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Abstract

This paper describes a dynamic height controller for rotorcraft hovering and landing in ground

effect based on flowfield sensing and estimation. The rotor downwash in ground effect is represented

using a ring-source potential-flow model selected for real-time use and validated experimentally. A

nonlinear dynamic model of the heave test stand that represents the dynamics of a rotorcraft in ground

effect is presented. Flowfield pressure measurements are compared with flow-model predictions in

a grid-based recursive Bayesian filter to estimate height above ground. Height control in ground

effect using the estimated height is implemented with a dynamic linear controller. The experimental

results show that height estimation and control are possible for a miniature autonomous rotorcraft by

comparing two sets of differential pressure measurements in the rotor downwash with a low-order

Portions of this work were presented at the IEEE Aerospace Conference, Big Sky, MT, March 7–14,
2015 and at the 71st Annual Forum of the AHS, Virginia Beach, VA, May 5–7, 2015.
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aerodynamic model in a Bayesian filter.

Nomenclature

˙(·), (̈·) First- and second-order time derivative operators

(·)∗ Superscript to denote equilibrium condition

(̂·) Designation to denote estimated quantity

α Low-pass filter gain, 0 < α < 1

δ Gain for quadratic smoothing optimal trade-off curve, δ > 0

η Measurement noise (m/s)

θ Test stand angle (rad)

ν1 Rotorcraft in ground effect control input

ν2 Test stand control input

νFW Feed-forward control input

νPI Proportional-integral feedback control input

ρ1, ρ2, ρ1, ρ2 Composite variables in the ring-source model

σm, σp Measurement and process noise standard deviations

φ Velocity potential

Λ Quadratic smoothing function

a Calibration constant to convert differential pressure to velocity (m2 s/kg)

b1, b2 Test stand and aerodynamic damping coefficients (kg m2/rad/s, kg/s)

c Scaling factor for unit integral of posterior over the state space

êx, êy, êz Unit vectors in the test stand x, y, z-directions

f1(·), f2(·) General functions

g Gravitational acceleration (m/s2)

h Height above ground plane (m)

hO Angular momentum about point O (kg m2 rad/s)

l1 Distance from point O to center of mass G (m)
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l2 Distance from point O to counterweight M2 (m)

m Rotorcraft mass (kg)

p Probability density

r Radial location of query point (m)

s Source strength (m2/s)

smax Maximum source strength of ring-source potential flow model (m2/s)

t, ∆t Time and time step interval (s)

v Radial velocity component (m/s)

vi Induced velocity (m/s)

w Vertical velocity component (m/s)

x, y, z Coordinates of query point in rotor body frame (m)

z1, z2 Components of state vector Z: height, vertical velocity (m,m/s)

A State dynamics matrix

B Control matrix

D Bidiagonal matrix for quadratic smoothing

E(·) Complete elliptic integral of the second kind

G Center of mass location

I Identity matrix of suitable dimension

IO Moment of inertia about point O (kg m2)

J Moving-average filter data points

K1, K2 Control gains

KP , KI Proportional and integral control gains

K(·) Complete elliptic integral of the first kind

L Set of sensor measurements

L0 Set of prior sensor measurements

L1 Distance from point O to rotor mass m (m)

L2 Distance from point O to ground plane (m)

M1, M2 Pendulum setup total mass, counterweight mass (kg)
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N Number of ring sources

O Test stand pivot point

P̃j Differential pressure sensor measurement j (Pa)

R Rotor radius (m)

R Set of real numbers

T , TIGE Thrust out of ground effect, thrust in ground effect (N)

V Flow velocity (m/s)

Ṽ Flow velocity measurement (m/s)

Z State vector

Subscripts

k Ring source index

l Sensor location index

m Number of sensors

p Current iteration

Introduction

Rotorcraft operation in ground effect (IGE) presents substantial challenges for vehicle control, includ-

ing landing with low-impact velocity and maintaining near-ground hover in low-visibility conditions such

as brownout [1], fog [2], precipitation, or darkness. Safe IGE operation in a degraded visual environment

may require non-traditional sensors and a controller capable of handling uncertainty. Previous authors

have developed landing controllers based on robust or adaptive control techniques. For example, Serra

and Cunha [3] adopt an affine parameter-dependent model that describes the linearized error dynamics

for a predefined landing region and implements H2 feedback control. Mahony and Hamel [4] develop

a parametric adaptive controller that estimates the helicopter aerodynamics onboard and modulates the

motor torque, rather than the collective pitch, during takeoff and landing. Nonaka and Sugizaki [5] imple-

ment ground-effect compensation and integral sliding-mode control to suppress the modeling error of the

vehicle dynamics in ground effect. Hu et al. [6] estimate the height of a quadcopter relative to an oscillat-
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ing platform using an onboard camera, generate a time optimal reference trajectory, and land the vehicle

using an adaptive robust controller that adapts to the changes in thrust due to ground effect. These control

techniques often require a system model with empirically fit aerodynamic coefficients that are unique to

each vehicle.

Safe IGE operation also requires accurate estimation of the proximity and relative orientation of the

ground plane. Height-estimation methods currently exist for micro aerial vehicles (MAVs) based on

ultrasonic, barometric pressure or optical sensors. However, ultrasonic sensors work only for proximity

sensing and are not well suited for an angled or irregular ground plane [7]. Barometric pressure sensors

typically work well for large height differentials [8], but atmospheric pressure fluctuations result in sensor

drift and local pressure variations IGE cause the divergence of height estimate. Likewise, the effectiveness

of vision-based sensors is limited in degraded visual environments and the vision algorithms typically

require extensive computational resources. This work shows that flow-sensing of the ground effect with

differential pressure probes is a useful sensing modality for height estimation. We demonstrate this claim

in experiments with a flat, horizontal ground plane.

Previous authors have quantified ground effect empirically or through the use of an underlying aero-

dynamic model. Lee et al. [9] present particle-image-velocimetry results to examine the wake of a small

rotor, a few inches in radius, with blade-tip vortices interacting with a horizontal ground plane. Tanner

et al. [10] present comprehensive measurements of rotor outwash IGE at varying rotor heights and thrust

conditions, including rotor outwash velocities and directions, rotor loads, fuselage loads, and ground pres-

sures. Nonaka and Sugizaki [5] take an empirical approach to measuring the ground effect on rotor thrust

as a function of motor voltage. Mahony and Hamel [4] use an approximation of the down-flow veloc-

ity ratio based on a piecewise linear approximation of Prouty [11] to estimate rotor-thrust variation IGE.

Higher-fidelity analytical models include Govindarajan’s [12] free-vortex modeling to accurately predict

the nature of the rotor-wake vortices. Kalra [13] uses a Reynolds-Averaged Navier-Stokes (RANS) based

computational fluid dynamics (CFD) framework to model the unsteady rotor wake IGE, which includes

tip vortex and rotor ground wake formation, turbulence and viscous wall effects at the ground, and the

effect of rotor tip shapes.

Cheeseman and Bennett [14] provide a classic analytical model for ground effect, which we adapt for
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this work, based on aerodynamic modeling using the method of images. Knight and Hefner [15] and

Rossow [16] used a similar approach by representing the rotor wake IGE as a vortex cylinder. The Knight

and Hefner ground effect model is derived from a cylindrical circulation sheet and an image cylinder to

create a ground plane. The flow velocity equations were derived for a point in the plane of the rotor,

which is not immediately useful here because it is only applicable in the plane of the rotor. Furthermore,

there is no diffusion of the circulation cylinder outward as it impinges on the the ground plane, i.e., it

has constant diameter. Knight and Hefner were primarily interested in the induced velocity in the axial

direction at the plane of the rotor for thrust calculations, whereas we are interested in the flowfield within

the volume just beneath the rotor, including both the axial and radial flow components. The use of an

idealized aerodynamic model permits comparison to measurements from sensors such as differential-

pressure airspeed sensors [17]. Lagor et al. [18] and DeVries et al. [19] have previously shown that a

reduced-order flow model may be rapidly evaluated within a recursive filter to perform estimation and

control tasks in an uncertain flow environment, albeit in an underwater setting.

Our previous paper [20] developed the theoretical framework for dynamic feedback control in hover

and landing IGE based on a potential flow model. We replaced the point-source model of Cheeseman

and Bennett [14] with multiple ring sources; the mirror images create a ground plane. The reduced-order

model relates the flowfield velocities to height IGE; it is capable of sufficiently fast evaluation for control

purposes. A nonlinear dynamic model of rotorcraft landing IGE was presented, assuming a rigid rotor

commonly found in MAV rotorcraft [21]. Height estimation of rotorcraft IGE using spatially distributed

airspeed measurements was accomplished in simulation with a grid-based recursive Bayesian filter. The

Bayesian framework is capable of fusing data from multiple sensing modalities and multiple sensors. The

observer-based feedback controller was implemented in simulation to illustrate the theoretical results.

Our previous paper [22] outlined an improved ring-source potential flow model consistent with exper-

imental observations. We derived a nonlinear dynamic model of a heave test stand that represents the

dynamics of a rotorcraft IGE. Experimental results for the open-loop dynamics were presented. We also

presented experimental validation of the flow modeling and estimation framework at a static height.

This paper uses reduced-order flow modeling to model and control the rotor height IGE. Flow-velocity

components are measured using multi-component differential pressure probes [17] and compared with
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the mean-field flow model in a grid-based recursive Bayesian filter to estimate rotorcraft height. We

expand on the previous work by validating the flow model at suitable probe locations for the entire oper-

ational region. Specifically, the contributions of this paper are as follows: (1) a model-based, closed-loop

feedback controller that drives a rotorcraft to a commanded height in ground effect using spatially dis-

tributed differential-pressure measurements; (2) experimental validation of the flow model on a miniature

autonomous rotorcraft with recommended probe placement for the best performance in the operational

region of ground effect; and (3) experimental validation of the flow-sensing and height-control framework

on a miniature rotorcraft test stand.

This paper shows that the framework presented is capable of estimating and tracking rotor height IGE

by comparing multiple differential-pressure sensor measurements to a flow model using a Bayesian filter.

The proposed framework assumes that the flowfield is well-approximated by a quasi-static potential flow

model presented below and the rotorcraft is within one rotor diameter of a flat and horizontal ground

plane. Under these assumptions, experimental results on a MAV-scale rigid rotor show height estimation

is accurate to within 5% mean error and height tracking is accurate to within 9% mean error.

Flow Modeling

Many previous attempts at modeling the flowfield of a rotor IGE have been made, as detailed above.

Our motivation is to develop a flow model that can be recursively evaluated in real-time within a control

loop, which has not been previously accomplished. Another goal is to develop estimation algorithms and

control laws that are computationally efficient, i.e., they can be evaluated in real-time at a sufficiently high

rate with minimal computational requirements. This framework is useful for low- or no-visibility altitude

estimation in ground effect using flow sensors (alone, or in conjunction with other sensing modalities),

with applications including autonomous shipboard landing.

Let R denote the rotor radius, vi the rotor induced velocity, and h the rotor height. Cheeseman and

Bennett [14] model the rotor downwash impinging on the ground plane by representing the rotor as a

three-dimensional point source with strength s = R2vi/4 and the ground plane as a mirror-image source

to enforce no flow through the ground plane, as shown in Fig. 1. The sources are separated by a distance
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2h. The velocity potential for the location (x, y, z) in the flowfield is [14]

φ = − s√
x2 + y2 + (z − h)2

− s√
x2 + y2 + (z + h)2

. (1)

Taking the gradient of the velocity potential yields the flow velocity components [14].

The Cheeseman and Bennett [14] flow model has been shown experimentally to capture the aggre-

gate relationship between rotor thrust IGE and rotor height. However, it represents the spatial flowfield

of a rotor IGE with insufficient accuracy for our purposes, because we require the model to be more

representative of the real flow at various query points throughout the flowfield for comparison to our

sensor measurements during real-time operation. Figure 1 shows the flow vectors just below the rotor

plane extend radially outward, as opposed to downward. Since the rotor is modeled as a point source, the

strongest vectors are at the hub and diffuse in strength radially outward. We replace the single point source

of Cheeseman and Bennett [14] with multiple ring sources to create a more uniform spatial distribution of

the flowfield sources.

As shown in Fig. 2, the rotor is modeled by N ring sources and the ground plane is modeled by their

mirror images to enforce no flow through the ground plane. Note that ring k = 1 is at the rotor tip and the

ring indices increase radially inward with equal radial spacing of R/N . The radial location of each ring k

is

rk = R− (k − 1)
R

N
. (2)

Similar to the inflow ratio distribution of a rotor [23], the strength sk of ring k varies with radial location

according to

sk =
smax

R
rk, (3)

where the maximum source strength smax is located at the rotor tip r1 = R. We choose the source strengths

according to the total volumetric flow through the rotor disk, similar to Cheeseman and Bennett [14].

Although ring sources emanate in all directions, only the bottom half of the emanation is included as

the rotor flow. Additionally, the outermost ring source, which is the strongest, has only a quarter of its

emanation considered because the emanation outwards and upwards does not contribute to the rotor flow.
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Let πR2 denote the rotor disk area. The strength sk of ring source k represents the volumetric flow rate

per unit length. The total flow rate satisfies

1

2

N∑
k=1

2πrksk −
1

4
(2πRsmax) = πR2vi. (4)

From arithmetic series and sum of a sequence of squares, we have

N∑
k=1

k =
N(N + 1)

2
and

N∑
k=1

k2 =
N(N + 1)(2N + 1)

6
. (5)

Substituting Eqns. (2), (3), and (5) into Eqn. (4) yields

smax =
6NRvi

2N2 + 1
. (6)

The velocity potential of ring source k is [24]

φk(r, rk, z) =
−skrkK(M)

π
√
ρ1(r, rk, z)

, (7)

where ρ1 = (r + rk)2 + z2, r and z are the radial location and elevation of the query point in the rotor

reference frame (positive down), respectively, K(M) is the complete elliptic integral of the first kind, and

M = 4rrk/ρ1. The radial vk(ρ1, ρ2) and vertical wk(ρ1, ρ2) velocity components of ring source k are [24]

vk =
rksk

2πr
√
ρ1

[
K(M) +

r2 − r2k − z2

ρ2
E(M)

]
, (8)

wk =
−skrkzE(M)

πρ2
√
ρ1

, (9)

where ρ2 = (r − rk)2 + z2 and E(M) is the complete elliptic integral of the second kind.∗ The velocity

components of the flowfield are the sum of each ring source and their image ring-source contributions,

i.e.,

v(r, z) =
N∑
k=1

vk(ρ1, ρ2) +
N∑
k=1

vk(ρ̄1, ρ̄2), (10)

w(r, z) =
N∑
k=1

wk(ρ1, ρ2) +
N∑
k=1

wk(ρ̄1, ρ̄2), (11)

∗K(M) and E(M) are evaluated using the ellipke function in MATLAB.
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where ρ̄1 = (r + rk)2 + (2h − z)2 and ρ̄2 = (r − rk)2 + (2h − z)2. Note that the ring-source potential

flow model takes rotor induced velocity vi, probe radial r, and vertical z locations as inputs.

Figure 3 shows the flowfield generated by the ring-source potential flow, with streamlines and speed

distribution shown for various heights. Speed is denoted by ‖V ‖ =
√
v2 + w2. The variations in speed

distribution with height serve as an informative tool for the placement of sensors to measure the flowfield

experimentally. The potential flow model is qualitatively similar to the flow visualization below a rotor

IGE by Lee et al. [9]. As the flow moves down from the rotor plane, it decelerates to zero flow velocity

at the stagnation point where the rotor centerline intersects the ground plane. Moving radially outward,

the flow deceleration region is easiest to distinguish for h = 1.0R in Fig. 3. In contrast, the flow acceler-

ation region is where the streamlines change direction from downward to radially outward. As the rotor

approaches the ground, the streamlines are compressed, which is best illustrated for h = 0.5R in Fig.

3. Evidently, the flow speed is the highest in the flow acceleration region for h = 0.5R, as opposed to

h = 2.0R, since the flow is compressed more with less space between the rotor plane and the ground.

This effect is analogous to moving a water jet (the rotor) closer to a wall (the ground plane), since the jet

speed in the flow acceleration region is highest when it is close to the wall.

Although the rotor downwash IGE as visualized in the work of Lee et al. [9] is not laminar, we model

it using potential flow theory and mitigate unmodeled effects by using a sensor model with uncertainty.

Equations (8) and (9) model the mean velocity of the dominant flow; the unmodeled effects, such as

turbulence and blade tip vortices, are fluctuations away from the mean. Flow-velocity components Ṽ are

measured below the rotor in the experimental setup using differential pressure probes [17] (measurement

Ṽ corresponds to either the radial ṽ or the vertical w̃ velocity component). We assume the velocity

component V is corrupted by zero-mean Gaussian white noise η with standard deviation σm, resulting in

the measurement model

Ṽ = V + η. (12)
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Dynamics of the Test Stand

Figure 4(a) shows the compound-pendulum heave test stand used to verify the flow model, rotor IGE

dynamics, and closed-loop control. The test stand is constructed as a four-bar linkage, so that the rotor

is nearly always parallel to the ground plane with one degree of freedom in the heave direction. This

setup allows the use of journal bearings, which are smoother than linear carriages and rails in a vertical

configuration. This setup also has the added benefit of allowing a counterweight to balance the system

weight and to reduce the motor load. Figure 4(b) shows the free-body diagram of the compound pendulum.

The lateral displacement is minimized by mounting the setup at the midstroke, i.e., at a height of 1.25R.

The angular momentum of the compound pendulum is

hOêx = IOθ̇êx, (13)

where IO is the moment of inertia about point O, θ is the angle increasing counter-clockwise from down

and θ̇ is the angular velocity. The time derivative of the angular momentum ho equals the moment about

O. The dynamics in the êx direction are

IOθ̈ = L1TIGE sin θ − l1g sin θ(m+M1) + l2M2g sin θ − b1θ̇, (14)

where θ̈ is the angular acceleration, l1 is the distance from O to the center of mass G, l2 is the distance

from O to counterweight M2, L1 is the distance from O to rotor mass m, M1 is the total mass of the pen-

dulum setup, b1 is the damping coefficient due to aerodynamics and/or friction, and g is the gravitational

acceleration. The parameters for the experimental setup are l1 = 0.2921 m (11.15 in), l2 = 0.4572 m (18

in), L1 = 0.9398 m (37 in), m = 0.35 kg (0.7714 lb), M1 = 0.304 kg (0.6702 lb), and M2 = 0.34 kg

(0.7496 lb).

The rotor thrust TIGE is the total thrust experienced by the rotor in the presence of a ground plane.

The Cheeseman and Bennett model is used to relate TIGE and height h in hover for 0.5 ≥ h/R ≥ 2.0,

i.e., [14], [23]

TIGE =
1

1− R2

16h2

T =
16h2

16h2 −R2
T . (15)
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The rotor thrust T is the total thrust experienced by the rotor if the ground plane were not present and

power Tvi were held constant [14].

In terms of the height h = L2 − L1 cos θ, where L2 is the distance from point O to the ground plane,

we have the vertical velocity and acceleration as

ḣ = L1θ̇ sin θ, (16)

ḧ = L1θ̇
2 cos θ + L1θ̈ sin θ. (17)

Since the compound pendulum is mounted at midstroke, we approximate θ ≈ π/2, which implies

h ≈ L2, ḣ ≈ L1θ̇, ḧ ≈ L1θ̈. (18)

The moment of inertia IO is

IO = mL2
1 +

1

3
M1(L1 + l2)

2 +M2l2
2. (19)

Substituting Eqns. (15) and (18) into Eqn. (14) yields the dynamics,

ḧ =
1

IO

[
16h2TL2

1

16h2 −R2
− l1L1g(m+M1) + l2L1gM2

]
− b′1ḣ, (20)

where b′1 = b1/IO. Note that in the limit as the mass M1 of the compound pendulum setup and the mass

of the counterweight M2 go to zero, i.e., if we ignore the mass of the support structure, the compound

pendulum dynamics in Eqn. (20) reduce to the rotorcraft IGE dynamics given next.

Figure 5(a) shows the free-body diagram of a rotorcraft IGE. Applying Newton’s second law in the êz

direction yields

mḧ = TIGE −mg − b2ḣ, (21)

where TIGE is the rotor thrust IGE, m is the rotorcraft mass, ḣ and ḧ are the vertical velocity and accel-

eration respectively, and b2 is the damping coefficient due to aerodynamics. It is assumed henceforth that

the rotorcraft has landed when h/R =0.5, based on typical rotor distances above the landing gear. Thrust
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IGE in Eqn. (15) is substituted into Eqn. (21) to obtain the dynamics of a rotorcraft IGE,

ḧ =
16h2T

(16h2 −R2)m
− g − b2ḣ. (22)

For the rotorcraft operating IGE, we define the state vector Z ∈ R2 and control input ν1 as

Z =

z1
z2

 =

h
ḣ

 and ν1 =
T

m
. (23)

The nonlinear state-space form of Eqn. (22) is

Ż =

 ḣ
ḧ

 =

 z2

16z21
16z21−R2ν1 − g

 . (24)

An equilibrium control input ν∗1 is necessary to keep the rotorcraft hovering at a corresponding equilibrium

height z∗1 . Solving Eqn. (24) for the equilibrium condition, Ż∗ = 0, the equilibrium control input is

ν∗1 = g
16z∗21 −R2

16z∗21
. (25)

Figure 5(b) depicts the simulation results of the open-loop nonlinear dynamics for an initial height and

velocity of 1.5m and 0.25m/s, respectively, constant input ν1 = ν∗1 and b2 = 0. In order to implement a

linear controller for the nonlinear dynamics in Eqn. (24), the Jacobian matrices are needed. The Jacobians

of Eqn. (24) evaluated at the equilibrium condition are

A =

 0 1

−2gR2

z∗1 (16z
∗2
1 −R2)

0

 and B =

 0

16z∗21
16z∗21 −R2

 . (26)

The eigenvalues of A are pure imaginary, corresponding to a center, which implies the system oscillates

around the equilibrium height.
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Height and Velocity Estimation using a Bayesian Filter

The Bayesian filter [19, 25] is a probabilistic approach for estimation that assimilates noisy measure-

ments into a probability density function (PDF) using nonlinear system dynamics and observation oper-

ators. The optimal Bayesian filter for linear systems with linear measurements and Gaussian noise is the

Kalman filter [26], whereas a common Bayesian filter for nonlinear systems with nonlinear observation

and noise models is the particle filter [27]. For the purpose of height estimation, a grid-based recursive

Bayesian filter is rapidly implemented for a low-dimensional state-space representation of the rotorcraft

downwash, ensuring temporal integration of the estimated height as it evolves over time.

The Bayesian framework consists of an estimation step and a prediction step. In the estimation step, the

Bayesian filter [19] estimates the vehicle height based on the flow measurements collected from an array

of differential pressure sensors. The finite parameter space over height h is discretized and the probability

density is evaluated on this grid for each new measurement. The flow measurement Ṽ is assumed to

be corrupted with zero mean Gaussian noise as in Eqn. (12). Let L = {Ṽ1, ..., Ṽm} denote the set of

measurements from m sensors. The posterior probability density of the state h given the measurements L

is [19]

p(h|L) = cp(L|h)p(h|L0), (27)

where c is the scaling factor chosen so that the posterior p(h|L) has unit integral over the state space.

The likelihood function p(L|h) is the conditional probability of the observations L given the state h and

p(h|L0) represents the prior probability density, initially a uniform distribution.

We choose a Gaussian likelihood function for the measurements Ṽl, l = 1, ...,m, i.e.,

p(Ṽl|h) =
1√

2πσm
exp

[
− 1

2σ2
m

(Ṽl − Vl)2
]

, (28)

where Vl is the flow at height h generated from Eqns. (10) or (11) at the location of sensor l and σ2
m is

the expected measurement variance. The posterior probability density of the state h is obtained using the
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joint measurement likelihood combining the measurements taken from all m sensors [19], i.e.,

p(h|L) = c

(
m∏
l=1

p(Ṽl|h)

)
p(h|L0). (29)

The estimated height ĥ corresponding to the mode of the posterior probability p(h|L) provides the maxi-

mum likelihood estimate of the flowfield parameters. Spatial integration over the sensor array is accom-

plished by Eqn. (29), whereas temporal integration is accomplished by assigning the posterior of the

current time step to be the prior for the next time step.

The Bayesian prediction step consists of shifting and diffusing the probability mass to account for the

vehicle dynamics using the Chapman-Kolmogorov equation [27],

p(h(t+ ∆t)|L(t))

=

∫
p(h(t+ ∆t)|h(t))p(h(t)|L(t))dh(t), (30)

where t is the time step and ∆t is the time step interval. In our case, the probability density is shifted along

the grid according to the estimated vertical velocity ẑ2. The number of grid points to shift is determined

by the product of the estimated velocity ẑ2 and time interval. After shifting, the probability density is

normalized to ensure the PDF integrates to one. To account for uncertainty in the motion model, the

probability density is diffused by convolution with a grid-sized Gaussian to simulate process noise.† The

window width is inversely proportional to the process noise standard deviation σp.

The vertical velocity ẑ2 is estimated from the estimated height ẑ1 by finite differencing, i.e.,

ẑ2,p = αẑ2,p−1 + (1− α)
ẑ1,p − ẑ1,p−1

∆t
, (31)

where 0 < α < 1 and the index p indicates the current iteration. Equation (31) is a low-pass-filter that

removes most of the effects of high-frequency noise.

The measurement and process noise in the Bayesian filter are used as tuning knobs to improve the

filter performance in terms of estimation accuracy and convergence speed. Statistical analysis of the

measurements in hover was used to determine the nominal values. For example, decreasing or increasing

†This step is done with the MATLAB functions gausswin and convn.
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the measurement noise variance σ2
m relative to the process noise variance σ2

p speeds up or slows down,

respectively, the filter’s response to measurements.

In order to design a fast observer that does not react to outlier measurements, the measurements are

pre-filtered before they are passed into the Bayesian filter. Given the corrupted measurement Ṽ from Eqn.

(12), the goal is to compute an estimate V̂ of the original velocity component signal V through signal

reconstruction, which is also known as de-noising or smoothing [28]. The quadratic smoothing convex

optimization method is implemented using the quadratic smoothing function [28]

Λ(V ) =
n−1∑
p=1

(Vp+1 − Vp)2 = ‖DV ‖22, (32)

where V is the velocity component signal we wish to reconstruct and D ∈ R(n−1)xn is the bidiagonal

matrix

D =



−1 1 0 ... 0 0 0

0 −1 1 ... 0 0 0

... ... ... ... ... ...

0 0 0 ... −1 1 0

0 0 0 ... 0 −1 1


. (33)

The optimal trade-off between ‖V̂ − Ṽ ‖2 and ‖DV̂ ‖2 is obtained by minimizing [28]

‖V̂ − Ṽ ‖22 + δ‖DV̂ ‖22, (34)

where δ > 0 parametrizes the optimal trade-off curve. The solution to this quadratic problem is [28]

V̂ = (I + δDTD)−1Ṽ , (35)

which can be efficiently computed, because I + δDTD is tridiagonal.

Figure 6 shows the comparison between measurements Ṽ and quadratically smoothed values of the

velocity components V̂ , with δ = 500. The trends of the measurements are still preserved in the

smoothed values and the mean of both values are identical. Most importantly, the standard deviations

of the smoothed values for v, w, and vi are reduced compared to that of the measurements, which im-
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proves the performance of the Bayesian filter.

Feedback Control Design

The controller is designed and implemented for height tracking operations, including hover, climb,

descent, and landing. A Linear Quadratic Regulator (LQR) is verified in simulation, and a Proportional-

Integral (PI) controller with feed-forward is implemented experimentally.

The state-space system of a rotorcraft IGE from Eqn. (24) in control-affine form is

Ż = f1(Z) + f2(Z)ν1, (36)

where

f1(Z) =

 z2

−g

 and f2(Z) =

 0

16z21
16z21−R2

 . (37)

Figure 5(b) shows that the constant-input open-loop nonlinear system with ν1 = ν∗1 oscillates about the

equilibrium point, which implies that feedback control is needed to asymptotically stabilize z1 to the

desired height. A linear controller to be used with the nonlinear system dynamics is

ν1 = ν∗1 + ∆ν1, (38)

where ∆ν1 = −K(Z−Z∗) and K = [K1 K2]. The closed-loop dynamics with the linear state feedback

controller in Eqn. (38) are

Ż =

 z2

−g

+

 0

16z21
16z21−R2

 (ν∗1 + ∆ν1), (39)

i.e.,

Ż=

 z2

−g +
16z21

16z21−R2

(
g
16z∗21 −R2

16z∗21
−K1(z1 − z∗1)−K2z2

)
. (40)

The gains K1 and K2 are chosen by LQR, using the A and B matrices in Eqn. (26). Figure 7 compares
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the simulated nonlinear closed-loop dynamics in Eqn. (40) to the linear closed-loop dynamics using LQR

with state feedback. Initial conditions for the height and velocity are (1.8m, 0.9m/s) and desired steady-

state conditions are (0.75m, 0m/s). The closed-loop nonlinear (dashed) height h and vertical velocity

ḣ converge to the desired steady state at 5s. The closed-loop linear dynamics (solid) display similar

characteristics with the vertical velocity ḣ displaying more overshoot.

Figure 8 shows a simulation of the posterior probability density of estimated height during closed-

loop ascent (Fig. 8(a)) and descent (Fig. 8(b)) using the Bayesian filter estimated height. Figure 8(a)

shows an ascent maneuver from initial normalized height and velocity (with respect to R) of (0.7, 0/s) to

a commanded height of 1.8m using process and measurement noise standard deviations of (0.1, 0.15/s).

Figure 8(b) shows a descent maneuver from initial height and velocity of (1.8, 0.2/s) to a commanded

height of 0.6 with process and measurement noise standard deviations of (0.08, 0.1/s). Figures 8(c,d)

show the estimated speeds using the low-pass-filtered finite-differencing method in Eqn. (31) for ascent

in (a) and descent in (b), respectively.

Figures. 8(a) and (b) show that the initial height estimation error is large, because the prior PDF is

uniformly distributed. As the Bayesian filter assimilates measurements over time, the posterior probability

density peaks and the estimated height converges to the actual height. As more measurements are taken,

the filter narrows the probability density. Note that Fig. 8(a) has a bigger spread throughout its probability

density distribution than Fig. 8(b), due to the higher noise variances.

Figures 8(c) and (d) show that the initial velocity estimates are relatively large as the difference between

successive height estimations is also relatively large. This effect is influenced by the Bayesian filter

initialization and also the controller, which is driving the system to the commanded height. As the system

reaches steady state at about 4s, the velocity estimate begins to more closely track the actual velocity. The

estimation may be improved by using a higher-fidelity flow model or additional flow sensors.

Experimental Methods and Results

Experiments were conducted to verify and implement the theoretical framework using a heave test

stand for a rotorcraft IGE (without fuselage interference) as shown in Fig. 4(a). Figure 9(a) shows a block
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diagram of the experimental instrumentation, which is categorized into three parts: sensing, estimation

and control, and actuation. The differential-pressure probe sets (with Honeywell HSCDRRN001NDAA3

sensors) measure radial and vertical flow pressure. The differential-pressure measurements are collected

by a microcontroller (Cortex-M4 Teensy 3.1) dedicated for data acquisition (DAQ), pre-filtering and con-

version into velocity components via scaling by a calibration constant [17]. These velocity measurements

are transmitted to the computer for height estimation and closed-loop control. The experimental setup

is fabricated with MakerBeam and 80/20 modular aluminum profiles. The actuation of the experimen-

tal setup consists of a brushless DC motor (AC2830-358 850kV) and electronic speed controller (eRC

Rapid Drive 25A) pair, which are powered by a DC power supply (Mastech HY3030E). Speed-control

input requires Pulse Width Modulation (PWM) square wave signals with variable time scales, which are

generated by the Remote Control (RC) receiver (Spektrum DX6i) or by a microcontroller (ATMega328

Arduino Nano) according to control inputs from the computer. All physical data connections are made

through Universal Serial Bus (USB) cables. Note that the RC radio is used for manual motor-speed con-

trol, whereas the Arduino Nano microcontroller is used for automatic speed control. The carbon fiber

rotor (HobbyKing 14× 4.7) has a radius of R = 0.1778m (7 in.).

A differential pressure probe set that is capable of measuring the radial and vertical differential pres-

sure consists of two pairs of tubes, as shown in the magnified view of Fig. 9(b). Each pair is connected

to a differential pressure sensor [17]. The pressure sensors are connected via an analog interface to the

DAQ microcontroller. Since the pressure measurements are relatively noisy and the pressure sensors and

DAQ microcontroller are capable of higher data rates than the estimation and control loop in the com-

puter, a moving-average filter (MAF) is implemented on the pressure measurements to generate velocity

measurements Ṽ . The MAF implementation is

Ṽ =
a

J

J∑
j=1

P̃j , (41)

where P̃j is the differential pressure sensor measurement j, J is the number of data points to average over,

and a is the calibration constant to convert from differential pressure to velocity [17].

Figure 9(b) shows the instrumentation setup for the heave test stand. Precise real-time position (height
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above the ground plane) of the rotor mount is obtained through the use of a motion-capture system (Opti-

Track), which identifies and tracks reflective motion-capture markers attached to the probe bracket. Two

different flow probe configurations are mounted on the probe bracket: the single pair and two-pair sets. A

single probe pair is placed close to the rotor plane to measure the vertical differential pressure which cor-

responds to the induced velocity. This measurement is used as an input to the ring-source potential flow

model in Eqns. (10) and (11). A two-pair probe set is used to measure the radial and vertical differential

pressures. In order to reduce inter-probe interference, the induced velocity probe is mounted azimuthally

180◦ across from the two pair probe set; all probes are mounted above the probe bracket directly in the

rotor flowfield.

Figure 10 compares the measured radial and vertical velocity components with the flow model at

multiple radial stations for normalized height h/R = 0.75. The data is filtered with J = 105 data points

in the moving-average filter in Eqn. (41). The average of five consecutive measurements are plotted. Error

bars on the measured values show the values one standard deviation away from the mean. The probes are

placed at vertical location z/R = 0.18 from the rotor plane, the motor rotational speed is ω = 2538 RPM,

and induced velocity IGE is vi = 4.34 m/s. The induced velocity IGE is the average of vertical velocities

close to the rotor plane across multiple radial locations and, in this case, the induced velocity probes are

at vertical location z/R = 0.05.

The measured radial velocity v crosses over from positive to negative at r/R = 0.75, which represents

suction toward the rotor hub. Taking the standard deviations into account, some of the radial measurements

agree with the model, but the model does not predict the velocity sign changes. Due to the geometry of

the ring sources, inward flows from opposite sides of the same ring cancel out and the radial velocity is

always outward and positive. Furthermore, the radial flow is also influenced by turbulence and the tip

vortices of each rotor blade, whereas the flow model only captures the mean velocity.

The measured vertical velocity w increases with increasing radial station from r/R = 0.4 to 0.75

and then decreases rapidly for the outboard section. The model predicts a similar trend of increasing

vertical velocity with increasing radial station and gradually tapering off at approximately the same radial

station as the measurement, but it still underpredicts the vertical velocity component. The underprediction

is likely because the induced velocity used in this flow model is an average rather than the local value.
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Model predictions are improved by using the local induced velocity as the input, as we show in the next

experiment in this section. Some general trends of the steady flowfield are captured by this model, however

some significant differences may persist due to the use of an average induced velocity and unmodeled

effects, such as tip vortices. Despite these differences, use of the reduced-order model in the proposed

estimation and control framework is sufficient for closed-loop heave control, presented later in this section.

Placing the probes within the rotor slipstream boundary, as shown in Fig. 11(a), improves the model-

measurement match. Figure 12 compares the ring-source potential flow model (green) from Eqns. (10)

and (11) with experimental results (blue) of radial v, vertical w, and induced vi (red) velocity components

for varying heights. Experiments were conducted on the heave test stand with probe vertical locations of

z/R = 0.10 (solid circle) , 0.20 (dashed diamond), zvi = 0.08, and radially symmetrical probe locations

at (a)–(b) (x, y) = (0, 0.47R), (c)–(d) (x, y) = (0, 0.78R), and (e)–(f) (x, y) = (0, 0.87R).

For probe locations at (x, y) = (0, 0.47R), Fig. 12(a) shows relatively constant radial velocity v mea-

surements for increasing height. The vertical velocity w measurements in Fig. 12(b) increase for increas-

ing height and decreasing vertical probe location. The flow model captures the general trends, even though

it overpredicts the radial velocity v and underpredicts the vertical velocity w, likely caused by the local

induced velocity vi at a radially symmetrical location being input into the flow model as opposed to the

average for the previous experiment.

For probe locations at (x, y) = (0, 0.78R), Fig. 12(c) shows that the radial velocity measurements

v begin to fluctuate for decreasing vertical probe location, whereas the model stays relatively flat. The

vertical velocity w measurements in Fig. 12(d) also display similar trends to that of (b) but they begin to

decrease after h/r = 1.5, which is not captured by the model. The decrease in w and fluctuations in v

are likely caused by the probes being closer to the edge of the slipstream boundary and being influenced

by the effects of tip vortices. The slipstream boundary contracts more at greater heights and the ground

effect becomes weaker, which causes the vertical velocity w to decrease as the probes are closer to the tip

and the radial velocity v to fluctuate. Since the model does not include tip vortices, these detailed effects

are not captured. The general trends are partially captured at this radial station for (c)–(d), albeit not as

well as for the inboard case in (a)–(b).

Finally, for probe locations at (x, y) = (0, 0.87R), Fig. 12(e) shows that the radial velocity v measure-
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ments decrease with increasing height for z/R = 0.20 and increase slightly with decreasing height for

z/R = 0.10. The general trend is similar for the model, which still overpredicts the measurements. The

vertical velocity w measurements in Fig. 12(f) for both vertical sensor locations decrease with increasing

heights. However, the model diverges from the measurement trends and its vertical velocity w increases

with increasing height and then tapers off. The divergence is likely caused by the (outboard) probe being

outside the slipstream boundary, as shown in Fig. 11(a). Once the probe is outside the slipstream bound-

ary, it no longer measures the flowfield due to ground effect, but rather the flowfield outside the rotor

wake, which is not modeled.

Probe placement has a significant effect on model-measurement mismatch. In fact, a nominal 12%

increase in the radial location from y = 0.78R to 0.87R causes the probe to exit the slipstream boundary.

Hence, as shown in Fig. 11(b), the probes were placed in a radially symmetrical fashion at about mid-

radius where tip effects are not significant and the model captures the general trends of the measurements

within the operational region of ground effect.

The following experiment was conducted for the purpose of validating the height-estimation frame-

work. The experiment tested the flow-sensing based Bayesian height estimation separately from the

closed-loop control by using the actual height provided by motion capture. The grid-based recursive

Bayesian height estimation was implemented with Eqn. (29) and the closed-loop control was performed

with a PI-feed-forward controller described below, using height feedback from the motion-capture system.

The probes are radially symmetrical at (x, y) = (0, 0.47R), z/R = 0.2 and zvi/R = 0.08. The standard

deviation for measurement (v, w) and process noise are (4.8, 2.4, 10). The measurements are pre-filtered

by means of J = 50 points in the MAF of Eqn. (41) and δ = 500 for quadratic smoothing (35).

Figure 13 shows the experimental results for the height-estimation framework. Figure 13(a) shows the

commanded heights in black. The heave stand was initiated at normalized height z/r = 0.75, increased to

z/r = 1.6, then decreased to z/R = 1. The height estimates (blue) are plotted against ground truth (red).

The filter response converges to the true height and is capable of tracking commanded height changes.

Figure 13(b) shows the percentage estimation error between the estimated and actual height, with zero

mean error in this sample run. The mean estimation errors observed over multiple runs were less than 5%

(1.1cm or 0.44in). Most estimation errors were within the ±20% range. As the system settled towards a
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steady-state height or the system velocity is sufficiently slow, the estimation converged, as can be seen at

30s and 65s.

Figure 13(c) shows the measured (dash-dot) and model (solid) radial v velocity. Figure 13(d) shows the

measured (dash-dot) and model (solid) vertical w velocity as well as the induced velocity vi (dash). The

model velocity components plotted are the components corresponding to the estimated height with the

induced velocity as input. Note that the estimation error is smallest when the flow model closely matches

the measured velocities, which improves the ability of the Bayesian filter to localize the true system state.

Figure 13(e) shows the posterior PDF of the Bayesian height estimator. For t ≤ 20s, the heave stand

does not move from z/R = 0.7; the filter is confident in its estimate, as shown by the color map. As the

heave stand ascends, the filter converges quickly because the PDF has less spread. From t = 20s to 60s,

the heave stand makes small corrections that are tracked by the filter. Similar performance is observed for

the descent maneuver, where the filter estimate converges to the actual height between t = 65s to 85s.

The final experiment was conducted to validate the entire observer-based height-tracking framework

using Bayesian height estimation and feedback-feed-forward control. This experiment is similar to the

experiment conducted in the previous subsection, but the height for feedback control was provided by the

Bayesian filter in this case. All other parameters are the same.

A Proportional Integral (PI) controller with feed-forward control was implemented on the heave test

stand. The heave test stand is actuated with a brushless DC motor that is controlled with an electronic

speed controller, which takes PWM signals as control input for motor rotational speed regulation. The

PWM control input from feedback control is computed as

νPI = KP (z∗1 − ẑ1) +KI

∫
(z∗1 − ẑ1)dt, (42)

where KP and KI are the proportional and integral gains. A block diagram of the closed-loop control

system is shown in Fig. 14.

Feed-forward control is typically used to speed up the closed-loop system response and compensate

for unmodeled dynamics by feeding in set inputs. We implemented the feed-forward controller in order

to compensate for the transient dynamics of the motor/speed-controller pair, which is not modeled. The

feed-forward control input νFWwas based on a curve fit for the open-loop transient PWM-height curve.
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The sum of the feedback and feed-forward control inputs

ν2 = νPI + νFW (43)

is rate limited and saturated before being sent to the speed controller. The rate limiter and the saturation

block are implemented to ensure that the test stand stays within the operational region of ground effect.

Figure 15 shows the experimental results, which validate the feedback and feed-forward control frame-

work. Figures 15(a)–(d) show the same plots as Figs. 13(a)–(d), with the exception that this manuever is

for observer-based closed-loop control. Figure 15(e) shows the PWM commands for various terms, in-

cluding control input ν2 (blue), feed-foward term (magenta) and desired control input (blue) before being

rate limited and saturated between 110-126 PWM (dashed black). Loop speed of 39 loops/s is achieved.

Figure 15(f) shows the percentage motion error between desired height and actual height.

The mean estimation and motion errors for this sample case are 4% and 7% respectively. As before,

most of the estimation and motion errors fall within the ±20% range. The biggest estimation and motion

errors result from changes in the commanded height around 18s and 55s. For multiple runs with the same

parameters, the mean estimation errors are less than 5% (1.1 cm or 0.44in.) and the motion errors are

less than 9% (2 cm or 0.79 in.). Another factor to consider beyond unsteady aerodynamics, tip effects

and measurement and process noise when evaluating the cause of estimation errors is that the estimation

error is close to the mean probe tip-to-tip length of 1.2 cm, which is in effect the average resolution of the

probes.

Figure 15(g) shows the posterior of the Bayesian filter used for closed-loop control, with two step

inputs at t = 18s and 55s. In general, the filter tracks height changes well and converges to the actual

height quickly. From t = 25 to 35s, the feedback controller drives the estimated height to the commanded

height. The system settles into steady-state height at 40s, when the filter converges to the actual height

and the closed-loop control is capable of driving the system to the desired height.
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Conclusions

This paper describes a flow-sensing and control framework for rotorcraft height stabilization in ground

effect and provides experimental demonstration for application to a MAV-scale autonomous rotorcraft. We

show that height estimation and closed-loop control are feasible by measuring from two sets of differential

pressure probes and comparing to a reduced-order aerodynamic model within a Bayesian filter framework

with linear feedback control. Additional conclusions of this paper are as follows:

1) A ring-source potential flow model for the rotor downwash IGE captures basic characteristics

of the relationship between flow velocity and height, and can be recursively evaluated in real-time at up to

39 loops per second. With model inputs of rotor induced velocity, probe radial and vertical locations, the

flow model has been experimentally validated. The flow model best predicts the flowfield with induced

velocity and radial-vertical velocity measurements collected mid-radius of the rotor.

2) A nonlinear dynamic model of the heave test stand, which reduces to the dynamics of a rotor-

craft landing IGE, allows for the study of the open-loop dynamics and facilitates the design of a closed-

loop controller. It is found that the constant-input open-loop height of a rotorcraft IGE oscillates about an

equilibrium point, which corresponds to a center fixed point. Hence, a closed-loop controller is required

for height tracking operations IGE.

3) The height of the rotorcraft IGE is experimentally estimated with a grid-based recursive Bayesian

filter using the flow model and differential-pressure probe measurements. It is found that the measure-

ments should be pre-filtered with a moving-average filter and a quadratic smoothing function in order

to obtain higher fidelity estimates. The measurement and process noise variances can be used as tuning

knobs to improve estimation accuracy and convergence speed.

4) A linear quadratic regulator for height tracking was verified in simulation. Experimentally,

flow-estimation-based closed-loop control is implemented using a feedback and feed-forward design. The

feedback and feed-forward combination was necessary to compensate for unmodeled motor dynamics

with a short transient response.

5) The mean experimental estimation error is no greater than 5% (1.1 cm or 0.44 in.) and the mean
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motion error is no greater than 9% (2 cm or 0.79 in.). Despite unsteady aerodynamics, tip effects, and

measurement and process noise, the estimation error is close to the probe resolution, which is its tip-to-tip

length of 1.2 cm. The experiments demonstrate that the flow sensing-based height estimation and control

framework is viable, with applications in autonomous rotorcraft landing.
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Fig. 1 Cheeseman and Bennett [14] potential flow model of rotor downwash in ground effect.
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Fig. 2 Schematic of ring-source potential-flow nomenclature.
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Fig. 3 Flowfield of ring-source potential flow evaluated at various heights, depicting streamlines and speed
distributions; flow speed is ‖V ‖ =

√
v2 + w2.
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Fig. 4 (a) Compound-pendulum heave test stand. (b) Free-body diagram of compound pendulum heave
test stand.
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Fig. 5 (a) Free-body diagram of rotorcraft in ground effect. (b) Open-loop dynamics of rotorcraft in
ground effect with constant input ν1 = ν∗1 and no damping. Initial conditions for height and velocity are
1.5m and 0.25m/s, respectively.
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Fig. 6 Comparison between measurements and quadratically smoothed values of velocity components.
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Fig. 7 Simulated closed-loop dynamics of rotorcraft in ground effect with no damping using the state
feedback linear controller in Eqn. (38).
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Fig. 8 Simulations of the closed-loop system using the estimated height from the Bayesian filter. History
of posterior PDF of normalized height h/R for (a) ascent maneuver from initial height and velocity of
(0.7, 0/s), commanded height of 1.8, (σp, σm) = (0.1, 0.15/s); (b) descent maneuver from initial height
and velocity of (1.8, 0.2/s), commanded height of 0.6, (σp, σm) = (0.08, 0.1/s). Estimated velocities with
low-pass-filtered finite differencing for (a) and (b) are shown in (c) and (d).
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Fig. 9 (a) Block diagram for experimental instrumentation. (b) Heave test stand instrumentation with
magnified view of two-pair differential pressure probe set providing radial and vertical velocity compo-
nents.
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Fig. 10 Comparison between ring-source potential flow model in Eqns. (10), (11) and experimental results
of radial v and vertical w velocity components for various radial locations. Error bars denote one standard
deviation from the mean. Normalized height h/R = 0.75, normalized probe location z/R= 0.18, rotational
speed ω=2538 RPM, induced velocity IGE vi = 4.34m/s.
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Fig. 11 (a) Probe placement in strong and weak ground effect. (b) Rotor side-view showing mid-radius
location with radial symmetry for two-pair flow probes (radial v and vertical w velocity components) and
induced velocity vi flow probe.
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Fig. 12 Comparison between ring-source potential flow models (green) and experimental results (blue)
of radial v, vertical w and induced vi (red) velocity components for varying heights. Experiments were
conducted on the heave test stand with probe vertical locations of z/R = 0.10 (solid circle), 0.20 (dashed
diamond) and zvi = 0.08. The probes are radially symmetrical at (a)–(b) (x, y) = (0, 0.47R); (c)–(d)
(x, y) = (0, 0.78R); (e)–(f) (x, y) = (0, 0.87R).
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Fig. 13 Validation of Bayesian height estimation with closed-loop height tracking using motion capture.
(a) Desired (dash), actual (dash-dot) and estimated (solid) normalized height h/R; (b) percentage estima-
tion error; (c) flow model (solid) and measured (dash-dot) radial velocity v; (d) flow model (solid) and
measured (dash-dot) vertical velocity w and measured induced velocity vi (dash); (e) posterior PDF of
height estimate.
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Fig. 14 Block diagram of Proportional-Integral feedback controller with feed-forward compensation.
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Fig. 15 Experimental validation of height-tracking framework using Bayesian height estimation and
feedback-feed-forward control. (a) Desired (dash), ground truth (dash-dot) and estimated (solid) nor-
malized height h/R; (b) percentage estimation error; (c) flow model (solid) and measured (dash-dot)
radial velocity v in m/s; (d) flow model (solid) and measured (dash-dot) vertical velocity w and measured
induced velocity vi (dash) in m/s; (e) PWM control input ν2 (solid), feed-forward term (dash-dot), desired
input (dash) prior to rate limiter and saturation. Loop speed of 39 loops/s; (f) percentage motion error; (g)
posterior PDF of height estimate.
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