recursive Bayesian filtering

framework allowing the follower aircraft to assimilate distributed noisy measurements of dif-

ferential pressure and a low-fidelity (binary) measurement of relative altitude to resolve the

leader aircraft wake parameters; and (3) a comparison of two optimal control algorithms that

steer the follower aircraft to a desired vertical/lateral position relative to the leader aircraft

while maximizing observability of the leader’s parameters along the trajectory. Control of

the along-track separation of the leader and following aircraft is outside the scope of this

paper, but has been addressed elsewhere.13

The organization of this paper is as follows. Section II uses lifting-line theory to de-

velop a model of two aircraft in formation flight and provides an overview of tools from

nonlinear observability, including the empirical observability Gramian. Section III presents
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a recursive Bayesian filter for estimating the leader aircraft wake parameters and formulates

two observability-based optimal control strategies to steer the follower aircraft to a desired

position relative to the leader. Section IV provides numerical examples of formation flight

maneuvers in which estimates generated by the recursive Bayesian filter are incorporated

into the optimal control strategies. Section V provides closing remarks.

II. Dynamic Modeling and Leader Aircraft Observability

This section reviews the aerodynamic modeling of a two-aircraft formation and describes

tools from nonlinear observability that are utilized in Section III. In particular, Section II.A

provides a two-aircraft aerodynamic model in which the leader’s wake affects the aerodynam-

ics of a follower; Section II.B reviews the empirical observability Gramian and corresponding

measures of observability of the leader’s wake parameters. The observability measures are

incorporated into the optimal control and estimation results in Section III.

A. Two-Aircraft Aerodynamic Model

This section describes an aerodynamic model of a follower aircraft flying in a leader aircraft’s

wake, similar to that of Hemati, Eldredge and Speyer18 and Pachter, D’Azzo and Proud.13

Consider two aircraft in steady level flight through an inviscid, incompressible, irrotational

fluid. Suppose the body reference frame B = (O, b1, b2, b3) with origin O is attached to the

center of the leading edge of the follower’s wing with basis vectorsa b1, b2, and b3 as shown

in Figure 1. Assume that the follower aircraft maintains kinematic control of its vertical and

horizontal velocities such that the velocity of frame B with respect to the leader aircraft in

steady level flight is Vf = Vyb2 + Vzb3 (the b1 component is assumed to be zero without

loss of generality). The leader has wingspan b and center position rL = xLb1 + yLb2 + zLb3

relative to O. Assume |xL| is sufficiently large (i.e., greater than two wingspans13) such that

the wake of the leader is adequately represented using potential flow theory as the sum of

two infinite-line vortices, each with circulation strength ΓL, extending horizontally behind

the wingtips of the leader along the b1 direction. The Biot-Savart law gives the following

vertical component of the wake3,13,18 wL at a point (x, y, z) along the b2 axis (x = z = 0) as

a function of the leader’s relative positionb:

wL(y; ΓL, yL, zL, b) = ΓL(y−yL−b/2)

2π(z2
L+(y−yL−b/2)2)

− ΓL(y−yL+b/2)

2π(z2
L+(y−yL+b/2)2)

. (1)

aBold fonts represent either a column matrix, e.g., state variables z = [z1 z2 ... zN ]T , or a set of parameters,
e.g., Ω = (Ω1,Ω2, . . . ,ΩM ).

bThe notation g(a, b;α, β) represents a function g(·) that depends on the state variables a, b and the
parameters α and β.
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b2

b1

b3 rL

O
xL < 0

yL zL

Figure 1. Leader and follower aircraft representations. The wake of the leader produces an
aerodynamic signature on the follower through its upwash field.

Note that (1) is symmetric about zL = 0. This property necessitates invoking a secondary

sensing system to break the vertical symmetry (see Section III). The aerodynamic signature

on the follower aircraft created by the upwash field of the leader will be used to estimate the

lateral position r = (yL, zL) of the leader relative to the follower and the circulation strength

ΓL of the leader’s wake. The position estimate r̂ will be used in an optimal controller to

steer the follower to the desired relative position.

The flow around the follower aircraft in response to the upwash field of the leader is

modeled by employing the lifting-line solution following Katz and Plotkin [16, p. 331–340].

For simplicity, assume the follower is represented by a flat, thin, rectangular wing with large

aspect ratio (A > 4) and chord length c as shown in Figure 2. (Note this method is capable

of modeling more complex wing geometries, including swept and dihedral wings.16) Since

the fluid is inviscid, incompressible, and irrotational, its motion can be represented by the

gradient of a potential function Φ that satisfies Laplace’s equation16

∇2Φ = 0. (2)

In addition, at every point on the wing the potential function Φ must satisfy the boundary-

value constraint, which ensures that there is no flow normal to the wing surface. Assuming

the wing is thin, its normal vector ni at any point (xi, yi, zi) on the wing surface is approxi-

mately ni ≈ b3, i = 1, . . . , N , which implies

∇Φ · b3 = 0, (3)

as shown in Figure 2. To satisfy these constraints, lifting-line theory constructs a suitable

potential function from a collection of line vortices. N equally spaced horseshoe vortices

6 of 22



Figure 2. Multiple horseshoe vortices are used to model the flow around a finite, slender wing
with aspect ratio A > 4 representing the follower aircraft.

are bound to the quarter chord of the follower aircraft wing such that 2N trailing vortices

extending infinitely downstream. The ith bound horseshoe vortex has circulation strength

Γi as shown in Figure 2. The number N of horseshoe vortices must be chosen large enough

for adequate model fidelity, yet small enough to remain computationally tractable. The

freestream fluid velocity U∞ has magnitude U∞ and angle of attack α relative to the wing.

(Assume the freestream velocity has zero sideslip and α is small.)

The line vortex is a solution to Laplace’s equation16 (2), implying that the flow due to the

freestream velocity, leader aircraft upwash, and horseshoe vortices must satisfy the normal

flow constraint (3). Therefore, (3) evaluated at any given point on the wing must satisfy

whs + wL + Vz + U∞ sinα = 0, (4)

where whs is the b3 component of the flow generated by the horseshoe vortices, wL is the

vertical component of the leader aircraft’s wake given by (1), Vz is the b3 component of the

inertial velocity of the follower aircraft expressed in frame B, and the fourth term on the left-

hand side is the normal component of the freestream velocity. Note that this model neglects

aerodynamic influences due to aircraft pitching, rolling, and sideslip maneuvers, under the

simplifying assumption that in close proximity these motions are negligible.

To solve for the horseshoe vortex strengths Γi that satisfy (4), this paper employs the

collocation method.16,17 Following Katz and Plotkin [16, p. 331–334], impose the constraint

(4) at N collocation points centered at each horseshoe vortex along the 3/4-chord line as

shown in Figure 2. Since the flow at any collocation point is linearly dependent on the

circulation strength Γi of the ith horseshoe vortex, (4) applied at the N collocation points

forms a set of N linear algebraic equations with N unknown circulation strengths16 Γi,
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i = 1 . . . , N , 
a11 · · · a1N

...
. . .

...

aN1 · · · aNN




Γ1

...

ΓN

 = −(U∞ sinα + Vz)


1
...

1

−

wL(y1)

...

wL(yN)

 . (5)

Here
N∑
i=1

ajiΓi = whs(yj), (6)

is the normal component of the flow at the jth collocation point, Vz is the (control) velocity

of the follower aircraft, and wL(yj) is obtained by evaluating (1) at yj. Equation (5) is solved

for the circulation strength distribution Γ1, . . . ,ΓN by inverting the aji coefficient matrix.16

The circulation strength distribution Γ(y) = limN→∞ Γi is used to calculate measurable

quantities that will be used in the nonlinear wake estimation process. For example, Hemati,

Eldredge, and Speyer18,19 assume the following measurements of the differential pressure

coefficient ∆Cp:

∆Cp(x, y) = −4Γ(y)
πU∞c

(
c
x
− 1
)1/2

. (7)

Assume equally spaced measurements of differential pressure on the 3/4-chord line x = (3c)/4

along the span of the wing, as shown by the black squares in Figure 2. Let

h(Ω) = [∆Cp1 . . .∆CpP ]T (8)

be a P × 1 column matrix of differential pressure measurements calculated using (7) on the

3/4-chord line as shown in Figure 2, where P is the number of measurements. Taking h(Ω)

as the output and using the leader aircraft dynamics in frame B, generates the following

state-space form of the input-output relationship between the wake parameter states Ω =

[yL, zL,ΓL]T and the measurements φ:

Ω̇ =


−Vy
−Vz

0


φ = h(Ω).

(9)

The model (9) will be used to evaluate the observability of the state Ω with the output

equation h(Ω), to design an observer to estimate Ω from noisy output measurements, and to

design optimal control strategies for the follower aircraft. Note that (8) represents a simplified

measurement model of the follower aircraft and may not capture all of the aerodynamic
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effects between the vehicles,19 especially those that may occur when the follower lies within

one wingspan of the leader in the b2-b3 plane.

B. Measures of Leader Aircraft Observability

Successful estimation of states in a system depends on the ability to observe the desired

states from sensor measurements collected over time.24 This paper seeks to observe the wake

parameter states Ω = [yL, zL,ΓL]T (particularly the relative position states yL, zL) given

measurements of the differential pressure coefficient in (7). Equation (7) depends on Ω

indirectly through the circulation strength distribution Γ(y) of the horseshoe vortices, which

motivates the need to quantitatively assess the observability of the parameters Ω as part of

the implementation of an observer-based controller. This section provides a brief overview

of observability in the context of linear and nonlinear systems and reviews the empirical

observability Gramian23,24,28 used to assess the observability of the wake parameters in the

aerodynamic model of Section II.A.

A dynamical system is said to be observable if its initial conditions can be determined

from a time history of output measurements h(t) and control inputs u(t) over some time

interval.22,31 A standard method of measuring observability is to calculate the singular

values of the observability Gramian.27,31 In linear systems theory, the singular values of the

observability Gramian quantify the ease in determining the initial states from the outputs

generated over time as follows: large singular values imply the mapping is easily invertible,

whereas small or zero singular values imply it is not [31, p. 125–126]. This paper quantifies

the unobservability of a system using the unobservability index ξ, which is the reciprocal of

the smallest singular value σmin, i.e.,24,28

ξ = 1
σmin

. (10)

The unobservability index (10) reflects the least observable mode in the system and provides a

worst-case observability measure for the system. Another measure is the estimation condition

number λ, defined as the ratio of the largest and smallest singular values24,27,32

λ = σmax
σmin

, (11)

which characterizes the range of observability in the system. A large value of λ implies the

estimation problem may be ill-conditioned;24,28,32 the minimum value of λ is one.

The observability of a nonlinear system may be difficult to determine analytically, because

it requires tools from differential geometry.22 Linearization is one option, but may fail to

adequately model the input/output relationship of the nonlinear system over a wide range
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of operating conditions. Since the flow model in this paper is solved numerically, it is

justified to pursue numerical techniques for calculating the nonlinear, empirical observability

Gramian.25,32 The empirical observability Gramian does not require linearization but merely

the ability to simulate the system. Indeed, the empirical observability Gramian maps the

input-output behavior of a nonlinear system more accurately than the observability Gramian

produced by linearization of the nonlinear system.33

The empirical observability Gramian is defined as follows. Let εiei, i = 1, . . . ,M , be

a small displacement of the nominal parameter along the ith basis vector ei ∈ RM and let

Ω ∈ RM be the set of nominal parameter values. The (i, j)th component of the M ×M

empirical observability Gramian WO is24

WO(i, j) = 1
4εiεj

∫ T
0

[φ+i(τ)− φ−i(τ)]
T

[φ+j(τ)− φ−j(τ)] dτ,

i = 1, . . . ,M, j = 1, . . . ,M,
(12)

where Ω±i = Ω ± εiei produces the output φ±i = h(Ω±i,u). Measures of the observability

of a nonlinear system are obtained by applying (10) and (11) to the matrix WO.

The empirical observability Gramian is used here to evaluate the observability of the

leader aircraft wake parameters along trajectories of relative aircraft motion. This analysis

provides a method of mapping blind spots in which the follower aircraft may not be able

to estimate the leader’s wake parameters because they are nearly unobservable. To analyze

the dependence of the unobservability index and estimation condition on the leader aircraft

position, the empirical observability Gramian (12) is evaluated as a function of the leader

aircraft position in the (b2,b3) plane.

For simulation purposes, assume N = 40 horseshoe vortices define the aircraft wing

model. The wing dimensions and flight conditions are based on a C-17 aircraft (b = 51.75

meters, A = 7.586, cruise U∞ = 230.556 m/s). All quantities are non-dimensionalized

using wingspan and cruise speed, so they can be generalized to other (unmanned) aircraft.

Figure 3 shows the log of the observability measures (10) and (11) at each relative position

r = [yL zL]T . Note that the unobservability index in Figure 3(a) generally increases with

increasing ||r|| and is symmetric in the (b2,b3) plane, which is expected due to the symmetries

of the upwash model (1). However, regions of unobservability (poor observability) extend

outward from the wing tips of the follower. As a result, there is a large degree of variability in

observability between one and two wingspans from the origin of the (b2,b3) plane. Further,

the unobservability index is nearly seven orders of magnitude larger two wingspans away

than at the origin, implying that one can expect dramatically worse estimation performance

as ‖r‖ increases; though this pattern is not radially symmetric. Additional calculations (not

shown) indicate that the singular value associated with the circulation strength parameter ΓL
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Figure 3. The log of the (a) unobservability index and (b) estimation condition over a range
of leader aircraft relative positions.

is typically the smallest, which implies that ΓL is the least observable state in Ω and the most

difficult to estimate. Since the estimation condition in Figure 3(b) is large along diagonals

emanating outward from the wingtips, the estimation problem is poorly conditioned in these

areas.

Evaluation of the empirical observablity Gramian over the space of leader aircraft posi-

tions provides an observability map of the leader aircraft parameters Ω. The observability

analysis is used in the following section to guide the design of a recursive Bayesian filter for

estimating the leader’s wake parameters and two observability-based optimal control strate-

gies to steer the follower to a desired relative position. Maintaining adequate observability

guarantees the performance of the filtering scheme.

III. Wake Estimation and Control

This section presents a recursive Bayesian filter for estimating the leader aircraft states

of the two-aircraft model (9) and compares two optimal control algorithms that steer the

follower to a desired position relative to the leader. The leader’s estimated states are utilized

in the optimal control. Numerical examples are provided in Section IV.

A. Bayesian Estimation of Leader Aircraft Wake Parameters

For a linear system with Gaussian noise, the optimal Bayesian filter is the Kalman filter,

whereas for a nonlinear system with nonlinear noise, an effective Bayesian filter is a particle

filter.34 Hemati, Eldredge, and Speyer18,19 compared the performance of an extended Kalman

filter with a particle filter in estimating the leader aircraft wake parameters. Due to the fact

that there are only a few states and each have a (presumed) known time dependence, a grid-

based recursive Bayesian estimation scheme is selected here to assimilate the differential
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pressure coefficient measurements with noise. The state vector Ω contains a set of M = 3

states Ω = [yL zL ΓL]T , from which the differential pressure distribution is reconstructed.

The leader aircraft wake model (1) has kinematics that are modeled in (nonlinear) state-space

form in (9).

The grid-based, discrete-time Bayesian formalism is presented as follows.34 Let Ω(t)

denote the state estimate at time t, µ̃(t) denote noisy sensor observations at time t, and

A(t) = {µ̃(1), . . . , µ̃(t)} denote the set of observations up to time t. The posterior probability

of the state Ω(t) given A(t) evolves in time via35

p(Ω(t)|A(t)) = βp(µ̃(t)|Ω(t))

∫
p(Ω(t)|Ω(t−∆t))p(Ω(t)|A(t−∆t))dΩ(t−∆t), (13)

where the coefficient β is chosen so that p(Ω(t)|A(t)) has unit integral over the state space.

The conditional probability p(µ̃(t)|Ω(t)) is a likelihood function that represents the prob-

ability of the state Ω(t) given the observation µ̃(t). The motion model p(Ω(t)|Ω(t−∆t))

represents a nonlinear operator that updates the probability density function from t−∆t

to t [35, p. 372–375], assuming known control inputs u = [Vy Vz]
T . Define the motion ma-

trix Ψ = ∆tdiag([−Vy −Vz 0]T ) and let p(Ω(t)|Ω(t−∆t)) = N (ΨΩ(t−∆t); Σp), where

N (ΨΩ(t−∆t); Σp) is normally distributed white noise with mean ΨΩ(t−∆t) and variance

Σp. The quantity p(Ω(t)|A(t−∆t)) is the prior probability density resulting from measure-

ments taken up to t−∆t. At t = 0 the probability is assumed to be uniformly distributed

in the absence of information other than the parameter lower and upper bounds. The maxi-

mum likelihood estimate Ω̂ of the leader aircraft parameters is the point in parameter space

corresponding to the supremum of the posterior probability density, i.e.,

Ω̂ = sup p(Ω(t)|A(t)). (14)

Suppose the sensors collect noisy measurements of differential pressure according to

φ̃(t) = φ(t) + ηφ(t) ∈ RP ,

where the noise ηφ(t) ∼ N (0,Σ2
φ) is a P×1 column matrix in which each element has zero

mean and variance Σ2
φ, and φ is given by (9). To break the vertical symmetry in (1), assume

the follower aircraft is outfitted with a sensorc that provides a (noisy) reading of the sign of

cSuch as a camera or other optical device that does not require a data link between aircraft
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zL, i.e.,

θ(t) = sgn(zL(t)) =


1, zL(t) > 0

0, zL(t) = 0

−1 zL(t) < 0,

θ̃(t) = θ(t) + ηθ(t), (15)

where the noise ηθ has zero mean and variance Σ2
θ. Multi-variate Gaussian likelihood func-

tions are chosen for each point Ω(t) in the M -dimensional state space to fuse contributions

from both sensing types, i.e.,

p(µ(t)|Ω(t)) = p(φ(t)|Ω(t))p(θ(t)|Ω(t)), (16)

where µ = (φ, θ) combines both sensing modalities. The likelihood functions for the differ-

ential pressure and relative altitude measurements are chosen to be

p(φ(t)|Ω(t)) = 1

2πΣ
1/2
φ

exp
[
− 1

2Σ2
φ
[h(Ω(t))−φ(t)]T [h(Ω(t))−φ(t)]

]
, (17)

and

p(θ(t)|Ω(t)) = 1

2πΣ
1/2
θ

exp[− 1
2Σ2

θ
(sgn(zL(Ω(t)))−θ(t))2], (18)

respectively. The term zL(Ω(t)) in (18) represents the zL value associated with the state Ω(t)

and Σ2
θ is the variance in the relative altitude measurement. Estimates from the recursive

Bayesian filter are used in the optimal controllers presented in the following section.

B. Observability-based Optimal Control

Section II.B showed how the unobservability index ξ = ξ(r) and estimation condition λ =

λ(r) quantify the observability over the relative position space r. The observability map

can be viewed as a cost metric for use in designing an optimal control strategy that steers

the follower aircraft to a desired relative position while maintaining adequate observability

along the trajectory. Maintaining adequate observability along a trajectory guarantees the

performance of the estimation scheme, which increases the control algorithm performance.

This section presents the control derivation as an optimal control problem and provides two

methods of control design. The first method combines observability and the control-signal

magnitude to form a cost metric and solves a receding-horizon optimal control problem with

numerical methods. The second strategy employs a wavefront expansion method21 to quickly

generate solutions over the discretized space of leader aircraft positions and incorporates

gradient descent control to produce optimal follower aircraft trajectories.
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The classical optimal control problem is formulated as follows. Suppose that for aerody-

namic efficiency the follower aircraft must maintain a desired position relative to the leader

aircraft rdes = [ydes, zdes]
T , assuming the longitudinal separation between the aircraft xL is

held fixed through a separate control strategy not described here. The control kinematics

of the leader aircraft position with respect to the follower are given by (9). Neglecting the

time-invariant quantity ΓL in (9) and considering only the relative position terms r, yields

the equations of motion

ṙ = f(u) =

−Vy
−Vz

 , (19)

where r = [yL zL]T and u = [Vy Vz]
T .

The desired control u(t) produces a trajectory that optimizes observability from the

initial condition r(t0) = [yL(t0), zL(t0)]T at time t0 to the desired position rdes at or before

time t0 + Tf . Consider the receding-horizon cost function

JRH(r(t0);κ,R) =

∫ t0+Tf

t0

(κ log ξ(r(t)) + u(t)TRu(t)) dt, (20)

where ξ(r) is the unobservability index (10). The constant weights R ∈ R2×2 and κ ∈ R are

positive definite. The cost function (20) is positive semi-definite since ξ(r) ≥ 0 by definition

and, in this application, its natural log is also positive definite since σmin ≤ 1 for the param-

eter values used. Minimizing (20) is a constrained nonlinear optimization problem whose

solution provides the control sequence u(t) that produces the optimal observability trajec-

tory with minimum control effort. Imposing the constraint ||u(t)| | ≤ umax =
√
V 2
ymax + V 2

zmax

bounds the control effort. Using the GPOPS20,36 optimization software in MATLAB yields

the controls V ∗y and V ∗z that minimize JRH .

Figure 4(a) depicts the optimal trajectories of the leader aircraft for κ = 0, 0.1, 0.3, and

0.8, and R = I2×2. The initial condition r0 = (1.7,−1.7) wingspans and desired position

rdes = (−1.7,−1.7) wingspans are arbitrary. As κ increases, the observability along the

trajectory improves. Decreasing κ causes the trajectory to approach the desired location

more directly, but via a route that increases unobservability.

The measurement model (8) captures simplified aerodynamics of the two-aircraft model

and may be prone to model error in the vicinity within one wingspan of the leader aircraft

in the b2-b3 plane, where unmodeled aerodynamic effects are significant. In addition to

unmodeled aerodynamics, the region within one wingspan of the leader aircraft may contain

exhaust flow from the lead aircraft that produces undesirable operating conditions in addition

to increased load on the tail control surfaces of the follower aircraft. To avoid these regions,

we incorporate a multi-variable Gaussian avoidance potential function into the optimization
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Figure 4. (a–d) Optimal trajectory solutions of the cost functions (20), (21), (22), and (23)
for initial condition r0 = [1.7 −1.7]T wingspans and desired position rdes = [−1.7 −1.7]T .

procedure. Consider the multi-objective cost function

JRHav(r(t0);κ, ζ,R) =

∫ t0+Tf

t0

κ(ζ log ξ(r(t) + (1− ζ)βe−
rTΣ−1

av r
2 ) + u(t)TRu(t)) dt, (21)

where ζ ∈ [0, 1] weighs the observability and avoidance objectives, β is a scaling constant,

and Σav ∈ R2×2 defines the variance of the avoidance potential function. Minimizing the

cost function (21) produces observability optimal trajectories that avoid regions that may be

prone to significant model error. Figure 4(b) illustrates optimal trajectories of the follower

aircraft assuming the multi-objective cost function (21) for ζ = 0.8 and Σav = I2×2/2.

Comparing Figures 4(a) and 4(b), note that as κ increases the trajectory approaches regions

of low unobservability but avoids the region within one wingspan of the leader aircraft.

The control u(t) that minimizes (20) produces the optimal observability trajectory for

a given horizon time Tf and initial condition r0. To incorporate state estimates from the

recursive Bayesian filter, one might use the estimated leader aircraft states r̂ as the initial
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condition in the control calculation and recalculate the control iteratively in the following

sense. At the start of each planning cycle of duration Te the optimal trajectory to rdes

is computed using the estimated initial condition r̂(t0). The follower executes the optimal

control V ∗y (t), V ∗z (t) for t ∈ [t0, t0 + Te], then the cycle repeats. Incorporating observability

into the optimal control calculation ensures the performance of the recursive filter. As the

estimates converge, the follower aircraft approaches the optimal trajectory.

The receding-horizon optimal control strategy presented above requires iterative calcula-

tion of the optimal control, which is computationally expensive. It also requires specification

of horizon times that may be too large or infeasible depending on the leader aircraft’s relative

position. An alternative approach incorporates a weighted wavefront expansion, known as

the fast marching method,21 to generate an optimal “cost-to-go” potential map relative to

the desired position. The gradient of this potential function provides the optimal control

with respect to a given cost function. This method does not require iterative calculation of

the control since the potential is calculated over the entire relative position space, making

the control computationally inexpensive compared to the receding-horizon control.

The optimal path planning problem is formulated as follows [21, pg. 284–291]. Given a

desired position rdes, the goal is to find the path L(l) : [0,∞) → R2 from rdes to any point

r0 that minimizes the observability-based cost integral21

∫ r0

rdes

log ξ(L(l))dl,

where l is the arc-length parameterization of the path L and ξ(·) is the unobservability index

evaluated along L. Let the minimum cost required to travel from rdes to a point r be21

JWF (r) , min
L

∫ r

rdes

ξ(L(l))dl, (22)

such that the level set JWF (r) = C is the set of points that can be reached with minimal

cost C. By construction, level sets are orthogonal to the minimal cost paths21 implying that

the optimal path descends the gradient of JWF (r). We incorporate an avoidance region by

considering an avoidance potential in the cost function similar to (21) such that the minimum

cost of travel becomes

JWFav(r) , min
L

∫ r

rdes

ζξ(L(l)) + (1− ζ)βe−
L(l)TΣ−1

av L(l)
2 dl, (23)

The fast marching method21 is a wavefront propagation technique that is used to effi-

ciently compute JWF (r) for the domain around the leader aircraft [21, pg. 86–99]. Figure

4(c) shows the cost potential (22) with rdes = (−1.7,−1.7) wingspans. Note that each con-
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tour of the potential function indicates the locus of points that can reach rdes with equal

unobservability along the optimal path. The optimal path from r0 = (1.7,−1.7) wingspans

is denoted by the black line and follows the gradient of the potential function. Figure 4(d)

illustrates the cost potential and optimal trajectory when considering an avoidance region

around the origin of the b2-b3 plane. Using either (22) or (23), this path-planning approach

does not utilize the magnitude of the control in its cost function and therefore differs from

the paths generated using the receding horizon approach.

Since the optimal path descends the gradient of JWF (r), an observer-based feedback

control incorporates estimates of the relative position r̂ according to

u = −K∇JWF (r̂), (24)

where the gain K > 0. Assuming the desired final location is fixed, the cost potential JWF (r)

need be calculated only once to produce all possible optimal paths.

IV. Wake Estimation and Control Example: Formation Flight

This section provides numerical simulations of the observability-based receding-horizon

control and wavefront-propagation control strategies presented in Section III. The control

strategies are applied to a two-aircraft formation in which the follower aircraft steers itself

to a position that will increase aerodynamic efficiency.13 The desired final orientation rdes =[
πb
4
, 0
]T

wingspans reduces the induced drag on the follower aircraft, increasing its fuel

efficiency.13 The initial condition r0 = (−0.8, 1.4) wingspans is chosen arbitrarily for all

simulations. Simulations of each control strategy with and without the avoidance region

are included, producing four simulations. All simulations assume noise Σ = 10−5 in the

differential pressure coefficient measurements and total simulation time T = 15 seconds.

The receding-horizon controller optimization constant is κ = 2, and the horizon time is

Tf = 5 seconds for both scenarios. The control optimization calculation is iterated every

second, i.e., Te = 1 second, assuming the recursive Bayesian filter assimilates measurements

at 5 Hz. The wavefront-propagation control strategy has gain K = 5 for all applicable

simulations.

A. Two-aircraft Formation Flight Without Avoidance Region

Figure 5 illustrates the optimal control strategies without considering an avoidance region.

Figures 5(a)–(c) illustrate the result of simulating the receding-horizon control algorithm.

Figure 5(a) shows the leader aircraft trajectory (white) and the unobservability index. The

white circle represents the final position of the leader aircraft and the magenta circle rep-
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(a) (b) (c)

(d) (e) (f)

Figure 5. Simulation illustrating formation flight with optimal control algorithms of Section
III. (a) Leader aircraft position trajectory using receding-horizon control; (b,c) marginal
probability densities for relative position over time. (d–f) Illustration of wavefront-propagation
control using estimated relative position.

resents the final position estimate. Figures 5(b,c) show the marginal probability densityd

of the estimated relative position over time. (The marginal probability density of ΓL is

omitted for brevity.) A solid white line represents the trajectory of the leader aircraft and

a dashed white line shows the trajectory of the state estimate. Note in Figure 5(a) that the

leader aircraft is generally steered toward rdes with deviations from a direct path created by

estimation errors in the observability-based control optimization. Figures 5(b,c) show the

marginal probability densities converging to the true aircraft states.

Figures 5(d)–(f) illustrate results simulating the wavefront-propagation control algo-

rithm without avoidance consideration. Comparing Figures 5(a) and 5(d), the wavefront-

propagation algorithm steers the vehicle along a route to the desired position with fewer

deviations due to estimation error than the receding-horizon algorithm; both techniques

have similar estimator convergence properties.

dThe marginal probability density is achieved by summing a multi-dimensional probability density over
a subset of dimensions.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Simulation illustrating formation flight with optimal control algorithms of Section
III. (a) Leader aircraft position trajectory using receding-horizon control; (b,c) marginal
probability densities for relative position over time. (d–f) Illustration of wavefront-propagation
control using estimated relative position.

B. Two-aircraft Formation Flight With Avoidance Region

Figure 6 illustrates simulation of the the optimal control strategies using the multiple ob-

jective cost functions (21) and (23), respectively. Figures 6(a)–(c) illustrate the result of

simulating the receding-horizon control algorithm, whereas Figures 6(d)–(f) illustrate re-

sults of the wavefront propagation method. Note by including the avoidance potential the

follower aircraft avoids regions directly behind the leader aircraft while simultaneously seek-

ing regions of low unobservability. Comparing Figures 6(a) and 6(d), note that by including

control in the cost function results in a more direct path to the desired final location, whereas

the wavefront propagation method produces a curving trajectory that avoids regions of large

unobservability and generally stays outside one wingspan of the leader aircraft. Figures

6(b,c,d,f) show the marginal probability densities converging to the true aircraft states.

Comparing the estimation performance with and without avoidance regions, note that the

position estimate converges around the actual value in approximately four seconds in Figure

5, whereas in Figure 6 the estimates converge around the actual values in approximately six
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seconds. Since the the avoidance region coincides with the area of lowest unobservability, one

can expect diminished estimation performance when considering an avoidance region in the

optimal control calculation. However, noisy measurements generated in these simulations do

not consider the significant model error that may be associated with the region within one

wingspan.

V. Conclusion

Aircraft may operate in close proximity to increase flight endurance, particularly for re-

ducing induced drag. This paper uses lifting-line theory to model a two-aircraft formation

and derives observability-based optimal control strategies that steer the follower aircraft to

a desired relative position. The follower aircraft collects noisy measurements of the aero-

dynamic signature created by the leader’s wake. The observability of the leader aircraft is

assessed using measures of the empirical observability Gramian and a recursive Bayesian filter

is implemented to estimate the leader’s wake parameters. Receding-horizon and wavefront-

propagation optimal control algorithms use the unobservability index as a cost metric and

incorporate estimates of the leader’s state provided by the Bayesian filter. Moreover, incorpo-

rating an avoidance potential into the cost function steers the vehicle around regions known

to have significant model error. Numerical simulations of formation flight illustrate that the

proposed control algorithms successfully steer the vehicle to a desired relative position while

simultaneously estimating the wake parameters.
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