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Vision-based estimation of three-dimensional position and pose of
multiple underwater vehicles

Sachit Butail and Derek A. Paley

Abstract— This paper describes a model-based probabilistic
framework for tracking a fleet of laboratory-scale underwater
vehicles using multiple fixed cameras. We model the target
motion as a steered particle whose dynamics evolve on the
special Euclidean group. We provide a likelihood function
that extracts three-dimensional position and pose measurements
from monocular images using projective geometry. The tracking
algorithm uses particle filtering with selective resampling based
on a threshold and nearest neighbor data association for
multiple targets. We describe results obtained from two tracking
experiments: first with one vehicle and a second experiment
with two targets. The tracking algorithm for single target
experiment is validated using data denial.

I. INTRODUCTION
Autonomous underwater vehicles have a wide number of

applications [11]. Teams of such vehicles can be controlled
to cover a large space or perform complicated tasks [22],
[18]. In order to validate control strategies we have de-
signed a multi-submarine testbed for use in the University
of Maryland Neutral Buoyancy Research Facility (NBRF)
[1]. The subs are 1 m long and have a single rear propeller
and rear-situated rudder and dive-planes. Because the subs
lack the ability to measure or record absolute position, we
would like to externally track the position and orientation of
each vehicle in three dimensions. In this paper we present
a probabilistic tracking framework that uses a body-frame-
based motion model and a simple yet robust approximation
of target shape to track multiple laboratory-scale underwater
vehicles.

An underwater test environment presents several chal-
lenges to target tracking not commonly seen on land-based
systems, such as changing light conditions, clutter, and
internal reflections from the surface. With the availability of
small underwater cameras, faster computer processors, and
advancement in the field of computer vision, it has become
increasingly popular to perform vision-based tracking of
underwater vehicles [13], [3], [23]. Alternatives such as GPS
and acoustics are less attractive, because GPS signals do not
propagate well under water [15] and acoustic sensing is noisy
due to scattering in a steel-reinforced test facility [26].

The challenges we seek to address with our tracking
system are nonlinear measurement and motion models. A
good motion model can improve performance in tracking a
maneuvering target [20]. An example of a motion model for
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a maneuvering target is to model control input as a random
process with variance adjustment based on estimation error
in measurement space [4]. Another method is to choose
between several motion models at each step [4].

Related work on vision-based underwater tracking systems
includes using optical flow and disparity measurements in a
stereo system [13] and an extended kalman filter (EKF) based
vision positioning system [23] that tracks a slow moving
target with maximum speed 0.2 m/s.

The contributions of this paper are:

• Selection of a motion model that approximates the 3D
dynamics of a self-propelled underwater vehicle

• Apply a method to extract target position and pose from
a monocular image

• Implement a probabilistic framework for assimilating
visual information from multiple cameras

To model target motion we use a dynamic model for a vehicle
subject to steering control [9]. Control inputs (expressed in
body frame) are yaw, pitch and roll moments. This model
has two advantages: Firstly, by packaging the dynamics into
a class of rigid-body transformations we preserve target-
state validity despite noisy inputs. Secondly, by making an
assumption of low angle of attack we can predict the pose
of our target using state estimates.

Target geometry is modeled as a single quadric — a
quadratic surface in 3D — and we use results from projective
geometry to define measurement models for location and
pose. For estimation we use particle filtering on the spe-
cial Euclidean group which preserves state validity during
prediction.

We experimentally validate the estimation algorithm using
an asynchronous multi-view camera system. We establish
a ground-truth dataset for a single target by performing a
least-squares fit on data from all cameras. We characterize
the performance of the tracking algorithm by running it
on a sequence of measurements from a subset of cameras
(data denial). We describe the results of tracking two subs
using a nearest-neighbor standard filter [4] to associate
measurements to targets.

The paper is outlined as follows: Section II provides a
theoretical background for motion model of a steered parti-
cle, particle filtering on SE(3), and model-based tracking.
Section III presents the measurement model in the form of
likelihood functions and the tracking algorithm. Section IV
describes experimental results. Section V provides conclu-
sions and summarizes ongoing work.
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Fig. 1. The University of Maryland Neutral Buoyancy Research Facility is
7.6 m deep and 15 m wide. The inertial frame I, body frame B, and camera
frame C for a single target and a single camera respectively are shown.

II. PROBABILISTIC DATA ASSIMILATION AND TRACKING

In this section we discuss the motion model of a steered
target, particle filtering on the special Euclidean group, and
model-based tracking.

A. Modeling the motion of a steered target

A self-propelled particle moving with constant speed s
under steering control v can be modelled as [22]

ṙ = sx, ẋ = v × x, (1)

where r is the position of the target in inertial frame I (see
Fig. 1) and x is the unit velocity vector of the target with
respect to I. The components of the control vector v are
[w,−h, q]T , where q and h are curvature controls on yaw
and pitch and w is the control on roll motion. In a curve-
framing setting [9], under the assumption that r(t) is twice
differentiable, an alternate way to represent (1) is to express
it in components of a body frame B = (S,x,y, z) fixed to
the target. The dynamics are [9], [22]

ṙ = sx

ẋ = yq + zh

ẏ = −xq + zw

ż = −xh− yw.

(2)

By attaching a body frame to each target we can relate
the dynamics (2) to rigid-body kinematics. The system (2)
describes rigid-body motion in four degrees of freedom
(translation along x, and rotation about x,y, z). It represents
a subset of a group of rigid-body transformations called
the special Euclidean group, SE(3). The special Euclidean
group includes all real rotations and translations of a rigid
body [17]. One way to represent an element g of SE(3) is

by a 4×4 matrix g =
[
x y z r
0 0 0 1

]
. The system dynamics

in (2) can be represented as [22]

ġ = gξ, (3)

where ξ =
[

v̂ s
0T 0

]
∈ se(3), the Lie algebra of SE(3).

v̂, a 3 × 3 skew-symmetric matrix, is the linear operator
representing cross product by v. 0 denotes [0, 0, 0]T .

For probabilistic model-based tracking it is common to
model unknown inputs as random processes [20]. The
stochastic equivalent of (3) can be written as dg = gdW
where dW is a standard Wiener process on se(3) [10]. In
the context of rigid-body motion, dW is a disturbance input
on each degree of freedom of a target. Let Ei, i = {1, 2...6},
be the basis elements of se(3) [27] and εi be a zero-mean
Gaussian random variable representing the corresponding
variance. For our purposes ε1 = N(0, σ2

w), ε2 = N(0, σ2
h),

and ε3 = N(0, σ2
q ), and ε4 = ε5 = ε6 ≈ 0. These values

signify the disturbance input in each degree of freedom
(i = 1, 2, 3 represent motion along roll, pitch, and yaw
directions, while i = 4, 5, 6 represent translational motion
in x,y, and z directions). A first-order Euler discretization
of the stochastic differential equation dg = gdW with time-
step ∆ is [10]

g[k] = g[k − 1] exp(
6∑
i=1

Ei
√

∆εi[k − 1]) (4)

Note that (4) assumes that the motion along each degree of
freedom is independent. Writing (2) in this form forces the
rigid body to stay on SE(3) at all times despite varying
inputs and first-order approximation. In other words, the
orthonormality of the body-fixed frame is preserved at every
time step.

B. Particle filtering on the special Euclidean group

Particle filtering is a sequential Monte Carlo method used
extensively since the early nineties [7]. Its attractiveness
over alternative approaches like the extended kalman filter is
due to the ability of a particle filter to easily accommodate
nonlinearities in measurement and state space. A particle
filter can handle non-Gaussian, multi-modal distributions [2].
For example, particle filters have been shown to perform
better than EKF for a large class of nonlinear problems [2].

Within a particle filter we use a likelihood function to
encode our confidence in the information we receive. In
its simplest form a likelihood function is a conditional
probability P (Z|X) of a measurement Z given state X .
A particle filter can easily incorporate additional knowledge
about target environment and behavior. For instance, the fact
that an underwater vehicle cannot go above the surface of
water can be encoded in the likelihood function.

In order to find the output of our particle filter we need
to compute averages on the special Euclidean group. An
algebraic mean of 4×4 matrices may not itself lie on SE(3).
A method of calculating estimates is to compute a mean of
multiple rotations based on distance metrics on SO(3) [16]
and augment that value with an algebraic mean of location
estimates [10]. For a multimodal distribution on SO(3) we
need to compute modes on a group of rotations. This can
be accomplished by using mean shift algorithm [25] which
involves computing matrix exponentials for each data point.
However, our target rolls only a few degrees about its center
line. We compute the mode by calculating a simple mode
¯̄x of the velocity vectors. We then compute a cross product
of the vertical axis in the inertial frame with ¯̄x to get the ¯̄y
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Fig. 2. Projection of a 3D ellipse onto two image planes. Notice that the
projection on an image plane depends on the position of the camera and
the position and orientation of the object.

direction in the body frame. The orthogonal body frame is
completed by setting ¯̄z = ¯̄x× ¯̄y.

C. Model-based tracking using target geometry

Using projective geometry, the 3D position of a target
can be estimated by ray-tracing the target centroid without
knowing details about the target geometry. Prior knowledge
about a target can aid in pose estimation. A common and
relatively accurate approach involves tracking feature points
in successive frames [14], but it is difficult to track features
in noisy images of fast-moving targets. A simple yet robust
method is to model the target as a series of connected
quadratic surfaces or quadrics [24]. A quadric is a 2D
surface defined by the equation r̃TQr̃ = 0, where Q is
a 4 × 4 symmetric matrix and r̃ , [r1, r2, r3, 1]T is the
homogeneous coordinate of a point on the surface of the
quadric. The following properties of a quadric surface are
relevant [8]:

1) A quadric has 10 degrees of freedom, three each for
position, orientation, and shape and one for scale.

2) The intersection of a plane with a quadric is a set of
points satisfying ũTCũ = 0 where C is a 3 × 3 sym-
metric matrix, and ũ , [u, v, 1]T is the homogeneous
coordinate of a point on the plane.

We represent the matrix Q as
[
Q3×3 Q4

QT4 Q44

]
where

Q3×3 ∈ R3×3, Q4 ∈ R3 and Q44 ∈ R. Let there be a
vector l = [l1, l2, l3]T in the camera centered frame such
that a line L(t) = lt that passes through the quadric surface
will intersect the surface at all points satisfying [5][

L(t)T 1
] [Q3×3 Q4

QT4 Q44

] [
L(t)

1

]
= 0. (5)

If L(t) is tangent to the quadric surface, then (5) will have
a single solution for t. In this case, the discriminant of (5)
satisfies

lT [Q4Q
T
4 −Q44Q3×3]l = 0. (6)

Equation (6) defines a conic on a plane. Using it to solve
(5) gives a single value of t as −lTQ4(lTQ3×3l)−1 at which
L(t) touches the quadric. Normalizing l with respect to l3 in
equation (6), we get a conic on an image plane at unit focal

length [6], [5]

ũT [Q4Q
T
4 −Q44Q3×3]ũ = 0. (7)

We use the measured conic to estimate pose in a particle-
filtering framework, described next.

III. VISION-BASED ESTIMATION OF POSITION AND POSE

In this section we describe the likelihood functions and
particle-filtering algorithm for our tracking system.

A. Likelihood function for a monocular image

Consider a monocular image of a target where u = [u, v]T

are coordinates of centroid of the target in the image plane.
Let r =

[
r1, r2, r3

]T
be the position of a point in the inertial

frame. Any point in the inertial frame can be transformed to
camera frame coordinates by a transformation matrix

[
R t

]
as r̃C =

[
R t

]
r̃. Without loss of generality, we assume that

the camera frame is aligned with the inertial frame so that[
R t

]
=
[
I 0

]
.

Position estimate: The centroid measurement on a camera
image plane with focal length f (in pixels) as a function of
target center position r is[

u
v

]
= f

[
r1/r3
r2/r3

]
+Dη (8)

where η is a two dimensional Gaussian noise vector for

u and v and D =
[
1 0
0 1

]
. The estimates of r1 and r2

depend on r3, the distance of a point along the optical
axis. This uncertainty is inherent to monocular images and,
given a noise covariance matrix in measurements, impacts
the uncertainty in r1 and r2. We also include the information
that our target cannot go outside the test environment in the
position likelihood function.

The likelihood function for location of a single measure-
ment u = u(r) is

Ploc(u(r)|r) =
{

N(u(r); u,Σ)Utank if detected
Utank otherwise. (9)

N(u(r); u,Σ) denotes a normal distribution function over
the image plane with mean u and noise covariance matrix
Σ. Utank denotes a uniform distribution within the tank. For
example, consider the inertial frame I shown in Fig. 1. Given
a polar representation of a 3D point r = [r, ϕ, z]T , we have

Utank = U(r; 0, Td/2)U(z; 0, Th)U(ϕ;−π, π)

Td and Th are the tank diameter and tank height respectively.
Pose estimate: We make the following assumptions about

the shape and motion of each submarine:
• We model the sub as an ellipsoid with semi-major, -

medium and -minor axes of length 0.4889 m, 0.0665
m, 0.0635 m, respectively.

• The sub motion has a low angle of attack which implies
that the pose is aligned with the body frame (x,y, z).

• The image used to estimate pose has no occlusions.
These assumptions allow us to estimate the pose of a sub
using a quadric surface and its conic image projection.



We use MATLABTM image processing toolbox to fit an
ellipse around the target region and extract the following
measurement parameters: (1) Image-plane coordinates of the
target centroid, u; (2) The orientation of the bounding ellipse,
θ; (3) Eccentricity of the bounding ellipse, ε.

If the length of the ellipsoid axes in orthogonal directions
are denoted as 2a, 2b, 2c, the equation of an ellipsoid in the
body-frame B is given by (rB1 )2/a2+(rB2 )2/b2+(rB3 )2/c2 =
1. In matrix form, the quadric equation is

r̃B
T

QBr̃B = 0, QB =


1/a2 0 0 0

0 1/b2 0 0
0 0 1/c2 0
0 0 0 −1

 . (10)

Assuming the y and z vectors lie on the semi-medium and
semi-minor axes of the ellipsoid, the pose of the sub can
be represented as R =

[
x,y, z

]
. For any rB and r, given

T =
[
R S
0T 1

]
, and T−1 =

[
RT −RTS
0T 1

]
we have r̃B =

T−1r̃. Using (10), we have

r̃TQC r̃ = 0, QC = (T−1)TQBT−1. (11)

The matrix QC represents an ellipsoid in the camera
frame and projects an ellipse onto the image plane up
to a scale factor. The orientation and eccentricity of the
ellipse that is projected onto the image plane is compared
to the eccentricity and orientation of the measured elliptical
contour. Assuming a normal distribution in measurement, a
likelihood function is computed for the estimated values.

As per (7), ũTCũ = 0 where C = K[QC4Q
C
4
T−QC44QC3×3]

and K makes C2×2, the upper left 2×2 matrix in C, positive
definite. C2×2 represents an ellipse with eccentricity and
orientation as follows

εm =
√

1− λmin
λmax

, θm = atan(v2/v1), (12)

where λmin and λmax are the eigenvalues of C2×2 and v =[
v1 v2

]T
is the eigenvector for λmin.

We compare εm, θm to our measurements of the bound-
ing ellipse and build a likelihood function. The likelihood
function for pose is Ppose = PεPθ, where

Pε(ε|r,x,y, z) = N(εm; ε, σ2
ε )

Pθ(θ|r,x,y, z) = N(θm; θ, σ2
θ).

The uncertainty in our measurements, (σε, σθ), is due
to the position measurement of each pixel projected as a
subsurface on the image. We assume Gaussian noise with
covariances determined experimentally (see Table I). Note
that the pose likelihood function has a forward-backward
ambiguity since we do not have information of where the sub
is pointing. This results in a bimodal distribution function,
which is why we use the mode, and not mean, on rotations.

B. Particle filter tracking algorithm

We use a generic particle filter [2] to fuse the vision-based
likelihood function with self-propelled motion model. For a
target, our state vector X consists of position and orientation,

described by g ∈ SE(3), and speed s, which is assumed
constant. The particle filtering algorithm is as follows:

i. Initialize: Generate N uniformly distributed samples on
SE(3) according to

g = exp(U(−π, π)E1 + U(−π, π)E2 + U(−π, π)E3+
U(−Td, Td)E4 + U(−Td, Td)E5 + U(0, Th)E6)

and set the state variable to X =[
rT xT yT zT s

]T
.

ii. For each time step k:
a) Propagate: Evolve each sample according to (4),

using normal random variables as inputs with standard
deviations σq, σh, and σw. These values are based on
how the target moves and satisfy σq > σh � σw > 0
(The sub turns more than it pitches or rolls). The
speed s is propagated as s[k] = s[k − 1] + ds, where
ds = N(0, σ2

s).
b) Predict: For each sample j compute the weights using

the product of likelihood functions for location (9) and
pose (13), and normalize

w̃j = PlocPpose, wj = w̃j [
N∑
i=1

w̃i]−1

iii. Resample: Estimate effective sample size Neff =
(
∑N
j=1 w̃j)

−1. If this value is less than a threshold NT ,
resample using normalized weights wj . The value for
NT was set to N/2 in our algorithm.

iv. Estimate: Compute the sample estimate by augmenting
the algebraic mean of position with mode on rotations
(see Section II-B)

IV. EXPERIMENTAL METHODS AND RESULTS

A. Experimental setup

We describe tracking results from two deployments of
remote-controlled submarines in the University of Maryland
Neutral Buoyancy Research Facility, which is 7.6 m deep
and 15 m wide. Five high-resolution ZC-YHW701N GANZ
cameras, each with an approximate wide viewing angle of
36 degrees and vertical viewing angle of 32 degrees were
used. All cameras are mounted on the inside wall of the
tank with three cameras at mid-level depth of 3.81 m spaced
at 90 degree intervals looking straight into the center of the
tank. The remaining two cameras are at 45 degrees interval
to the mid-level ones just below the surface of water at 0.61
m looking down at an angle of approximately 15 degrees.

The image acquisition was carried out using FlashBusTM

framegrabbers on three separate computers. The acquisition
was not synchronous and the time delay between successive
frames depended on which cameras were used for measure-
ments. With all five cameras the time delay was an average
70 ms, while with three cameras the time delay was 120
ms. The tracker was fed measurements as they came and
sampling time interval ∆ was computed at each iteration.

Calibration of cameras was done using a non-coplanar
arrangement of balls [23] and the Tsai camera-calibration



TABLE I
PARAMETER VALUES USED FOR TRACKING

Parameter Avg. value Value used Parameter Value used
σu(pixels) 0.1 4.0 σq(rad/s) 1.00
σv(pixels) 0.05 4.0 σh(rad/s) 0.30

σε 1.0× 10−5 0.15 σw(rad/s) 0.08
σθ(radians) 0.08 0.25 σs 0.02

software [28]. To mitigate the effect of bubbles and changing
lighting conditions, the background was updated as a running
average [19], G[k + 1] = αT [k] + (1− α)G[k], where T [k]
is the current image, G[k] is the background image, and the
value used for α is 0.05. G[0] is an image without any targets
taken just before the experiment is started.

Measurement-noise parameters for each camera were cal-
culated by computing variance in values of centroid position,
eccentricity, and orientation of a still sub in water over 300
images. These static values, however, only give a lower
bound to our error variances. Different parts of tank have
different lighting conditions, and bubbles from propeller as
the sub moves through water creates clutter. The actual
values used in tracker, therefore, were much larger (see Table
I). The submarine speed was set 0.5 m/s.

Single target: To establish ground truth in the single sub
trial we use a least squares estimate to minimize the pixel
error in all five cameras treating 3 successive measurements
as synchronous. We project the least squares estimate back
on to the image planes and verify that it also lies on the sub.
We then smooth the estimate using moving averages with
a span of five data points. Note that any errors inherent in
the camera measurement system will not be detected by this
method. An alternate way would be to verify the estimates
using a different sensor that is not part of the measurement
system.

Multi-target: In the multi-target tracking experiment we
deployed two subs in the NBRF. The subs are tracked for ten
seconds using three cameras. Data association is performed
at each time-step using the nearest neighbor filter [4]. The
measurement that minimizes the weighted distance between
a measurement and a projected estimate of a target on the
image plane is assigned to that target.

B. Experimental results

Single target: For a single sub we use a ground truth
dataset to characterize tracker performance. Measurements
are taken from three cameras such that the sub is at least
viewed in two cameras. All three cameras (two top-level and
one mid-level) span an angle of 135 degrees. A comparison
with the ground-truth is shown in Fig. 3. The error in
each orthogonal direction is less than a meter. For pose
estimates we compare the orientation and eccentricity of our
estimate projected back on to the image plane with the actual
measurement taken at that time step (Fig. 4). Orientation and
eccentricity are only used for weighting the samples if the
sub is detected well within the frame and not at it’s edges.
Error in eccentricity is generally high compared to that in
orientation. This is primarily due to clutter that prevents a
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Fig. 3. Position estimates for a single target. The ground truth was
created using measurements from five cameras. The tracker was run on
measurements from three cameras.
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Fig. 4. Pose estimates. The plots on top show orientation and eccentricity
values for time-steps when the sub was completely visible in the camera.
The measured values are compared with the projected values of the estimate
on the image plane of the same camera. Also shown are nine frames with
isolated target overlaid with a scaled ellipse with the same eccentricity and
orientation as the estimate projected on to the image plane.

tight ellipse fit around the sub contour. We also show frames
with the projected ellipse overlaid on the sub.

Multi-target: For multi-target tracking we do a visual
comparison of measurements against estimates projected
back onto the image plane on all three cameras where the
subs were seen. Two of those cameras ar shown (See Fig. 5).
Tracks of individual targets are maintained during occlusions.
Direction of motion in the last frame shown is computed
using pose estimates.

C. Discussion

Single target: For the single target tracking case, we
obtain estimates within the body length of the target (1 m).
The difference in eccentricity and orientation measurements
is due to the sensitivity of these values to clutter in the
image. There were several instances when the sub appeared
as a disconnected region in the image after background



Fig. 5. Image frames from two cameras are shown. Estimates are projected
back on to the frame along with measurements. Black arrows representing
estimated direction of motion at the time step for the frame are also shown.
The cameras are orthogonal to each other. The second camera had only one
sub in view.

subtraction. Furthermore a tight bound around the sub is
required for precise measurements. In the case of noisy
images this was not the case. In addition, pose estimate is
based on low angle-of-attack assumption which is violated
when the sub looses RF communication and automatically
cuts off the propeller, floating to the surface.

Multi-target: The multi-target test contained challenges
that we seek to address in ongoing work including occlu-
sions and reflections. One way to handle reflections is to
track every object that is detected after a mild background
subtraction and then probabilistically identify the target [21].
Data association using nearest-neighbor distance is sensitive
to clutter and affected the estimate at instances when there
were bubbles in the tank.

V. CONCLUSION

We describe a model-based probabilistic framework to
track multiple underwater vehicles in a test environment. The
framework combines a three-dimensional motion model for
steered vehicles with a likelihood function that assimilates
monocular image data based on target geometry and behav-
ior. We model the target shape as an ellipsoid to augment our
estimates of pose and velocity. Results are described from an
experiment using multiple targets in the university Neutral
Buoyancy Research Facility.

There are at least three research directions to improve
tracking performance. Firstly, to make it robust to a variety
of maneuvers a stack of motion models inheriting from the
same dynamics can be used [4]. Secondly, we can model
the input variances as part of the state vector and perform
combined parameter estimation [12]. Thirdly in order to track
more targets within clutter a data association scheme such as
Joint Probabilistic Data Association Filter (JPDAF) [4] may
be used.

VI. ACKNOWLEDGMENTS

We gratefully acknowledge the Space Systems Laboratory
at University of Maryland, especially Kate McBryan for
getting the image-acquisition system to work. Thanks to
Adam Mirvis, Nick Limparis and Massimiliano Di Capua
for experiment support. Thanks to our own team at Collec-
tive Dynamics and Control Laboratory, Seth Napora, Nitin
Sydney, Billy Lang, Sarah Beal, Steve Sherman, Alexander
Leishman and Adam Reese for building the subs and running
the trials.

REFERENCES

[1] Neutral Buoyancy Research Facility at Space Systems Laboratory,
University of Maryland http://www.ssl.umd.edu/html/facilities.html.

[2] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking.
IEEE Trans. Signal Processing, 50(2):174–188, Feb 2002.

[3] B.A.A.P. Balasuriya, M. Takai, W.C. Lam, T. Ura, and Y. Kuroda.
Vision based autonomous underwater vehicle navigation: underwater
cable tracking. OCEANS ’97. MTS/IEEE Conference Proceedings,
2:1418–1424 vol.2, Oct 1997.

[4] Y. Bar-Shalom. Tracking and data association. Academic Press
Professional, Inc., San Diego, CA, USA, 1987.

[5] Geoffrey Cross and Andrew Zisserman. Quadric reconstruction from
dual-space geometry. IEEE Int. Conf. on Computer Vision, 0:25, 1998.

[6] Song De Ma. Conics-based stereo, motion estimation, and pose
determination. Int. J. Comput. Vision, 10(1):7–25, 1993.

[7] Nando De Freitas and Neil Gordon. Sequential Monte Carlo Methods
in Practice. Birkhuser, 2001.

[8] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, March 2004.

[9] E.W. Justh and P.S. Krishnaprasad. Natural frames and interacting
particles in three dimensions. IEEE Conf. on Decision and Control,
pages 2841–2846, Dec. 2005.

[10] J. Kwon, M. Choi, F. C. Park, and C. Chun. Particle filtering on the
Euclidean group: framework and applications. Robotica, 25(6):725–
737, 2007.

[11] Naomi Ehrich Leonard, Derek Paley, Francois Lekien, Rodolphe
Sepulchre, David Fratantoni, and Russ Davis. Collective motion, sen-
sor networks, and ocean sampling. IEEE Proc., Emerging technology
of networked control systems, (95):48–74, 2007.

[12] J. Liu and M. West. Combined parameter and state estimation in
simulation-based filtering. 2000.

[13] R.L. Marks, S.M. Rock, and M.J. Lee. Automatic object tracking
for an unmanned underwater vehicle using real-time image filtering
and correlation. Int. Conf. on Systems, Man and Cybernetics, pages
337–342 vol.3, Oct 1993.

[14] Frederick Martin and Radu Horaud. Multiple-Camera Tracking of
Rigid Objects. The Int. J. of Robotics Research, 21(2):97–113, 2002.

[15] D.T. Meldrum and T. Haddrell. Gps in autonomous underwater
vehicles. Int. Conf. on Electronic Engineering in Oceanography, pages
11–17, Jul 1994.

[16] M. Moakher. Means and averaging in the group of rotations. SIAM
Journal on Matrix Analysis and Applications, 24(1):1–16, 2002.

[17] R. M. Murray, S. S. Sastry, and L. Zexiang. A Mathematical
Introduction to Robotic Manipulation. CRC Press, Inc., 1994.

[18] Derek A. Paley. Stabilization of collective motion on a sphere.
Automatica, 45(1):212 – 216, 2009.

[19] M. Piccardi. Background subtraction techniques: a review. Int. Conf.
on Systems, Man and Cybernetics, 4:3099–3104, Oct 2004.

[20] X. Rong Li and V.P. Jilkov. Survey of maneuvering target tracking.
Part I. Dynamic models. IEEE Trans. Aerospace and Electronic
Systems, 39(4):1333–1364, Oct. 2003.

[21] D.J. Salmond and H. Birch. A particle filter for track-before-detect.
In Proc. of American Control Conference, 5:3755–3760 vol.5, 2001.

[22] L. Scardovi, N.E. Leonard, and R. Sepulchre. Stabilization of
collective motion in three dimensions: A consensus approach. IEEE
Conf. on Decision and Control, pages 2931–2936, Dec. 2007.

[23] J. R. Smithanik, E. M. Atkins, and R. M. Sanner. Visual positioning
system for an underwater space simulation environment. Journal of
Guidance, Control, and Dynamics, 29:858–869, 2006.

[24] B. Stenger, P.R.S. Mendonca, and R. Cipolla. Model-based 3d tracking
of an articulated hand. In Proc. IEEE Computer Vision and Pattern
Recognition CVPR, 2:II–310–II–315 vol.2, 2001.

[25] O. Tuzel, R. Subbarao, and P. Meer. Simultaneous multiple 3d motion
estimation via mode finding on Lie groups. In Proc. IEEE Int. Conf.
on Computer Vision ICCV, volume 1, pages 18–25, October 17–21,
2005.

[26] K. Vickery. Acoustic positioning systems. a practical overview of
current systems. Proc. of 1998 Workshop on Autonomous Underwater
Vehicles, pages 5–17, Aug 1998.

[27] Yunfeng Wang and G.S. Chirikjian. Error propagation on the euclidean
group with applications to manipulator kinematics. IEEE Trans. on
Robotics, 22(4):591–602, Aug. 2006.

[28] Reg Willson. Tsai camera calibration software
http://www.cs.cmu.edu/ rgw/tsaicode.html, 2008.


