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Stabilization of Collective Motion

in a Time-Invariant Flow Field
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Cooperative steering controls enable mobile sampling platforms to con-

duct synoptic, adaptive surveys of dynamic spatiotemporal processes by

appropriately regulating the space-time separation of their sampling trajec-

tories. Sensing platforms in the air and maritime domains can be pushed

off course by strong and variable environmental dynamics. However, most

existing cooperative control algorithms are based on simple motion mod-

els that do not include a flow field. Existing models that include the flow

field often include speed control to compensate for the flow. In this paper,

we describe a constant-speed self-propelled particle model that explicitly

incorporates a time-invariant flow field. Each vehicle is represented by a

Newtonian particle subject to a gyroscopic steering control. We describe

the Lyapunov-based design of decentralized control algorithms that stabi-

lize collective motion in a known flow field. In the case of a spatially variable

flow, we provide an algorithm to stabilize synchronized motion, in which all

of the particles move in the same direction, and circular motion, in which

all of the particles orbit an inertially fixed point at a constant radius. For

a spatially invariant flow, we provide an algorithm to stabilize balanced

motion, in which the particle position-centroid is inertially fixed, and sym-

metric circular formations, in which the particle spacing around a circle

is temporally regulated. Via the latter algorithm we provide a method of

stabilizing a circular formation in which the particles are evenly spaced in

time and the formation is centered on a moving target. The theoretical

results are illustrated with two numerical examples based on applications

in environmental monitoring and target surveillance.
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Nomenclature

N Number of particles

rk Position of particle k

ṙk Inertial velocity of particle k

sk Speed of particle k

fk Flow velocity at position rk

θk Orientation of the velocity of particle k relative to the flow

γk Orientation of the inertial velocity of particle k

ψk Time-phase of of particle k in a circular orbit

T Period of revolution around a circular orbit

ck Center of circle traversed by particle k

ω0 Constant angular rate

P N ×N projector matrix

Pk kth row of matrix P

K Control gain

i Imaginary unit

Subscript

j, k Particle and phase indices, 1, . . . , N

I. Introduction

Autonomous vehicles provide a robust sensing platform for synoptic and adaptive sam-

pling of spatiotemporal processes in the air and sea. Decentralized control algorithms that

coordinate the sampling trajectories of multiple vehicles enhance the sensory performance of

the entire fleet by appropriately regulating the space-time separation of sample points.1 A

major impediment to the regulation of trajectory separation is the presence of an external

flow field—e.g., ocean currents or atmospheric winds. Cooperative control algorithms that

are effective in weak flow fields often fail in moderate to strong flows. In this paper, we pro-

vide decentralized algorithms that stabilize collective motion in a time-invariant flow field.

We assume that (1) the flow field is known and (2) the flow field is weaker than the particle

speed relative to the flow, although these theoretical restrictions have been successfully lifted

in numerical simulations. The extension of these results to strong and variable flows is the

subject of ongoing analysis.

Robust coordination of multiple vehicles in the absence of flow can be produced by co-
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operative control of a dynamic motion model in which each vehicle is represented by a

Newtonian particle moving at constant speed in a plane.2–4 Each particle is subject to a

gyroscopic (steering) control that determines the rate of rotation of the particle velocity.

Using a particle framework, theoretically justified algorithms5,6 generate symmetric forma-

tions in which the relative positions and relative orientations of all vehicles are optimized for

sampling performance—under very mild assumptions on the inter-vehicle communication.

These algorithms have been successfully demonstrated in multiple at-sea experiments with

autonomous underwater vehicles.7,8

Analysis of ocean-sampling field experiments highlights the need to develop theoretically

justified algorithms that stabilize collective motion in the presence of a strong and variable

flow field.9 Underwater vehicles routinely encounter ocean currents that match or exceed

vehicle speed. These currents push vehicles away from their desired trajectories and com-

press/expand the space-time separation of vehicle trajectories, leading to a degradation of

overall sampling performance. Strong currents that vary substantially in time are especially

challenging because of the inherent uncertainty in current forecasts. The derivation of coop-

erative control and estimation algorithms for strong and variable currents is outside the scope

of this paper. We focus instead on what to do in the presence of a known, time-invariant

flow in which an underwater or aerial vehicle has strictly positive speed-over-ground.

We utilize a planar model that explicitly incorporates a time-invariant flow field.10,11 Each

vehicle is represented by a Newtonian particle subject to a gyroscopic steering control. We

present a Lyapunov-based design of decentralized control algorithms that stabilize collective

motion in a known flow field. The control design is a direct extension of the framework

introduced for the flow-free model with all-to-all communication.5 Accordingly, all of the

results presented herein extend naturally to limited communication topologies that may be

time-varying and/or directed.6 Likewise, our focus on circular motion is for brevity only;

the framework has been extended to motion on convex loops in a flow field.12

In the case of a spatially variable flow, we provide an algorithm to stabilize synchronized

motion, in which all of the particles move in the same direction, and circular motion, in

which all of the particles orbit an inertially fixed point at a constant radius. In addition,

we show how to prescribe the center of a circular formation using a virtual particle. For

a spatially invariant flow, we provide an algorithm to stabilize balanced motion, in which

the particle position-centroid is inertially fixed, and symmetric circular formations, in which

the particle spacing around a circle is temporally regulated. Via the latter algorithm we

provide a method of stabilizing a circular formation in which the particles are evenly spaced

in time. These motion primitives collectively form a foundation upon which more complex

mission-specific trajectories can be constructed.

The results presented here contribute to a body of research results that highlight the
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impact of a flow field on motion-planning for unmanned vehicles.13–17 For example, it has

been shown that, unlike the no wind case, the minimum time paths from a known start

point to a known endpoint consist of three arcs.14 Furthermore, onboard-camera tilt and

pan are minimized by an elliptical platform trajectory that spirals in towards a target.16 We

provide control laws to stabilize a circular formation centered on an inertially-fixed point—

results that are applicable to stabilizing a formation of constant-speed vehicles to a circular

orbit centered on a target moving at a constant velocity.18–20 An alternate algorithm exists

to match the average vehicle velocity to a time-invariant reference and, with the use of an

outer-loop control, to a known time-varying reference.18

The problem of tracking a moving target with a circular formation of variable-speed

vehicles has also been studied recently.21,22 The trajectory of a vehicle can be controlled

through Lyapunov guidance vector fields chosen to satisfy a specific candidate Lyapunov

function and thereby provide globally stable paths.21 Guidance vector fields containing a

limit cycle allow multiple vehicles to orbit a constant-velocity target at a desired stand-

off radius. For vehicles without speed control traveling in a circular formation in wind,

only regulation of temporal and not spatial separation is possible. The notion of temporal

regulation of constant-speed vehicles in a circular formation has been studied in the context

of a sliding-mode design of a solution to the target-tracking problem in which multiple

vehicles orbit a target at regular intervals.20 We further explore this notion, utilizing in

our control design concepts from the literature on cooperative control via coupled phase

oscillator models.5,6

The paper has the following outline. In Section II we describe a self-propelled parti-

cle model that explicitly incorporates a time-invariant flow field. In Section III we provide

decentralized control algorithms to stabilize, respectively, a synchronized formation in a spa-

tially variable field and a balanced formation in a spatially invariant field. In Section IV,

we provide an algorithm to stabilize a circular formation in a spatially variable field. In

Section V we provide algorithms to isolated circular formations in which the temporal sep-

aration of particles in the formation is temporally regulated in a spatially invariant field. In

Section VI we provide results from numerical simulations related to applications in environ-

mental monitoring and target surveillance. In Section VII, we summarize the results and

provide indications of ongoing and future work, which includes the stabilization of collective

motion in a time-varying flow field.

II. A model of particles in a flow field

In this paper we study a dynamic model of N self-propelled particles in a time-invariant

flow field. Each particle is subject to a steering control produced by a gyroscopic force
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Figure 1. We study a model of self-propelled particles in which each particle moves at unit speed relative to
a known, time-invariant flow field. The inertial velocity of particle k, ṙk, is the sum of the particle velocity
relative to the flow, eiθk , and the flow velocity, fk.

that remains normal to the particle velocity relative to the flow. The position of the kth

particle is denoted by rk, where k ∈ {1, . . . , N}, and the inertial velocity of the kth particle

is denoted by ṙk, as illustrated in Figure 1. Let I denote an inertial reference frame with

origin O. Each particle propels itself relative to the flow at unit speeda in the direction θk,

which is measured relative to the positive, horizontal axis of I. In complex notation, the

velocity of particle k relative to the flow is denoted cos θk + i sin θk = eiθk . We represent the

inertial velocity of the flow at rk by fk = f(rk). We assume that the flow field is known,

time-invariant, and satisfies |fk| < 1. (The latter assumption ensures that a particle can

always make forward progress as measured in an inertial frame.) Except where specified,

the flow field is permitted to be spatially variable (non-uniform) as long as it is continuously

differentiable and f ′k = ∂fk
∂rk

is known for all rk.

The equations of motion of the particle model are

ṙk = eiθk + fk

θ̇k = uk,
(1)

where the steering control, uk, is determined by a decentralized state feedback law. In

order to maintain our focus on the novel contributions of this paper, we assume an all-

to-all communication topology. Nonetheless, the framework is easily extended to limited

communication topologies following a development identical to the flow-free model.5,6

Let γk denote the orientation of the inertial velocity of particle k and sk = s(rk, γk)

denote its magnitude. That is, let ṙk = ske
iγk , where sk = |eiθk + fk| and γk = arg(eiθk + fk).

Note |sk| ≥ |1− |fk|| > 0, by assumption. From Figure 1, we haveb

sk sin γk = sin θk + 〈fk, i〉 (2)

sk cos γk = cos θk + 〈fk, 1〉, (3)

aThe flow speeds used in this paper can be interpreted as the absolute flow speed divided by the platform
speed relative to the flow.

bWe use the inner product 〈x, y〉 = Re{x̄y}, where x, y ∈ C and x̄ is the complex conjugate of x.
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or, equivalently,

sin θk = sk sin γk − 〈fk, i〉 (4)

cos θk = sk cos γk − 〈fk, 1〉, (5)

which imply

tan γk =
sin θk + 〈fk, i〉
cos θk + 〈fk, 1〉 . (6)

Differentiating (6) with respect to time along solutions of (1) and solving for γ̇k using (4)

and (5) we obtain

γ̇k = (cos θk cos γk + sin θk sin γk)s
−1
k θ̇k + 〈ḟk, i〉s−1

k cos γk − 〈ḟk, 1〉s−1
k sin γk

= (1− s−1
k 〈eiγk , fk〉)uk + 〈f ′k, i〉 , νk, (7)

where we used ḟk = f ′kṙk.

We view νk defined in (7) as a control input, since one can compute uk according to

uk =
νk − 〈f ′k, i〉

1− s−1
k 〈eiγk , fk〉

. (8)

Note that (8) is well defined since the denominator is never equal to zero. We prove this fact

by contradiction. Suppose the denominator is equal to zero, then

sk = 〈eiγk , fk〉 = 〈eiθk + fk, fk〉s−1
k , (9)

which implies

s2
k = 〈eiθk + fk, e

iθk + fk〉 = 〈eiθk + fk, fk〉 (10)

and, after canceling terms,

1 + 〈eiθk , fk〉 = 0. (11)

However, (11) is a contradiction since |〈eiθk , fk〉| ≤ |fk| < 1, by assumption.

As a consequence of this analysis, it is equivalent to write (1) as

ṙk = ske
iγk

γ̇k = νk,
(12)

where νk is defined in (7). The model (12) is a self-propelled particle model with a variable

speed sk = |eiθk +fk| > 0 and steering control νk. Note, the speed sk depends on the particle

phase γk and, possibly, the position rk; the speed sk is not a control variable.
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In the following two examples, we calculate sk and uk for a uniform flow and a non-

uniform flow, respectively.

Example 1. Uniform flow Without loss of generality, we align the positive real axis of

the inertial frame with the orientation of a uniform flow, so that fk = β ∈ R, |β| < 1. We

calculate

sk =
√

Re{(β + eiθk)(β + e−iθk)}
=

√
1 + β2 + 2β cos θk. (13)

We express sk as a function of γk and fk = β by substituting (5) into (13) and rearranging

the result to obtain the quadratic equation

s2
k − 2β cos γksk + β2 − 1 = 0,

which has the solution (using the positive root since sk > 0)

sk = β cos γk +

√
1− β2 sin2 γk. (14)

Note, sk for a uniform flow field is a function of γk only, and not rk. In order to find uk as a

function of νk, substitute fk = β (and f ′k = 0) into (8) to obtain

uk =
νk

1− βs−1
k cos γk

. (15)

Example 2. Non-uniform flow Let fk = βk + iαk, where βk = 〈fk, 1〉 and αk = 〈fk, i〉 are

the real and imaginary parts, respectively, of a spatially variable flow field. We have

sk =
√

Re{(eiθk + βk + iαk)(e−iθk + βk − iαk)}
=

√
1− β2

k − α2
k + 2sk(αk sin γk + βk cos γk), (16)

where we used (4) and (5). Squaring both sides of (16) and solving the resulting quadratic

equation (using the positive root since sk > 0) yields

sk = αk sin γk + βk cos γk +
√

1− (αk cos γk − βk sin γk)2

= 〈eiγk , fk〉+
√

1− 〈ieiγk , fk〉2. (17)

Note sk depends here on both γk and rk.
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(a) Synchronized motion (b) Balanced motion (c) Circular motion

Figure 2. Three motion primitives of the particle model in a time-invariant flow. The arrow attached to each
particle represents its inertial velocity. (a) In synchronized motion, the particles move in the same direction
with arbitrary separation. (b) In balanced motion, the centroid of the particle positions is fixed. (c) In circular
motion, the particles travel in the same direction around a circle with fixed center.

In order to compute uk for a non-uniform flow field, let rk = xk + iyk, which implies

f ′k =
∂βk
∂xk

+ i
∂αk
∂yk

. (18)

Substituting (18) into (8) completes the calculation. In the simulations in Sections III and IV,

we use a smooth, periodic flow field

fk = a0 sin(2πωxk − ϕ0) + i cos(2πωyk − ϕ0), (19)

which is parametrized by a0, ω, and ϕ0.

III. Phase synchronization and balancing

Three motion primitives of the particle model (12) illustrated in Figure 2 are synchro-

nized, balanced, and circular motions.5 In this section, we study synchronized and bal-

anced motions and, in the next section, we study circular motions. In synchronized motion,

all of the phases γk, k = 1, . . . , N , are equal and the particles move in the same direc-

tion with arbitrary separation. In balanced motion, the centroid of the particle positions,

pr , (1/N)
∑N

j=1 rj, is fixed, which implies that the quantity pṙ , (1/N)
∑N

j=1 ṙj = ṗr is

zero. A Lyapunov-based control framework exists to stabilize synchronized and balanced

motions in a flow-free particle model.5 In this section, we extend the flow-free framework to

stabilize synchronized and balanced motions in a time-invariant flow field.

Synchronized motion corresponds to the maximum of the potentialc

U(γ) ,
1

2
|pγ|2, (20)

cWe drop the subscript and use bold to represent an N × 1 matrix, e.g., γ = (γ1, . . . , γN )T .
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(a) Uniform flow
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(b) Non-uniform flow

Figure 3. Synchronization of the particle phase γ using the control (22) with N = 15 and K = −0.1 yields
a parallel formation with arbitrary separation. The arrow attached to each particle represents its velocity
relative to the flow. (a) Uniform flow field fk = −0.75 (assuming unit particle speed). (b) Non-uniform flow
field (19) with a0 = −0.75, ω = 1/360, and ϕ0 = 10.

where

pγ ,
1

N

N∑
j=1

eiγj (21)

is the centroid of the phasors eiγk , k = 1, . . . , N . The following result is proven using

Lyapunov stability theory.

Theorem 1. The closed loop particle model (12) with the gradient control

νk = −K∂U

∂γ
= −K〈pγ, ieiγk〉, K < 0, (22)

forces convergence of all solutions to the critical set of U . The set of synchronized motions

are asymptotically stable and every other equilibrium is unstable.

Proof. See [5, Theorem 1].

We illustrate Theorem 1 in Figure 3.

Theorem 1 provides a decentralized synchronization algorithm for a non-uniform flow

field. In order to stabilize balanced motions, we assume that the flow is uniform (see Ex-

ample 1). We stabilize balanced solutions of (12) with fk = β ∈ R by minimizing the

potential10

V (r,γ) =
1

2
|pṙ|2, (23)

where

pṙ ,
1

N

N∑
j=1

sje
iγj (24)
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is the centroid of the particle velocities. Note V (r,γ) = 0 when pr = 0, i.e., the centroid

of particle positions is fixed, and positive otherwise. The time-derivative of V (r,γ) along

solutions of (12) is

V̇ = 〈pṙ, ṗṙ〉 =
N∑
j=1

〈pṙ, ṡjeiγj + sjie
iγj γ̇j〉, (25)

where, for a uniform flow,

ṡk = δkskγ̇k, δk ,
−β sin γk√

1− β2 sin2 γk
. (26)

Substituting (26) into (25) yields

V̇ =
N∑
j=1

〈pṙ, (δj + i)eiγj〉sjνj. (27)

Lyapunov analysis leads to the following result.

Theorem 2. The particle model (12) with fk = β, |β| < 1, and the control

νk = −K〈pṙ, (δk + i)eiγk〉sk, K > 0, (28)

where δk is defined in (26), asymptotically stabilizes the set of balanced motions, which is the

set of motions for which the centroid of particle positions is fixed.

Proof. Substituting (28) into (27) yields

V̇ = −K
N∑
j=1

〈pṙ, (δj + i)eiγj〉2s2
j ≤ 0. (29)

By the invariance principle, all of the solutions of (12) with the control (28) converge to the

largest invariant set in which

〈pṙ, (δk + i)eiγk〉 ≡ 0. (30)

In this set, γ̇k = 0 and ṡk = 0, which implies pṙ is constant. Since δk + i 6= 0 (δk is real),

then the invariance condition (30) is satisfied for all k = 1, . . . , N , only when pṙ = 0.

IV. Stabilization of circular formations

In this section we describe a decentralized algorithm to stabilize a circular formation in

which all particles orbit an inertially fixed point at a fixed radius. The center of the circular

formation can be prescribed by introducing a virtual particle, as described below. These
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results represent a direct extension of the flow-free framework5 to the particle model (12).

In the absence of flow, i.e., using the model (1), setting uk equal to a constant, ω0 6= 0,

drives particle k around a circle of radius ω−1
0 and fixed center5

ck , rk + ω−1
0 i

ṙk
|ṙk| . (31)

In the presence of a time-invariant flow field, we have the following result.10

Lemma 1. The model (12) with the control

νk = ω0sk (32)

drives particle k around a circle of radius ω−1
0 centered at ck(t) = rk(0) + ω−1

0 ieiγk(0).

Proof. We derive the control νk that steers the particle around a circle by differentiating

(31) along solutions of (12). This results in

ċk = ske
iγk − ω−1

0 eiγkνk = (sk − ω−1
0 νk)e

iγk . (33)

Substituting (32) into (33) yields ċk = 0, which proves that the center of the circle is fixed.

To complete the proof, we observe that the radius of the circle is |ck(t)− rk(0)| = ω−1
0 .

A circular formation is a solution of the particle model (12) in which all of the particles

orbit the same circle in the same direction. Let 1 , (1, . . . , 1)T ∈ RN . In a circular formation,

ck = cj for all pairs j and k, which implies that a circular formation satisfies the condition

Pc = 0,5 where P is an N ×N projection matrix given by

P = diag{1} − 1

N
11T . (34)

Note, P projects an element of CN into the subspace complementary to the span of 1.

We derive a decentralized control that stabilizes a circular formation by considering the

potential5

S(r,γ) ,
1

2
〈c, Pc〉. (35)

Note S ≥ 0, with equality only when c = c01, c0 ∈ C. The time derivative of S along

solutions of (12) is

Ṡ =
N∑
j=1

〈ċj, Pjc〉 =
N∑
j=1

〈eiγj , Pjc〉(sj − ω−1
0 νj), (36)

where Pk denotes the kth row of the matrix P . The following result provides a control
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(b) Non-uniform flow

Figure 4. Stabilization of a circular formation using the control (37) with N = 15 and K = 0.1 The arrow
attached to each particle represents its velocity relative to the flow. (a) Uniform flow with β = −0.75 (assuming
unit particle speed). (b) Non-uniform flow field (19) with a0 = −0.75, ω = 5/360, and ϕ0 = 8.

algorithm to stabilize a circular formation in a time-invariant flow.10 It extends [5, Theorem

2], which provides a circular-formation algorithm for the flow-free particle model.

Theorem 3. All solutions of the particle model (12) with the control

νk = ω0(sk +K〈Pkc, eiγk〉), K > 0, (37)

converge to a circular formation with radius ω−1
0 and direction determined by the sign of ω0.

Proof. The potential S(r,γ) is positive definite and proper in the space of relative circle

centers. Substituting (37) into (36) yields

Ṡ = −K
N∑
j=1

〈Pkc, eiγk〉2 ≤ 0.

By the invariance principle, all of the solutions of (12) with control (37) converge to the

largest invariant set, Λ, in which

〈Pkc, eiγk〉 ≡ 0. (38)

In this set, γ̇k = ω0sk and ċk = 0. Therefore, in order to satisfy the invariance condition,

(38), all of the solutions in Λ must satisfy Pc = 0, which is the circular-formation condition.

Application of Lemma 1 completes the proof.

We illustrate Theorem 3 in Figure 4.

The control algorithm described in Theorem 3 depends not on absolute positions but on

relative positions, i.e., rk − rj, for any pair k and j. Consequently, the algorithm preserves
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the symmetry of the closed-loop particle model (12) that renders the model invariant to

rigid translation of all of the particles.2 This property of the control algorithm implies the

steady-state center of the circle depends only on initial conditions. For applications in path-

planning for autonomous vehicles, there exists the need to specify the steady-state center of

the vehicle formation in the presence of flow. This need also arises in the context of tracking

a target moving at a constant velocity. We describe next a symmetry-breaking algorithm

that provides this capability.10

Following the flow-free development,6 we introduce a virtual particle labelled with k = 0

that serves as a reference. The virtual particle dynamics,

ṙ0 = s0e
iγ0

γ̇0 = ω0s0,
(39)

where ω0 6= 0, are independent of the dynamics of the particles. In the solution to (39),

particle 0 orbits a circle of radius |ω0|−1 with fixed center c0 = r0(0)+ω−1
0 ieiγ0(0). Assume the

virtual particle’s relative state variables are available to a nonempty subset of the particles,

which we call the informed particles. Let ak0 = 1 if particle k is an informed particle and

ak0 = 0 otherwise.

Consider augmenting the potential S defined in (35) with the quadratic potential6

S0(r,γ) =
1

2

N∑
j=1

aj0|cj − c0|2,

which is minimized when cj = c0 for all {j | j ∈ 1, . . . , N, aj0 = 1}. The time-derivative of

S̃(r,γ) , S(r,γ) + S0(r,γ) along solutions of (12) is

˙̃S =
N∑
j=1

(〈eiγj , Pjc〉+ aj0〈eiγj , cj − c0〉
)

(sj − ω−1
0 νj) (40)

This analysis leads to the following corollary to Theorem 3.10

Corollary 1. Let c0 = r0(0)+ω−1
0 ieiγ0(0) be the fixed reference provided by a virtual particle,

k = 0, whose dynamics are given by (39). Let ak0 = 1 equal one if particle k is informed

of the reference and ak0 = 0 otherwise. If there is at least one informed particle, then all

solutions of the particle model (12) with the control

νk = ω0(sk +K(〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉)), K > 0, (41)

converge to a circular formation centered at c0 with radius ω−1
0 and direction determined by
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the sign of ω0.

Proof. With the control (41), the time-derivative of the augmented potential S̃(r,γ) satisfies

˙̃S = −K
N∑
j=1

(〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉)2 ≤ 0.

By the invariance principle, all solutions converge to the largest invariant set for which

〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉 ≡ 0 (42)

for k = 1, . . . , N . In this set, γ̇k = ω0sk and ċk = 0.

If ak0 = 0 for at least one but not all k ∈ {1, . . . , N}, then the invariance condition (42)

is satisfied only if Pkc = 0. This implies c is in the span of 1, i.e. ck = cj for all pairs k and

j. For all k with ak0 = 1, the invariance condition becomes

〈eiγk , ck − c0〉 ≡ 0,

which holds only if ck = c0. This implies ck = c01.

If ak0 = 1 for all k, then the invariance condition becomes

〈eiγk , P̃kc〉 ≡ 0, (43)

where P̃ is the (N + 1)× (N + 1) projection matrix defined as in (34). The condition (43)

is satisfied only if ck = c0 for all k, which completes the proof.

Corollary 1 also provides a procedure to stabilize a circular formation centered on a target

moving at a constant velocity. Let B represent a reference frame that is not rotating with

respect to the inertial frame I and whose origin O′ is moving relative to O at a constant

velocity b0 equal to the target velocity. Note B is an inertial frame and the target position

is a fixed point in B. Let r′k denote the position of particle k relative to O′. We have

ṙ′k = eiθk + fk − b0. (44)

The equations of motion expressed in frame B are

ṙ′k = eiθk + f ′k

θ̇k = uk,
(45)

where f ′k , fk − b0. Therefore, the particle dynamics in frame B are equivalent to (12) with
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rk replaced by r′k and fk replaced by f ′k. Applying the control (41) with c0 equal to the target

position in frame B stabilizes a circular formation centered on the target. We illustrate this

result in Section VI.

V. Symmetric circular formations

In this section we provide an algorithm that steers a particle collective to a circular

formation and, simultaneously, regulates the separation of the particles around the circle.

To do this we introduce a phase variable that represents the progress of a particle around

the circle.23 The development of Lyapunov-based algorithms utilizing the phase variable to

stabilize symmetric formations is a direct extension of the flow-free framework.5 In previous

work, control laws are provided to regulate the along-track separation of the particles in the

absence of flow; here, we provide a control algorithm to regulate the temporal separation of

particles in a uniform flow field.

Recall from Example 1 that the speed of a particle in uniform flow is independent of the

particle position, i.e., sk = s(γk) for all k = 1, . . . , N . According to Lemma 1, the closed-loop

phase dynamics

γ̇k = ω0sk (46)

drive particle k around a circular trajectory. Integrating (46) by separation of variables, we

obtain

t =
1

ω0

∫ γk(t)

0

dγ

s(γ)
, (47)

which is an implicit expression for the solution to (46), γk(t).

The key observation is that we can use a quantity proportional to the right-hand side of

(47) as measure of the temporal separation of solutions to (46). We call this quantity the

time-phase, ψk, defined by11

ψk =
2π

ω0T

∫ γk

0

dγ

s(γ)
, (48)

where T > 0 is the period of a single revolution,

T =
1

ω0

∫ 2π

0

dγ

s(γ)
. (49)

(A similar quantity, called the curve-phase, has been previously used to measure arc-length

separation along a closed curve.4,23) The function γk = γk(ψk) implicitly defined in (48) is a

diffeomorphism, as long as s(γ) > 0.

We now incorporate the time-phase variable into the design of a formation control. The
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time-derivative of (48) along solutions of (12) is

ψ̇k =
2π

T
(ω0sk)

−1νk. (50)

Let U(ψ) represent a smooth potential that satisfies U(ψ + ψ01) = U(ψ), which is the

condition for rotational symmetry. Rotational symmetry implies
∑N

j=1
∂U
∂ψj

= 0.5 Consider

the composite potential

V (r,γ) = S(r,γ) +
T

2π
U(ψ),

where S(r,γ) is the circular-formation Lyapunov potential defined in (35). Using (50) and

the rotational symmetry of U(ψ) we find

V̇ =
N∑
j=1

〈eiγj , Pjc〉(sj − ω−1
0 νj) +

T

2π

∂U

∂ψj
ψ̇j

=
N∑
j=1

(
sj〈eiγj , Pjc〉 − ∂U

∂ψj

)
(1− (ω0sj)

−1νj). (51)

Choosing the control law

νk = ω0sk

(
1 +K

(
sj〈eiγk , Pkc〉 − ∂U

∂ψk

))
, K > 0, (52)

yields

Ṡ = −K
N∑
j=1

(sj − ω−1
0 νj)

2 ≤ 0

and

Ṡ = 0⇔ νk = ω0sk.

The following result is obtained using the invariance principle.5

Theorem 4. Consider the particle model (12) with uniform flow fk = β and a smooth,

rotationally symmetric phase potential U(ψ). The control law (52) enforces convergence of

all solutions to the set of circular formations where all particles move around a circle of

radius ω−1
0 and direction given by the sign of ω0 with a phase arrangement in the critical set

of U(ψ). Every isolated minimum of U(ψ) defines an asymptotically stable set of circular

formations. Every circular formation where U(ψ) does not reach a minimum is unstable.

Proof. See [5, Theorem 3].

As an example, we describe a phase potential U(ψ) that isolates symmetric patterns of

the time-phase variables, ψ. An (M,N)-pattern, where M is a divisor of N , is a symmetric
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arrangement of N phases consisting of M clusters uniformly spaced around the unit cir-

cle, each with N/M synchronized phases.5 For any N , there exist at least two symmetric

patterns: the (1, N)-pattern, which is the synchronized state, and the (N,N)-pattern—the

splay state—characterized by N phases uniformly spaced around the unit circle. In a splay

pattern of time-phase variables, the particles are uniformly separated in time as they orbit

a circular formation in a flow field. For example, a time-splay configuration in which the

particles are labeled sequentially around the formation satisfies20

γk(t) = γk+1(t− T/N), k = 1, . . . , N − 1,

γN(t) = γ1(t− T/N),
(53)

where T is the period of revolution defined in 49). This type of formation has been explored

previously in the context of the particle model (12),11,20 although we are not aware of any

other algorithm proven to force convergence to a time-splay formation. Note, in our frame-

work, we do not impose the requirement of sequential labeling nor do we require control of

particle speed.

Theorem 5. [5, Theorem 6] Let 1 ≤ M ≤ N be a divisor of N . Then ψ ∈ TN is an

(M,N)-pattern if and only if it is a global minimum of the potential

UM,N(ψ) =
M∑
m=1

KmUm (54)

with Km > 0 for m = 1, . . . ,M − 1 and KM < 0, where

Um(ψ) =
N

2
|pmψ|2, pmψ ,

1

mN

N∑
j=1

eimψj .

Note the potential (54) requires all-to-all communication between the particles in order

to compute the control law (52). An alternate potential (for which (M,N)-patterns are also

critical points) is available for undirected and connected communication topologies.6 This

potential is a quadratic form that depends on the Laplacian matrix of the communication

graph. For example, we illustrate in Figure 5(a) a numerical simulation of the feedback

stabilization of a time-splay formation using an undirected-ring communication topology.

The splay pattern of time-phases ψ corresponds to a regular pattern of particle phases γ in

which sequential particle phases are uniformly separated in time.

The following result provides an algorithm to stabilize a symmetric circular formation at

a prescribed reference position. And, following the same procedure described at the end of

Section IV, it also provides an algorithm to stabilize a symmetric circular formation centered
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Figure 5. Stabilization of a time-splay circular formation using the control laws (52) and (55) with N = 15
and β = −0.75. The arrow attached to each particle represents its velocity relative to the flow. (a) Translation
invariance in the closed-loop model (12) implies that the steady-state center of the formation is arbitrary. (b)
Results of a numerical simulation in which the steady-state formation center is prescribed via a virtual particle
to be c0 = −2.42− 0.57i.

on a moving target, provided the target is moving with constant velocity.

Corollary 2. Let c0 = r0(0)+ω−1
0 ieiγ0(0) be the fixed reference provided by a virtual particle,

k = 0, whose dynamics are given by (39). Let ak0 = 1 equal one if particle k is informed

of the reference and ak0 = 0 otherwise. If there is at least one informed particle, then all

solutions of the particle model (12) with the control

νk = ω0sk

(
1 +K

(
sj〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉 − ∂U

∂ψk

))
, K > 0, (55)

converge to a circular formation centered at c0 with radius ω−1
0 and direction determined

by the sign of ω0. Every isolated minimum of U(ψ) defines an asymptotically stable set of

circular formations. Every circular formation where U(ψ) does not reach a minimum is

unstable.

We illustrate Corollary 2 in Figure 5(b).

VI. Application Examples

To demonstrate the utility of the cooperative control algorithms presented above we

describe two numerical simulations related to applications in environmental monitoring and

target surveillance. In the first example, we illustrate how to coordinate multiple aerial

vehicles such as the Aerosonde24 in a simple model of a hurricane. An unmanned aircraft can

observe a hurricane at a lower altitude than it is safe to fly a manned aircraft, and therefore
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Figure 6. Stabilization of a circular formation in a simple hurricane model. The flow field is a modified Rankine
vortex located at the origin with maximum wind speed equal to three times the particle speed relative to the
flow. The arrow attached to each particle represents its velocity relative to the flow. (a) Translation invariance
in the closed-loop model (12) implies that the steady-state center of the formation is arbitrary. (b) The
steady-state formation center is prescribed to be at the center of the vortex, c0 = 0.

presents an attractive option for improving hurricane forecasts via in-situ observations. In

the second example, we illustrate how multiple aerial vehicles might converge to a time-splay

formation centered on a constant-velocity target, even if the target maneuvers. This example

provides an algorithm for coordinated tracking of a ground target in wind and without speed

control. Such an algorithm is suitable for aerial surveillance/reconnaissance missions in

which multiple sensing platforms must be coordinated. Each set of numerical results shows

convergence of the closed-loop dynamics despite the fact that theoretical restrictions on flow

speed and time-invariance are not enforced.

Stabilization of a circular formation in a simple hurricane model In this

example, we consider the problem of stabilizing a circular formation in the eyewall of a

hurricane, where the wind speed vastly exceeds the platform speed. As a simple hurricane

model, we use a modified Rankine vortex in which the tangential wind speed, v, varies with

radius, r, according to two parameters—the maximum wind speed, vm, and the radius, rm,

at which the maximum wind speed occurs. For 0 < r < rm, the wind profile is given by

v(r) = vm(r/rm); for r ≥ rm, v(r) = vm(r/rm)−0.6. We simulate the particle model (12) with

a Rankine vortex located at the origin with vm = 3 (assuming unit particle speed relative to

the flow) and rm = 1/(2ω0). Figure 6(a) illustrates the numerical results for the control (37),

which stabilizes a circular formation at an arbitrary center position. Figure 6(b)) illustrates

the numerical results for the control (41), which stabilizes a circular formation centered on

the vortex. This example illustrates an algorithm for coordination of hurricane observing

platforms and suggests that the theoretical results may apply in flow fields whose magnitude
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Figure 7. Stabilization of a time-splay formation centered on a moving target in a uniform flow. The target
moves at constant velocity b0 = ±0.25 + 0.25i (assuming unit particle speed relative to the flow) and makes
a single maneuver; the flow is uniform and has magnitude equal to half of the particle speed. The arrow
attached to each particle represents its velocity relative to the flow. (a) Depiction of the tracking trajectories
in an inertial frame that is not translating with the target. (b) Phase I of the tracking trajectories (before the
maneuver) depicted in a target-centered reference frame. (c) Phase II of the tracking trajectories (after the
maneuver) depicted in a target-centered reference frame.

exceeds the speed of the particle relative to the flow.

Stabilization of a time-splay formation centered on a moving target In this

example, we consider the problem of stabilizing a time-splay formation of aerial vehicles

centered on a moving target in the presence of a uniform flow field. We assume that the

target moves with constant velocity between maneuvers. According to the discussion at

the end of Section IV, we can use as an inertial frame a non-rotating reference frame fixed

to the target. We establish such a frame for each constant-velocity portion of the target’s

trajectory. We simulate the particle model (45) with effective flow speed f ′k = fk− b0, where

the flow field is fk = −0.5 and the target velocity is b0 = ±0.25+0.25i (assuming unit vehicle

speed relative to the flow). Note that the magnitude of the effective flow is less than the

vehicle speed relative to the flow. The target makes a single, 90-degree turn. Figure 7(a))

illustrates the numerical results in an inertial reference frame that is not translating with

the target. Figure 7(b) uses a target-centered frame to illustrate the numerical results prior

to the maneuver for the control (55), which stabilizes a time-splay formation centered on the

target position. Figure 7(b) illustrates the numerical results in a target-centered frame after

to the maneuver. The impact of the maneuver can be understood as a step function on the

flow-field input. This example provides an algorithm for coordinated tracking of a moving

target and suggests that the theoretical results may apply in a flow field that varies in time.
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VII. Conclusions

Distributed sensing with multiple, mobile platforms is enhanced by cooperative-control

algorithms that generate coordinated sampling trajectories in the presence of strong and

variable flow fields. The design of these algorithms is based on simple models of platform

motion that often ignore the presence of flow. In this paper, we describe a self-propelled

particle model that explicitly incorporates the presence of a known, time-invariant flow

field. We assume that the flow does not exceed the speed of a particle relative to the

flow. We provide decentralized control algorithms that stabilize primitive collection motions

including synchronized, balanced, circular, and symmetric circular formations. These motion

primitives are essential to the construction of a systematic framework for autonomous and

distributed sensing in the presence of flow, as has been illustrated in two numerical examples.

In ongoing work, we focus on extending the framework described here to the nonautonomous

dynamical systems that arise in the study of time-varying flows.
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