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Abstract—A cooperative track-before-detect algorithm for
multiple ground targets is presented for fixed-wing Unmanned
Air Vehicles (UAVs) with a finite field of view. The road network
forms a graph whose nodes indicate the target likelihood ratio.
Target observations are assimilated by a Bayesian likelihood
ratio tracker in which likelihood diffuses according to the graph
Laplacian of the road network. Using the likelihood ratio in a
composite potential along with attractive and repulsive terms,
the algorithm directs UAVs modeled as Dubins cars towards
nodes with high likelihood. Results from numerical simulations
are included to illustrate the algorithm.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become a sub-
stantial topic of research and development for many national
governments. Especially prevalent is the need for UAVs
in the realm of intelligence, surveillance, and reconnais-
sance missions and for target identification and designation
as described in the Unmanned Systems Roadmap 2007–
2032 [1]. With low-cost aerial vehicles and powerful visual
sensors widely available, the goal is to improve ground-
target tracking strategies and coordination between UAVs
to maximize information acquisition and accumulation. This
paper describes a physics-inspired path-planning strategy
based on a Bayesian likelihood ratio tracker that assimilates
measurements of potential targets on a road network. The
planning strategy determines UAV motion using target de-
tections, according to the evolution of the likelihood ratio
over the network. As a result, the strategy is a manifestation
of the Dynamic Data-Driven Application Systems (DDDAS)
paradigm [2], which uses sensor measurements to guide
subsequent data collection.

Due to the importance of UAVs in a variety of missions,
multi-target tracking is a popular topic in the research lit-
erature. One approach is to use Bayesian inference and ei-
ther multi-hypothesis or maximum-likelihood filters to track
moving targets [3]–[6]. These approaches are adequate for
combining sensor measurements with tracking and detecting
targets, but do not always effectively move the UAVs to find
targets. The methods described in [7]–[9] offer solutions to
this problem by operating in the Bayesian inference regime
and using this information to move UAVs, however the
techniques are focused on a single UAV.

Approaches that utilize the road-network structure lie
almost entirely in the realm of particle and other nonlinear

filters. This approach is a natural choice for propagating
targets based on their directional dynamics by allocating
probabilities and thus proportions of particles for each motion
mode [10]–[12]; however, it can lead to poor estimation qual-
ity if sharp mode transitions occur. The methods described
in [13]–[16] are examples of the interacting multiple model
particle filter, which has been introduced as a solution to this
issue by fixing the number of particles per mode regardless
of mode probability. Unfortunately, while the proposed filter
modification can provide lower errors and quick adaptation
when targets change motion modes, there is an inherent trade-
off between these two attributes, and questionable robustness
to motion model violations [17].

This paper focuses on the implementation of a potential-
based motion-planning strategy that enables multiple fixed-
wing UAV sensor platforms to collaborate in searching for
mobile ground targets on a road network. Each fixed-wing
UAV is modeled using a Dubins car model with constraints
on turning rate and speed. The onboard sensors have a finite
field of view, probability of detection, and probability of false
alarms. Sensors output an increased measurement signal if
targets are in view, culminating in a target detection if a
threshold is met. Targets are programmed to operate only
on the road network, obey the rules of the road (e.g., one-
way streets), and stop randomly to simulate courier behavior.
Sensor measurements are incorporated into the likelihood
network using a Bayesian likelihood ratio tracker (LRT) that
makes use of a recursive model to produce a probability
density function along possible target locations on the road
network. In this formulation, when one or more targets are
in range, likelihood increases inside the sensor range of the
UAV; if a likelihood threshold is reached, then the target
is detected. Subsequent measurements of a detected target
would be assimilated by a target tracking filter, currently un-
der development. UAVs have global knowledge of likelihood
on the road network and the location of all other UAVs, by
assumption.

The LRT track-before-detect algorithm is coupled with
potential-based motion planning. As the LRT recursively
modifies the likelihood surface on the road network based
on proximity to targets, a physics-inspired artificial poten-
tial guides the motion of each sensor platform to nodes
with higher likelihood. The sensor platform avoids local



minima by continually changing the local likelihood ratio;
consequently, the UAV is compelled to move away from its
current location unless a target is in range. The algorithm
is illustrated via simulations on real road networks extracted
from OpenStreetMap databases. UAVs are initialized from
the corners of the target area and targets randomly traverse
the network while stopping and starting at random nodes.

Artificial forces act on the UAV to ascend the likelihood
gradient, stay close to the road network, and avoid other
UAVs. The first force is parallel to the edge of the graph that
represents the maximum change in likelihood. This modifica-
tion of the traditional gradient-climbing behavior reflects the
fact that the likelihood (and targets) are constrained to the
road network. The second force is a repulsive force between
UAVs known as Pauli repulsion, which is typically used to
model the interaction between molecules when their electron
orbitals overlap. The third force is a virtual spring between
the local edge of maximum likelihood and the UAV, which
keeps the UAV within sensor range of the road network as
it ascends the likelihood gradient.

Potential-based algorithms similar to this paper, such as
[18], [19], suffer from a number of issues. Chief among
them is getting stuck in local minima of the potential. Our
algorithm avoids this issue by combining the motion planning
strategy with the evolution of the likelihood network via
the LRT. In addition, since the dynamics of the fixed-wing
UAVs have been implemented using a Dubins car model, the
UAVs are naturally inclined to follow their inertia along a
gradient rather than get stuck in deadlock. Another important
advantage of the LRT approach is the savings in computation
relative to explicit calculation of mutual information among
UAVs on each iteration [6].

The prediction of likelihood using the LRT in the absence
of measurements is also novel. For the typical 2-D likelihood
surface, likelihood is propagated numerically using the dy-
namics of the target e.g., by using a random walk described
by the diffusion partial differential equation on the likelihood
grid. In the case of a road network modeled by a graph, the
graph Laplacian is utilized to predict the possible locations
of targets using a random walk model constrained to edges
on the graph. The diffusivity constant represents the mobility
of the targets.

The primary contribution of this paper is a physics-
inspired motion-planning system for cooperative track-
before-detection of multiple targets on a road network graph.
Target position likelihood is assessed using a Bayesian like-
lihood ratio tracker and is spatially diffused along the graph
using the graph Laplacian as time advances. A secondary
contribution is the introduction of artificial potentials to guide
UAV searchers along the gradient of maximal likelihood
change on the graph while avoiding collisions. UAVs are
directed along local graph edges of maximal likelihood
change, thereby attracting them to positions of maximum
likelihood on the graph, while simultaneously avoiding other
UAVs via a Pauli repulsion force. As a result, this target

detection strategy is an example of a DDDAS paradigm since
UAV motion is directly influenced by measurements of target
likelihood. In addition, a novel measurement of intersection
density is introduced to quantify algorithm performance for
road networks of varying complexity.

The paper is organized into the following sections. Section
II summarizes the fundamentals of graph theory and the
construction of a likelihood graph from a road network. Sec-
tion III describes the likelihood-ratio detection and prediction
using the graph Laplacian. Section IV presents the dynamics
of the UAVs, the artificial potentials that make up the motion
planning strategy, and simulations of the algorithm. Section
V summarizes the paper and ongoing work.

II. ROAD NETWORK GRAPH

This section describes our method for modeling road net-
works extracted from the OpenStreetMap [20] database ( c©
OpenStreetMap contributors) and converting them into undi-
rected graphs. Nodes from OpenStreetMap become graph
vertices, which describe the geometric layout of the network,
and edges, which describe the connectivity between nodes.
Target likelihood is assigned to each node and is exchanged
between vertices along edges by a finite-difference calcula-
tion of the Laplacian operator represented by the Laplacian
matrix of the graph.

A. Graph Theory
A graph is a structure in mathematics that models the

relation between pairs of objects. More specifically, a con-
nected graph is a structure where any point on the graph
can be reached from any other point on the graph [21]. A
road graph is composed of three elements [22]: a set V of
N vertices, a set E of M edges, and ψ(1, ..., N), which
returns the planar coordinates of the vertices. An example
of a uniformly weighted and undirected graph is shown in
Figure 1, represented by

G = (V,E) (1)

where V = (1, 2, 3, 4) ∈ R4 and E ={
(1, 2), (1, 4), (2, 3), (3, 4)

}
∈ R2 × ... × R2.
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Fig. 1: An undirected graph with N=4 nodes.

A directed graph is described by the adjacency, A ∈
RN×N , and degree, D ∈ RN×N , matrices. The ij entry of
the adjacency matrix represents the connectivity of nodes i
and j, i.e.,

aij =

0, if j = i
1, if there is a directed edge from j to i
0, if there is no directed edge from j to i.

(2)



For an undirected graph, the adjacency matrix is symmetric
about the diagonal indicating bidirectional travel along that
edge. The ii entries of the degree matrix D give the number
of incoming connections to node i, whereas the off-diagonal
entries are zero:

dij =


N∑
j=1

aij , if i = j

0, if i 6= j.
(3)

Another convenient construct in graph theory is the inci-
dence matrix B ∈ RN×M , which relates edges and nodes,
with row indices representing the node indices and column
indices representing the edge indices [22]. For undirected
graphs, the edge direction is assigned arbitrarily by setting
one entry along each column equal to one and another equal
to negative one. For the graph in Figure 1, the incidence
matrix is

B =


1 0 0 1
−1 1 0 0
0 −1 1 0
0 0 −1 −1

 .
Note that for each column there are precisely two non-zero
entries, since exactly two nodes are connected by a single
edge. (There are no self loops.)

The Laplacian matrix L ∈ RN×N of graph G is

L = D −A. (4)

The graph Laplacian is used below as an operator that
models a random walk between adjacent nodes. To spread
target likelihood in the network, the rate of diffusion is
determined by the target speed. Diffusion of likely target
positions spreads evenly in all possible directions along the
road network.

B. Laplacian Operator

Since targets may only travel between connected nodes, the
spatial rate of change of likelihood for a vertex in a network
is modeled by partial derivatives along each connected edge.
Let φ be the likelihood at each node, one way to model this
interaction is with the heat equation

d

dt
(φ) + α∇2φ = 0, (5)

where ∇2 is the Laplace operator, which takes partial deriva-
tives along each connected edge. The Laplace operator acting
on each node is approximated by using finite difference
methods [23].

Let ξk = (xk, yk) denote the target state at time step k
and ζk denote an observation of the target at k. The target
likelihood at time k for node n is φk(n) = p(ξk|ζk)

∣∣
n

, where
n = 1, ..., N . For vertex 1 in Figure 1, the spatial rate of
change of likelihood would be represented as

∇2(φk(1)) =
φk(2) + φk(3) + φk(4)− 3φk(1)

h2
, (6)

where h is the node spacing (assumed to be identical for all
edges).

Let N (n) represent the neighbor set of all vertices con-
nected to node n. Assuming that the exchange rate is a
constant α, the time rate of change of likelihood is modeled
by

d

dt
(φk(n)) = −α

∑
j∈N (n)

anj(φk(n)− φk(j)). (7)

In matrix-vector notation, equation (7) becomes

d

dt
(φk) + αLφk = 0, (8)

which is the heat equation with spatial discretization. The
Laplacian matrix L implements the finite difference calcula-
tion of the Laplacian operator ∇2 [24]. Thus the diffusion
of likelihood throughout the road network represented by a
graph is found by solving the first-order matrix differential
equation in (8).

The graph Laplacian matrix of a connected undirected
graph is positive semi-definite [24]. As a result, other than
zero, the graph Laplacian has all positive real eigenvalues,
which indicates that the information on the graph will be
conserved; (8) reaches an equilibrium that is the average
of the initial likelihood. The use of the Laplacian matrix as
a method for information diffusion and target prediction is
further described in Section IIIB.

C. OpenStreetMap Data Structure and Importing

OpenStreetMap data is exported for a particular map
snapshot using the Overpass Turbo web-based data mining
tool [25]. Turbo allows users to write and implement scripts
that limit the number and type of results returned for a
particular map export. To obtain roadways accessible only by
cars, we restrict the types of paths that we export as shown
in Figure 2. The resulting data file includes the bounds of
the export data (in longitude and latitude), all of the nodes
in the road network, and the ways (lists of adjacent nodes)
that define the individual roads in the network. Each node
contains a unique node id, longitude and latitude coordinates,
and a tag that describes what kind of road element it is (e.g.,
a highway). Each way has a unique id and includes all of the
node ids that compose it. Road data is parsed into a Matlab
struct data structure that represents the road network.

III. LIKELIHOOD RATIO DETECTION AND TRACKING

A. Likelihood Ratio Tracker

The instantaneous position of likelihood targets is found
using a log-likelihood ratio tracker [6]. A log-likelihood ratio
tracker is effective for detecting possibly multiple targets
based on recursive Bayesian estimation. This methodology
is often called track-before-detect because it accumulates
sensor data about possible targets before they are detected.
The particular methodology used in this framework is based
on previous work done in physics-inspired motion planning
[26].



Fig. 2: OpenStreetMap snapshot

A Bayes filter is a probabilistic methodology for recur-
sively converting noisy measurements of a target’s state space
into a probability density function using a mathematical
model of the target dynamics. The filter is applied in discrete
time steps to predict and update the two-dimensional position
of a target. Recall ξk = (xk, yk) denotes the target state
at time step k and ζk denotes an observation of the target
at k. The predict step involves computing the conditional
probability [6]

p(ξk|ζk−1) =

∫
Ω

p(ξk|ξk−1)p(ξk−1|ζk−1)dξk−1. (9)

The measurement update is proportional to the product of the
measurement likelihood p(ζk|ξk) and the predicted state [6],
i.e.,

p(ξk|ζk) =
p(ζk|ξk)p(ξk|ζk−1)

p(ζk|ζk−1)
, (10)

where

p(ζk|ζk−1) =

∫
Ω

p(ζk|ξk)p(ξk|ζk−1)dξk

is the integral of the numerator. In this framework, simulta-
neous observations from multiple sensors are assimilated by
executing consecutive measurement updates.

In a likelihood-ratio tracker, we replace the measurement
likelihood with the measurement likelihood ratio. The nu-
merator of the likelihood ratio represents the conditional
probability of the measurement given that the target is present
(ξ+
k ), whereas the denominator represents the conditional

probability of the measurement given that the target is not
present (ξ−k ). Thus, the log-likelihood ratio is

logL(ζk|ξk) = log
p(ζk|ξ+

k )

p(ζk|ξ−k )
= log(p(ζk|ξ+

k ))−log(p(ζk|ξ−k )).

(11)
Let p = log(p). The update step in the log-likelihood ratio
tracker becomes

p(ξk|ζk) = log
L(ζk|ξk)p(ξk|ζk−1)

p(ζk|ζk−1)
=

p(ζk|ξ+
k )− p(ζk|ξ−k ) + p(ξk|ζk−1) + p(ζk|ζk−1).

(12)

The first term in (12) represents the newly obtained, positive
information that a target is present. Likewise, the second term
represents the newly obtained, negative information that no
target is present. The third term represents the prior informa-
tion about the target, and the fourth term is a normalization
constant that may be safely ignored if unknown.

When the target probability reaches a critical threshold at
a location in the graph, the target is declared detected. If the
targets do not pass the threshold then the target probabilities
are maintained as hypotheses for future iterations.

B. Predict step: Integrating the diffusion equation

The predict step (10) involves updating the target proba-
bility density function in the absence of measurement infor-
mation. The graph representing the road network allows us
to specify requirements that are imposed on target motion.
A random-walk model is described by the diffusion in (8).
The diffusivity coefficient for the network is set according to
parameters that describe both the road and the graph model.
The relationship between the diffusivity α, the time step of
the simulation ∆t, the node spacing ∆x, and target max
speed Vmax is

α =
∆t

∆x
Vmax. (13)

The graph Laplacian is a conservative operator, so the
sum of target likelihood in the network never changes and
thus boundary conditions are naturally enforced for the road
network. However, with no additional measurements along
the network, likelihood throughout the graph should reach
consensus at a equilibrium value reflecting neither high nor
low likelihood, indicative of an unknown target distribution
after a long period of time. This outcome is achieved by
adding in an additional exponential decay term to the heat
equation. The updated differential equation is

d

dt
(φk) + αLφk +

α

C
φk = 0. (14)

The α/C term ensures that likelihood decays much slower
than it spreads between nodes as long as C � α.

Let I ∈ RN×N be the identity matrix. By rearranging the
terms of the first-order matrix differential equation, it can be
solved with a matrix exponential as follows:

d

dt
(φk) =

(
−αL− α

C
I

)
φk, (15)

which implies

φk = e−α(L+C−1I)∆tφk−1. (16)

Eq. (16) is the solution for the evolution of likelihood over
the road network, with a heat diffusivity equal to the mobility
of the targets on the graph, and a non-conservative decay term
to reflect the loss (positive or negative) of likelihood as time
evolves.



C. Update step: The sensor measurement model

Consider a measurement data model based on an imperfect
sensor with a finite range of view. Let targets within the
sensor range ρ be detected with probability Pd and false-
alarm probability of Pf per measurement time step [27].
Combining these two probabilities, the sensitivity m of each
sensor is

m = z(Pd)− z(Pf ), (17)

where z(·) represents the z-transformation into standard
deviation units given by the quantile function

z(p) =
√

2erf−1(2p− 1).

For example, Pd = 0.95 and Pf = 0.1 yields m = 2.92.
Let wk represent unit-normal measurement noise in standard
deviation units at time step k. When the target is absent the
measurement data is ζk = wk, whereas when the target is
present, the measurement data is ζk = m+wk. Assuming a
zero-mean Gaussian sensor model yields [28]

p(ζk|ξ−k ) =
1√
2π

exp

(
−ζ

2
k

2

)

p(ζk|ξ+
k ) =

1√
2π

exp

(
− (ζk −m)2

2

)
.

The log-likelihood ratio (11) becomes

logL(ζk|ξk) = − (ζk −m)2

2
+
ζ2
k

2
= m

(
ζk −

m

2

)
,

where m is a function of the sensor Pd and Pf given by (17).
Note, the log-likelihood ratio is applied to the prior located
inside a disc of radius ρ centered on the UAV location.

IV. GRADIENT-SEARCH ALGORITHM

A. UAV Dynamics

Presuming the UAVs are fixed-wing aircraft, the UAV
dynamics are modeled using a Dubins car framework [29].
Let Sjk be the (constant) speed at which UAV j is moving, θjk
be its heading, and ujk be the control input to the turn rate at
time k. The constraints on turn rate and speed are enforced
using the saturation function.

The unconstrained kinematics of UAV j = 1, ..., O are
defined by

ẋjk = Sjk cos θjk

ẏjk = Sjk sin θjk

θ̇jk = ujk.

(18)

By taking derivatives of the ẋjk and ẏjk terms, assuming
unit mass, the dynamics of the UAVs are determined by the
forces, Xj

k and Y jk , along the x and y directions as follows:

Ṡjk cos θjk − θ̇
j
kS

j
k sin θjk = Xj

k

Ṡjk sin θjk + θ̇jkS
j
k cos θjk = Y jk .

(19)

Solving for Ṡjk and θ̇jk yields

θ̇jk =
Y jk cos θjk −X

j
k sin θjk

Sjk
Ṡjk = Xj

k cos θjk + Y jk sin θjk.

(20)

Using Euler’s method [30] and applying saturation models
yields

θjk = θjk−1 + sat

(
Y jk cos θjk −X

j
k sin θjk

Sjk
, θ̇max

)
∆t

Sjk = sat
(
Sjk−1 + (Xj

k cos θjk + Y jk sin θjk)∆t, Smax

)
.

(21)

where sat(x, xmax) =

 x, |x| ≤ xmax

xmax, x > xmax

−xmax, x < −xmax.

(22)

B. Likelihood gradient and Pauli repulsion forces

Each UAV’s motion plan is prescribed by a combination
of three artificial potentials to guide it up the gradient
in likelihood ratio while preventing collisions. Assume the
likelihood surface and geometry of the road network itself
are known to all UAVs, as well as the location of every other
UAV. (These assumptions may be relaxed, but that is not the
objective of this work.)

The first force is derived from the maximum gradient of
the log-likelihood graph in a limited field of view. Although
the UAV has global knowledge of the nodes that compose
the likelihood network, a finite field of view with radius
ρ is adopted to allow the UAV to navigate using the local
maximum gradient. Without this restriction, the maximum
gradient might be extracted from anywhere in the network
and the resulting gradient force might send the UAV off the
road network entirely.

Let N j
k be the set of indices of all vertices in sensor range

of a UAV j at time k corresponding to the non-zero row
entries in the corresponding columns of B. The likelihood
of all nodes in range for a particular UAV is represented
by φ(N j

k ). To find the gradient of the graph, the distance
between connected nodes is assumed to be constant. The
gradient magnitude is the difference between adjacent nodes
and its orientation is along the edge that connects them,
which can be extracted from the incidence matrix B as
follows.

The edge-wise likelihood differences ∆φk at time k are

∆φk = BTφk. (23)

Let Mj
k be the set of row indices of BT corresponding to

the edges that connect to nodes inside the search range of
the UAV and µjk ∈M

j
k represent the index of the edge with

maximum likelihood change. The maximum difference in
likelihood along an edge inMj

k is ∆φk(µjk). If the maximum
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Fig. 3: Pauli repulsion with σ = 2ρ

likelihood change is contained in multiple edges, a single
edge is chosen randomly.

Since µjk represents only the edge index of the largest
difference in likelihood, the direction of the gradient along
the edge is also needed. Recall that ψ contains the positions
for each node in the network; let n1 and n2 be the head and
tail, respectively, of the edge in row µjk of BT .

The difference operator BT acting on φk finds the dif-
ference between connected nodes n1 and n2 by subtracting
n2 from n1. If the difference is positive, the gradient points
from n2 to n1 along edge µjk and vice versa if the distance
is negative. The likelihood gradient ∇Rjk is thus

∇Rjk = ∆φk(µjk)
ψ(n1)− ψ(n2)∥∥ψ(n1)− ψ(n2)

∥∥ . (24)

The second artificial force is the gradient of the repulsive
portion of the Lennard-Jones potential [31], known as Pauli
repulsion. The Lennard-Jones potential is typically used as
a computationally efficient way to model intermolecular gas
dynamics, and Pauli repulsion in particular describes repul-
sion between molecules as their electron orbitals overlap.
We utilize Pauli repulsion because it is tunable for avoiding
collisions and redundant searching.

Recall ξjk = [xjk, y
j
k], j = 1, ..., O. The Pauli repulsion

potential for UAV j is

P jk = 4ε

O∑
i6=j

(σ12||ξjk − ξ
i
k||−12), (25)

where ε is the depth of the well and σ is the distance at which
the potential between two UAVs is zero. An example of the
potential between two UAVs is shown in Figure 3. Note that
as the distance between UAVs becomes large, the potential
becomes very flat, which implies that repulsive interactions
only occur when UAVs are close. The gradient of (25) is

∇P jk = −48

O∑
i 6=j

(
σ12||ξjk − ξ

i
k||−13

) ξjk − ξik
||ξjk − ξik||

, (26)

where ε is set to one for proportionality to the likelihood

gradient force, and σ is set to twice the search radius ρ
to make repulsion occur only when UAVs have overlapping
search radii.

The coupling of maximum gradient force and Pauli re-
pulsion prevents multiple UAVs from approaching the same
node. As the likelihood surface updates with negative mea-
surements in the search radius of a UAV, the gradient towards
that portion of the graph decreases and any other local UAVs
have less incentive to approach. Any UAVs with coincident
paths are also diverted due to Pauli repulsion. As a result,
only UAVs approaching the same node from separate paths
will come into close proximity and will be diverted either by
the local gradient updating away from the common node as
measurements of the common node are collected or by Pauli
repulsion.

The third force is a spring potential connecting the UAV
to the node of higher likelihood along the edge of maximum
gradient, i.e., nmax ∈ {n1, n2} such that φk(nmax) is
greatest. The spring potential is used to counteract drift
induced by sudden changes in the gradient direction. If the
node of interest goes out of sensor range, the spring force
acts on the UAV and brings the UAV closer to the nodes of
interest. The rest length of the spring is set to the sensor range
of the UAV to keep the edge of max likelihood change in
measurement range, while still allowing the UAV to measure
nearby edges, thereby maximizing information collection.
The spring potential is

Qjk = −1

2
K
(
||ξjk − ψ(nmax)|| − ρ

)2

, (27)

and the spring force is

∇Qjk = −K
(
||ξjk − ψ(nmax)|| − ρ

) ξjk − ψ(nmax)

||ξjk − ψ(nmax)||
,

(28)

where K is the spring constant and ρ is the rest length.
The net artificial force applied to UAV j is

F jk = ∇Rjk +∇P jk +∇Qjk, (29)

where the components are internally scaled as described
above.

C. Simulation Results

Figure 4 provides a snapshot of the algorithm in sim-
ulation. The likelihood along the network is represented
graphically by the color of each node. High likelihood is red,
neutral likelihood is green, and low likelihood is blue. Targets
are distributed throughout the network as colored stars,
whereas UAVs and their sensor ranges are represented by
colored diamonds and green circles, respectively. Additional
parameters used for the simulation are described in Table II.

Figure 4 shows a number of the behaviors described
throughout this paper. Focusing first on the magenta UAV



TABLE I: Road network parameters

Parameter (units) Verizon Center, DC Silver Spring, MD New York, NY Westminster, MD

Area of snapshot (mi2) 0.863 0.868 0.870 0.887

Convex hull of network (mi2) 0.817 0.842 0.841 0.846

Number of intersections 510 372 268 138

ID (int/mi2) 624.356 441.777 318.595 163.175

(a) Time step k = 230 (b) Time step k = 235

Fig. 4: Snapshots of LRT detection and repulsion

TABLE II: Simulation parameters

Parameter Value (units) Definition

σ 240 (m) repulsive threshold

ε 1 (kg m2/s2) Pauli repulsion depth

O 3-6 number of UAVs

T 8 number of targets

∆t 0.3 (sec) time step

∆x 10 (m) node spacing

Pd 95% probability of detection

Pf 10% probability of false alarm

φmax 10 target detection threshold

θ̇max 50 (◦/sec) UAV max turn rate

Smax 80 (mph) UAV speed

Vmax 50 (mph) target speed

α 0.4470 (m2/s) target diffusivity

ρ 120 (m) UAV sensor range

C 50 decay term

in Figure 4(a), a red target is just entering the sensor range

of the UAV. The UAV raises the likelihood for all nodes in
sensor range as indicated by the orange and red nodes. In Fig.
4(b), with the threshold achieved, the red target has changed
color to black, indicative of a target detection and transition
from track-before-detect to track-after-detect for that target.
The black target is now invisible to all UAV sensors since the
likelihood surface is used only for track-before-detect. (An-
other algorithm will track future movements of the detected
targets; it is not described here.)

Focusing now on the red and cyan UAVs, their sensor
ranges have just overlapped in Figure 4(a). As a result, a
repulsion force acts on both UAVs, introducing an additional
force into the Dubins car dynamics. This force becomes
larger as the UAVs get closer, and eventually leads the two
UAVs to turn away from one another while continuing their
gradient ascending behavior in Figure 4(b).

UAVs have limited turn rates, so when confronted with two
equally large maximum gradients in range, each UAV reacts
within its dynamic constraints; this indirectly introduces a
tiebreak in the case of multiple edges with the same maxi-
mum change in likelihood. As discussed before, if multiple
local edges have the same maximum likelihood change, a
random edge among that maximum set will be chosen. Even
if the random edge is chosen in a direction not aligned with
the current heading of the UAV, the saturation introduced in
the speed of the UAV, and the limited turn radius, will compel
the UAV to move in approximately the same direction. On
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Fig. 5: Number of UAVs vs. Time to detect for constant area

the subsequent time step, the UAV’s sensor area will have
shifted and the edges that are re-evaluated for gradients will
have changed as well, causing the UAVs to prefer gradients
along their current direction rather than changing direction
substantially to pursue a maximum gradient.

Performance of the algorithm on a road network was de-
termined using three metrics: intersection density (ID), time
to detect, and number of UAVs. Time to detect represents
the time required to detect all targets on the road network
and ID is the number of intersections per square mile of a
road-network snapshot [32]. The four different road networks
in Table I have linearly decreasing intersection density for
approximately the same size snapshot. Between 3–6 UAVs
were released on each road network to search for targets.
Twenty–five Monte Carlo simulations were run using the
parameters described in Table II for each UAV configuration,
resulting in one hundred trials for each of the four road
network snapshots.

Figure 5 shows the relationship between number of UAVs
and time to detect for each road network snapshot. As the
number UAVs searching increased, the time to detect de-
creased. Figure 6 shows the relationship between intersection
density and time to detect for increasing numbers of UAVs.
The time to detect for a particular number of UAVs does
not change substantially, indicative of a balanced algorithm
that can search spaces of various road complexity without
suffering a loss in production. In addition, as the number of
UAVs searching increases, the variance in time to detection
decreases. This result indicates that the algorithm becomes
more efficient at detecting targets on similarly sized snapshots
as the number of UAVs increases.

V. CONCLUSION

Multiple mission profiles require strong motion planning
algorithms that are autonomous and cooperative. We present
a physics-inspired track-before-detect algorithm for multiple
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Fig. 6: Intersection Density vs. Time to detect for constant
area

UAVs and targets on a road network. UAVs take measure-
ments of target position on the road network and generate
log-likelihood ratio estimates. The likelihood surface is dif-
fused throughout possible target locations using the graph
Laplacian of the road network graph. UAVs are directed
up the maximum local likelihood gradient by a coupled
gradient and spring force, while avoiding collisions using
Pauli repulsion. Simulations show the algorithm performance
for a set of parameters. The next step in the algorithm
is introducing a track-after-detection component to UAV’s
motion planning. In the absence of measurements, likelihood
for detected target locations will be propagated throughout
the network based on target dynamics. UAVs will be directed
to revisit possible detected target locations when a threshold
in uncertainty in target position is reached.
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