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Nomenclature

DMD Dynamic Mode Decomposition

DMDSP Sparsity Promoting DMD

POD Principal Orthogonal Decomposition

SVD Singular Value Decomposition

PIV Particle Image Velocimetry

ψ(t) Vector of observables at time t

Ψ, Ψ′ Matrices of data snapshots

m Number of snapshot pairs in original data

n Dimension of ψ

A Approximate time evolution operator for ψ

Ã Projected version of A into POD subspace

UΣV∗ SVD of Ψ

φi ith DMD eigenmode

Φ Matrix of DMD eigenmodes

λi ith DMD eigenvalue

Λ Diagonal matrix of DMD eigenvalues

α Vector of DMD mode amplitudes

γ DMDSP parameter

∗Graduate Research Assistant, Department of Aerospace Engineering, AIAA Student Member
†Assistant Professor, Department of Mechanical and Aerospace Engineering, AIAA Member
‡Graduate Research Assistant, Department of Aerospace Engineering
§Assistant Research Engineer, Department of Aerospace Engineering, AIAA Member
¶Associate Professor, Department of Aerospace Engineering, AIAA Associate Fellow
‖Willis H. Young Jr. Professor of Aerospace Engineering Education, Department of Aerospace Engineering, AIAA Associate Fellow

1



Jγ DMDSP cost function

m∗ Number of modes chosen for reduced-order model

x Vector of states

y Vector of measurements

z Vector of mode amplitudes in modal form

F State transition matrix for z dynamics

Cy y observer matrix

Cx x observer matrix

ẑ Estimate of z

P Estimate covariance

Q Process noise covariance

R Measurement noise covariance

K Kalman gain

t∗ Time, normalized by period of actuation

Amp Normalized surging amplitude

k Reduced frequency of actuation

I. Introduction
Unsteady flow structures play an important role in the generation of lift at high angles of attack [1]. For example,

during dynamic stall, the lift coefficient increases beyond its value found in the static stall condition, due to the formation

of a leading edge vortex (LEV). As the angle of attack increases further, the LEV sheds and the lift coefficient falls [2].

To avoid large, undesirable variations in lift, feedback control may be applied to enhance or regularize unsteady lift

production. A prerequisite for feedback control based on flow dynamics is estimation of the flowfield. Estimation can

be achieved by a dynamic observer operating on a model of the flowfield. Common approaches include linearization of

the Navier-Stokes equations [3], fitting a reduced-order model to experimental data, such as the Goman-Khrabrov model

[1], or using modal decompositions [4][5].

Modal decomposition methods extract a small number of modes that contain most of the information from a set of

high-dimensional data. For example, Proper Orthogonal Decomposition (POD) [5] provides a set orthogonal modes that

can be used to optimally represent the original dataset in an energetic (least-squares) sense. A reduced number of POD

modes can be used to reproduce the original dataset, however, these modes do not necessarily correspond to structures

that evolve coherently in time and space [6]. Balanced POD (BPOD) [7] finds modes that are the most controllable
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and observable, making it very useful for feedback control as in [8]. However, BPOD requires prior knowledge of the

dynamics of the system [4].

An alternative modal decomposition that focuses on describing the time evolution is Dynamic Mode Decomposition

(DMD). DMD is a data-driven algorithm initially developed for modal decomposition and analysis of fluid flows [9].

In the context of fluid mechanics, DMD decomposes the flow into modes of oscillation and, thus, provides a useful

dynamical description of the system. DMD has been commonly used to analyze the behavior of unsteady flow [4]. The

traditional procedure used for analyzing a flow using DMD is to assimilate velocity data obtained either computationally

or through Particle Image Velocimetry (PIV). Modal decomposition generates a reduced-order, approximate model in

terms of the DMD modes, which may be used for estimation.

If DMD is performed with both state and output data, a linear system that approximates the dynamics and the output

equation can be constructed, and a Kalman Filter (KF) may be applied to estimate the states [10]. We refer to this filter

as a DMD Kalman Filter (DMD-KF). The DMD-KF is different from [11][12] in which the Kalman filter is used for

obtaining the DMD modes more precisely in the presence of noise. To be useful for estimation, the DMD modes should

not only represent the dataset in which DMD was performed, but also the ensemble of flow trajectories possible for the

underlying dynamics. Ideally, we wish to obtain modes that are physically significant to the system, instead of modes

that fit patterns specific to the data used to compute DMD modes. Physically significant modes may more accurately

represent different realizations of the same system. Indeed, DMD may be able to provide such a general model of the

dynamics even if the system is nonlinear.

DMD has a close relationship with an operator-theoretic description of dynamical systems based on the Koopman

operator [13]. The Koopman operator advances observables of a dynamical system linearly in time [14]. It serves as a

way to represent a finite-dimensional nonlinear system as an infinite dimensional linear system [14]. If the DMD modes

are able to correctly approximate the Koopman modes of the underlying dynamics, then the DMD-KF is equivalent to

the Koopman Kalman Filter (KKF) [10].

Obtaining physically significant modes is a goal of many DMD-related papers: Extended DMD [15] uses a dictionary

of functions to better approximate the Koopman operator of the underlying dynamics; Total DMD [16][17] seeks to

correct for the effect of noisy data; [6] shows that Spectral POD optimally accounts for the variation in an ensemble

of DMD modes; and Sparsity Promoting DMD (DMDSP) [18] finds the most relevant DMD modes for a set of data.

Implementing these variations of DMD could potentially improve the perfomance of the DMD-KF, however such an

exploration lies beyond the scope of this paper. Other works have used DMD with pressure measurements to obtain
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optimal actuation frequencies for open-loop control [19], predicting forces on a pitching airfoil [20], and performing

feedback control for flow reattachment [21].

This paper applies the DMD-KF to generate full flowfield estimates using DMD modes and data obtained from

a limited number of pressure sensors. We define the original data set as the training set, which contains PIV data

and pressure measurements. Sparsity Promoting DMD (DMDSP) selects a reduced number of modes in order to

simplify the system, while providing a sufficiently accurate approximation of the flowfield. The DMD-KF uses pressure

measurements as inputs to estimate a linear dynamical system in which the states are the amplitudes of the DMD modes.

With knowledge of the modes and an estimate of the amplitudes, the flowfield is reproduced. We evaluate the performance

of the estimator with the original training data set and a separate test data set consisting of a different realization

of the same system. Although our analysis was conducted offline, the estimator may be useful for real-time analy-

sis and control of a flowfield when distributed pressure measurements are available, but in-situ PIVmeasurements are not.

The main contribution of this paper is to apply the DMD-KF to experimental flowfield and pressure sensor data

generated by actuated airfoils at high angles of attack, an unsteady condition of interest for the application of feedback

control. The first experiment, a pitching cambered ellipse, illustrates the selection of modes for the reduced-order model

and shows the effect of the number of modes on the performance of the estimator. The second experiment, a surging

NACA 0012, is evaluated to characterize the performance of the estimator for various flow conditions. Various sources

of estimation error are analyzed and we suggest strategies to identify them. This paper is an updated presentation of our

SciTech 2019 paper [22].

The paper is organized as follows. Section II summarizes DMD, DMDSP, and DMD-KF. Section III describes

the implementation of the DMDSP algorithm on two experimental data sets, including an overview of the process of

selecting the number of DMD modes. Section IV evaluates the DMD-KF performance via comparison to the original

and DMD reconstructed data. Section V summarizes the paper and ongoing work.

II. Data-driven model reduction and estimation
DMD is a data-driven algorithm to compute the eigenvalues and eigenmodes of a linear model that approximates the

dynamics of data [23]. There are many variations of and additions to DMD [24]. This paper uses Schmid’s algorithm

[9] to obtain the DMD modes and eigenvalues and DMDSP by Jovanović, Schmid and Nichols [18] to select the most

relevant modes for a reduced-order model. The Koopman Observer Form by Surana and Banaszuk [10] creates an

observer matrix for the reduced-order model to be used in the DMD-KF for estimation [25].
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A. Dynamic Mode Decomposition

Consider a dataset of m + 1 snapshots, where each snapshot corresponds to a vector of observables ψ(tk) ∈ Rn at

time step k for k = 1, ...,m + 1. The time between steps must be constant, i.e., tk+1 − tk = ∆t. It is common for n (the

dimension of the snapshot vector) to be much bigger than m + 1 (the number of snapshots). For example, in fluids

simulations or PIV data there are often more measurements than time steps. Form two matrices with these snapshots;

the columns of these matrices contain the snapshot sequence, offset by one time step, such that

Ψ =



| | |

ψ(t1) ψ(t2) · · · ψ(tm−1)

| | |


and Ψ

′ =



| | |

ψ(t2) ψ(t3) · · · ψ(tm)

| | |


. (1)

DMD is an eigendecomposition of a linear operator A that approximates the dynamics that evolve the system one

step forwards in time, i.e., Ψ′ = AΨ. The best fit for this operator can be found using the pseudoinverse †, so A = Ψ′Ψ†.

However, if n � m, this approach may not be practical. Instead, the eigenvalues and eigenvectors of A are obtained

without computing A explicitly, using a projected version of A. Consider the Singular Value Decomposition (SVD)

Ψ = UΣV∗, (2)

where ∗ indicates the conjugate transpose. The columns of U form the POD modes of the data set Ψ. The pseudoinverse

of the SVD satisfies Ψ† = VΣ−1U∗, which implies

A = Ψ′VΣ−1U∗. (3)

Ã is a low-dimensional projection onto the POD basis [9] defined by the columns of U, i.e.,

Ã = U∗AU = U∗Ψ′VΣ−1. (4)

If m < n, computing the eigendecomposition of Ã (m × m) is easier than computing the eigendecomposition of

A (n× n). Let Λ be the diagonal matrix of eigenvalues of Ã and W the matrix of right eigenvectors of Ã. The eigenvalues

of A are the same as the eigenvalues of Ã [26] and represent the DMD eigenvalues. The matrix of DMD modes

Φ = UW (5)

corresponds to the approximate eigenvectors of A [26]. Note that the DMD modes in (5) are a linear combination of

POD modes.
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Let the vector α(t) of DMDmode amplitudes denote the approximate representation of the vector ψ(t) of observables

in the DMD-mode basis, so ψ(t) ≈ Φα(t). The time evolution is α(tk+1) = Λα(tk), which implies the approximate

solution for the dynamics of the vector observable is [24]

ψ(t) ≈ Φα(t) = ΦΛ(t−t1)/∆tα(t1), (6)

where ∆t = tk+1 − tk . Using the decomposition (5) and (6) allows us to approximate the original data or data coming

from the same dynamical system, but with different initial conditions. If the underlying system is linear, the DMD

modes and eigenvalues are inherent to the dynamics, whereas the mode amplitudes depend on the initial conditions. If

the system is nonlinear, the modes and eigenvalues may change with the initial conditions of the dataset. However,

for the purpose of estimation, we assume that the modes found are representative of and inherent to the underlying

dynamics. Whether or not this assumption is valid depends on how nonlinear the system is and how representative the

dataset is of the trajectories to be estimated.

B. Sparsity Promoting Dynamic Mode Decomposition

In the case of an oscillatory flow, a small number of DMDmodes often provides a sufficiently accurate reconstruction

of the data [2]. To find those modes and their initial amplitudes, we employ the Sparsity Promoting DMD (DMDSP)

algorithm developed by Jovanović, Schmid and Nichols [18], which consists of finding the mode amplitudes that

minimize the cost function

Jγ (α(t1)) =
m∑
k=1
| |ψ(tk) − ΦΛtk /∆tα(t1)| |2 + γ |αk(t1)|. (7)

The first term in (7) corresponds to the difference between the original data and the DMD reconstruction, the second

term is a penalty on non-zero mode amplitudes, and γ is a positive parameter that weights this penalty. After minimizing

(7) for a particular value of γ, the modes with non-zero amplitudes are the modes chosen for the reconstruction; these

modes correspond to the most influential modes. Then (7) is minimized again with γ = 0, using only the chosen modes,

to obtain the optimal mode amplitudes to reconstruct the data with the reduced set of modes [18]. Although fewer

modes yield a less accurate reconstruction, only certain modes may reproduce the dynamics of the system with sufficient

accuracy. The value of γ dictates the number m∗ of chosen modes, so it represents the desired balance between the

number of modes and the quality of the reproduction [18]. This process is illustrated in Section III.

C. Dynamic Mode Decomposition Kalman Filter

DMDSP identifies the mode amplitudes that best fit a time series of training data. Determining the DMD mode

amplitudes provides an estimate of the data, even in real time. A Kalman filter is a dynamic observer that gives real-time
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estimates of the system state using a dynamic model and noisy (linear) measurements from sensors. This section

describes a method to estimate the mode amplitudes and thus the whole data set from a subset of the measurements.

Based on the Koopman Observer Form [10], the main idea is to use DMD on the training data to generate a linear

dynamical system that represents the dynamics we observe and to use a Kalman Filter to estimate this system from

sensor measurements in the test data.

When constructing the snapshot matrices from the training data, every snapshot ψ(tk) must contain the states

(x ∈ Rnx ) to be estimated concatenated with the observables (y ∈ Rny ) that will be readily available as measurements.

Here, x corresponds to PIVmeasurements and y corresponds to pressure sensor measurements, although this formulation

is otherwise general. The snapshot matrices are

Ψ =



| |

x(t1) · · · x(tm)

| |

| |

y(t1) · · · y(tm)

| |



Ψ
′ =



| |

x(t2) · · · x(tm+1)

| |

| |

y(t2) · · · y(tm+1)

| |



. (8)

Next, apply the DMD and DMDSP algorithms to obtain a tuple of m∗ DMD eigenvalues (λi) and DMD modes

(φi) and arrange them so complex conjugates are grouped together. The amplitudes obtained from DMDSP are not

required to create a DMD-based observer, however it is useful to have as reference the best possible reconstruction

using the chosen set of modes. The modes and eigenvalues are similar but slightly different from those obtained by

performing DMD on only the PIV data. A weighting can be applied to give more emphasis to the states to estimate (x)

or the measurements (y), but this idea was not explored in this paper. Instead, all quantities were nondimentionalized so

their magnitudes are comparable. Form observation matrix C by letting Ci be the ith column of C with [10]

Ci = φi , if φi is real, and

Ci = Re (φi) and Ci+1 = Im (φi) , if φi and φi+1 are complex conjugates.
(9)

Form the dynamics matrix F as a block diagonal matrix such that F has a diagonal entry Fi,i = λi , if λi is real, and

block diagonal entry [10]
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
Fi,i Fi,i+1

Fi+1,i Fi+1,i+1

 =


Re (λi) Im (λi)

− Im (λi) Re (λi)

 , (10)

if λi and λi+1 are complex conjugates. Split C into Cx and Cy , corresponding to the first nx and the last ny rows of C,

respectively.

Let z denote the vector of DMD amplitudes expressed in block modal form. These matrices define the linear

dynamical system [10]

zk = F zk−1 (11a)

yk ≈ Cy zk (11b)

xk ≈ Cx zk . (11c)

If the system given by equations (11a) and (11b) is observable, then a linear state observer such as a Kalman filter will

estimate the state z given measurements y. The Kalman filter is the optimal algorithm to estimate the states of a linear

system subject to Gaussian process noise with covariance Q and measurement noise with covariance R [25]. It involves

propagating the current estimate ẑ and covariance P of the current estimate in time using knowledge of the dynamics

and updating these values based on measurements. In this particular implementation, an extra step is added to compute

the estimate of x using (11c). Given the system described by (11), the filter equations are [25]

Estimate Propagation ẑ−k = F ẑk−1 (12a)

P−k = FPk−1FT +Q (12b)

Kalman Gain Kk = P−k Cy(CyP−k CT
y + R)−1 (12c)

Assimilating measurements ẑk = ẑ−k + K(yk − Cy ẑ
−
k ) (12d)

Pk = (I − KCy)P−k (12e)

Estimate of x x̂k = Cx ẑk . (12f)

The superindex − refer to the estimate before assimilating measurements. The symbol ˆ indicates the quantity is an

estimate, not the true value.
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D. Sources of Error in the Dynamic Mode Decomposition Kalman Filter

The system dynamics (11) can be written as

xk+1 = CxFC†xxk + wk ; yk = CyC†xxk + vk . (13)

The process noise wk and measurement noise vk include the inherent noise from the dynamics and the loss of information

due to the approximation. The process noise can be split into components either in, or orthogonal to, the span of DMD

modes: i.e.,

wk, = CxC†xwk ; wk,⊥ = wk − wk, . (14)

The terms wk, and vk correspond to the process and measurement noise in the reduced-order model and are related to

the uncertainty induced by assuming a linear model for the reduced order dynamics. We compute Q and R as

Q = Cov
[
C†x xk+1 − FC†x xk

]
; R = Cov

[
yk − CyC†x xk

]
. (15)

In contrast, wk,⊥ is unrelated to the filtering process and corresponds to the inability of the chosen DMD modes to

account for the variability in the states to be estimated. The DMD-KF will only produce estimates in the span of the

DMD modes, so the best possible estimate for the state, in the least squares sense, is x̃ = CxC†xx. We denote this

quantity as the DMD projection. The DMD projection is useful to quantify the information lost from projecting into a

low-dimensional model.

We distinguish between three ways to recreate the evolution of a flowfield from a modal decomposition: projection,

reconstruction, and estimation. Projection refers to projecting the test data into the span of the modes generated

from the training data. This process yields the least possible `2 norm of the difference between the instantaneous test

data snapshot and a representation in terms of the selected modes, and thus can serve as a lower bound for the error.

Reconstruction refers to finding the initial mode amplitudes that produce a trajectory, given by (6) (i.e., propagation of

DMD modes assuming no process noise), which minimizes the difference from the test data. Estimation refers to the

result of implementing a DMD-KF to obtain an approximation of the test data using only a limited set of measurements.

A large difference between the projection and the reconstruction may indicate a large process noise covariance, which

can be attributed to inherently noisy dynamics or a flawed dynamic model. If the reconstruction error is small, but the

estimation error is large, the problem may be due to a flawed measurement model.
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Parameter Experiment 1 [27] Experiment 2 [28]

Reynolds number 165000 40000
Free stream velocity 11.9 m/s 0.34m/s
Angle of attack 180°–200° 25°
Airfoil Cambered ellipse NACA 0012
Actuation Pitching sinusoidally Surging sinusoidally
PIV data points 16907 10369
Pressure sensors 30 8
Time steps 100 84–255

Table 1 Summary of experimental parameters. Fig. 1 Actuation trajectories for
Experiment 2.

III. Dynamic Mode Decomposition on an actuated airfoil
This section describes the application of the DMD and DMDSP procedures described in Sections II.A and II.B to

two different experimental datasets from airfoils in periodic unsteady flow conditions. Both datasets consist of a time

series of phase-averaged PIV data and pressure data from sensors embedded in the airfoils. Phase averaging means that

several actuation cycles were done experimentally, then data corresponding to the same phase at different cycles was

averaged together to produce a single cycle. This procedure reduces the noise in the data, but it also smooths out flow

features that do not occur periodically. Getting rid of such features may or may not be desirable, but analyzing them is

beyond the scope of this paper. We refer to these phase-averaged datasets as the training datasets, as these are the sets

from which the DMD modes for the DMD-KF are obtained.

Experiment 1 consists of a pitching cambered ellipse in reverse flow, with 17 pressure sensors on the suction side of

the airfoil and 13 pressure sensors on the high pressure side [27]. The states to estimate correspond to the velocity

components at predetermined grid points in the airfoil frame of reference. Since the airfoil was pitching while the

PIV cameras were stationary, the region around the airfoil where data was gathered varied during the pitching cycle.

DMD requires information about every state in every snapshot, so only the points for which there is data during the

entire pitching cycle are included in the area of interest shown in Figure 2a, which is the largest area fixed in the body

frame that remains in the field of view throughout a complete pitching cycle. Table 1 lists the parameters used in the

experiments.
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(a) Experiment 1 (b) Experiment 2

Fig. 2 Configuration of Experiments 1 and 2. Teal arrows indicate direction of actuation

Experiment 2 consists of a surging NACA 0012 airfoil with 8 pressure sensors on the suction side of the airfoil [28].

The Experiment 2 data set includes four different cases that vary the reduced frequency (k) and amplitude (Amp) of

the surging motion, as shown in Figure 1. The amplitude is relative to the nominal Reynolds number and the reduced

frequency is the actuation frequency ω nondimensionalized by the freestream velocity v0 and the chord length c as

k =
ωc
2v0

. (16)

The first step to analyze the experimental data is to construct snapshot matrices as presented in (8), with x

corresponding to PIV measurements arranged in a column vector and y corresponding to the pressure sensor data.

The DMD modes and eigenvalues are obtained following the algorithm described in Section II.A. This algorithm

produces m DMD modes, where m + 1 is the number of time steps in the data, which is usually more than needed

to accurately represent the system dynamics. Using fewer modes makes the estimation process run faster, so it is

desirable to use only a small number of relevant modes. The DMDSP algorithm described in Section II.B is used for

this purpose. Varying the sparsity promoting parameter γ provides a wide range of different mode numbers. Part of

the DMDSP algorithm involves reconstructing the training data, which consists of finding the mode amplitudes that

minimize the square of the difference between (6) evaluated at every time step and the original data. The reconstruction

is important because it provides the best fit using (6) and thus can be used to evaluate if the system dynamics are well

represented by a linear time evolution. The best number of modes can be chosen by looking at the accuracy of the re-

construction (Figure 3b), or by plotting the reconstruction and comparing it qualitatively to the training data set (Figure 4).

Figure 3a shows how the number of modes changes with γ in Experiment 1. The percent performance loss from

reconstruction of the data with DMD modes is defined as 100
√

J0(α)
J0(0) [18]. Figure 3b shows the loss of accuracy drops

rapidly between 0 and 13 modes, which implies there are diminishing returns from using additional modes. Figure 4
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(a) Experiment 1 (b) Experiment 1 (c) Experiment 1 (d) Experiment 2

Fig. 3 (a) Number of modes chosen by DMDSP for different values of γ; (b, d) percent performance loss versus
number of modes; (c) comparison of projection error for DMD and POD modes.

shows the original data from Experiment 1 and the reconstruction at half the actuation period, when the leading edge

vortex is about to be shed. The original data and the reconstruction with all of the modes look nearly identical. In the

reconstruction with 13 modes, the vortex can still be seen, but it is not as clearly defined. In the reconstruction with just

five modes, the leading edge vortex does not appear; only the leading and trailing shear layers are visible.

Fig. 4 Training set data and reconstructions with different number of modes for Experiment 1 at half the
actuation period (t*=0.5).

For estimation, the chosen modes are ideally not used to represent the same data set from which the modes were

obtained (the training set) but rather new data from the same dynamical system (the test set). To quantify the information

lost from using a set of modes to represent a different realization of the system, we compute the projection of the test set

into the span of the modes obtained from the training data. Fig. 3c shows the projection error using DMD and POD

modes of the training set and POD modes of the test set for Experiment 1. Note that the test set consists of instantaneous

PIV data, representative of a case of real-time estimation. POD modes form a more accurate projection of the data; the

difference corresponds to using three or four more DMD modes for the same level of accuracy, similar to the result

obtained in [2]. The projection error from the POD modes of the training and test data are very close for the first 10

modes, suggesting that they contain similar information. For more modes obtained from the training set, the projection

error stays almost constant. Even with the set of POD modes obtained from the test data, the projection error decreases
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slowly with the number of modes. Attaining an error below 5% requires over 60 POD modes.

IV. Dynamic Mode Decomposition Kalman Filter estimation results
After an appropriate number of modes is chosen, an observer is created following the procedure described in Section

II.C. The DMD Kalman Filter estimates the mode amplitudes from pressure measurements in order to generate the

corresponding estimate of the flowfield. For illustration purposes, we use Experiment 1 to show the results of choosing

different numbers of modes and Experiment 2 to present results for different actuation cases. In both experiments,

the DMD-KF is designed using phase-averaged data, but for Experiment 1, the estimation is tested using both phase

averaged (from the training set) and instantaneous (from the test set) measurements. For Experiment 2, the test data

consists of phase-averaged measurements, so only one period is available. The time t∗ indicated in the results is the time

normalized by the period of the actuation.

A. Experiment 1: Pitching cambered ellipse

We apply the DMD-KF to both the training and the test data to compare performance and identify if the estimator

is overfitting the data, i.e. identifying patterns in the training data that don’t generalize to the test data. A plot of the

estimation, reconstruction, and projection errors over a period is used to evaluate the estimator quantitatively. A plot of

the flowfield is shown to identify if flow structures are being identified properly and to evaluate the performance of the

estimator qualitatively.

Figures 5a to 5c show the normalized error for the reconstruction, projection, and estimation of training data. The

normalized error is defined as the average magnitude of the difference between the estimated (or reconstructed) field and

the original flowfield, normalized by the average magnitude of the velocity over the entire flowfield during the period. At

the initial time step, the reconstruction and estimation differ, but then quickly converge. The error in both the estimation

and reconstruction with 5 modes rises around the middle of the period, which is consistent with the reconstruction being

unable to properly reproduce the leading edge vortex that is shed around this time. The error also increases when using

13 modes but not as drastically as with 5 modes. The estimation using all of the modes takes more time to converge, and

does not achieve the low error of the corresponding reconstruction using all of the modes, but it does achieve the lowest

error overall. A downside of using all of the modes is the increased computational time to compute the estimate, since

the computational burden of computing a Kalman filter is highly dependent on the number of states [25].

Figures 5d to 5f show the corresponding normalized errors for the test data. Both the reconstruction and the

estimation error increase, but the reconstruction error increased noticeably more. The reconstruction assumes no noise

in the dynamics, so it is unable to correct for noisier dynamics or the difference in the evolution of the system between
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(a) All modes, training data (b) 13 modes, training data (c) 5 modes, training data

(d) All modes, test data (e) 13 modes, test data (f) 5 modes, test data

Fig. 5 Experiment 1: Estimation, reconstruction, and projection errors. The vertical lines in (e) correspond
to the frames shown in Figure 6.

the test and the training data. The high value for the error in the case with 99 modes indicates that the extremely low

value obtained in the reconstruction of training set data may be due to overfitting. When applied to the test data, the

advantage of using more modes is lost. In fact, the reconstruction and estimation errors for 99 and 13 modes look nearly

identical, which suggests that most modes beyond the first 13 may be irrelevant for reproducing the dynamics of the new

data set. Because the estimation error is bounded from below by the projection error, to improve the performance, it is

necessary to find a set of modes that better account for the variation in the test data. As shown in Figure 3c, many

modes are needed to reduce the error significantly.

It is possible that the difference between the estimation and test data is not a useful metric for the performance of

the estimator. The test data contains turbulent flow, which might need to be filtered out to perform feedback control

based on coherent flow structures. In this case, a new error metric should quantify the filter’s ability to identify flow

features useful for feedback control. Motivated by this consideration, the performance of the estimator is also studied

qualitatively. Figure 6 shows the results of implementing a DMD-KF with 13 modes for estimation. For times t∗ = 0

and t∗ = 0.2, the DMD-KF is able to reproduce the test data fairly accurately. For t∗ = 0.5, the turbulent behaviour is
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Fig. 6 Experiment 1: Test set data, training set data, and estimate of the test data with 13 modes at several
times of interest. The color red (blue) indicates positive (negative) vorticity.
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not captured in detail, but the main flow features, such as the shear layers and the leading edge vortex, are present in the

estimate.

(a) Case 1: Amp = 0.25 k = 0.160 (b) Case 2: Amp = 0.25 k = 0.511

(c) Case 3: Amp = 1.00 k = 0.160 (d) Case 4: Amp = 1.00 k = 0.511

Fig. 7 Experiment 2: Estimation, reconstruction error and projection. The vertical lines in Case 3 indicate
the frames shown in Figure 8.

B. Experiment 2: Surging NACA 0012

The DMD-KF was applied independently to four cases of Experiment 2, with the same number of modes, for

comparison purposes. The number of modes m∗ = 19 was chosen by looking at Figure 3d, which shows the percent

performance loss versus number of modes. There is little improvement in performance by adding more than 19 modes

in any of the cases. The estimation is performed on the same data from which the DMD modes are obtained, i.e., the

training and the test data are the same. This limitation in the analysis is due to the use of data from previous unrelated

work, which did not collect simultaneous PIV and pressure data. While using the same set for training and testing is not

ideal, we seek here to illustrate an application of the algorithm.

Figure 7 shows the projection, reconstruction, and estimation error for all actuation cases in Experiment 2. In
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all cases, the initial estimation error is high. There are fewer sensors than modes, so the modes can not be inferred

instantly, rather by comparing the predicted dynamics with the observations. The reconstruction error is also high at

the initial time for most cases, whereas the projection error is low. It is possible that there are initial transients with a

time evolution that is not well captured by the chosen modes. In the cases with Amp = 1; there is a secondary peak in

estimation error; however in this case the reconstruction error is low. This result implies the system is evolving in a

manner that is well approximated by the DMD linear model, but the DMD-KF is unable to completely capture the time

evolution, possibly due to a flaw in the measurement model.

As a representative example, Figure 8 shows the flowfield for Case 3 at several points of interest. At the initial time

there are large differences, especially around the tail of the airfoil. Around t∗ = 0.2 the flow speed is low, which might

mean the flow is hard to observe; there is a peak in error observed in Figure 7d. Around t∗ = 0.6, the original and the

estimation look nearly identical. During the remainder of the cycle, the shedding of the leading edge vortex occurs,

which is a process with increased turbulence, so it is expected that the error in both the estimate and the reconstruction

are higher. Nonetheless, it is possible to see in the snapshot corresponding to t∗ = 1 that the estimate reproduces the

main features in the flow.

Fig. 8 Experiment 2: Original and estimated flowfield and estimation error using 19 modes at several times of
interest for case 3. For the error field, the color red indicates magnitude.
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V. Conclusion
A Dynamic Mode Decomposition Kalman Filter (DMD-KF) is described to estimate the unsteady flowfield around

an actuated airfoil, using information from pressure sensors. The estimation method consists of using Sparsity Promoting

Dynamic Mode Decomposition (DMDSP), which finds a reduced set of dynamic modes (DMD modes) in a data set,

and the Koopman Observer Form, which rewrites the modes in a form suitable for estimation, to create a linear system

that approximates the dynamics of the unsteady flow. A Kalman Filter estimates the states in this linear system using

pressure measurements.

The process of mode selection using DMDSP, and the effects of varying the number of modes, is illustrated using

experimental results from a pitching cambered ellipse. There is a trade off with the number of modes: more modes

increases the time for estimation convergence, both by increasing computational time and by taking more time steps to

converge. In general, using more modes yields a better estimate, but using a small number of modes may provide a fast

and accurate representation of the flowfield.

The DMD reconstruction, DMD projection, and DMD-KF estimation use DMD modes to approximate a flowfield.

However the reconstruction and projection require complete knowledge of the flowfield to reproduce it with DMD

modes, whereas the DMD-KF estimation uses pressure sensor measurements only. Estimation error may arise from the

DMD modes not spanning the features of the data to estimate, or the dynamics may not be well approximated by a linear

system. The DMD projection is useful to distinguish between these sources of error, since the projection is independent

of the modeled dynamics.

Ongoing work is focused on using the DMD-KF flow estimation to obtain useful information such lift or the position

of the leading edge vortex, and evaluating the performance of the estimator in terms of these quantities. Note that the

error measure presented in this paper is defined by comparing the velocity at every grid point, which does not necessarily

reflect the quality of the estimation of specific flow features that may needed in practice for an effective feedback control.
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